
ENGR 112 – Introduction to Engineering Computing

SECTION 1:
INTRODUCTION

K. Webb ENGR 112

Course Overview2

K. Webb ENGR 112

3

What is Programming?

 Programming
 The implementation of algorithms in a particular computer

programming language for execution on a computer

 Algorithm
 A step-by-step procedure for performing a computation, solving a

problem, performing some action, etc. – a recipe
 Algorithm design is the meat of programming – the rest is just

translation into a particular language

 Programming language
 We’ll use MATLAB. Others include C, C++, Python, Fortran, etc.

 Computer
 May be a PC, or may be a microcontroller, FPGA, etc.

K. Webb ENGR 112

4

Why Programming?

 I don’t want to be a software engineer. Why do I
need to learn to program?
 All engineers will need to write computer code

throughout their careers
 Design and simulation
 Numerical solution of mathematical problems
 Data analysis – from measurements or simulation
 Firmware for the control of mechatronic systems

 More importantly: development of algorithmic
thinking ability
 Learn to think like an engineer – single most important

takeaway from your engineering education

K. Webb ENGR 112

5

Course Overview

Section 1: Introduction

Section 2: Vectors and Matrices

Section 4: Algorithmic Thinking &
Flow Charts

Section 5: Structured Programming in
MATLAB

Section 3: Two-Dimensional Plotting

Section 6: User-Defined Functions

Section 8: File I/O

Introductory material:
 Course overview
 Introduction to required tools
 Linear algebra basics

Algorithm fundamentals:
 Generic; Platform-independent
 Engineering thinking –

transcends programming

Platform- (MATLAB) specific material:
 A valuable engineering tool –

learn to use it effectively

Application of the fundamentals:
 MATLAB-specific, but
 Similar to other languages

Section 7: Three-Dimensional Plotting

Section 9: Engineering Applications

K. Webb ENGR 112

6

MATLAB

 This a course in programming fundamentals and
algorithmic thinking

 The tool we’ll use to develop these concepts is
MATLAB
 Could just as well use another language, e.g., Python, C,

C++, Java, Fortran, …
 The important concepts are not language-specific

 Two goals of this course:
 Learn to develop basic algorithms and to write

structured computer code
 Learn to use MATLAB

K. Webb ENGR 112

The remainder of this section of notes is intended
to provide a brief introduction to MATLAB.
This is not intended to be a thorough tutorial on
the use of the tool, but the beginning of a process
that will continue throughout the course.

Introduction to MATLAB7

K. Webb ENGR 112

8

The MATLAB Desktop

Workspace

File
Browser

Command
History

K. Webb ENGR 112

9

The MATLAB Desktop – Command Window

 Command-line
operation
 Behaves like a

calculator
 Useful for:

 Quick calculations
 Simple debugging

tasks

K. Webb ENGR 112

10

The MATLAB Desktop – Editor Window

 Editor for m-files
 Scripts
 Collections of commands

executed sequentially
 Functions

 Built-in debugger
 Set breakpoints
 Step through code line-by-

line or by section

K. Webb ENGR 112

11

The MATLAB Desktop – Workspace

 Lists all variables
currently stored
in memory
 Values for

scalars and
small arrays

 Size and data
types for larger
arrays

 Double-click a
variable to open
in a spreadsheet

K. Webb ENGR 112

12

The MATLAB Desktop – Current Folder

 File browser
 A built-in ‘Windows

Explorer’
 Open, move, copy,

rename, delete files
from within
MATLAB

K. Webb ENGR 112

13

The MATLAB Desktop – Command History

 Lists previously-executed
commands
 All commands issued

through the command
window

 Double-click to re-execute

 Arrow keys cycle through
command history in the
command window

K. Webb ENGR 112

14

The MATLAB Desktop – Docking Windows

K. Webb ENGR 112

15

The MATLAB Desktop – Docking Windows

 Docked windows
stay on top of
the desktop
 Won’t get

hidden below
other windows

 Can dock figure
windows as well

K. Webb ENGR 112

16

The MATLAB Desktop – Saving Layouts

 Favorite desktop
configuration or
configurations
can be saved

K. Webb ENGR 112

17

Assignment of Variables

 Can define variables
and assign values

 Variable and value
echoed in command
window

 Terminating command
with semicolon
suppresses echo

 Variables then appear
in workspace

K. Webb ENGR 112

Variables used in MATLAB can be of many different
types, e.g. integers, floating-point numbers,
alphanumeric characters, etc.
The following section introduces each of these data
types. You’ll gain a better understanding of each as
the course progresses.

Data Types18

K. Webb ENGR 112

19

Variable Declaration

 In MATLAB, it isn’t necessary to declare a variable
before using it, e.g.:

a = 7.4039;

 Declaration occurs automatically upon assignment
 Default type is double

 This differs from many other languages, e.g. in C:

float a;
a = 7.4039;

or
float a = 7.4039;

K. Webb ENGR 112

20

Variable Names

 Variable names must start with a letter
 Names may contain letters, numbers, and

underscore characters
 No spaces

 Names are case sensitive
 Don’t name variables with names of built-in

functions
 Can be done, but that function will not be available as

long as the variable is defined in the workspace

K. Webb ENGR 112

21

Fundamental MATLAB Data Types

 MATLAB supports many different numeric and non-
numeric data types

 Numeric types
 int8, int16, int32, int64
 uint8, uint16, uint32, uint64
 single
 double

 Non-numeric types
 logical
 char

 table
 cell

 struct
 function handle

K. Webb ENGR 112

22

Data Types – double

 When you assign a variable a numeric value, e.g.

a = 7.4039;

by default, its type is double
 double

 Numeric value stored using double-precision floating-point
format

 64 bits used to store each variable value
 Accurate representation of very large and very small values
 Range: ±2.22507 × 10−308 … ± 1.79769 × 10308

 Can usually ignore numerical errors due to inaccurate
numeric representation

K. Webb ENGR 112

23

Non-Default Data Types

 It is possible to force MATLAB to store numeric
variable values as other types
 We’ll rarely, if ever, do this here
 May become important if writing code for execution on

non-PC target hardware,
 E.g., microcontroller for control system application

 Default, double, type requires 64 bits
May consume excessive memory
Mathematical operations may be too slow on some

hardware

 Other data types trade off precision for memory

K. Webb ENGR 112

24

Data Types – single

 single
 Single-precision floating-point format
 32 bits
 Less memory required than for double
 Less precise than double
 Range: ±1.17549 × 10−38 … ± 3.40282 × 1038

K. Webb ENGR 112

25

Data Types – int8, int16, int32, int64

 int8
 8-bit
 Min: -128
 Max: 127

 int16
 16-bit
 Min: -32768
 Max: 32767

 Signed integers
 One sign bit – remainder for integer value

 int32
 32-bit
 Min: -2147483648
 Max: 2147483647

 int64
 64-bit
 Min: -9223372036854775808
 Max: 9223372036854775807

K. Webb ENGR 112

26

Data Types – uint8, uint16, uint32, uint64

 uint8
 8-bit
 Min: 0
 Max: 255

 uint16
 16-bit
 Min: 0
 Max: 65535

 Unsigned integers
 All bits used to store integer value

 uint32
 32-bit
 Min: 0
 Max: 4294967295

 uint64
 64-bit
 Min: 0
 Max: 18446744073709551615

K. Webb ENGR 112

27

Non-numeric Types – logical

 Data type that stores one of only two values:
 True – stored as a 1
 False – stored as a 0

 For example, relational (comparison) operations
return logical values:

 Relational operation evaluates as true
 b stored as a logical with value 1

K. Webb ENGR 112

28

Non-numeric Types – char

 Data type used for text
 Alphanumeric characters

 Useful for:
 Reading from and writing to files
 Annotating plots, etc.

 Variables are of the char type when their assigned
value is enclosed in single quotes:

K. Webb ENGR 112

29

Non-numeric Types – cell

 A cell array is a collection of individual data
containers called cells

 Each cell in an array may be of a different size or
different type

 For example, c is an array of char and double
cells:

 c is of type cell

K. Webb ENGR 112

30

Non-numeric Types – table

 Container to hold
column-oriented data
of different types and
sizes
 Useful for

spreadsheet-like data
 Each column contains

a different variable
 May also include

metadata properties,
e.g.:
 Variable units
 Row names, etc.

K. Webb ENGR 112

31

Non-numeric Types – struct

 Structures are
arrays with
named fields,
each containing
data of varied
type and size

 Field data can
be accessed
individually

K. Webb ENGR 112

MATLAB includes an extensive library of
general-purpose, as well as many application-
specific, built-in functions.

Mathematical Operations and Built-In Functions32

K. Webb ENGR 112

33

Basic Mathematical Operations

 MATLAB includes all of the
basic mathematical functions
you would expect in a scientific
calculator

 Addition
 Subtraction
 Multiplication
 Division
 Exponentiation

K. Webb ENGR 112

34

Order of Operations

 MATLAB order of operations:
1) () parentheses
2) ^ exponentiation
3) - negation
4) *, /, \ multiplication, division
5) +, - addition, subtraction

 Expressions are evaluated left to
right within each level of the
precedence hierarchy

K. Webb ENGR 112

35

Built-In Functions

 MATLAB includes many
built-in mathematical
functions, including:

 Square root: 𝑥𝑥
 Exponential: 𝑒𝑒𝑥𝑥

 Factorial: 𝑥𝑥!
 Absolute value: 𝑥𝑥
 And many, many more…

K. Webb ENGR 112

36

Trigonometric Functions

 Trigonometric
functions expect input
arguments expressed in
radians

 Inverse trig functions
return values in radians

 To operate in degrees
 Convert
 Use degree-specific

functions: sind, cosd,
atand, etc.

K. Webb ENGR 112

37

Built-In Functions – clear, clc

 clear x y… or
clear all
 Deletes some or all

variables from memory
 clc

 Clears the command
window

 Good practice to start
all scripts with:
clear all; clc

K. Webb ENGR 112

38

Logarithms

 Natural logarithm
y = log(x)

 Log base 10
y = log10(x)

 Log base 2
y = log2(x)

K. Webb ENGR 112

39

Built-In Constants

 Some built-in MATLAB
constants:
 𝜋𝜋: pi
 Imaginary unit (−1): i or j
 Infinity (∞): inf
 Not-a-number: NaN
 Result of most recently

executed command: ans
 Largest positive floating-point

number: realmax
 Smallest positive floating-point

number: realmin

K. Webb ENGR 112

40

Scientific Notation

 Use scientific notation to represent very large or small
numbers, e.g.:

1.58 × 10−9

 Very bad practice to type a lot of zeros – never do this:

0.00000000158

 Difficult to read, and much too easy to miscount zeros

 In MATLAB use e for × 10𝑥𝑥, e.g.:

x = 1.58e-9;

 Don’t confuse with 𝑒𝑒𝑥𝑥 (i.e. 2.718𝑥𝑥) represented by exp(x)

K. Webb ENGR 112

41

MATLAB Help Documentation

 Two ways to access
MATLAB help files:
 Type:
help <function> at
the command line

 Use the help
documentation browser

 Not sure if a function
exists to do something
you want?
 It probably does – search

for it in the
documentation

K. Webb ENGR 112

MATLAB Scripts – M-Files42

K. Webb ENGR 112

43

MATLAB Command Window

 As we’ve seen, we can enter commands into
MATLAB through the command window
 Useful for quick calculations, debugging, etc.
 Enter one expression at a time
 To execute a sequence of commands repeatedly, must

re-enter all commands each time
 Command history is only record of executed commands

 Better practice is to write all commands to be
executed in a single file or script, called an m-file

K. Webb ENGR 112

44

M-Files

 M-files are files containing a series of MATLAB
commands
 These are scripts or programs
 So called due to the .m filename extension
 Quickly and easily re-run at any time – no need to re-type all

commands in the command window
 Executed by entering the m-file name on the command line

or by clicking the Run button

 Our primary mode of interaction with MATLAB

K. Webb ENGR 112

45

Scripts vs. Programs

 We’ll use the terms scripts or programs interchangeably
when referring to MATLAB m-files

 Technically, m-files are scripts, but this distinction is not
important for our purposes.

 Programs
 Written (possibly) in a high-level language – source code
 Compiled (once) by a compiler into a machine language

executable file – object code
 Fast, because compilation performed once, ahead of runtime

 Scripts
 High-level source code is interpreted and executed line-by-line by

an interpreter at runtime
 Slower than compiled programs

K. Webb ENGR 112

46

MATLAB Editor

 Built-in text editor for m-files
 Automatic color coding
 Automatic indenting
 Warnings specified prior to

runtime
 Built-in debugger
 Editor tabs allow for

simultaneous editing of
multiple m-files

K. Webb ENGR 112

47

M-File Naming Requirements

 M-file names must start with a letter
 Names may contain letters, numbers, and

underscore characters
 No spaces

 Names are case sensitive
 Don’t name m-files with names of built-in functions

 Can be done, but may lead to confusion
 Local m-file will take precedence over the built-in

function – determined by the MATLAB path

K. Webb ENGR 112

48

The MATLAB Path

 M-files can be executed three ways
 Click the “Run” button (see p. 4)
 Enter the m-file name at the command line
 Call the m-file by name from within another m-file

 But, the m-file must be in the MATLAB path

 The path is an ordered list of directories where MATLAB
looks to find m-files when called

 The MATLAB path includes:
 The present working directory
 All MATLAB libraries of built-in functions
 Any directory that you explicitly add to the path

K. Webb ENGR 112

49

The MATLAB Path

 All m-files outside of the PWD – user-defined or
built-in – must be in the path to be accessed

 For now, this means
you must set the
PWD to be the
location of the m-file
you’re working with

K. Webb ENGR 112

50

Present Working Directory – Current Folder

 PWD is indicated on the MATLAB desktop
in one of two possible locations
 As shown here, or
 In the Current Folder sub-window

 Current Folder sub-window shows
contents of the present working directory
 These files are all automatically in the path

K. Webb ENGR 112

51

M-Files – Best Practices

Start m-files with a comment listing the file name.
File names cannot contain spaces or special
characters.

Additional comments with a
brief overall m-file description
and other details is useful.

‘clear all’ clears all variables
stored in the workspace.

‘clc’ clears the command
window – you’ll know if error
messages are from the current run.

Always comment your code.
Err on the side of excessive comments.

Define constants to be used in
equations. Parameters can be
changed in a single place.

K. Webb ENGR 112

52

Comments

 Comments are explanatory or descriptive text added to your code
 Not executed commands

 In MATLAB, comments are preceded by the percent sign: %

 Comments may occupy an
entire line

 Or, may be inserted at the
end of a line, after
uncommented expressions

 Ctrl+R comments a line of text in the MATLAB editor
 Ctrl+T uncomments a line

 Commenting is useful for temporarily removing instructions from an m-file

K. Webb ENGR 112

53

Clearing the Workspace – clear.m

 Good practice to clear all variables from memory at
the start of an m-file
 Prevents problems due to variables of the same name

from previous runs or other m-files

 Use clear.m to clear the entire workspace:
clear all;

 Or, to clear individual variables, e.g.:
clear x A N

or
clear(‘x’,’A’,’N’)

K. Webb ENGR 112

54

Clearing the Workspace – Example

 M-file to generate a vector of N = 10 random numbers:

 The result:

K. Webb ENGR 112

55

Clearing the Workspace – Example

 Run again for N = 5 without clearing the workspace:

 x still contains 10 numbers – last 5 from the previous run:

K. Webb ENGR 112

56

Clearing the Workspace – Example

 Run again for N = 5, but now clear the workspace:

 Now, the length of x is 5, as expected:

K. Webb ENGR 112

57

clc.m

 Issuing the command clc clears all text from the
command window

 Good practice to always do this at the start of every
m-file

 Errors are reported in the command window
 Want to know if they are from the most recent m-file

execution or a previous run
 If the command window is cleared first, any error

messages must be from the most recent run

K. Webb ENGR 112

58

Pseudocode

 The most important part of the process of writing
computer code is planning
 Determine exactly what the program should do
 And, how it will do it

 Before writing any code, write a step-by-step
description of the program
 Natural language
 Graphical – flow chart (more later)

 This may be referred to as pseudocode

K. Webb ENGR 112

59

Programming Process

 Programming process:

 Define the problem
 Ensure you have a complete understanding of the problem
 Determine exactly what the program should do

 Inputs and outputs
 Relevant equations

 Design the program
 Pseudocode – language-independent

 Write the program
 Simple translation from pseudocode

 Validate the program
 Do the outputs make sense
 Test with inputs that yield known outputs
 Test thoroughly – try to break it

K. Webb ENGR 112

60

Pseudocode

 Comments can serve as pseudocode
 Write the comments first
 Then insert code to do what the comments say

 For example:

K. Webb ENGR 112

61

Sequential Code Execution

 In general code is executed line-by-line sequentially
from the top of an m-file down

 There are, however, very important non-sequential
code structures:

 Conditional statements – code that is executed only if
certain conditions are met
 if … else
 switch

 Loops – code that is repeated a specified number of times
or while certain conditions are met
 for
 while

K. Webb ENGR 112

Inputs & Outputs62

K. Webb ENGR 112

63

Inputs to Scripts

 Inputs to a script:
 Assignments of variable values

 Several input methods:
 At the command line
 Within the script
 Specified by user during execution – input.m

K. Webb ENGR 112

64

User-Specified Input – input.m

 Prompt user for value to be assigned to a variable

var = input(Prompt)

 Prompt: a string that will be displayed in the command
window, prompting the user for an input

 var: variable to which the user-specified input is stored

 For example:

K. Webb ENGR 112

65

Outputs from Scripts

 Outputs from scripts:
 Display of values calculated by the script

 Several output methods
 Plotting
 In the command window
 Omission of trailing semicolon (;) in script
 disp.m
 display.m
 fprintf.m

 Writing data to files (more later)

K. Webb ENGR 112

66

fprintf.m

 Output formatted data to a string in the command window
fprintf(formatSpec,A1,A2,…,An)

 formatSpec: a string – may contain formatting sequences for
insertion of variable values

 A1,A2,…,An: variables whose values are to be inserted into
the string – one for each formatting sequence in formatSpec

 For example:

K. Webb ENGR 112

67

Formatting Sequences

 String may contain number formatting sequences
 Percent character (%) followed by conversion sequence

% 6 . 4 f

Indicates the
beginning of a

formatting sequence

Field width:
minimum number of

character spaces
used to display the

variable value

Conversion character:
here, f indicates
representation in fixed-
point format

Precision:
of digits to the right of the
decimal point (f, e, or E) or #
of significant digits (g or G)

K. Webb ENGR 112

68

Conversion Characters

 Conversion characters specify how to format variable
values within a string

Value Type Conversion
Character

Signed integer %d

Unsigned integer %u

Fixed-point notation %f

Exponential notation
(e.g., 1.6e-19)

%e

Exponential notation
(e.g., 1.6E-19)

%E

More compact of %e or %f %g

More compact of %E or%f %G

Single character %c

String %s

K. Webb ENGR 112

69

Formatting Sequences – Examples

 Fixed-point notation

 Field-width control

 Exponential notation

 Compact format

	Section 1: �Introduction
	Course Overview
	What is Programming?
	Why Programming?
	Course Overview
	MATLAB
	Introduction to MATLAB
	The MATLAB Desktop
	The MATLAB Desktop – Command Window
	The MATLAB Desktop – Editor Window
	The MATLAB Desktop – Workspace
	The MATLAB Desktop – Current Folder
	The MATLAB Desktop – Command History
	The MATLAB Desktop – Docking Windows
	The MATLAB Desktop – Docking Windows
	The MATLAB Desktop – Saving Layouts
	Assignment of Variables
	Data Types
	Variable Declaration
	Variable Names
	Fundamental MATLAB Data Types
	Data Types – double
	Non-Default Data Types
	Data Types – single
	Data Types – int8, int16, int32, int64
	Data Types – uint8, uint16, uint32, uint64
	Non-numeric Types – logical
	Non-numeric Types – char
	Non-numeric Types – cell
	Non-numeric Types – table
	Non-numeric Types – struct
	Mathematical Operations and Built-In Functions
	Basic Mathematical Operations
	Order of Operations
	Built-In Functions
	Trigonometric Functions
	Built-In Functions – clear, clc
	Logarithms
	Built-In Constants
	Scientific Notation
	MATLAB Help Documentation
	MATLAB Scripts – M-Files
	MATLAB Command Window
	M-Files
	Scripts vs. Programs
	MATLAB Editor
	M-File Naming Requirements
	The MATLAB Path
	The MATLAB Path
	Present Working Directory – Current Folder
	M-Files – Best Practices
	Comments
	Clearing the Workspace – clear.m
	Clearing the Workspace – Example
	Clearing the Workspace – Example
	Clearing the Workspace – Example
	clc.m
	Pseudocode
	Programming Process
	Pseudocode
	Sequential Code Execution
	Inputs & Outputs
	Inputs to Scripts
	User-Specified Input – input.m
	Outputs from Scripts
	fprintf.m
	Formatting Sequences
	Conversion Characters
	Formatting Sequences – Examples

