
ENGR 112 – Introduction to Engineering Computing

SECTION 1:
INTRODUCTION

K. Webb ENGR 112

Course Overview2

K. Webb ENGR 112

3

What is Programming?

 Programming
 The implementation of algorithms in a particular computer

programming language for execution on a computer

 Algorithm
 A step-by-step procedure for performing a computation, solving a

problem, performing some action, etc. – a recipe
 Algorithm design is the meat of programming – the rest is just

translation into a particular language

 Programming language
 We’ll use MATLAB. Others include C, C++, Python, Fortran, etc.

 Computer
 May be a PC, or may be a microcontroller, FPGA, etc.

K. Webb ENGR 112

4

Why Programming?

 I don’t want to be a software engineer. Why do I
need to learn to program?
 All engineers will need to write computer code

throughout their careers
 Design and simulation
 Numerical solution of mathematical problems
 Data analysis – from measurements or simulation
 Firmware for the control of mechatronic systems

 More importantly: development of algorithmic
thinking ability
 Learn to think like an engineer – single most important

takeaway from your engineering education

K. Webb ENGR 112

5

Course Overview

Section 1: Introduction

Section 2: Vectors and Matrices

Section 4: Algorithmic Thinking &
Flow Charts

Section 5: Structured Programming in
MATLAB

Section 3: Two-Dimensional Plotting

Section 6: User-Defined Functions

Section 8: File I/O

Introductory material:
 Course overview
 Introduction to required tools
 Linear algebra basics

Algorithm fundamentals:
 Generic; Platform-independent
 Engineering thinking –

transcends programming

Platform- (MATLAB) specific material:
 A valuable engineering tool –

learn to use it effectively

Application of the fundamentals:
 MATLAB-specific, but
 Similar to other languages

Section 7: Three-Dimensional Plotting

Section 9: Engineering Applications

K. Webb ENGR 112

6

MATLAB

 This a course in programming fundamentals and
algorithmic thinking

 The tool we’ll use to develop these concepts is
MATLAB
 Could just as well use another language, e.g., Python, C,

C++, Java, Fortran, …
 The important concepts are not language-specific

 Two goals of this course:
 Learn to develop basic algorithms and to write

structured computer code
 Learn to use MATLAB

K. Webb ENGR 112

The remainder of this section of notes is intended
to provide a brief introduction to MATLAB.
This is not intended to be a thorough tutorial on
the use of the tool, but the beginning of a process
that will continue throughout the course.

Introduction to MATLAB7

K. Webb ENGR 112

8

The MATLAB Desktop

Workspace

File
Browser

Command
History

K. Webb ENGR 112

9

The MATLAB Desktop – Command Window

 Command-line
operation
 Behaves like a

calculator
 Useful for:

 Quick calculations
 Simple debugging

tasks

K. Webb ENGR 112

10

The MATLAB Desktop – Editor Window

 Editor for m-files
 Scripts
 Collections of commands

executed sequentially
 Functions

 Built-in debugger
 Set breakpoints
 Step through code line-by-

line or by section

K. Webb ENGR 112

11

The MATLAB Desktop – Workspace

 Lists all variables
currently stored
in memory
 Values for

scalars and
small arrays

 Size and data
types for larger
arrays

 Double-click a
variable to open
in a spreadsheet

K. Webb ENGR 112

12

The MATLAB Desktop – Current Folder

 File browser
 A built-in ‘Windows

Explorer’
 Open, move, copy,

rename, delete files
from within
MATLAB

K. Webb ENGR 112

13

The MATLAB Desktop – Command History

 Lists previously-executed
commands
 All commands issued

through the command
window

 Double-click to re-execute

 Arrow keys cycle through
command history in the
command window

K. Webb ENGR 112

14

The MATLAB Desktop – Docking Windows

K. Webb ENGR 112

15

The MATLAB Desktop – Docking Windows

 Docked windows
stay on top of
the desktop
 Won’t get

hidden below
other windows

 Can dock figure
windows as well

K. Webb ENGR 112

16

The MATLAB Desktop – Saving Layouts

 Favorite desktop
configuration or
configurations
can be saved

K. Webb ENGR 112

17

Assignment of Variables

 Can define variables
and assign values

 Variable and value
echoed in command
window

 Terminating command
with semicolon
suppresses echo

 Variables then appear
in workspace

K. Webb ENGR 112

Variables used in MATLAB can be of many different
types, e.g. integers, floating-point numbers,
alphanumeric characters, etc.
The following section introduces each of these data
types. You’ll gain a better understanding of each as
the course progresses.

Data Types18

K. Webb ENGR 112

19

Variable Declaration

 In MATLAB, it isn’t necessary to declare a variable
before using it, e.g.:

a = 7.4039;

 Declaration occurs automatically upon assignment
 Default type is double

 This differs from many other languages, e.g. in C:

float a;
a = 7.4039;

or
float a = 7.4039;

K. Webb ENGR 112

20

Variable Names

 Variable names must start with a letter
 Names may contain letters, numbers, and

underscore characters
 No spaces

 Names are case sensitive
 Don’t name variables with names of built-in

functions
 Can be done, but that function will not be available as

long as the variable is defined in the workspace

K. Webb ENGR 112

21

Fundamental MATLAB Data Types

 MATLAB supports many different numeric and non-
numeric data types

 Numeric types
 int8, int16, int32, int64
 uint8, uint16, uint32, uint64
 single
 double

 Non-numeric types
 logical
 char

 table
 cell

 struct
 function handle

K. Webb ENGR 112

22

Data Types – double

 When you assign a variable a numeric value, e.g.

a = 7.4039;

by default, its type is double
 double

 Numeric value stored using double-precision floating-point
format

 64 bits used to store each variable value
 Accurate representation of very large and very small values
 Range: ±2.22507 × 10−308 … ± 1.79769 × 10308

 Can usually ignore numerical errors due to inaccurate
numeric representation

K. Webb ENGR 112

23

Non-Default Data Types

 It is possible to force MATLAB to store numeric
variable values as other types
 We’ll rarely, if ever, do this here
 May become important if writing code for execution on

non-PC target hardware,
 E.g., microcontroller for control system application

 Default, double, type requires 64 bits
May consume excessive memory
Mathematical operations may be too slow on some

hardware

 Other data types trade off precision for memory

K. Webb ENGR 112

24

Data Types – single

 single
 Single-precision floating-point format
 32 bits
 Less memory required than for double
 Less precise than double
 Range: ±1.17549 × 10−38 … ± 3.40282 × 1038

K. Webb ENGR 112

25

Data Types – int8, int16, int32, int64

 int8
 8-bit
 Min: -128
 Max: 127

 int16
 16-bit
 Min: -32768
 Max: 32767

 Signed integers
 One sign bit – remainder for integer value

 int32
 32-bit
 Min: -2147483648
 Max: 2147483647

 int64
 64-bit
 Min: -9223372036854775808
 Max: 9223372036854775807

K. Webb ENGR 112

26

Data Types – uint8, uint16, uint32, uint64

 uint8
 8-bit
 Min: 0
 Max: 255

 uint16
 16-bit
 Min: 0
 Max: 65535

 Unsigned integers
 All bits used to store integer value

 uint32
 32-bit
 Min: 0
 Max: 4294967295

 uint64
 64-bit
 Min: 0
 Max: 18446744073709551615

K. Webb ENGR 112

27

Non-numeric Types – logical

 Data type that stores one of only two values:
 True – stored as a 1
 False – stored as a 0

 For example, relational (comparison) operations
return logical values:

 Relational operation evaluates as true
 b stored as a logical with value 1

K. Webb ENGR 112

28

Non-numeric Types – char

 Data type used for text
 Alphanumeric characters

 Useful for:
 Reading from and writing to files
 Annotating plots, etc.

 Variables are of the char type when their assigned
value is enclosed in single quotes:

K. Webb ENGR 112

29

Non-numeric Types – cell

 A cell array is a collection of individual data
containers called cells

 Each cell in an array may be of a different size or
different type

 For example, c is an array of char and double
cells:

 c is of type cell

K. Webb ENGR 112

30

Non-numeric Types – table

 Container to hold
column-oriented data
of different types and
sizes
 Useful for

spreadsheet-like data
 Each column contains

a different variable
 May also include

metadata properties,
e.g.:
 Variable units
 Row names, etc.

K. Webb ENGR 112

31

Non-numeric Types – struct

 Structures are
arrays with
named fields,
each containing
data of varied
type and size

 Field data can
be accessed
individually

K. Webb ENGR 112

MATLAB includes an extensive library of
general-purpose, as well as many application-
specific, built-in functions.

Mathematical Operations and Built-In Functions32

K. Webb ENGR 112

33

Basic Mathematical Operations

 MATLAB includes all of the
basic mathematical functions
you would expect in a scientific
calculator

 Addition
 Subtraction
 Multiplication
 Division
 Exponentiation

K. Webb ENGR 112

34

Order of Operations

 MATLAB order of operations:
1) () parentheses
2) ^ exponentiation
3) - negation
4) *, /, \ multiplication, division
5) +, - addition, subtraction

 Expressions are evaluated left to
right within each level of the
precedence hierarchy

K. Webb ENGR 112

35

Built-In Functions

 MATLAB includes many
built-in mathematical
functions, including:

 Square root: 𝑥𝑥
 Exponential: 𝑒𝑒𝑥𝑥

 Factorial: 𝑥𝑥!
 Absolute value: 𝑥𝑥
 And many, many more…

K. Webb ENGR 112

36

Trigonometric Functions

 Trigonometric
functions expect input
arguments expressed in
radians

 Inverse trig functions
return values in radians

 To operate in degrees
 Convert
 Use degree-specific

functions: sind, cosd,
atand, etc.

K. Webb ENGR 112

37

Built-In Functions – clear, clc

 clear x y… or
clear all
 Deletes some or all

variables from memory
 clc

 Clears the command
window

 Good practice to start
all scripts with:
clear all; clc

K. Webb ENGR 112

38

Logarithms

 Natural logarithm
y = log(x)

 Log base 10
y = log10(x)

 Log base 2
y = log2(x)

K. Webb ENGR 112

39

Built-In Constants

 Some built-in MATLAB
constants:
 𝜋𝜋: pi
 Imaginary unit (−1): i or j
 Infinity (∞): inf
 Not-a-number: NaN
 Result of most recently

executed command: ans
 Largest positive floating-point

number: realmax
 Smallest positive floating-point

number: realmin

K. Webb ENGR 112

40

Scientific Notation

 Use scientific notation to represent very large or small
numbers, e.g.:

1.58 × 10−9

 Very bad practice to type a lot of zeros – never do this:

0.00000000158

 Difficult to read, and much too easy to miscount zeros

 In MATLAB use e for × 10𝑥𝑥, e.g.:

x = 1.58e-9;

 Don’t confuse with 𝑒𝑒𝑥𝑥 (i.e. 2.718𝑥𝑥) represented by exp(x)

K. Webb ENGR 112

41

MATLAB Help Documentation

 Two ways to access
MATLAB help files:
 Type:
help <function> at
the command line

 Use the help
documentation browser

 Not sure if a function
exists to do something
you want?
 It probably does – search

for it in the
documentation

K. Webb ENGR 112

MATLAB Scripts – M-Files42

K. Webb ENGR 112

43

MATLAB Command Window

 As we’ve seen, we can enter commands into
MATLAB through the command window
 Useful for quick calculations, debugging, etc.
 Enter one expression at a time
 To execute a sequence of commands repeatedly, must

re-enter all commands each time
 Command history is only record of executed commands

 Better practice is to write all commands to be
executed in a single file or script, called an m-file

K. Webb ENGR 112

44

M-Files

 M-files are files containing a series of MATLAB
commands
 These are scripts or programs
 So called due to the .m filename extension
 Quickly and easily re-run at any time – no need to re-type all

commands in the command window
 Executed by entering the m-file name on the command line

or by clicking the Run button

 Our primary mode of interaction with MATLAB

K. Webb ENGR 112

45

Scripts vs. Programs

 We’ll use the terms scripts or programs interchangeably
when referring to MATLAB m-files

 Technically, m-files are scripts, but this distinction is not
important for our purposes.

 Programs
 Written (possibly) in a high-level language – source code
 Compiled (once) by a compiler into a machine language

executable file – object code
 Fast, because compilation performed once, ahead of runtime

 Scripts
 High-level source code is interpreted and executed line-by-line by

an interpreter at runtime
 Slower than compiled programs

K. Webb ENGR 112

46

MATLAB Editor

 Built-in text editor for m-files
 Automatic color coding
 Automatic indenting
 Warnings specified prior to

runtime
 Built-in debugger
 Editor tabs allow for

simultaneous editing of
multiple m-files

K. Webb ENGR 112

47

M-File Naming Requirements

 M-file names must start with a letter
 Names may contain letters, numbers, and

underscore characters
 No spaces

 Names are case sensitive
 Don’t name m-files with names of built-in functions

 Can be done, but may lead to confusion
 Local m-file will take precedence over the built-in

function – determined by the MATLAB path

K. Webb ENGR 112

48

The MATLAB Path

 M-files can be executed three ways
 Click the “Run” button (see p. 4)
 Enter the m-file name at the command line
 Call the m-file by name from within another m-file

 But, the m-file must be in the MATLAB path

 The path is an ordered list of directories where MATLAB
looks to find m-files when called

 The MATLAB path includes:
 The present working directory
 All MATLAB libraries of built-in functions
 Any directory that you explicitly add to the path

K. Webb ENGR 112

49

The MATLAB Path

 All m-files outside of the PWD – user-defined or
built-in – must be in the path to be accessed

 For now, this means
you must set the
PWD to be the
location of the m-file
you’re working with

K. Webb ENGR 112

50

Present Working Directory – Current Folder

 PWD is indicated on the MATLAB desktop
in one of two possible locations
 As shown here, or
 In the Current Folder sub-window

 Current Folder sub-window shows
contents of the present working directory
 These files are all automatically in the path

K. Webb ENGR 112

51

M-Files – Best Practices

Start m-files with a comment listing the file name.
File names cannot contain spaces or special
characters.

Additional comments with a
brief overall m-file description
and other details is useful.

‘clear all’ clears all variables
stored in the workspace.

‘clc’ clears the command
window – you’ll know if error
messages are from the current run.

Always comment your code.
Err on the side of excessive comments.

Define constants to be used in
equations. Parameters can be
changed in a single place.

K. Webb ENGR 112

52

Comments

 Comments are explanatory or descriptive text added to your code
 Not executed commands

 In MATLAB, comments are preceded by the percent sign: %

 Comments may occupy an
entire line

 Or, may be inserted at the
end of a line, after
uncommented expressions

 Ctrl+R comments a line of text in the MATLAB editor
 Ctrl+T uncomments a line

 Commenting is useful for temporarily removing instructions from an m-file

K. Webb ENGR 112

53

Clearing the Workspace – clear.m

 Good practice to clear all variables from memory at
the start of an m-file
 Prevents problems due to variables of the same name

from previous runs or other m-files

 Use clear.m to clear the entire workspace:
clear all;

 Or, to clear individual variables, e.g.:
clear x A N

or
clear(‘x’,’A’,’N’)

K. Webb ENGR 112

54

Clearing the Workspace – Example

 M-file to generate a vector of N = 10 random numbers:

 The result:

K. Webb ENGR 112

55

Clearing the Workspace – Example

 Run again for N = 5 without clearing the workspace:

 x still contains 10 numbers – last 5 from the previous run:

K. Webb ENGR 112

56

Clearing the Workspace – Example

 Run again for N = 5, but now clear the workspace:

 Now, the length of x is 5, as expected:

K. Webb ENGR 112

57

clc.m

 Issuing the command clc clears all text from the
command window

 Good practice to always do this at the start of every
m-file

 Errors are reported in the command window
 Want to know if they are from the most recent m-file

execution or a previous run
 If the command window is cleared first, any error

messages must be from the most recent run

K. Webb ENGR 112

58

Pseudocode

 The most important part of the process of writing
computer code is planning
 Determine exactly what the program should do
 And, how it will do it

 Before writing any code, write a step-by-step
description of the program
 Natural language
 Graphical – flow chart (more later)

 This may be referred to as pseudocode

K. Webb ENGR 112

59

Programming Process

 Programming process:

 Define the problem
 Ensure you have a complete understanding of the problem
 Determine exactly what the program should do

 Inputs and outputs
 Relevant equations

 Design the program
 Pseudocode – language-independent

 Write the program
 Simple translation from pseudocode

 Validate the program
 Do the outputs make sense
 Test with inputs that yield known outputs
 Test thoroughly – try to break it

K. Webb ENGR 112

60

Pseudocode

 Comments can serve as pseudocode
 Write the comments first
 Then insert code to do what the comments say

 For example:

K. Webb ENGR 112

61

Sequential Code Execution

 In general code is executed line-by-line sequentially
from the top of an m-file down

 There are, however, very important non-sequential
code structures:

 Conditional statements – code that is executed only if
certain conditions are met
 if … else
 switch

 Loops – code that is repeated a specified number of times
or while certain conditions are met
 for
 while

K. Webb ENGR 112

Inputs & Outputs62

K. Webb ENGR 112

63

Inputs to Scripts

 Inputs to a script:
 Assignments of variable values

 Several input methods:
 At the command line
 Within the script
 Specified by user during execution – input.m

K. Webb ENGR 112

64

User-Specified Input – input.m

 Prompt user for value to be assigned to a variable

var = input(Prompt)

 Prompt: a string that will be displayed in the command
window, prompting the user for an input

 var: variable to which the user-specified input is stored

 For example:

K. Webb ENGR 112

65

Outputs from Scripts

 Outputs from scripts:
 Display of values calculated by the script

 Several output methods
 Plotting
 In the command window
 Omission of trailing semicolon (;) in script
 disp.m
 display.m
 fprintf.m

 Writing data to files (more later)

K. Webb ENGR 112

66

fprintf.m

 Output formatted data to a string in the command window
fprintf(formatSpec,A1,A2,…,An)

 formatSpec: a string – may contain formatting sequences for
insertion of variable values

 A1,A2,…,An: variables whose values are to be inserted into
the string – one for each formatting sequence in formatSpec

 For example:

K. Webb ENGR 112

67

Formatting Sequences

 String may contain number formatting sequences
 Percent character (%) followed by conversion sequence

% 6 . 4 f

Indicates the
beginning of a

formatting sequence

Field width:
minimum number of

character spaces
used to display the

variable value

Conversion character:
here, f indicates
representation in fixed-
point format

Precision:
of digits to the right of the
decimal point (f, e, or E) or #
of significant digits (g or G)

K. Webb ENGR 112

68

Conversion Characters

 Conversion characters specify how to format variable
values within a string

Value Type Conversion
Character

Signed integer %d

Unsigned integer %u

Fixed-point notation %f

Exponential notation
(e.g., 1.6e-19)

%e

Exponential notation
(e.g., 1.6E-19)

%E

More compact of %e or %f %g

More compact of %E or%f %G

Single character %c

String %s

K. Webb ENGR 112

69

Formatting Sequences – Examples

 Fixed-point notation

 Field-width control

 Exponential notation

 Compact format

	Section 1: �Introduction
	Course Overview
	What is Programming?
	Why Programming?
	Course Overview
	MATLAB
	Introduction to MATLAB
	The MATLAB Desktop
	The MATLAB Desktop – Command Window
	The MATLAB Desktop – Editor Window
	The MATLAB Desktop – Workspace
	The MATLAB Desktop – Current Folder
	The MATLAB Desktop – Command History
	The MATLAB Desktop – Docking Windows
	The MATLAB Desktop – Docking Windows
	The MATLAB Desktop – Saving Layouts
	Assignment of Variables
	Data Types
	Variable Declaration
	Variable Names
	Fundamental MATLAB Data Types
	Data Types – double
	Non-Default Data Types
	Data Types – single
	Data Types – int8, int16, int32, int64
	Data Types – uint8, uint16, uint32, uint64
	Non-numeric Types – logical
	Non-numeric Types – char
	Non-numeric Types – cell
	Non-numeric Types – table
	Non-numeric Types – struct
	Mathematical Operations and Built-In Functions
	Basic Mathematical Operations
	Order of Operations
	Built-In Functions
	Trigonometric Functions
	Built-In Functions – clear, clc
	Logarithms
	Built-In Constants
	Scientific Notation
	MATLAB Help Documentation
	MATLAB Scripts – M-Files
	MATLAB Command Window
	M-Files
	Scripts vs. Programs
	MATLAB Editor
	M-File Naming Requirements
	The MATLAB Path
	The MATLAB Path
	Present Working Directory – Current Folder
	M-Files – Best Practices
	Comments
	Clearing the Workspace – clear.m
	Clearing the Workspace – Example
	Clearing the Workspace – Example
	Clearing the Workspace – Example
	clc.m
	Pseudocode
	Programming Process
	Pseudocode
	Sequential Code Execution
	Inputs & Outputs
	Inputs to Scripts
	User-Specified Input – input.m
	Outputs from Scripts
	fprintf.m
	Formatting Sequences
	Conversion Characters
	Formatting Sequences – Examples

