SECTION 9:
ENGINEERING APPLICATIONS

- ENGR 103 — Introduction to Engineering Computing

Webb ENGR 103

Systems of Equations
-

Systems of equations common in all engineering disciplines

For N unknown variables, we need a system of N equations
o Can represent in matrix form:

Ax=Db

A: N X N matrix of known, constant coefficients
x: N X 1 vector of unknowns
b: N X 1 vector of known constants

Many tools exist for solving:

o By hand — substitution, Gaussian elimination, etc.

o Scientific calculators

o Here, we will look at the tools available within Python

Webb ENGR 103

A System of Equations — Example

Consider the following scenario
kl% kl% Three masses
R

m | o m,, m,, and my

Three springs

X %
1 “ % o ky, ks, ks

P Connected in series and
s % m suspended

ms |k % Determine the displacement of

each mass from its unstretched
ms position

Webb ENGR 103

A System of Equations — Example

Three unknown displacements: x4, x,, X5

o Need three equations to find displacements

Apply Newton’s second law to each mass

kX1 ka(x2-x1) ks(x3-x2)

T T [Three equations result:
m; m; ms myX; =myg + ky(xy — x1) — kyxq
[]] Teesmeerktsmminhinon

MmzX3 = mzg — k3(x3 — x
Mg ka(X-x1) M8 Ks(X3-Xz) msg 343 39 3(3 2)

Webb ENGR 103

A System of Equations — Example
[
Steady-state, so no acceleration: X; =0, Vi

mig + ky(x; —x1) — kyx; =0
myg + ks(x3 —x3) — ky(x; — %) =0
mzg — k3(x3 —x) =0
Rearranging
(kq + k2)x4 —kyx; +0x3 =myg
—koxq + (ky + k3)x; — ksxs =myg

0x1 — k3X2 + k3X3 — m3g

Webb ENGR 103

A System of Equations — Example
-
Our system of three equations
(k1 + k2)xq —kyx; +0x3 =myg
—kyx; + (ky + k3)x,; — k3xg = myg
Oxl — k3x2 + k3X3 —_ m3g
can be put into matrix form
(kq + k2) —k; 0 |17 (g

_kz (kz + k3) —k3 myg
0 _k3 k3 | | X3 ‘msyg.

=
N
I

Webb ENGR 103

A System of Equations — Example
-

(ky + k) —k; 0 |rx1] g
—kz (kz + k3) —k3 X2| = |M2d
0 _k3 k3 | X3 msd |

We can rewrite this matrix equation as
Ax=Db)

Can apply tools of linear algebra to determine the
vector of unknown displacements

X = |X2

Webb ENGR 103

Solution Using Matrix Inverse
-0V
We have a system of equations:
Ax =D
If a solution exists, then the coefficient matrix, A, is
invertible
o Not always the case
Left-multiply by A~1 to solve for the vector of
unknowns, x
A"1Ax=A"1b
Ix=A"1b
x=A"1b

Webb ENGR 103

Solution Using Matrix Inverse

Unstretched

mi

Webb

Stretched

Our linear system is described by the
ks % Ky % matrix equation
o

(k1 + kz) —k; mlg
_kz (kz + kg) _k3 leI — |:m2g

0 _k3 msg

2 % AXx =
_L Find the displacements, X, for the

m2 following system parameters

N ké ok, =500, k, =800, k; = 400--

om, = 3kg, m, = 1kg, m; = 7kg

ENGR 103

Solution Using Matrix Inverse

Unstretched Stretched <
3 import numpy as np
4
5 # spring constant
6 kl = 588
Ky ky 7 k2 = 800
8 k3 = 408
_\L 9 M console 1/a] |
- = 18 ¥ MOSSES
m = . .
1 X1 s E :; ;i In [144]: runfile(I
13 m3 = 7 Box/KWebb/Classes/E
K 14 [[©.21582]
2 k2 12 g = 9.81 # gravitotional gcceleration [9_31392]
17 A = np.array([[k1+k2, -k2, @], [9-485595]]
18 [-k2, k2+k3, -k3],
m; 19 [e, -k3, k3]])
—e——- 20 T
X2 21 b = np.array([[ml*g],
" m- 22 [m2*g],
3 23 [m3*g]])
L 2
2 # solve using matrix inverse
ms k3 ; ¥ = np.linalg.inv(A)Eb
28 print(x)
29
X3
ms x1 = 21.6cm, x,=31.4cm, x3=48.6cm

Webb ENGR 103

Solution Using np.linalg.solve()
S —

The linalg module in the NumPy package has a function
for solving linear systems of equations

onp.linalg.solve()
Use np.linalg.solve() to solve

Ax=Db
If A1 exists, then

X = np.linalg.solve(A,b)
is equivalent to

X = np.linalg.inv(A)@b

But, does not calculate A™1
o Faster and more numerically robust

Webb ENGR 103

Solution Using np.linalg.solve()

Unstretched Stretched 5 ¥ Spring constants
B kl = 5@88
i k2 = Ba8
8 k3 = 488
5
“ ki e |D Console 1/a 2] |
12 m2 =1
_l S E m3 =7 In [145]: runfile(’
M1 X1 15 g = 9.8l # gravitational acceleration EDK"‘I}{HEEE‘EEIESSES‘;EF
mi 16 ' [[@.21582]
17 A = np.array([[kl+k2, -k2, @],
k 18 [-k2, k2+k3, -k3], [9‘31392]
2 19 [e, -k3, k3]]) [@.485595]]
kz 28
e = [[©.21582]
m; 23 [m3*g]1) [@.31392]
A 24
X2 Bo i i [0.485595]]
K m; 26 x = np.linalg.inv(A)ib
3 27 In [146]: |
28 print(x)
— 29
k3 3a print()
ms 32 # solve using np.Llindlg.solve
33 ¥ = np.linalg.solve(4,h)
N 35 print(x)
X3 il
m
3 x; = 21.6cm, x,= 31.4cm, x3= 48.6cm

Webb ENGR 103

Exercise — System of Equations

Write a script in which you define and solve a system
of equations to determine the point of intersection
of the lines in the plot below

—_— y=0.5x+2
44 —— y=2x-2

Solve the system of equations two ways:
o Using np.linalg.inv()
o Using np.linalg.solve()

Webb ENGR 103

Webb ENGR 103

Differentiation

-0V
As engineers, we often deal with rates
o Changes in one quantity with respect to another

Often these are rates with respect to time, e.g.:
o Velocity: change in position w.r.t. time

o Acceleration: change in velocity w.r.t. time

O Power: time rate of energy transfer

o Changes in voltage or current w.r.t. time

o Etc.

Mathematically, these rates are described by
derivatives

Calculation of a derivative is differentiation

Webb ENGR 103

Derivatives
X

For example, consider an object whose position as a
function of time is

x()=2m-(1—-e7Y)

2.0 1

1.5+

1.0 +

x(t) [m]

0.5

0.0

time [sec]
At any point in time, t, the object’s velocity, v(t), is given by
the time rate of change of position

o That is, the derivative w.r.t. time of position

dx
v(t) = yri x(t) = x'(t)

Webb ENGR 103

Derivatives
X

Velocity is the rate of change of position

w.r.t. time 2.00
o Slope of the position graph 175 -
o The derivative of position 1,50 1
v(t) = @ x(t) £
dt £
= 1.00 A
You know/will learn to differentiate 075 1
mathematical expressions, e.g. . %(1.5), Velocity at t = 1.5 sec
.X'(t) =2m- (1 - e_t) 0.25 -
(D) = v(t) = 2. gt 5o ; : : ; !
X =V - S e time [sec]

Often, we would like to calculate a derivative, but we do not have a
mathematical expression, e.g.

o Measurement data
o Simulation data, etc.

Then, we can approximate the derivative numerically

Webb ENGR 103

Numerical Differentiation

.
Data we want to 1 | | T Aol vaclory

- ~ o ® Sampled trajectory

differentiate are discrete s e -
0o Sampled — not continuous / "\
o Data only exist at discrete

points in time ar \

o Result of simulation or _ \
measurement, etc. \

A
D i i i i '
0 1 2 3 4 5

Numerical differentiation t lsec

o Approximation of the slope at each discrete data point
Several methods exist for numerical differentiation
o Varying complexity and accuracy

Here, we’ll focus on the forward difference method

x(t) [m]
‘ T
g

Webb ENGR 103

Forward Difference Method

Forward difference method
o Approximate x(t;) using x(t;) and x(t;;1)
Data at the current time point and one time step forward

x(tipq) —x(t) Ax

X (t) ~
i tiv4 — t; At
i+1 l
10
S l“_‘-.
— — —Actual trajectory
® Sampled trajectory | |
— Actual slope at t=1
— Approx. slope at t=1
4 | I | I I
0 0.5 1 1.5 2 5 ’

Webb ENGR 103

Forward Difference in Python

-
Numerical differentiation in Python using NumPy

. x(tivr) — x(t;) Ax
)~ = ~a
1+1 L

We would have:

o Time vector, t
Possibly, but not necessarily evenly spaced

o Data vector, x(t)
Function to be differentiated

Use np.diff() to calculate Ax and At vectors

Divide to calculate Ax/At at each time point
o No Ax/At value at the last time point

Webb ENGR 103

Numerical Differentiation — Example
e

ConSider again an i? ts = np.arange(@, 5, 588e-3)
object whose position T Al
. . 14 dx = np.diff{xs)
is given by: S et

17 dxdt = dx/dt
x()=2m-(1—e7Y) 18

Forward Difference Approximation of Velocity

Use forward difference

to apprOX|mate E l:o- O = 21— et
velocity =
o Assume a 500 msec 00 i : : : |

sample period

— true velocity
== approximate velocity

Error would improve
with smaller time steps

vit) [my/s]

time [sec]
Webb ENGR 103

Exercise — Numerical Differentiation

Write a script in which you:
o Calculate y = sin(x) over a range of x = [0, 47|

o Calculate the approximate derivative of y with

dy
respectto x, —
P " dx

d
o Plot y(x) and d—i’ on the same set of axes

Does the plot make sense in terms of the slope

of y(x)?
Does the plot agree with the true derivative of

y(x)?

Webb ENGR 103

n Numerical Integration

Webb ENGR 103

Integration
e

be(t)dt

Integration is a mathematical operation involving the calculation of
a continuous sum over some interval

o The inverse of differentiation — the antiderivative
| f'@®)dt = f(¢)

We have seen that the derivative represents the rate of change of a
function w.r.t. its independent variable
o For example, consider the position of an object, x(t)

o Velocity of the object is the derivative of position

d
(t) = d—’: = x'(8)

o The rate of change of position w.r.t. time

Webb ENGR 103

Integration

Integration is the inverse of differentiation

o Mathematical transform between a rate of a quantity (e.g.,
v(t) = x'(t)) and that quantity (e.g., x(t))

x(t) = [v(t)dt = [x'(t) dt

Examples of integral/derivative relationships:

: Integral s
Velocity Position
: ——> .
Acceleration Velocity
Power Energy
 C— :
Current Derivative | Electrical charge

Webb ENGR 103

Integration

In your calculus class you learned/will learn to calculate the
integral of functions, e.g.,

Lot t
j e 2dt=-2-e 2‘
0 0

= —2(0.6065 —1)
1 ¢
j e 2 dt =0.787
0

As was the case for differentiation, we often do not have a
mathematical expression for the data we want to integrate

o E.g., measurement data or simulation data
o Only have discrete data points
O Integrate numerically

Webb ENGR 103

Numerical Integration

The derivative of a function is the slope of its graph
The integral of a function is the area under its graph

For example, distance traveled is the integral of velocity

o Consider a car that travels at a speed of 80 km/h for 1 hour

and 120 km/h for 2 hours
How far has the car traveled after three hours?

N

120

80
120 km/h - 2 hr

Velocity [km/h]

40 80 km/h -1 hr

v

| |
1 2 3
Time [hr]

Webb ENGR 103

Numerical Integration
R

Distance att = 3 hr:

r3 120
x(3) = | v(t) dt
0

80

Velocity [km/h]

1 3
x(3) = r v(t) dt + v(t) dt o 120 km/h - 2 hr
JO 1 40— 80km/h -1 hr
km km \
x(3) =80—-1hr + 120— - 2 hr ; ; —
h h Time [hr]
x(3) =320 km

Numerical integration
o Numerical approximation of area under a curve defined by a
function or a discrete data set

o We will focus on one simple method: the trapezoidal rule

Webb ENGR 103

Trapezoidal Rule Integration

Approximate the integral between adjacent time point:

0 Approximate area under the curve between those time points
Area of a trapezoid

Trapezoidal Rule Integration

100

80

60 [

f(t)

40 -

201

0

N fQ@) + f(tise)

5 - (tip1 — t)

Area = (Avg. height) - (width)

Webb ENGR 103

Area

Trapezoidal Rule Integration

Overall integral approximated by the approximate total area
o Sum of all individual trapezoidal segment areas

Trapezoidal Rule Integration

te

6
f(t)dtzZAl :Al +A2 +A3 +A4_+A5+A6
Lo i=1

Webb ENGR 103

Trapezoidal Rule Integration
e

Trapezoidal Rule Integration

te
f(t) dt = (Lig1 — t)
to :

if(ti) + F(tisn)
2
1=0

[f(to) ;f(ﬁ) (g — to)] N [f(t1) ‘;f(tz) .

te
f@)dt ~ (t, —tl)] + o
to

ey lf(ts) erf(t6) e — ts)]

Webb ENGR 103

Trapezoidal Rule in Python —trapezoid()
e

We will use the integrate module from the SciPy package
for integrating in Python
o Must import it first:

from scipy import integrate

I = integrate.trapezoid(y, x)

O y: vector of dependent variable data
o X: vector of independent variable data

O I:trapezoidal rule approximation to the integral of y with respect
to X (a scalar)

Data need not be equally-spaced
o Segment widths calculated from x values

Webb ENGR 103

Trapezoidal Rule — Example
3

Trapezoidal Rule Integration

120 ; ;
2
3 import numpy as np
4 from scipy import integrate
5
100 + i T # the function to be infearoted
7 # in practice, we would generally not have this
8 f = lambda t: 1 / ((£-8.3)**2 + .01) + 1 / ((t-8.9)**2 + @.84) + 14
9
18 # function for the true integral
L _ 11 # generall) ould not have this either
BD N - 6 12 intf = lambda t: 14*t + l@*np.arctan(l8*t - 3) + 5*np.arctan(5*t - 9/2)|
13
I = 49'858 14 # evaluate f(t) over [a,b] with N segments, N+l samples
tme 15 a=8a
< 6ol I =49.916 | |= b-:
= approx) 17 N=6
18 t = np.linspace(a, b, N+1)
e = 0.12% 19
28 y = T(t)
21
40 22 # appro the integral over [a,b] using tropezoid
23 That = integrate.trapezoid(y, t)
24
25 # true value of the integral over [
26 I = intf(b) - intfia)
27
2D 23 # percent error of numerical app t
29 err = (Ihat - I)/I * lea@
L
31

Webb ENGR 103

Trapezoidal Rule — Example
-

Error decreases as
o Number of segments (sampling frequency) increases
O Segment size (sampling period) decreases

Trapezoidal Rule Integration Trapezoidal Rule Integration

120 120
N =16
L. =49.858
I =49.811

approx

e =-0.10%

0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
t t

Trapezoidal Rule Integration Trapezoidal Rule Integration

120 120
100 N=8 \ N =32
e L. =49.858 I, = 49.858
I - 49.331 I ~ 49.846
= a0 approx approx
= ¢ = -1.06% ¢ = -0.02%

Webb t t GR 103

Indefinite Integrals
e

Sometimes, we want to know the result of an integral from
atob

o A definite integral
o A number
o E.g., given velocity v(t), find the total distance traveled

b
Ax = x(b) — x(a) = j v(t) dt

Other times, we would like the result of an integral as a
function of time

o An indefinite integral or a cumulative integral
o E.g., given v(t), find the distance traveled as a function of time

t
x(t) =j v(t) dt
0

Webb ENGR 103

Indefinite Integrals
-

120+

Velocity, v(t): :

g 120 km/h - 2 hr

~ 404 80km/h:1hr
Integrate velocity L ;
to get distance as a A
function of time: ™

E 2404
x(t) — fv(t) dt % 160 -

; ; 7
Time [hr]

Webb ENGR 103

Cumulative Integral — cumulative trapezoid()
-

I = integrate.cumulative trapezoid(y, X,
initial=0)

O y: n-vector of dependent variable data
O X: n-vector of independent variable data

o initial: optionalinitial value inserted as the first value in I —if
not given, I is an (n-1)-vector

o I:trapezoidal rule approximation to the cumulative
integral of v with respect to x (an n-vector)

Result is a vector — equivalent to:

1(x) =j y(X) dx

X1

Webb ENGR 103

trapezoid() and cumulative trapezoid()
S S

Integrating with trapezoid() 3 import numpy as np
and cumulative trapezoid() 4 from scipy import integrate
100 = 5 from matplotlib import pyplot as plt
B
7 def humps(x):
80 8 y =1/ ((x-8.3)%*2 + .81) + 1 / ((x-8.9)**2 + B.84) - 6
9 return y
18
— 60 11 t = np.linspace(@, 1, 2888)
S’;.- 12 y = humps(t)
40 13
14 # definite integral
15 I = integrate.trapezoid(y, t)
20+ 15
17 # cumulative or indefinite integrol
0 | : : . 18 Ic = integrate.cumulative trapezoid(y, t, initial=8)
0.0 0.2 0.4 0.6 0.8 1.0 L
28 plt.figure(l).clf()
30 21 plt.subplot(211)
22 plt.plot(t, v, '"-b', linewidth=2)
25 4 23 plt.ylabel(' f(t)")
24 plt.title(" "' "Integrating with trapezoid()
20 1 25 and cumulative trapezoid()''")
26 plt.xlim(@, 1)
= 15 | =29.8583 27 plt.ylim{@, 1lea)
- 28
10 29 plt.subpleot(212)
38 plt.plot(t, Ic, '-b', linewidth=2)
5 31 plt.xlabel("'t")
32 plt.ylabel('I(t)")
0 32 plt.text(®.65, 15, 'I = {:1.4f} .format(I)},
. ' ' ' ' 34 fontsize=12
ﬂ.ﬂ D.z D.'q' U.ﬁ D.E l.ﬂ 35 pl‘t.xl:i.m(ia-, 1} :I
t 36 plt.ylim(@, 3@)

Webb ENGR 103

Integrating Functions — integrate.quad()

If we do have an expression for the function to be
integrated, we can use SciPy's integrate.quad()
function:

I = integrate.quad(f,a,b)

o f: the function to be integrated

O a: lower integration limit

O b: upper integration limit

o I: numerical approximation of the integral

Calculates I = fff(x)dx

Webb ENGR 103

Exercise — Numerical Integration

Add to your script from the previous exercise
(numerical differentiation) to do the following:

o Numerically approximate the integral of what you
calculated as the approximate derivative of

y(x) = sin(x)

o The result should be approximately the function you
started with, i.e.,

y(x) = sin(x)
o Add y(x) to your plot along with y(x) and its
approximate derivative.

Play around with the number of points in your x
vector, and see how that affects the results

Webb ENGR 103

o

Webb ENGR 103

Curve Fitting
e

Engineers often deal with discrete data sets, e.g.
o E.g.,, measurement or simulation data

Typically, that data is noisy
o Measurement noise
o Random variations, external disturbances, etc.

Typically don’t have a mathematical expression for the data
o But, we may want one

o Sometimes, we may know the data should follow a certain type of
function

E.g., linear, quadratic, exponential, etc.
We can fit a curve to the data

o Determine function parameters that best fit the data
E.g., slope and intercept values for a linear relationship

o Or, determine what type of function provides the best fit
E.g., linear, quadratic, exponential, etc.

Webb ENGR 103

Curve Fitting
e

Consider the following engineering example:

An inexpensive temperature sensor is to be used to measure
ambient temperature

0 Temperature measured and recorded by a micro-controller

o Low accuracy (inexpensive)

Sensor output compared to actual temperature may look like:

N
— — — |deal (Ts=T)

100 —

Sensor characteristic -~

Sensor Temperature (T,)

N
| I I | | I I I | | | 4
20 40 60 80 100

Actual Temperature (T)
Webh ENGR 103

Curve Fitting

— — — Ideal (Ts=T)
100 —

Sensor characteristic -~

Sensor Temperature (T;)

Actual Temperature (T)

Ideally, the sensor temperature, T, would equal the true
temperature, T':

T, =T
But, due to inaccuracy:

Ts=a4-T+ aqg
O aq: proportional error
O a,: offset error

Webb ENGR 103

Curve Fitting

To achieve accurate measurements, we could calibrate
the sensor

o Measure a range of temperatures with the inexpensive
sensor and an accurate sensor

O Obtain a dataset representing sensor temperature, T, as a
function of true temperature, T

o That is, determine a; and ay such that

Ty =f(T) =T + ag
Then, we Can map Sensor temperature to true
temperature
r_ls %
a, aq

Webb ENGR 103

Curve Fitting
e

In practice, there would be two sources of error between
actual and measured temperatures

o Inherent sensor inaccuracy
o Measurement noise

Actual measured data, T, may look like:

N

Sensor characteristic
100 — m

Measured temperature, T

Measured Temperature (T)

N

20 40 60 80 100
Actual Temperature (T)

Webb ENGR 103

Curve Fitting

<

Measured Temperature (T)

100 =

Sensor characteristic

Measured temperature,?

80
Actual Temperature (T)

100

Determine the blue line (a; and ay) that provides
the best fit to the measured data (red squares)

How do we define “best fit”?

Webb

ENGR 103

Least-Squares Fit

-
What constitutes the best fit?
Want to determine inherent sensor behavior,

TS =4aq - T + ap
given noisy measurement data,
T=T,+e

where e represents measurement error

Sensor characteristic

~

N B Measured temperature, T

= R

L 60— T2 .

= -

g €2 e3

o

§ 50 7,

'_

o

o

=

vy

o 40— -7 &1

= T

N

| | 1 7
40 50 60

Actual Temperature (T)
Webb ENGR 103

Least-Squares Fit

-
Errors between data

Sensor characteristic

N\ u Measured temperature, T

points and the linefitto < :

the data are called 2 7. -
residuals S :

Best fit criterion: E = e

0 Minimize the sum of the T T T >

squares of the residuals Actual Temperature (T
o A least-squares fit

Minimize:
A 2
Sr = z ef = E[Ti — (a4 T; + ay)]
i i

Webb ENGR 103

Goodness of Fit
-

How well does a function fit the data?

Is a linear fit best? A quadratic, higher-order polynomial, or
other non-linear function?

Want a way to be able to quantify goodness of fit

Quantify spread of data about the mean prior to regression:

St = Z(yz — }_’)2

Following regression, quantify spread of data about the
regression line (or curve):

5=) 0= — %)

Webb ENGR 103

Goodness of Fit
-

St quantifies the spread of the data about the mean

S, quantifies spread about the best-fit line (curve)
O The spread that remains after the trend is explained
o0 The unexplained sum of the squares

S: — S, represents the reduction in data spread
after regression explains the underlying trend

Normalize to §S; - the coefficient of determination
St o Sr
St

r? =

Webb ENGR 103

Coefficient of Determination

For a perfect fit:
o No variation in data about the regression line

oS, =0 - r?=1

If the fit provides no improvement over simply
characterizing data by its mean value:
s, =S - r2=0

If the fit is worse at explaining the data than their mean
value:

s, >S, - r2<0

Webb ENGR 103

Coefficient of Determination

.
Don’t rely too heavily on the value of r?
Anscombe’s famous data sets:

15— 15 —
10 10
= @ ®

5 5

P [5]
D_lJIL|JlIJ|lJIl|IlIJ| D_llll|JIIJ|lJIl|llIl|
0 5 10 15 20 0 5 10 15 20
15— 15—

s L] E
10 10

— [] E

BiIS 5
0:||||I||||I||||I||||I n:|||||||||l||||l||||l
0 5 10 15 20 0 5 10 15 20

Same line fit to all four data sets
r? = 0.67 in each case

Webb ENGR 103

Curve Fitting in Python

So far we have considered fitting a line to data
o A linear least-squares line fit

Can also fit other functions to data, e.g.,

o Higher-order polynomials — quadratic, cubic, etc.
o Exponentials

o Sinusoids

o Power equation, etc.

We'll look at two curve fitting methods

o Polynomials:
np.polyfit()

o Any other user-specified function:
scipy.optimize.curve fit()

Webb ENGR 103

Polynomial Regression — np.polyfit()
R

p = np.polyfit(x, y, m)

O X: n-vector of independent variable data values

O y: n-vector of dependent variable data values

o m: order of the polynomial to be fit to the data (m < n)
o p: (m+1)-vector of best-fit polynomial coefficients

Polynomial coefficients in Python
o Consider a polynomial created by np.polyfit()

y = a,x* + a;x + ag
o np.polyfit() would return

p = [32: di, ae]

Webb ENGR 103

Polynomial Evaluation — np.polyval()

-
nth-order polynomial represented as (n+1)-vector
For example, the cubic polynomial
y =2x3 —8x%+3x — 4
would be represented as
P = [2: -8, 3, '4]

Use np.polyval () to evaluate that polynomial over a
vector of independent variable values

y = np.polyval(p, Xx)

o p: (n+1)-vector of nt"-order polynomial coefficients
o X: vector of independent variable data values
O y: vector result of evaluating the polynomial at all values in x

Webb ENGR 103

Polynomial Fit — Example
3

Best-Fit Cubic 3 import numpy as np
4 from matplotlib import pyplot as plt
5
6 # EX create sy dataset
60 - 7 # polynomia £ ts at 1, 3, and 9
8 = = x*F3 - 13 2 + 38 - 27
y=1.13x3+ —15.09x2 + 47.58x + — 35.02 5 p = np.poly([1, 3, 9])
1@ ¥ = np.linspace(@, 18, 25)
40 | r*=0.954 11 y = np.polyval(p, x)
12
13 # odd noise to data
14 rng = np.random.default_rng(seed=5)
15
16 sig = &
17 v = rng.normal({scale=sig, size=len{y))
18
15 ¥No=y + v
28
21
22 # XX perform the fit using np.polyfit
23 m=3
24 pfit = np.polyfit({x, yn, m)
25
26
27 # E¥ evaluote the best-fit cubic
28 xfit = np.linspace(min(x), max(x), 288)
29 ¥3 = np.polyval(pfit, xfit)
3a y3r2 = np.polyval({pfit, x)
31
32
33 # XE coefficient of determination
34 ybar = np.mean{yn)
T T T T 35 5t = sum{(yn - ybar)**2)
4] 2 4 6 8 10 36 Sro= sumf{{yn - y3r2)**2)
X 37 r2 = (5t - Sr)/5t

Webb ENGR 103

User-Specified Curves — curve fit()

To fit a curve other than a polynomial, use

curve fit() from the optimize module of the
SciPy package

from scipy.optimize import curve fit

popt, pcov = curve fit(f, x, y)

o f: function defining the model for the fit
o X: independent variable data values
O y: dependent variable data values

o popt: array of optimal parameter values — the parameters
from f

O pcov: estimated covariance of parameters in popt

Webb ENGR 103

Specifying the Model
-

Let's say we have voltage data, v(t), at discrete instants of time, t
And, we'd like to fit an exponential curve to the data

o) = V(1 - e77)

O In other words, we want to determine V¢ and 7 to best fit the data
Define the exponential model as a standard function:

def fit func(t, Vf, tau)
v = VF*(1 - np.exp(-t/tau))
return v

Or as a lambda function:
fit func=1ambdat, Vf, tau: VFf*(1-np.exp(-t/tau))

In either case, the independent variable must be the first argument

Webb ENGR 103

vl

v(t)

Exponential Fit - Example

Best-Fit Exponential

oe® o
0.4 -
q

0.3 1

v(t) = 0.40(1 — e~ t1-2E-04)

2 _
0.2 - r<=0.9717
0.1 4
0.0
D.Iﬂ D.IZ D.I4 D.Iﬁ D.IE 1.0

Webb

t [msec]

import numpy as np
from scipy.optimize impert curve_fit
from matplotlib import pyplot as plt

t = np.linspace(@, le-3, 25)
tau = 1l28e-6
Vf = 4a@e-3
v = VF*(1 - np.exp(-t/tau))

rng = np.random.default_rng(seed=6)

sig = 15e-3
n = rag.normal(scale=sig, size=len(t))

v o= v +n

fit_funt = lambda X, a; b: a*(1 - np.exp(-%x/b))

popt, pcdv = curvé_fit(fit_func, t, wn)

print(popt)

Vf_fit = popt[@]
tau_fit = popt[1]

np.linspacef@J t[-1], 2868)
vfit = fit_func(tfit, wf_fit, tau_fit)
vfitr2 = fit_func(t, Vf_fit, tau_fit)

-+
B e
+ o
In

vbar = np.mean(wn)
5t = sum({wvn - wvbar)**2)
Sr o= sum({wvn - wfitr2)**2)
r2 = (5t - 5r)/5t

ENGR 103

Exercise — Polynomial Curve Fitting

Download the data file, polyDat.x1sx, from
the Section 9 page on Canvas

Write a script to do the following:

o Read the data in using Pandas:

df poly = pd.read_excel('polyDat.xlsx')
x = df _poly['x']
y = df_poly['y"]
o Fit an appropriate-order polynomial to the data

o Plot the data as discrete points along with the best-
fit polynomial, plotted as a solid line

If you have time:
o Calculate the 72 value
o Display the polynomial and the 2 value on the plot

Webb ENGR 103

	Section 9: �Engineering Applications
	Systems of Equations
	Systems of Equations
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	Solution Using Matrix Inverse
	Solution Using Matrix Inverse
	Solution Using Matrix Inverse
	Solution Using np.linalg.solve()
	Solution Using np.linalg.solve()
	Exercise – System of Equations
	Numerical Differentiation
	Differentiation
	Derivatives
	Derivatives
	Numerical Differentiation
	Forward Difference Method
	Forward Difference in Python
	Numerical Differentiation – Example
	Exercise – Numerical Differentiation
	Numerical Integration
	Integration
	Integration
	Integration
	Numerical Integration
	Numerical Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule in Python – trapezoid()
	Trapezoidal Rule – Example
	Trapezoidal Rule – Example
	Indefinite Integrals
	Indefinite Integrals
	Cumulative Integral – cumulative_trapezoid()
	trapezoid() and cumulative_trapezoid()
	Integrating Functions – integrate.quad()
	Exercise – Numerical Integration
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Least-Squares Fit
	Least-Squares Fit
	Goodness of Fit
	Goodness of Fit
	Coefficient of Determination
	Coefficient of Determination
	Curve Fitting in Python
	Polynomial Regression – np.polyfit()
	Polynomial Evaluation – np.polyval()
	Polynomial Fit – Example
	User-Specified Curves – curve_fit()
	Specifying the Model
	Exponential Fit - Example
	Exercise – Polynomial Curve Fitting

