
ENGR 103 – Introduction to Engineering Computing

SECTION 9:
ENGINEERING APPLICATIONS

Webb ENGR 103

Systems of Equations2

Webb ENGR 103

3

Systems of Equations

 Systems of equations common in all engineering disciplines
 For 𝑁𝑁 unknown variables, we need a system of 𝑁𝑁 equations

 Can represent in matrix form:

𝐀𝐀𝐀𝐀 = 𝐛𝐛

 𝐴𝐴: 𝑁𝑁 × 𝑁𝑁 matrix of known, constant coefficients
 𝑥𝑥: 𝑁𝑁 × 1 vector of unknowns
 𝑏𝑏: 𝑁𝑁 × 1 vector of known constants

 Many tools exist for solving:
 By hand – substitution, Gaussian elimination, etc.
 Scientific calculators
 Here, we will look at the tools available within Python

Webb ENGR 103

4

A System of Equations – Example

 Consider the following scenario
 Three masses

 m1, m2, and m3

 Three springs
 k1, k2, k3

 Connected in series and
suspended

 Determine the displacement of
each mass from its unstretched
position

Webb ENGR 103

5

A System of Equations – Example

 Three unknown displacements: x1, x2, x3

 Need three equations to find displacements
 Apply Newton’s second law to each mass

 Three equations result:
𝑚𝑚1𝑥̈𝑥1 = 𝑚𝑚1𝑔𝑔 + 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1 − 𝑘𝑘1𝑥𝑥1
𝑚𝑚2𝑥̈𝑥2 = 𝑚𝑚2𝑔𝑔 + 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2 − 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1
𝑚𝑚3𝑥̈𝑥3 = 𝑚𝑚3𝑔𝑔 − 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2

Webb ENGR 103

6

A System of Equations – Example

 Steady-state, so no acceleration: 𝑥̈𝑥𝑖𝑖 = 0, ∀𝑖𝑖
𝑚𝑚1𝑔𝑔 + 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1 − 𝑘𝑘1𝑥𝑥1 = 0

𝑚𝑚2𝑔𝑔 + 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2 − 𝑘𝑘2 𝑥𝑥2 − 𝑥𝑥1 = 0

𝑚𝑚3𝑔𝑔 − 𝑘𝑘3 𝑥𝑥3 − 𝑥𝑥2 = 0
 Rearranging

𝑘𝑘1 + 𝑘𝑘2 𝑥𝑥1 − 𝑘𝑘2𝑥𝑥2 + 0𝑥𝑥3 = 𝑚𝑚1𝑔𝑔

−𝑘𝑘2𝑥𝑥1 + 𝑘𝑘2 + 𝑘𝑘3 𝑥𝑥2 − 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚2𝑔𝑔

0𝑥𝑥1 − 𝑘𝑘3𝑥𝑥2 + 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚3𝑔𝑔

Webb ENGR 103

7

A System of Equations – Example

 Our system of three equations

𝑘𝑘1 + 𝑘𝑘2 𝑥𝑥1 − 𝑘𝑘2𝑥𝑥2 + 0𝑥𝑥3 = 𝑚𝑚1𝑔𝑔
−𝑘𝑘2𝑥𝑥1 + 𝑘𝑘2 + 𝑘𝑘3 𝑥𝑥2 − 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚2𝑔𝑔

0𝑥𝑥1 − 𝑘𝑘3𝑥𝑥2 + 𝑘𝑘3𝑥𝑥3 = 𝑚𝑚3𝑔𝑔

can be put into matrix form

𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2 0
−𝑘𝑘2 𝑘𝑘2 + 𝑘𝑘3 −𝑘𝑘3

0 −𝑘𝑘3 𝑘𝑘3

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
𝑚𝑚1𝑔𝑔
𝑚𝑚2𝑔𝑔
𝑚𝑚3𝑔𝑔

Webb ENGR 103

8

A System of Equations – Example

𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2 0
−𝑘𝑘2 𝑘𝑘2 + 𝑘𝑘3 −𝑘𝑘3

0 −𝑘𝑘3 𝑘𝑘3

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
𝑚𝑚1𝑔𝑔
𝑚𝑚2𝑔𝑔
𝑚𝑚3𝑔𝑔

 We can rewrite this matrix equation as
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 Can apply tools of linear algebra to determine the
vector of unknown displacements

𝐱𝐱 =
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

Webb ENGR 103

9

Solution Using Matrix Inverse

 We have a system of equations:
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 If a solution exists, then the coefficient matrix, 𝐀𝐀, is
invertible
 Not always the case

 Left-multiply by 𝐀𝐀−𝟏𝟏 to solve for the vector of
unknowns, 𝑥𝑥

𝐀𝐀−𝟏𝟏𝐀𝐀𝐀𝐀 = 𝐀𝐀−𝟏𝟏𝐛𝐛
𝐈𝐈𝐈𝐈 = 𝐀𝐀−𝟏𝟏𝐛𝐛
𝐱𝐱 = 𝐀𝐀−𝟏𝟏𝐛𝐛

Webb ENGR 103

10

Solution Using Matrix Inverse

 Our linear system is described by the
matrix equation

𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2 0
−𝑘𝑘2 𝑘𝑘2 + 𝑘𝑘3 −𝑘𝑘3

0 −𝑘𝑘3 𝑘𝑘3

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
𝑚𝑚1𝑔𝑔
𝑚𝑚2𝑔𝑔
𝑚𝑚3𝑔𝑔

𝐀𝐀𝐀𝐀 = 𝐛𝐛
 Find the displacements, 𝐱𝐱, for the

following system parameters
 𝑘𝑘1 = 500 𝑁𝑁

𝑚𝑚
, 𝑘𝑘2 = 800 𝑁𝑁

𝑚𝑚
, 𝑘𝑘3 = 400 𝑁𝑁

𝑚𝑚
 𝑚𝑚1 = 3𝑘𝑘𝑘𝑘, 𝑚𝑚2 = 1𝑘𝑘𝑘𝑘, 𝑚𝑚3 = 7𝑘𝑘𝑘𝑘

Webb ENGR 103

11

Solution Using Matrix Inverse

𝑥𝑥1 = 21.6𝑐𝑐𝑐𝑐, 𝑥𝑥2= 31.4𝑐𝑐𝑐𝑐, 𝑥𝑥3= 48.6𝑐𝑐𝑐𝑐

Webb ENGR 103

12

Solution Using np.linalg.solve()

 The linalg module in the NumPy package has a function
for solving linear systems of equations
 np.linalg.solve()

 Use np.linalg.solve() to solve
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 If 𝐀𝐀−1 exists, then
x = np.linalg.solve(A,b)

is equivalent to
x = np.linalg.inv(A)@b

 But, does not calculate 𝐀𝐀−1
 Faster and more numerically robust

Webb ENGR 103

13

Solution Using np.linalg.solve()

𝑥𝑥1 = 21.6𝑐𝑐𝑐𝑐, 𝑥𝑥2= 31.4𝑐𝑐𝑐𝑐, 𝑥𝑥3= 48.6𝑐𝑐𝑐𝑐

Webb ENGR 103

14
Ex

er
ci

se
 Write a script in which you define and solve a system

of equations to determine the point of intersection
of the lines in the plot below

Exercise – System of Equations

 Solve the system of equations two ways:
 Using np.linalg.inv()
 Using np.linalg.solve()

Webb ENGR 103

Numerical Differentiation15

Webb ENGR 103

16

Differentiation

 As engineers, we often deal with rates
 Changes in one quantity with respect to another

 Often these are rates with respect to time, e.g.:
 Velocity: change in position w.r.t. time
 Acceleration: change in velocity w.r.t. time
 Power: time rate of energy transfer
 Changes in voltage or current w.r.t. time
 Etc.

 Mathematically, these rates are described by
derivatives

 Calculation of a derivative is differentiation

Webb ENGR 103

17

Derivatives

 For example, consider an object whose position as a
function of time is

𝑥𝑥 𝑡𝑡 = 2 𝑚𝑚 ⋅ 1 − 𝑒𝑒−𝑡𝑡

 At any point in time, 𝑡𝑡, the object’s velocity, 𝑣𝑣 𝑡𝑡 , is given by
the time rate of change of position
 That is, the derivative w.r.t. time of position

𝑣𝑣 𝑡𝑡 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥̇𝑥 𝑡𝑡 = 𝑥𝑥′ 𝑡𝑡

Webb ENGR 103

18

Derivatives

 Velocity is the rate of change of position
w.r.t. time
 Slope of the position graph
 The derivative of position

𝑣𝑣 𝑡𝑡 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥̇𝑥(𝑡𝑡)

 You know/will learn to differentiate
mathematical expressions, e.g.

𝑥𝑥 𝑡𝑡 = 2 𝑚𝑚 ⋅ 1 − 𝑒𝑒−𝑡𝑡

𝑥̇𝑥 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 = 2
𝑚𝑚
𝑠𝑠 ⋅ 𝑒𝑒

−𝑡𝑡

 Often, we would like to calculate a derivative, but we do not have a
mathematical expression, e.g.
 Measurement data
 Simulation data, etc.

 Then, we can approximate the derivative numerically

Webb ENGR 103

19

Numerical Differentiation

 Data we want to
differentiate are discrete
 Sampled – not continuous
 Data only exist at discrete

points in time
 Result of simulation or

measurement, etc.

 Numerical differentiation
 Approximation of the slope at each discrete data point

 Several methods exist for numerical differentiation
 Varying complexity and accuracy

 Here, we’ll focus on the forward difference method

Webb ENGR 103

20

Forward Difference Method

 Forward difference method
 Approximate 𝑥̇𝑥 𝑡𝑡𝑖𝑖 using 𝑥𝑥 𝑡𝑡𝑖𝑖 and 𝑥𝑥 𝑡𝑡𝑖𝑖+1
 Data at the current time point and one time step forward

𝑥̇𝑥 𝑡𝑡𝑖𝑖 ≈
𝑥𝑥 𝑡𝑡𝑖𝑖+1 − 𝑥𝑥 𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖
=
Δ𝑥𝑥
Δ𝑡𝑡

Webb ENGR 103

21

Forward Difference in Python

 Numerical differentiation in Python using NumPy

𝑥̇𝑥 𝑡𝑡𝑖𝑖 ≈
𝑥𝑥 𝑡𝑡𝑖𝑖+1 − 𝑥𝑥 𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖
=
Δ𝑥𝑥
Δ𝑡𝑡

 We would have:
 Time vector, 𝑡𝑡
 Possibly, but not necessarily evenly spaced

 Data vector, 𝑥𝑥 𝑡𝑡
 Function to be differentiated

 Use np.diff() to calculate Δ𝑥𝑥 and Δ𝑡𝑡 vectors
 Divide to calculate Δ𝑥𝑥/Δ𝑡𝑡 at each time point

 No Δ𝑥𝑥/Δ𝑡𝑡 value at the last time point

Webb ENGR 103

22

Numerical Differentiation – Example

 Consider again an
object whose position
is given by:
𝑥𝑥 𝑡𝑡 = 2 𝑚𝑚 ⋅ 1 − 𝑒𝑒−𝑡𝑡

 Use forward difference
to approximate
velocity
 Assume a 500 msec

sample period

 Error would improve
with smaller time steps

Webb ENGR 103

23
Ex

er
ci

se
 Write a script in which you:

 Calculate 𝑦𝑦 = sin 𝑥𝑥 over a range of 𝑥𝑥 = 0,4𝜋𝜋
 Calculate the approximate derivative of 𝑦𝑦 with

respect to 𝑥𝑥, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 Plot 𝑦𝑦 𝑥𝑥 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

on the same set of axes

 Does the plot make sense in terms of the slope
of 𝑦𝑦 𝑥𝑥 ?

 Does the plot agree with the true derivative of
𝑦𝑦 𝑥𝑥 ?

Exercise – Numerical Differentiation

Webb ENGR 103

Numerical Integration24

Webb ENGR 103

25

Integration

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑

 Integration is a mathematical operation involving the calculation of
a continuous sum over some interval
 The inverse of differentiation – the antiderivative

∫ 𝑓𝑓′ 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝑓𝑓 𝑡𝑡

 We have seen that the derivative represents the rate of change of a
function w.r.t. its independent variable
 For example, consider the position of an object, 𝑥𝑥 𝑡𝑡
 Velocity of the object is the derivative of position

𝑣𝑣 𝑡𝑡 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥′ 𝑡𝑡

 The rate of change of position w.r.t. time

Webb ENGR 103

26

Integration

 Integration is the inverse of differentiation
 Mathematical transform between a rate of a quantity (e.g.,
𝑣𝑣 𝑡𝑡 = 𝑥𝑥′ 𝑡𝑡) and that quantity (e.g., 𝑥𝑥 𝑡𝑡)

𝑥𝑥 𝑡𝑡 = ∫ 𝑣𝑣 𝑡𝑡 𝑑𝑑𝑑𝑑 = ∫ 𝑥𝑥′ 𝑡𝑡 𝑑𝑑𝑑𝑑

 Examples of integral/derivative relationships:

Velocity
Acceleration
Power
Current

Integral

Derivative

Position
Velocity
Energy
Electrical charge

Webb ENGR 103

27

Integration

 In your calculus class you learned/will learn to calculate the
integral of functions, e.g.,

�
0

1
𝑒𝑒−

𝑡𝑡
2 𝑑𝑑𝑑𝑑 = −2 ⋅ 𝑒𝑒−

𝑡𝑡
2 �

0

1

= −2 0.6065 − 1

�
0

1
𝑒𝑒−

𝑡𝑡
2 𝑑𝑑𝑑𝑑 = 0.787

 As was the case for differentiation, we often do not have a
mathematical expression for the data we want to integrate
 E.g., measurement data or simulation data
 Only have discrete data points
 Integrate numerically

Webb ENGR 103

28

Numerical Integration

 The derivative of a function is the slope of its graph
 The integral of a function is the area under its graph
 For example, distance traveled is the integral of velocity

 Consider a car that travels at a speed of 80 km/h for 1 hour
and 120 km/h for 2 hours
 How far has the car traveled after three hours?

Webb ENGR 103

29

Numerical Integration

 Numerical integration
 Numerical approximation of area under a curve defined by a

function or a discrete data set
 We will focus on one simple method: the trapezoidal rule

 Distance at 𝑡𝑡 = 3 ℎ𝑟𝑟:

𝑥𝑥 3 = �
0

3
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑥𝑥 3 = �
0

1
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑑𝑑 + �

1

3
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑥𝑥 3 = 80
𝑘𝑘𝑘𝑘
ℎ ⋅ 1 ℎ𝑟𝑟 + 120

𝑘𝑘𝑘𝑘
ℎ ⋅ 2 ℎ𝑟𝑟

𝑥𝑥 3 = 320 𝑘𝑘𝑘𝑘

Webb ENGR 103

30

Trapezoidal Rule Integration

 Approximate the integral between adjacent time point:
 Approximate area under the curve between those time points
 Area of a trapezoid

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≈
𝑓𝑓 𝑡𝑡𝑖𝑖 + 𝑓𝑓 𝑡𝑡𝑖𝑖+1

2
⋅ 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≈ 𝐴𝐴𝐴𝐴𝐴𝐴.ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

Webb ENGR 103

31

Trapezoidal Rule Integration

 Overall integral approximated by the approximate total area
 Sum of all individual trapezoidal segment areas

�
𝑡𝑡0

𝑡𝑡6
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 ≈�

𝑖𝑖=1

6

𝐴𝐴𝑖𝑖 = 𝐴𝐴1 + 𝐴𝐴2 + 𝐴𝐴3 + 𝐴𝐴4 + 𝐴𝐴5 + 𝐴𝐴6

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 𝐴𝐴5 𝐴𝐴6

Webb ENGR 103

32

Trapezoidal Rule Integration

�
𝑡𝑡0

𝑡𝑡6
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 ≈�

𝑖𝑖=0

5
𝑓𝑓 𝑡𝑡𝑖𝑖 + 𝑓𝑓 𝑡𝑡𝑖𝑖+1

2 ⋅ 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖

�
𝑡𝑡0

𝑡𝑡6
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑑𝑑 ≈

𝑓𝑓 𝑡𝑡0 + 𝑓𝑓 𝑡𝑡1
2 ⋅ 𝑡𝑡1 − 𝑡𝑡0 +

𝑓𝑓 𝑡𝑡1 + 𝑓𝑓 𝑡𝑡2
2 ⋅ 𝑡𝑡2 − 𝑡𝑡1 + ⋯

⋯+
𝑓𝑓 𝑡𝑡5 + 𝑓𝑓 𝑡𝑡6

2 ⋅ 𝑡𝑡6 − 𝑡𝑡5

Webb ENGR 103

33

Trapezoidal Rule in Python – trapezoid()

 We will use the integrate module from the SciPy package
for integrating in Python
 Must import it first:

from scipy import integrate

I = integrate.trapezoid(y, x)
 y: vector of dependent variable data
 x: vector of independent variable data
 I: trapezoidal rule approximation to the integral of y with respect

to x (a scalar)

 Data need not be equally-spaced
 Segment widths calculated from x values

Webb ENGR 103

34

Trapezoidal Rule – Example

Webb ENGR 103

35

Trapezoidal Rule – Example

 Error decreases as
 Number of segments (sampling frequency) increases
 Segment size (sampling period) decreases

4, 8, 16, 32

Webb ENGR 103

36

Indefinite Integrals

 Sometimes, we want to know the result of an integral from
𝑎𝑎 to 𝑏𝑏
 A definite integral
 A number
 E.g., given velocity 𝑣𝑣(𝑡𝑡), find the total distance traveled

Δ𝑥𝑥 = 𝑥𝑥 𝑏𝑏 − 𝑥𝑥 𝑎𝑎 = �
𝑎𝑎

𝑏𝑏
𝑣𝑣 𝑡𝑡 𝑑𝑑𝑑𝑑

 Other times, we would like the result of an integral as a
function of time
 An indefinite integral or a cumulative integral
 E.g., given 𝑣𝑣(𝑡𝑡), find the distance traveled as a function of time

𝑥𝑥 𝑡𝑡 = �
0

𝑡𝑡
𝑣𝑣 𝜏𝜏 𝑑𝑑𝑑𝑑

Webb ENGR 103

37

Indefinite Integrals

 Velocity, 𝑣𝑣 𝑡𝑡 :

 Integrate velocity
to get distance as a
function of time:
𝑥𝑥 𝑡𝑡 = ∫ 𝑣𝑣 𝑡𝑡 𝑑𝑑𝑑𝑑

Webb ENGR 103

38

Cumulative Integral – cumulative_trapezoid()

I = integrate.cumulative_trapezoid(y, x,
initial=0)

 y: n-vector of dependent variable data
 x: n-vector of independent variable data
 initial: optional initial value inserted as the first value in I – if

not given, I is an (n-1)-vector
 I: trapezoidal rule approximation to the cumulative

integral of y with respect to x (an n-vector)

 Result is a vector – equivalent to:

𝐼𝐼 𝑥𝑥 = �
𝑥𝑥1

𝑥𝑥
𝑦𝑦 �𝑥𝑥 𝑑𝑑 �𝑥𝑥

Webb ENGR 103

39

trapezoid() and cumulative_trapezoid()

Webb ENGR 103

40

Integrating Functions – integrate.quad()

 If we do have an expression for the function to be
integrated, we can use SciPy's integrate.quad()
function:

I = integrate.quad(f,a,b)
 f: the function to be integrated
 a: lower integration limit
 b: upper integration limit
 I: numerical approximation of the integral

 Calculates 𝐼𝐼 = ∫𝑎𝑎
𝑏𝑏 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

Webb ENGR 103

41
Ex

er
ci

se
 Add to your script from the previous exercise

(numerical differentiation) to do the following:
 Numerically approximate the integral of what you

calculated as the approximate derivative of
𝑦𝑦 𝑥𝑥 = sin 𝑥𝑥

 The result should be approximately the function you
started with, i.e.,

�𝑦𝑦 𝑥𝑥 ≈ sin 𝑥𝑥

 Add �𝑦𝑦 𝑥𝑥 to your plot along with 𝑦𝑦 𝑥𝑥 and its
approximate derivative.

 Play around with the number of points in your 𝑥𝑥
vector, and see how that affects the results

Exercise – Numerical Integration

Webb ENGR 103

Curve Fitting42

Webb ENGR 103

43

Curve Fitting

 Engineers often deal with discrete data sets, e.g.
 E.g., measurement or simulation data

 Typically, that data is noisy
 Measurement noise
 Random variations, external disturbances, etc.

 Typically don’t have a mathematical expression for the data
 But, we may want one
 Sometimes, we may know the data should follow a certain type of

function
 E.g., linear, quadratic, exponential, etc.

 We can fit a curve to the data
 Determine function parameters that best fit the data

 E.g., slope and intercept values for a linear relationship
 Or, determine what type of function provides the best fit

 E.g., linear, quadratic, exponential, etc.

Webb ENGR 103

44

Curve Fitting

 Consider the following engineering example:
 An inexpensive temperature sensor is to be used to measure

ambient temperature
 Temperature measured and recorded by a micro-controller
 Low accuracy (inexpensive)

 Sensor output compared to actual temperature may look like:

Webb ENGR 103

45

Curve Fitting

 Ideally, the sensor temperature, 𝑇𝑇𝑠𝑠, would equal the true
temperature, 𝑇𝑇:

𝑇𝑇𝑠𝑠 = 𝑇𝑇
 But, due to inaccuracy:

𝑇𝑇𝑠𝑠 = 𝑎𝑎1 ⋅ 𝑇𝑇 + 𝑎𝑎0
 𝑎𝑎1: proportional error
 𝑎𝑎0: offset error

Webb ENGR 103

46

Curve Fitting

 To achieve accurate measurements, we could calibrate
the sensor
 Measure a range of temperatures with the inexpensive

sensor and an accurate sensor
 Obtain a dataset representing sensor temperature, 𝑇𝑇𝑠𝑠, as a

function of true temperature, 𝑇𝑇
 That is, determine 𝑎𝑎1 and 𝑎𝑎0 such that

𝑇𝑇𝑠𝑠 = 𝑓𝑓 𝑇𝑇 = 𝑎𝑎1𝑇𝑇 + 𝑎𝑎0

 Then, we can map sensor temperature to true
temperature

𝑇𝑇 =
𝑇𝑇𝑠𝑠
𝑎𝑎1
−
𝑎𝑎0
𝑎𝑎1

Webb ENGR 103

47

Curve Fitting

 In practice, there would be two sources of error between
actual and measured temperatures
 Inherent sensor inaccuracy
 Measurement noise

 Actual measured data, �𝑇𝑇, may look like:

Webb ENGR 103

48

Curve Fitting

 Determine the blue line (𝑎𝑎1 and 𝑎𝑎0) that provides
the best fit to the measured data (red squares)

 How do we define “best fit”?

Webb ENGR 103

49

Least-Squares Fit

 What constitutes the best fit?
 Want to determine inherent sensor behavior,

𝑇𝑇𝑠𝑠 = 𝑎𝑎1 ⋅ 𝑇𝑇 + 𝑎𝑎0
given noisy measurement data,

�𝑇𝑇 = 𝑇𝑇𝑠𝑠 + 𝑒𝑒

where 𝑒𝑒 represents measurement error

Webb ENGR 103

50

Least-Squares Fit

 Minimize:

𝑆𝑆𝑟𝑟 = �
𝑖𝑖

𝑒𝑒𝑖𝑖2 = �
𝑖𝑖

�𝑇𝑇𝑖𝑖 − 𝑎𝑎1𝑇𝑇𝑖𝑖 + 𝑎𝑎0
2

 Errors between data
points and the line fit to
the data are called
residuals

 Best fit criterion:
 Minimize the sum of the

squares of the residuals
 A least-squares fit

Webb ENGR 103

51

Goodness of Fit

 How well does a function fit the data?
 Is a linear fit best? A quadratic, higher-order polynomial, or

other non-linear function?
 Want a way to be able to quantify goodness of fit

 Quantify spread of data about the mean prior to regression:

𝑆𝑆𝑡𝑡 = � �𝑦𝑦𝑖𝑖 − �𝑦𝑦 2

 Following regression, quantify spread of data about the
regression line (or curve):

𝑆𝑆𝑟𝑟 = � �𝑦𝑦𝑖𝑖 − 𝑎𝑎0 − 𝑎𝑎1𝑥𝑥𝑖𝑖 2

Webb ENGR 103

52

Goodness of Fit

 𝑆𝑆𝑡𝑡 quantifies the spread of the data about the mean
 𝑆𝑆𝑟𝑟 quantifies spread about the best-fit line (curve)

 The spread that remains after the trend is explained
 The unexplained sum of the squares

 𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑟𝑟 represents the reduction in data spread
after regression explains the underlying trend

 Normalize to 𝑆𝑆𝑡𝑡 - the coefficient of determination

𝑟𝑟2 =
𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑟𝑟
𝑆𝑆𝑡𝑡

Webb ENGR 103

53

Coefficient of Determination

𝑟𝑟2 =
𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑟𝑟
𝑆𝑆𝑡𝑡

 For a perfect fit:
 No variation in data about the regression line
 𝑆𝑆𝑟𝑟 = 0 → 𝑟𝑟2 = 1

 If the fit provides no improvement over simply
characterizing data by its mean value:
 𝑆𝑆𝑟𝑟 = 𝑆𝑆𝑡𝑡 → 𝑟𝑟2 = 0

 If the fit is worse at explaining the data than their mean
value:
 𝑆𝑆𝑟𝑟 > 𝑆𝑆𝑡𝑡 → 𝑟𝑟2 < 0

Webb ENGR 103

54

Coefficient of Determination

 Don’t rely too heavily on the value of 𝑟𝑟2
 Anscombe’s famous data sets:

 Same line fit to all four data sets
 𝑟𝑟2 = 0.67 in each case

Chapra

Webb ENGR 103

55

Curve Fitting in Python

 So far we have considered fitting a line to data
 A linear least-squares line fit

 Can also fit other functions to data, e.g.,
 Higher-order polynomials – quadratic, cubic, etc.
 Exponentials
 Sinusoids
 Power equation, etc.

 We'll look at two curve fitting methods
 Polynomials:
 np.polyfit()

 Any other user-specified function:
 scipy.optimize.curve_fit()

Webb ENGR 103

56

Polynomial Regression – np.polyfit()

p = np.polyfit(x, y, m)

 x: n-vector of independent variable data values
 y: n-vector of dependent variable data values
 m: order of the polynomial to be fit to the data (m < n)
 p: (m+1)-vector of best-fit polynomial coefficients

 Polynomial coefficients in Python
 Consider a polynomial created by np.polyfit()

𝑦𝑦 = 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎0
 np.polyfit() would return

p = [a2, a1, a0]

Webb ENGR 103

57

Polynomial Evaluation – np.polyval()

 nth-order polynomial represented as (n+1)-vector
 For example, the cubic polynomial

𝑦𝑦 = 2𝑥𝑥3 − 8𝑥𝑥2 + 3𝑥𝑥 − 4

would be represented as

p = [2, -8, 3, -4]

 Use np.polyval() to evaluate that polynomial over a
vector of independent variable values

y = np.polyval(p, x)

 p: (n+1)-vector of nth-order polynomial coefficients
 x: vector of independent variable data values
 y: vector result of evaluating the polynomial at all values in x

Webb ENGR 103

58

Polynomial Fit – Example

Webb ENGR 103

59

User-Specified Curves – curve_fit()

 To fit a curve other than a polynomial, use
curve_fit() from the optimize module of the
SciPy package

from scipy.optimize import curve_fit

popt, pcov = curve_fit(f, x, y)

 f: function defining the model for the fit
 x: independent variable data values
 y: dependent variable data values
 popt: array of optimal parameter values – the parameters

from f
 pcov: estimated covariance of parameters in popt

Webb ENGR 103

60

Specifying the Model

 Let's say we have voltage data, 𝑣𝑣 𝑡𝑡 , at discrete instants of time, 𝑡𝑡
 And, we'd like to fit an exponential curve to the data

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑓𝑓 1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏

 In other words, we want to determine 𝑉𝑉𝑓𝑓 and 𝜏𝜏 to best fit the data
 Define the exponential model as a standard function:

def fit_func(t, Vf, tau)
v = Vf*(1 – np.exp(-t/tau))
return v

 Or as a lambda function:

fit_func = lambda t, Vf, tau: Vf*(1 – np.exp(-t/tau))

 In either case, the independent variable must be the first argument

Webb ENGR 103

61

Exponential Fit - Example

Webb ENGR 103

62
Ex

er
ci

se
 Download the data file, polyDat.xlsx, from

the Section 9 page on Canvas
 Write a script to do the following:

 Read the data in using Pandas:
df_poly = pd.read_excel('polyDat.xlsx')
x = df_poly['x']
y = df_poly['y']

 Fit an appropriate-order polynomial to the data
 Plot the data as discrete points along with the best-

fit polynomial, plotted as a solid line

 If you have time:
 Calculate the 𝑟𝑟2 value
 Display the polynomial and the 𝑟𝑟2 value on the plot

Exercise – Polynomial Curve Fitting

	Section 9: �Engineering Applications
	Systems of Equations
	Systems of Equations
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	A System of Equations – Example
	Solution Using Matrix Inverse
	Solution Using Matrix Inverse
	Solution Using Matrix Inverse
	Solution Using np.linalg.solve()
	Solution Using np.linalg.solve()
	Exercise – System of Equations
	Numerical Differentiation
	Differentiation
	Derivatives
	Derivatives
	Numerical Differentiation
	Forward Difference Method
	Forward Difference in Python
	Numerical Differentiation – Example
	Exercise – Numerical Differentiation
	Numerical Integration
	Integration
	Integration
	Integration
	Numerical Integration
	Numerical Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule Integration
	Trapezoidal Rule in Python – trapezoid()
	Trapezoidal Rule – Example
	Trapezoidal Rule – Example
	Indefinite Integrals
	Indefinite Integrals
	Cumulative Integral – cumulative_trapezoid()
	trapezoid() and cumulative_trapezoid()
	Integrating Functions – integrate.quad()
	Exercise – Numerical Integration
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Curve Fitting
	Least-Squares Fit
	Least-Squares Fit
	Goodness of Fit
	Goodness of Fit
	Coefficient of Determination
	Coefficient of Determination
	Curve Fitting in Python
	Polynomial Regression – np.polyfit()
	Polynomial Evaluation – np.polyval()
	Polynomial Fit – Example
	User-Specified Curves – curve_fit()
	Specifying the Model
	Exponential Fit - Example
	Exercise – Polynomial Curve Fitting

