
ENGR 103 – Introduction to Engineering Computing

SECTION 9:
ENGINEERING APPLICATIONS

Webb ENGR 103

Systems of Equations2

Webb ENGR 103

3

Systems of Equations

 Systems of equations common in all engineering disciplines
 For 𝑁𝑁 unknown variables, we need a system of 𝑁𝑁 equations

 Can represent in matrix form:

𝐀𝐀𝐀𝐀 = 𝐛𝐛

 𝐴𝐴: 𝑁𝑁 × 𝑁𝑁 matrix of known, constant coefficients
 𝑥𝑥: 𝑁𝑁 × 1 vector of unknowns
 𝑏𝑏: 𝑁𝑁 × 1 vector of known constants

 Many tools exist for solving:
 By hand – substitution, Gaussian elimination, etc.
 Scientific calculators
 Here, we will look at the tools available within Python

Webb ENGR 103

4

A System of Equations – Example

 Consider the following scenario
 Three masses

 m1, m2, and m3

 Three springs
 k1, k2, k3

 Connected in series and
suspended

 Determine the displacement of
each mass from its unstretched
position

Webb ENGR 103

5

A System of Equations – Example

 Three unknown displacements: x1, x2, x3

 Need three equations to find displacements
 Apply Newton’s second law to each mass

 Three equations result:
𝑚𝑚1�̈�𝑥1 = 𝑚𝑚1𝑔𝑔 + 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1 − 𝑘𝑘1𝑥𝑥1
𝑚𝑚2�̈�𝑥2 = 𝑚𝑚2𝑔𝑔 + 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2 − 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1
𝑚𝑚3�̈�𝑥3 = 𝑚𝑚3𝑔𝑔 − 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2

Webb ENGR 103

6

A System of Equations – Example

 Steady-state, so no acceleration: �̈�𝑥𝑖𝑖 = 0, ∀𝑖𝑖
𝑚𝑚1𝑔𝑔 + 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1 − 𝑘𝑘1𝑥𝑥1 = 0

𝑚𝑚2𝑔𝑔 + 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2 − 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1 = 0

𝑚𝑚3𝑔𝑔 − 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2 = 0
 Rearranging

𝑘𝑘1 + 𝑘𝑘2 𝑥𝑥1 − 𝑘𝑘2𝑥𝑥2 + 0𝑥𝑥3 = 𝑚𝑚1𝑔𝑔

−𝑘𝑘2𝑥𝑥1 + 𝑘𝑘2 + 𝑘𝑘3 𝑥𝑥2 − 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚2𝑔𝑔

0𝑥𝑥1 − 𝑘𝑘3𝑥𝑥2 + 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚3𝑔𝑔

Webb ENGR 103

7

A System of Equations – Example

 Our system of three equations

𝑘𝑘1 + 𝑘𝑘2 𝑥𝑥1 − 𝑘𝑘2𝑥𝑥2 + 0𝑥𝑥3 = 𝑚𝑚1𝑔𝑔
−𝑘𝑘2𝑥𝑥1 + 𝑘𝑘2 + 𝑘𝑘3 𝑥𝑥2 − 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚2𝑔𝑔

0𝑥𝑥1 − 𝑘𝑘3𝑥𝑥2 + 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚3𝑔𝑔

can be put into matrix form

𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2 0
−𝑘𝑘2 𝑘𝑘2 + 𝑘𝑘3 −𝑘𝑘3

0 −𝑘𝑘3 𝑘𝑘3

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
𝑚𝑚1𝑔𝑔
𝑚𝑚2𝑔𝑔
𝑚𝑚3𝑔𝑔

Webb ENGR 103

8

A System of Equations – Example

𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2 0
−𝑘𝑘2 𝑘𝑘2 + 𝑘𝑘3 −𝑘𝑘3

0 −𝑘𝑘3 𝑘𝑘3

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
𝑚𝑚1𝑔𝑔
𝑚𝑚2𝑔𝑔
𝑚𝑚3𝑔𝑔

 We can rewrite this matrix equation as
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 Can apply tools of linear algebra to determine the
vector of unknown displacements

𝐀𝐀 =
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

Webb ENGR 103

9

Solution Using Matrix Inverse

 We have a system of equations:
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 If a solution exists, then the coefficient matrix, 𝐀𝐀, is
invertible
 Not always the case

 Left-multiply by 𝐀𝐀−𝟏𝟏 to solve for the vector of
unknowns, 𝑥𝑥

𝐀𝐀−𝟏𝟏𝐀𝐀𝐀𝐀 = 𝐀𝐀−𝟏𝟏𝐛𝐛
𝐈𝐈𝐀𝐀 = 𝐀𝐀−𝟏𝟏𝐛𝐛
𝐀𝐀 = 𝐀𝐀−𝟏𝟏𝐛𝐛

Webb ENGR 103

10

Solution Using Matrix Inverse

 Our linear system is described by the
matrix equation

𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2 0
−𝑘𝑘2 𝑘𝑘2 + 𝑘𝑘3 −𝑘𝑘3

0 −𝑘𝑘3 𝑘𝑘3

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
𝑚𝑚1𝑔𝑔
𝑚𝑚2𝑔𝑔
𝑚𝑚3𝑔𝑔

𝐀𝐀𝐀𝐀 = 𝐛𝐛
 Find the displacements, 𝐀𝐀, for the

following system parameters
 𝑘𝑘1 = 500 𝑁𝑁

𝑚𝑚
, 𝑘𝑘2 = 800 𝑁𝑁

𝑚𝑚
, 𝑘𝑘3 = 400 𝑁𝑁

𝑚𝑚
 𝑚𝑚1 = 3𝑘𝑘𝑔𝑔, 𝑚𝑚2 = 1𝑘𝑘𝑔𝑔, 𝑚𝑚3 = 7𝑘𝑘𝑔𝑔

Webb ENGR 103

11

Solution Using Matrix Inverse

𝑥𝑥1 = 21.6𝑐𝑐𝑚𝑚, 𝑥𝑥2= 31.4𝑐𝑐𝑚𝑚, 𝑥𝑥3= 48.6𝑐𝑐𝑚𝑚

Webb ENGR 103

12

Solution Using np.linalg.solve()

 The linalg module in the NumPy package has a function
for solving linear systems of equations
 np.linalg.solve()

 Use np.linalg.solve() to solve
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 If 𝐀𝐀−1 exists, then
x = np.linalg.solve(A,b)

is equivalent to
x = np.linalg.inv(A)@b

 But, does not calculate 𝐀𝐀−1
 Faster and more numerically robust

Webb ENGR 103

13

Solution Using np.linalg.solve()

𝑥𝑥1 = 21.6𝑐𝑐𝑚𝑚, 𝑥𝑥2= 31.4𝑐𝑐𝑚𝑚, 𝑥𝑥3= 48.6𝑐𝑐𝑚𝑚

Webb ENGR 103

14
Ex

er
ci

se
 Write a script in which you define and solve a system

of equations to determine the point of intersection
of the lines in the plot below

Exercise – System of Equations

 Solve the system of equations two ways:
 Using np.linalg.inv()
 Using np.linalg.solve()

Webb ENGR 103

Numerical Differentiation15

Webb ENGR 103

16

Differentiation

 As engineers, we often deal with rates
 Changes in one quantity with respect to another

 Often these are rates with respect to time, e.g.:
 Velocity: change in position w.r.t. time
 Acceleration: change in velocity w.r.t. time
 Power: time rate of energy transfer
 Changes in voltage or current w.r.t. time
 Etc.

 Mathematically, these rates are described by
derivatives

 Calculation of a derivative is differentiation

Webb ENGR 103

17

Derivatives

 For example, consider an object whose position as a
function of time is

𝑥𝑥 𝑡𝑡 = 2 𝑚𝑚 ⋅ 1 − 𝑒𝑒−𝑡𝑡

 At any point in time, 𝑡𝑡, the object’s velocity, 𝑣𝑣 𝑡𝑡 , is given by
the time rate of change of position
 That is, the derivative w.r.t. time of position

𝑣𝑣 𝑡𝑡 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= �̇�𝑥 𝑡𝑡 = 𝑥𝑥′ 𝑡𝑡

Webb ENGR 103

18

Derivatives

 Velocity is the rate of change of position
w.r.t. time
 Slope of the position graph
 The derivative of position

𝑣𝑣 𝑡𝑡 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= �̇�𝑥(𝑡𝑡)

 You know/will learn to differentiate
mathematical expressions, e.g.

𝑥𝑥 𝑡𝑡 = 2 𝑚𝑚 ⋅ 1 − 𝑒𝑒−𝑡𝑡

�̇�𝑥 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 = 2
𝑚𝑚
𝑠𝑠 ⋅ 𝑒𝑒

−𝑡𝑡

 Often, we would like to calculate a derivative, but we do not have a
mathematical expression, e.g.
 Measurement data
 Simulation data, etc.

 Then, we can approximate the derivative numerically

Webb ENGR 103

19

Numerical Differentiation

 Data we want to
differentiate are discrete
 Sampled – not continuous
 Data only exist at discrete

points in time
 Result of simulation or

measurement, etc.

 Numerical differentiation
 Approximation of the slope at each discrete data point

 Several methods exist for numerical differentiation
 Varying complexity and accuracy

 Here, we’ll focus on the forward difference method

Webb ENGR 103

20

Forward Difference Method

 Forward difference method
 Approximate �̇�𝑥 𝑡𝑡𝑖𝑖 using 𝑥𝑥 𝑡𝑡𝑖𝑖 and 𝑥𝑥 𝑡𝑡𝑖𝑖+1
 Data at the current time point and one time step forward

�̇�𝑥 𝑡𝑡𝑖𝑖 ≈
𝑥𝑥 𝑡𝑡𝑖𝑖+1 − 𝑥𝑥 𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖
=
Δ𝑥𝑥
Δ𝑡𝑡

Webb ENGR 103

21

Forward Difference in Python

 Numerical differentiation in Python using NumPy

�̇�𝑥 𝑡𝑡𝑖𝑖 ≈
𝑥𝑥 𝑡𝑡𝑖𝑖+1 − 𝑥𝑥 𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖
=
Δ𝑥𝑥
Δ𝑡𝑡

 We would have:
 Time vector, 𝑡𝑡
 Possibly, but not necessarily evenly spaced

 Data vector, 𝑥𝑥 𝑡𝑡
 Function to be differentiated

 Use np.diff() to calculate Δ𝑥𝑥 and Δ𝑡𝑡 vectors
 Divide to calculate Δ𝑥𝑥/Δ𝑡𝑡 at each time point

 No Δ𝑥𝑥/Δ𝑡𝑡 value at the last time point

Webb ENGR 103

22

Numerical Differentiation – Example

 Consider again an
object whose position
is given by:
𝑥𝑥 𝑡𝑡 = 2 𝑚𝑚 ⋅ 1 − 𝑒𝑒−𝑡𝑡

 Use forward difference
to approximate
velocity
 Assume a 500 msec

sample period

 Error would improve
with smaller time steps

Webb ENGR 103

23
Ex

er
ci

se
 Write a script in which you:

 Calculate 𝑦𝑦 = sin 𝑥𝑥 over a range of 𝑥𝑥 = 0,4𝜋𝜋
 Calculate the approximate derivative of 𝑦𝑦 with

respect to 𝑥𝑥, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 Plot 𝑦𝑦 𝑥𝑥 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

on the same set of axes

 Does the plot make sense in terms of the slope
of 𝑦𝑦 𝑥𝑥 ?

 Does the plot agree with the true derivative of
𝑦𝑦 𝑥𝑥 ?

Exercise – Numerical Differentiation

Webb ENGR 103

Numerical Integration24

Webb ENGR 103

25

Integration

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡

 Integration is a mathematical operation involving the calculation of
a continuous sum over some interval
 The inverse of differentiation – the antiderivative

∫ 𝑓𝑓′ 𝑡𝑡 𝑑𝑑𝑡𝑡 = 𝑓𝑓 𝑡𝑡

 We have seen that the derivative represents the rate of change of a
function w.r.t. its independent variable
 For example, consider the position of an object, 𝑥𝑥 𝑡𝑡
 Velocity of the object is the derivative of position

𝑣𝑣 𝑡𝑡 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑥𝑥′ 𝑡𝑡

 The rate of change of position w.r.t. time

Webb ENGR 103

26

Integration

 Integration is the inverse of differentiation
 Mathematical transform between a rate of a quantity (e.g.,
𝑣𝑣 𝑡𝑡 = 𝑥𝑥′ 𝑡𝑡) and that quantity (e.g., 𝑥𝑥 𝑡𝑡)

𝑥𝑥 𝑡𝑡 = ∫ 𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡 = ∫ 𝑥𝑥′ 𝑡𝑡 𝑑𝑑𝑡𝑡

 Examples of integral/derivative relationships:

Velocity
Acceleration
Power
Current

Integral

Derivative

Position
Velocity
Energy
Electrical charge

Webb ENGR 103

27

Integration

 In your calculus class you learned/will learn to calculate the
integral of functions, e.g.,

�
0

1
𝑒𝑒−

𝑡𝑡
2 𝑑𝑑𝑡𝑡 = −2 ⋅ 𝑒𝑒−

𝑡𝑡
2 �

0

1

= −2 0.6065 − 1

�
0

1
𝑒𝑒−

𝑡𝑡
2 𝑑𝑑𝑡𝑡 = 0.787

 As was the case for differentiation, we often do not have a
mathematical expression for the data we want to integrate
 E.g., measurement data or simulation data
 Only have discrete data points
 Integrate numerically

Webb ENGR 103

28

Numerical Integration

 The derivative of a function is the slope of its graph
 The integral of a function is the area under its graph
 For example, distance traveled is the integral of velocity

 Consider a car that travels at a speed of 80 km/h for 1 hour
and 120 km/h for 2 hours
 How far has the car traveled after three hours?

Webb ENGR 103

29

Numerical Integration

 Numerical integration
 Numerical approximation of area under a curve defined by a

function or a discrete data set
 We will focus on one simple method: the trapezoidal rule

 Distance at 𝑡𝑡 = 3 ℎ𝑟𝑟:

𝑥𝑥 3 = �
0

3
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡

𝑥𝑥 3 = �
0

1
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡 + �

1

3
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡

𝑥𝑥 3 = 80
𝑘𝑘𝑚𝑚
ℎ ⋅ 1 ℎ𝑟𝑟 + 120

𝑘𝑘𝑚𝑚
ℎ ⋅ 2 ℎ𝑟𝑟

𝑥𝑥 3 = 320 𝑘𝑘𝑚𝑚

Webb ENGR 103

30

Trapezoidal Rule Integration

 Approximate the integral between adjacent time point:
 Approximate area under the curve between those time points
 Area of a trapezoid

𝐴𝐴𝑟𝑟𝑒𝑒𝐴𝐴 ≈
𝑓𝑓 𝑡𝑡𝑖𝑖 + 𝑓𝑓 𝑡𝑡𝑖𝑖+1

2
⋅ 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖

𝐴𝐴𝑟𝑟𝑒𝑒𝐴𝐴 ≈ 𝐴𝐴𝑣𝑣𝑔𝑔.ℎ𝑒𝑒𝑖𝑖𝑔𝑔ℎ𝑡𝑡 ⋅ 𝑤𝑤𝑖𝑖𝑑𝑑𝑡𝑡ℎ

Webb ENGR 103

31

Trapezoidal Rule Integration

 Overall integral approximated by the approximate total area
 Sum of all individual trapezoidal segment areas

�
𝑡𝑡0

𝑡𝑡6
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡 ≈�

𝑖𝑖=1

6

𝐴𝐴𝑖𝑖 = 𝐴𝐴1 + 𝐴𝐴2 + 𝐴𝐴3 + 𝐴𝐴4 + 𝐴𝐴5 + 𝐴𝐴6

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 𝐴𝐴5 𝐴𝐴6

Webb ENGR 103

32

Trapezoidal Rule Integration

�
𝑡𝑡0

𝑡𝑡6
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡 ≈�

𝑖𝑖=0

5
𝑓𝑓 𝑡𝑡𝑖𝑖 + 𝑓𝑓 𝑡𝑡𝑖𝑖+1

2 ⋅ 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖

�
𝑡𝑡0

𝑡𝑡6
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡 ≈

𝑓𝑓 𝑡𝑡0 + 𝑓𝑓 𝑡𝑡1
2 ⋅ 𝑡𝑡1 − 𝑡𝑡0 +

𝑓𝑓 𝑡𝑡1 + 𝑓𝑓 𝑡𝑡2
2 ⋅ 𝑡𝑡2 − 𝑡𝑡1 + ⋯

⋯+
𝑓𝑓 𝑡𝑡5 + 𝑓𝑓 𝑡𝑡6

2 ⋅ 𝑡𝑡6 − 𝑡𝑡5

Webb ENGR 103

33

Trapezoidal Rule in Python – trapezoid()

 We will use the integrate module from the SciPy package
for integrating in Python
 Must import it first:

from scipy import integrate

I = integrate.trapezoid(y, x)
 y: vector of dependent variable data
 x: vector of independent variable data
 I: trapezoidal rule approximation to the integral of y with respect

to x (a scalar)

 Data need not be equally-spaced
 Segment widths calculated from x values

Webb ENGR 103

34

Trapezoidal Rule – Example

Webb ENGR 103

35

Trapezoidal Rule – Example

 Error decreases as
 Number of segments (sampling frequency) increases
 Segment size (sampling period) decreases

4, 8, 16, 32

Webb ENGR 103

36

Indefinite Integrals

 Sometimes, we want to know the result of an integral from
𝐴𝐴 to 𝑏𝑏
 A definite integral
 A number
 E.g., given velocity 𝑣𝑣(𝑡𝑡), find the total distance traveled

Δ𝑥𝑥 = 𝑥𝑥 𝑏𝑏 − 𝑥𝑥 𝐴𝐴 = �
𝑎𝑎

𝑏𝑏
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡

 Other times, we would like the result of an integral as a
function of time
 An indefinite integral or a cumulative integral
 E.g., given 𝑣𝑣(𝑡𝑡), find the distance traveled as a function of time

𝑥𝑥 𝑡𝑡 = �
0

𝑡𝑡
𝑣𝑣 𝜏𝜏 𝑑𝑑𝜏𝜏

Webb ENGR 103

37

Indefinite Integrals

 Velocity, 𝑣𝑣 𝑡𝑡 :

 Integrate velocity
to get distance as a
function of time:
𝑥𝑥 𝑡𝑡 = ∫ 𝑣𝑣 𝑡𝑡 𝑑𝑑𝑡𝑡

Webb ENGR 103

38

Cumulative Integral – cumulative_trapezoid()

I = integrate.cumulative_trapezoid(y, x,
initial=0)

 y: n-vector of dependent variable data
 x: n-vector of independent variable data
 initial: optional initial value inserted as the first value in I – if

not given, I is an (n-1)-vector
 I: trapezoidal rule approximation to the cumulative

integral of y with respect to x (an n-vector)

 Result is a vector – equivalent to:

𝐼𝐼 𝑥𝑥 = �
𝑑𝑑1

𝑑𝑑
𝑦𝑦 �𝑥𝑥 𝑑𝑑 �𝑥𝑥

Webb ENGR 103

39

trapezoid() and cumulative_trapezoid()

Webb ENGR 103

40

Integrating Functions – integrate.quad()

 If we do have an expression for the function to be
integrated, we can use SciPy's integrate.quad()
function:

I = integrate.quad(f,a,b)
 f: the function to be integrated
 a: lower integration limit
 b: upper integration limit
 I: numerical approximation of the integral

 Calculates 𝐼𝐼 = ∫𝑎𝑎
𝑏𝑏 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥

Webb ENGR 103

41
Ex

er
ci

se
 Add to your script from the previous exercise

(numerical differentiation) to do the following:
 Numerically approximate the integral of what you

calculated as the approximate derivative of
𝑦𝑦 𝑥𝑥 = sin 𝑥𝑥

 The result should be approximately the function you
started with, i.e.,

�𝑦𝑦 𝑥𝑥 ≈ sin 𝑥𝑥

 Add �𝑦𝑦 𝑥𝑥 to your plot along with 𝑦𝑦 𝑥𝑥 and its
approximate derivative.

 Play around with the number of points in your 𝑥𝑥
vector, and see how that affects the results

Exercise – Numerical Integration

Webb ENGR 103

Curve Fitting42

Webb ENGR 103

43

Curve Fitting

 Engineers often deal with discrete data sets, e.g.
 E.g., measurement or simulation data

 Typically, that data is noisy
 Measurement noise
 Random variations, external disturbances, etc.

 Typically don’t have a mathematical expression for the data
 But, we may want one
 Sometimes, we may know the data should follow a certain type of

function
 E.g., linear, quadratic, exponential, etc.

 We can fit a curve to the data
 Determine function parameters that best fit the data

 E.g., slope and intercept values for a linear relationship
 Or, determine what type of function provides the best fit

 E.g., linear, quadratic, exponential, etc.

Webb ENGR 103

44

Curve Fitting

 Consider the following engineering example:
 An inexpensive temperature sensor is to be used to measure

ambient temperature
 Temperature measured and recorded by a micro-controller
 Low accuracy (inexpensive)

 Sensor output compared to actual temperature may look like:

Webb ENGR 103

45

Curve Fitting

 Ideally, the sensor temperature, 𝑇𝑇𝑠𝑠, would equal the true
temperature, 𝑇𝑇:

𝑇𝑇𝑠𝑠 = 𝑇𝑇
 But, due to inaccuracy:

𝑇𝑇𝑠𝑠 = 𝐴𝐴1 ⋅ 𝑇𝑇 + 𝐴𝐴0
 𝐴𝐴1: proportional error
 𝐴𝐴0: offset error

Webb ENGR 103

46

Curve Fitting

 To achieve accurate measurements, we could calibrate
the sensor
 Measure a range of temperatures with the inexpensive

sensor and an accurate sensor
 Obtain a dataset representing sensor temperature, 𝑇𝑇𝑠𝑠, as a

function of true temperature, 𝑇𝑇
 That is, determine 𝐴𝐴1 and 𝐴𝐴0 such that

𝑇𝑇𝑠𝑠 = 𝑓𝑓 𝑇𝑇 = 𝐴𝐴1𝑇𝑇 + 𝐴𝐴0

 Then, we can map sensor temperature to true
temperature

𝑇𝑇 =
𝑇𝑇𝑠𝑠
𝐴𝐴1
−
𝐴𝐴0
𝐴𝐴1

Webb ENGR 103

47

Curve Fitting

 In practice, there would be two sources of error between
actual and measured temperatures
 Inherent sensor inaccuracy
 Measurement noise

 Actual measured data, �𝑇𝑇, may look like:

Webb ENGR 103

48

Curve Fitting

 Determine the blue line (𝐴𝐴1 and 𝐴𝐴0) that provides
the best fit to the measured data (red squares)

 How do we define “best fit”?

Webb ENGR 103

49

Least-Squares Fit

 What constitutes the best fit?
 Want to determine inherent sensor behavior,

𝑇𝑇𝑠𝑠 = 𝐴𝐴1 ⋅ 𝑇𝑇 + 𝐴𝐴0
given noisy measurement data,

�𝑇𝑇 = 𝑇𝑇𝑠𝑠 + 𝑒𝑒

where 𝑒𝑒 represents measurement error

Webb ENGR 103

50

Least-Squares Fit

 Minimize:

𝑆𝑆𝑟𝑟 = �
𝑖𝑖

𝑒𝑒𝑖𝑖2 = �
𝑖𝑖

�𝑇𝑇𝑖𝑖 − 𝐴𝐴1𝑇𝑇𝑖𝑖 + 𝐴𝐴0
2

 Errors between data
points and the line fit to
the data are called
residuals

 Best fit criterion:
 Minimize the sum of the

squares of the residuals
 A least-squares fit

Webb ENGR 103

51

Goodness of Fit

 How well does a function fit the data?
 Is a linear fit best? A quadratic, higher-order polynomial, or

other non-linear function?
 Want a way to be able to quantify goodness of fit

 Quantify spread of data about the mean prior to regression:

𝑆𝑆𝑡𝑡 = � �𝑦𝑦𝑖𝑖 − �𝑦𝑦 2

 Following regression, quantify spread of data about the
regression line (or curve):

𝑆𝑆𝑟𝑟 = � �𝑦𝑦𝑖𝑖 − 𝐴𝐴0 − 𝐴𝐴1𝑥𝑥𝑖𝑖 2

Webb ENGR 103

52

Goodness of Fit

 𝑆𝑆𝑡𝑡 quantifies the spread of the data about the mean
 𝑆𝑆𝑟𝑟 quantifies spread about the best-fit line (curve)

 The spread that remains after the trend is explained
 The unexplained sum of the squares

 𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑟𝑟 represents the reduction in data spread
after regression explains the underlying trend

 Normalize to 𝑆𝑆𝑡𝑡 - the coefficient of determination

𝑟𝑟2 =
𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑟𝑟
𝑆𝑆𝑡𝑡

Webb ENGR 103

53

Coefficient of Determination

𝑟𝑟2 =
𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑟𝑟
𝑆𝑆𝑡𝑡

 For a perfect fit:
 No variation in data about the regression line
 𝑆𝑆𝑟𝑟 = 0 → 𝑟𝑟2 = 1

 If the fit provides no improvement over simply
characterizing data by its mean value:
 𝑆𝑆𝑟𝑟 = 𝑆𝑆𝑡𝑡 → 𝑟𝑟2 = 0

 If the fit is worse at explaining the data than their mean
value:
 𝑆𝑆𝑟𝑟 > 𝑆𝑆𝑡𝑡 → 𝑟𝑟2 < 0

Webb ENGR 103

54

Coefficient of Determination

 Don’t rely too heavily on the value of 𝑟𝑟2
 Anscombe’s famous data sets:

 Same line fit to all four data sets
 𝑟𝑟2 = 0.67 in each case

Chapra

Webb ENGR 103

55

Curve Fitting in Python

 So far we have considered fitting a line to data
 A linear least-squares line fit

 Can also fit other functions to data, e.g.,
 Higher-order polynomials – quadratic, cubic, etc.
 Exponentials
 Sinusoids
 Power equation, etc.

 We'll look at two curve fitting methods
 Polynomials:
 np.polyfit()

 Any other user-specified function:
 scipy.optimize.curve_fit()

Webb ENGR 103

56

Polynomial Regression – np.polyfit()

p = np.polyfit(x, y, m)

 x: n-vector of independent variable data values
 y: n-vector of dependent variable data values
 m: order of the polynomial to be fit to the data (m < n)
 p: (m+1)-vector of best-fit polynomial coefficients

 Polynomial coefficients in Python
 Consider a polynomial created by np.polyfit()

𝑦𝑦 = 𝐴𝐴2𝑥𝑥2 + 𝐴𝐴1𝑥𝑥 + 𝐴𝐴0
 np.polyfit() would return

p = [a2, a1, a0]

Webb ENGR 103

57

Polynomial Evaluation – np.polyval()

 nth-order polynomial represented as (n+1)-vector
 For example, the cubic polynomial

𝑦𝑦 = 2𝑥𝑥3 − 8𝑥𝑥2 + 3𝑥𝑥 − 4

would be represented as

p = [2, -8, 3, -4]

 Use np.polyval() to evaluate that polynomial over a
vector of independent variable values

y = np.polyval(p, x)

 p: (n+1)-vector of nth-order polynomial coefficients
 x: vector of independent variable data values
 y: vector result of evaluating the polynomial at all values in x

Webb ENGR 103

58

Polynomial Fit – Example

Webb ENGR 103

59

User-Specified Curves – curve_fit()

 To fit a curve other than a polynomial, use
curve_fit() from the optimize module of the
SciPy package

from scipy.optimize import curve_fit

popt, pcov = curve_fit(f, x, y)

 f: function defining the model for the fit
 x: independent variable data values
 y: dependent variable data values
 popt: array of optimal parameter values – the parameters

from f
 pcov: estimated covariance of parameters in popt

Webb ENGR 103

60

Specifying the Model

 Let's say we have voltage data, 𝑣𝑣 𝑡𝑡 , at discrete instants of time, 𝑡𝑡
 And, we'd like to fit an exponential curve to the data

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑓𝑓 1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏

 In other words, we want to determine 𝑉𝑉𝑓𝑓 and 𝜏𝜏 to best fit the data
 Define the exponential model as a standard function:

def fit_func(t, Vf, tau)
v = Vf*(1 – np.exp(-t/tau))
return v

 Or as a lambda function:

fit_func = lambda t, Vf, tau: Vf*(1 – np.exp(-t/tau))

 In either case, the independent variable must be the first argument

Webb ENGR 103

61

Exponential Fit - Example

Webb ENGR 103

62
Ex

er
ci

se
 Download the data file, polyDat.xlsx, from

the Section 9 page on Canvas
 Write a script to do the following:

 Read the data in using Pandas:
df_poly = pd.read_excel('polyDat.xlsx')
x = df_poly['x']
y = df_poly['y']

 Fit an appropriate-order polynomial to the data
 Plot the data as discrete points along with the best-

fit polynomial, plotted as a solid line

 If you have time:
 Calculate the 𝑟𝑟2 value
 Display the polynomial and the 𝑟𝑟2 value on the plot

Exercise – Polynomial Curve Fitting

	Section 9: �Engineering Applications
	Systems of Equations
	Systems of Equations
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	Solution Using Matrix Inverse
	Solution Using Matrix Inverse
	Solution Using Matrix Inverse
	Solution Using np.linalg.solve()
	Solution Using np.linalg.solve()
	Exercise – System of Equations
	Numerical Differentiation
	Differentiation
	Derivatives
	Derivatives
	Numerical Differentiation
	Forward Difference Method
	Forward Difference in Python
	Numerical Differentiation – Example
	Exercise – Numerical Differentiation
	Numerical Integration
	Integration
	Integration
	Integration
	Numerical Integration
	Numerical Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule in Python – trapezoid()
	Trapezoidal Rule – Example
	Trapezoidal Rule – Example
	Indefinite Integrals
	Indefinite Integrals
	Cumulative Integral – cumulative_trapezoid()
	trapezoid() and cumulative_trapezoid()
	Integrating Functions – integrate.quad()
	Exercise – Numerical Integration
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Least-Squares Fit
	Least-Squares Fit
	Goodness of Fit
	Goodness of Fit
	Coefficient of Determination
	Coefficient of Determination
	Curve Fitting in Python
	Polynomial Regression – np.polyfit()
	Polynomial Evaluation – np.polyval()
	Polynomial Fit – Example
	User-Specified Curves – curve_fit()
	Specifying the Model
	Exponential Fit - Example
	Exercise – Polynomial Curve Fitting

