SECTION 2: VECTORS AND MATRICES

ENGR 112 – Introduction to Engineering Computing

The "MAT" in MATLAB

- - The *MATrix* (not *MAThematics*) *LAB*oratory
- MATLAB assumes all numeric variables are *matrices Vectors* and *scalars* are special cases of matrices
- This section of notes will introduce concept of vectors and matrices
 - Matrix math linear algebra fundamentals
 - You'll cover this in much more detail in your Linear Algebra course

Matrices

<u>Matrix</u>

Array of numerical values, e.g.:

$$\mathbf{A} = \begin{bmatrix} -7 & 0 & 1 & 4 \\ 4 & -2 & 9 & 5 \\ 8 & 3 & 4 & 0 \end{bmatrix}$$

D The variable, **A**, is a *matrix*

An m × n matrix has m rows and n columns
These are the dimensions of the matrix
A is a 3 × 4 matrix

Matrix Dimensions and Indexing

5

\square An $m \times n$ matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Use indices to refer to individual elements of a matrix

\square a_{ij} : the element of **A** in the i^{th} row and the j^{th} column

Vectors

Vectors

A matrix with one dimension equal to one

A matrix with one row or one column

Row vector

• One row – a $1 \times n$ matrix, e.g.:

$$x = \begin{bmatrix} -9 & 1 & -4 \end{bmatrix}$$

\square A 1 \times 3 row vector

Column vector

• One column – an $m \times 1$ matrix, e.g.:

$$x = \begin{bmatrix} 5\\1\\8 \end{bmatrix}$$

• A 3×1 column vector

Scalars

<u>Scalar</u>

 $\square A 1 \times 1$ matrix

■ The numbers we are we are familiar with, e.g.:

$$b = 4$$
, $x = -3 + j5.8$, $y = -1 \times 10^{-9}$

- We understand simple mathematical operations involving scalars
 - Can add, subtract, multiply, or divide any pair of scalars
 - Not true for matrices
 - Depends on the matrix dimensions

Matrix Addition and Subtraction

- As long as matrices have the *same dimensions*, we can add or subtract them
 - Addition and subtraction are done element-by-element, and the resulting matrix is the same size

$$\begin{bmatrix} 4 & 8 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 1 & -4 \\ 6 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 6 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 8 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 1 & -4 \\ 6 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 12 \\ -6 & 4 \end{bmatrix}$$

We can also add scalars to (or subtract from) matrices

$$\begin{bmatrix} 1 & -4 \\ 6 & -1 \end{bmatrix} + 5 = \begin{bmatrix} 6 & 1 \\ 11 & 4 \end{bmatrix}$$

Matrix Addition and Subtraction

- 10
- If matrices are not the same size, and neither is a scalar, addition/subtraction are not defined
 - The following operations cannot be done

$$\begin{bmatrix} 4 & 8 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 1 & -4 & 6 \\ 6 & -1 & 9 \end{bmatrix} = ?$$
$$\begin{bmatrix} 8 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & -4 \\ 6 & -1 \end{bmatrix} = ?$$

Addition is commutative (order does not matter):

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} = \mathbf{C}$$

$$\begin{bmatrix} 4 & 8 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 1 & -4 \\ 6 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ 6 & -1 \end{bmatrix} + \begin{bmatrix} 4 & 8 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 6 & 2 \end{bmatrix}$$

Matrix Multiplication

- In order to multiply matrices, their *inner dimensions* must agree
- We can multiply A · B only if the *number of columns* of A is equal to the *number of rows* of B
- Resulting Matrix has same number of rows as A and same number of columns as B

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C}$$
(m x n) · (n x p) = (m x p)

Matrix Multiplication – $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}$

12

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & c_{1p} \\ \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mp} \end{bmatrix}$$

□ The (i, j^{th}) entry of **C** is the *dot product* of the i^{th} row of **A** with the j^{th} column of **B**

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

• Consider the multiplication of two 2×2 matrices:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Matrix Multiplication – Examples

 \square A 2 \times 2 and a 2 \times 3 yield a 2 \times 3

$$\begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 & 5 \\ 6 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 27 & 7 & 5 \\ 12 & 0 & 10 \end{bmatrix}$$

\square A 3 \times 3 and a 3 \times 1 result in a 3 \times 1

$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \\ 2 & 7 & 3 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 11 \\ 20 \\ 25 \end{bmatrix}$$

Matrix Multiplication – Properties

Matrix multiplication is not commutative

- Order matters
- Unlike scalars
- In general,

$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

- If A and/or B is not square then one of the above operations may not be possible anyway
 - Inner dimensions may not agree for both product orders

Matrix Multiplication – Properties

Matrix multiplication is associative

Insertion of parentheses anywhere within a product of multiple terms does not affect the result:

> $(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{D}$ $\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = \mathbf{D}$

Matrix multiplication is distributive

- Multiplication distributes over addition
- Must maintain correct order, i.e. left- or right-multiplication

 $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$

 $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$

Identity Matrix

Multiplication of a scalar by 1 results in that scalar

$$a \cdot 1 = 1 \cdot a = a$$

- □ The matrix version of 1 is the *identity matrix*
 - Ones along the diagonal, zeros everywhere else
 - **D** Square $(n \times n)$ matrix
 - **Denoted** as **I** or I_n , where **n** is the matrix dimension, e.g.

$$\mathbf{I_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 Left- or right-multiplication by an identity matrix results in that matrix, unchanged

$$\mathbf{A} \cdot \mathbf{I} = \mathbf{I} \cdot \mathbf{A} = \mathbf{A}$$

Identity Matrix

 Right-multiplication of an n × n matrix by an n × n identity matrix, I_n

$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \\ 2 & 7 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \\ 2 & 7 & 3 \end{bmatrix}$$

 \square Same result if we left-multiply by $\mathbf{I_n}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \\ 2 & 7 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \\ 2 & 7 & 3 \end{bmatrix}$$

Identity Matrix

Right-multiplication of an $m \times n$ matrix by an $n \times n$ identity matrix

$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \end{bmatrix}$$

Same result if we left-multiply the $m \times n$ matrix by an $m \times m$ identity matrix

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 4 & 8 \end{bmatrix}$$

Vector Multiplication

- Vectors are matrices, so inner dimensions must agree
- Two types of vector multiplication:
- Inner product (dot product)

Result is a scalar

$$\begin{bmatrix} a_{11} & a_{12} \end{bmatrix} \cdot \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} = a_{11}b_{11} + a_{12}b_{21}$$

Outer product

Result for n-vectors is an n x n matrix

$$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} \\ a_{21}b_{11} & a_{21}b_{12} \end{bmatrix}$$

Exponentiation

As with scalars, raising a matrix to the power, n, is the multiplication of that matrix by itself n times

$$\mathbf{A}^3 = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$$

- What must be true of a matrix for exponentiation to be allowable?
 - Inner matrix dimensions must agree
 - Rows of A must equal columns of A n x n
 - Matrix must be square

Matrix 'Division' – Multiplication by the Inverse

- 21
- Scalar division that we are accustomed to can be thought of as multiplication by an inverse:

$$a \div b = a \cdot \frac{1}{b} = a \cdot b^{-1}$$

This is how we 'divide' matrices as well

$$\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{B}^{-1} = \mathbf{A}$$

Multiplication of a scalar by its inverse is equal to 1.
 For a matrix, the result is the *identity matrix*

$$\mathbf{A} \cdot \mathbf{A^{-1}} = \mathbf{I} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

Recall that matrix multiplication is not commutative
 Right- and *left-multiplication* are different operations

$$\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{B}^{-1} = \mathbf{A} \neq \mathbf{B}^{-1} \cdot \mathbf{A} \cdot \mathbf{B}$$

The inverse does not exist for all matrices
 Non-invertible matrices are referred to as *singular* Matrix must be *square* for its inverse to exist

Matrix Inverse

23

Possible to calculate matrix inverses by hand
 Simple for small matrices

- Quickly becomes tedious as matrices get larger
- \Box For example, the inverse of a 2 \times 2 matrix:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

□ For example:

$$\mathbf{A} = \begin{bmatrix} 2 & 5 \\ 2 & 4 \end{bmatrix}$$
$$\mathbf{A}^{-1} = \frac{1}{8 - 10} \begin{bmatrix} 4 & -5 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 2.5 \\ 1 & -1 \end{bmatrix}$$

Matrix Inverse - Example

- 24
- Multiplication of a matrix by its inverse yields the identity matrix
- □ For example:

$$\mathbf{A} \cdot \mathbf{A^{-1}} = \begin{bmatrix} 2 & 5 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 2.5 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Or, for a 3×3 :

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} 0.5 & 0 & -0.5 \\ 0 & 1 & -1 \\ 0 & 0 & 0.5 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0.5 & 0 & -0.5 \\ 0 & 1 & -1 \\ 0 & 0 & 0.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

You'll learn more about this in Linear Algebra – not critical here

Matrix Transpose

The transpose of a matrix is that matrix with rows and columns swapped

First row becomes the first column, second row becomes the second column, and so on

□ For example:

$$\mathbf{A} = \begin{bmatrix} 0 & 9\\ 2 & 7\\ 6 & 3 \end{bmatrix} \quad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 0 & 2 & 6\\ 9 & 7 & 3 \end{bmatrix}$$

Row vectors become column vectors and vice versa

$$\mathbf{x} = \begin{bmatrix} 7\\ -1\\ -4 \end{bmatrix} \qquad \mathbf{x}^{\mathrm{T}} = \begin{bmatrix} 7 & -1 & -4 \end{bmatrix}$$

Why Do We Use Matrices?

- Vectors and matrices are used extensively in many engineering fields, for example:
 - Modeling, analysis, and design of dynamic systems
 - Controls engineering
 - Image processing
 - Etc. ...
- Very common usage of vectors and matrices is to represent systems of equations
 - These regularly occur in *all* fields of engineering

Systems of Equations

27

Consider a system of three equations with three unknowns:

$$3x_1 + 5x_2 - 9x_3 = 6$$

-3x_1 + 7x_3 = -2
-x_2 + 4x_3 = 8

Can represent this in *matrix form*:

$$\begin{bmatrix} 3 & 5 & -9 \\ -3 & 0 & 7 \\ 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \\ 8 \end{bmatrix}$$

Or, more compactly as:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Perform algebra operations as we would if A, x, and b were scalars
 Observing matrix-specific rules, e.g. multiplication order, etc.

Defining Vectors and Matrices in MATLAB

29

Let's say we want to assign the following matrix variable in MATLAB:

$$\mathbf{A} = \begin{bmatrix} 2 & 5 & 1 \\ -4 & 6 & 0 \end{bmatrix}$$

- Enclose matrices in square brackets
- Elements on the same row are separated by *spaces* or *commas*
- Rows are separated by *semicolons*

□ In MATLAB:

$$A = [2, 5, 1; -4, 6, 0];$$

or

$$A = [2 5 1; -4 6 0];$$

Ellipsis – Continuation Operator

- An *ellipsis* can be used as a *continuation* operator
 - Tells MATLAB that a single command continues on the next line
- Improves readability
 Long expressions
 Large matrices

Со	mm	and	W	indow	,				
	>>	Α	=	[1	3	-4	6;		
				-9	0	2	-7;		
				3	-1	5	4;		
				-2	-1	0	3;		
				6	8	7	1]		
	Α =	=							
			1		3	-	-4	6	
		_	9		0		2	-7	
			3	-	-1		5	4	
		_	2	-	-1		0	3	
			6		8		7	1	
f <u>x</u>	>>								

Vector and Matrix Generation

- 31
- Often want to automatically generate vectors and matrices without having to enter them element-byelement
- A few of MATLAB's *array-generation* functions:
 - Colon operator (:)
 - linspace(...)
 - □ ones(...)
 - □ zeros(...)
 - □ diag(...)
 - **•** eye(...)

Vector Generation – Colon operator

Create vectors of evenly-spaced values using the *colon* (:) *operator*

- start: value of the first element in the vector
- step: optional increment value default: xstep = 1
- xstop: maximum value of vector entries
- x: vector of points that is created

Number of elements in the vector:

$$N = \text{floor}\left(\frac{\left(x_{stop} - x_{start}\right)}{x_{step}}\right) + 1$$

Value of the last element in the vector is

$$x_{last} = x_{start} + (N-1) \cdot x_{step}$$

Vector Generation – Colon operator

Vector Generation – linspace(...)

x = linspace(xstart, xstop, N)

- start: value of the first element in the vector
- stop: value of the last element in the vector
- N: Number of elements in the vector
- x: vector of linearly spaced points

Colon operator:

- Stop value may not be in the vector
- Number of points not directly specified
- linspace(...):
 - \square x(end) = xstop
 - Increment value not directly specified

Array Generation - ones(...), zeros(...)

 \Box Generate an $N \times N$ square matrix of all 1's or all 0's:

```
A = ones(N); or A = zeros(N)
```

 \Box Generate an $m \times n$ vector of all 1's or 0's

A = ones(m,n); or A = zeros(m,n)

Comman	nd Windo	ow				
>> 7	a = on	es(5)				
A =						
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
>> 7	= on	es(1,6)			
A =						
A -						
	1	1	1	1	1	1

Com	mand Wind	ow			
>	> A = ze	ros (3)		- 1
А	=				
	0	0	0		- 1
	0	0	0		
	0	0	0		
>:	> A = ze	ros (2	,4)		
A	=				
	0	0	0	0	- 1
	0	0	0	0	- 1

Identity Matrix – eye(...)

$$I = eye(N)$$

■ N: identity matrix dimension ■ I: $N \times N$ identity matrix

Co	mman	d Win	dow			
	>> I	5 =	eye(5)			
	I5 =					
	10					
		1	0	0	0	0
		0	1	0	0	0
		0	0	1	0	0
		0	0	0	1	0
		0	0	0	0	1
ſx	>>					

Random Number Generation - rand(...)

- 37
- Very often useful to generate *random numbers* Simulating the effect of noise
 Monte Carlo simulation, etc.

x = rand(m, n)

- **n**: number of rows in the matrix of random numbers
- n: number of columns in the matrix of random numbers
- **•** x: $m \times n$ matrix of **uniformly-distributed** random values on the interval [0,1]
- □ If only one dimension specified (i.e. rand(N)), result is an $N \times N$ matrix of random values
- For *normally-distributed* (Gaussian) values, use:

x = randn(m, n)

³⁸ Array Indexing in MATLAB

We've seen how we can refer to specific elements in an array by their *row, column indices*, a_{ij}:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- MATLAB allows us to do the same thing
 - Indices specified in parentheses immediately following the array variable name
 - Indices must be positive
 - Numbering begins at 1
- For example, B(2,5) refers to the element in the 2nd row and 5th column of the matrix B
- Also possible to specify ranges of elements within an array

A(i,j)

Elements of A in row i, all columns:

A(i,:)

□ Elements of A in all rows, column j:

A(:,j)

□ Elements of A in rows i through k, columns j through q:

A(i:k,j:q)

Elements of A in the second through last row and the last column:

Array Indexing – Single Index

- 41
- MATLAB also allows for indexing elements within an array with a *single index linear indexing*
 - Elements are counted down each column sequentially
 - Very useful for vectors
 - Not often useful for matrices
- \square For example, for a 3 \times 4 matrix:

$$A = \begin{bmatrix} a_1 & a_4 & a_7 & a_{10} \\ a_2 & a_5 & a_8 & a_{11} \\ a_3 & a_6 & a_9 & a_{12} \end{bmatrix}$$

□ In MATLAB: $A(8) = A(2,3) = a_8$

Array Indexing – Single Index

44

Matrix Size Functions - size, length

Multidimensional Arrays

- MATLAB allows for the definition of arrays with more than two dimensions
 - Arbitrary number of dimensions allowed
 - Three dimensional arrays are common
 - Index an N-dimensional array with N indices
- \Box For example, a 3 \times 3 \times 3 array looks like this:

Multidimensional Arrays

- A did not exist prior to assignment
 - Size was undefined
 - Defined as smallest possible array allowing for assignment (3 × 3 × 3)
 - All other elements set to zero
- Three-dimensional array requires three indices

-	ommand wind	10 W		
	>> A(3,3,	3) = 1	5	
	A(:,:,1)	_		
	A(.,.,1)	-		
	0	0	0	
	0	0	0	
	0	0	0	
	A(:,:,2)	_		
	A(:,:,2)	-		
	0	0	0	
	0	0	0	
	0	0	0	
	A(:,:,3)	=		
	0	0	0	
	0	0	0	
	0	0	5	
	>> A(1,:,2) = 1:3			
	A(:,:,1)	_		
	A(:,:,1)	-		
	0	0	0	
	0	0	0	
	0	0	0	
	A(:,:,2)	-		
	1	2	3	
	0	0	0	
		ō	ō	
	A(:,:,3)	=		
	0	•	<u> </u>	
	0	0	0	
	0	0	5	
	Ŭ			

Command Window

Matrix Operations in MATLAB

Matrix Operations in MATLAB

- MATLAB treats all numeric variables as matrices
- Mathematical operations are matrix operations by default
 - Addition, subtraction, multiplication ...
 - Matrix dimensions must be compatible
- Built-in functions designed to accept matrices as input arguments, e.g.:
 - Trigonometric functions
 - Exponential
 - Square root
 - Statistical functions, etc. ...

Matrix Operations in MATLAB

- Matrices can be added, as long as they are the same size
- Multiplication is matrix multiplication
 - Inner dimensions must agree
 - Otherwise, an error results
- Here, transposing d satisfies inner dimension requirement

Command Window						
>> A = [2 4; 3 5]						
A =						
2 4						
3 5						
3 5						
>> B = ones(2)						
>> B = Ones(2)						
В =						
1 1						
1 1						
>> C = A + B						
C =						
3 5						
4 6						
>> d = [1 2]						
d =						
1 2						
>> E = d*C						
E =						
11 17						
>> E = C*d						
Error using <u>*</u>						
Inner matrix dimensions must agree.						
>> E = C*d'						
E =						
13						
16						

Passing Matrices to Functions

- Can pass vectors and matrices to most functions, just as we would a scalar
- The sine of a vector of angles calculated all at once
 - No need to pass one-ata-time
 - Result is a vector of the same size
- abs(...) calculates the absolute value

Command Window

>> tneta =	[0:pi/4:2*pi]'
theta =	
checa -	
0	
0.7854	
1.5708	
2.3562	
3.1416	
3.9270	
4.7124	
5.4978	
6.2832	
>> y = sin	(theta)
у =	
0	
0.7071	
1.0000	
0.7071	
0.0000	
-0.7071	
-1.0000	
-0.7071	
-0.0000	
>> z = abs	(12)
>> 2 abb	(2)
z =	
0	
0.7071	
1.0000	
0.7071	
0.0000	
0.7071	
1.0000	
0.7071	
0.0000	

Array Operations

 Often, we want to operate on vectors and matrices element-by-element

Array operations – not matrix operations
 MATLAB's array operators: .*, ./, .^

□ For example:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 3 & 4 \\ 7 & 5 \end{bmatrix}$$
$$\mathbf{A} * \mathbf{B} = \begin{bmatrix} 17 & 14 \\ 37 & 32 \end{bmatrix}$$

but

$$\mathbf{A} \cdot \mathbf{B} = \begin{bmatrix} 3 & 8\\ 21 & 20 \end{bmatrix}$$

Array Operations

- Matrices must be the same size to perform array operations Not only inner dimensions must agree
- □ For example:

but

but

 $a = [1 \ 2] \quad b = [3 \ 4]$ $\mathbf{a} * \mathbf{b} = ERROR$ a * b = [3 8]Similarly, $\mathbf{b}/\mathbf{a} = ERROR$ **b**./**a** = $\begin{bmatrix} 3 & 2 \end{bmatrix}$

Array Operations

Matrix exponentiation requires square matrix and scalar exponent
 Array exponentiation by a scalar works for any matrix
 Also allows for exponentiation by another matrix of the same size
 For example:

$$\mathbf{a} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix}$
 $\mathbf{a}^2 = ERROR$
 $\mathbf{a}^2 = \begin{bmatrix} 1 & 4 & 9 & 16 \end{bmatrix}$
 $\mathbf{a}^2 = \begin{bmatrix} 1 & 4 & 9 & 16 \end{bmatrix}$
 $\mathbf{a}^2 = \begin{bmatrix} 1 & 8 & 9 & 4 \end{bmatrix}$

but

And,

but