SECTION 2: VECTORS AND MATRICES

ENGR 112 - Introduction to Engineering Computing

Vectors and Matrices

The "MAT" in MATLAB

\square MATLAB

- The MATrix (not MAThematics) LABoratory
\square MATLAB assumes all numeric variables are matrices
\square Vectors and scalars are special cases of matrices
\square This section of notes will introduce concept of vectors and matrices
\square Matrix math - linear algebra fundamentals
- You'll cover this in much more detail in your Linear Algebra course

Matrices

\square Matrix
\square Array of numerical values, e.g.:

$$
\mathbf{A}=\left[\begin{array}{cccc}
-7 & 0 & 1 & 4 \\
4 & -2 & 9 & 5 \\
8 & 3 & 4 & 0
\end{array}\right]
$$

- The variable, \mathbf{A}, is a matrix
\square An $m \times n$ matrix has m rows and n columns
\square These are the dimensions of the matrix
$\square \mathbf{A}$ is a 3×4 matrix

Matrix Dimensions and Indexing

\square An $m \times n$ matrix:

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

\square Use indices to refer to individual elements of a matrix

- $a_{i j}$: the element of \mathbf{A} in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column

Vectors

\square Vectors

- A matrix with one dimension equal to one
- A matrix with one row or one column
\square Row vector
- One row - a $1 \times n$ matrix, e.g.:

$$
x=\left[\begin{array}{lll}
-9 & 1 & -4
\end{array}\right]
$$

- A 1×3 row vector
\square Column vector
- One column - an $m \times 1$ matrix, e.g.:

$$
x=\left[\begin{array}{l}
5 \\
1 \\
8
\end{array}\right]
$$

- A 3×1 column vector

Scalars

$\square \underline{\text { Scalar }}$

- A 1×1 matrix
\square The numbers we are we are familiar with, e.g.:

$$
b=4, \quad x=-3+j 5.8, \quad y=-1 \times 10^{-9}
$$

\square We understand simple mathematical operations involving scalars

- Can add, subtract, multiply, or divide any pair of scalars
\square Not true for matrices
- Depends on the matrix dimensions

Mathematical Matrix Operations

Matrix Addition and Subtraction

\square As long as matrices have the same dimensions, we can add or subtract them

- Addition and subtraction are done element-by-element, and the resulting matrix is the same size

$$
\begin{aligned}
& {\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]+\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
6 & 2
\end{array}\right]} \\
& {\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]-\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=\left[\begin{array}{cc}
3 & 12 \\
-6 & 4
\end{array}\right]}
\end{aligned}
$$

\square We can also add scalars to (or subtract from) matrices

$$
\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]+5=\left[\begin{array}{cc}
6 & 1 \\
11 & 4
\end{array}\right]
$$

Matrix Addition and Subtraction

\square If matrices are not the same size, and neither is a scalar, addition/subtraction are not defined

- The following operations cannot be done

$$
\begin{aligned}
& {\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]+\left[\begin{array}{lll}
1 & -4 & 6 \\
6 & -1 & 9
\end{array}\right]=?} \\
& {\left[\begin{array}{l}
8 \\
3
\end{array}\right]-\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=?}
\end{aligned}
$$

\square Addition is commutative (order does not matter):

$$
\begin{gathered}
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}=\mathbf{C} \\
{\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]+\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]+\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
6 & 2
\end{array}\right]}
\end{gathered}
$$

Matrix Multiplication

\square In order to multiply matrices, their inner dimensions must agree
\square We can multiply $\mathbf{A} \cdot \mathbf{B}$ only if the number of columns of \mathbf{A} is equal to the number of rows of \mathbf{B}
\square Resulting Matrix has same number of rows as \mathbf{A} and same number of columns as \mathbf{B}

$$
\begin{gathered}
\underset{\sim}{\mathbf{A}} \cdot \underset{\sim}{\mathbf{B}}=\underset{\underset{\sim}{\mathbf{C}}}{\mathbf{C}}
\end{gathered}
$$

Matrix Multiplication $-\mathbf{A} \cdot \mathbf{B}=\mathbf{C}$

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 p} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n p}
\end{array}\right]=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 p} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m p}
\end{array}\right]
$$

\square The $\left(i, j^{\text {th }}\right)$ entry of \mathbf{C} is the dot product of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of \mathbf{B}

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

\square Consider the multiplication of two 2×2 matrices:

Matrix Multiplication - Examples

$\square \mathrm{A} 2 \times 2$ and a 2×3 yield a 2×3

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
3 & -1 & 5 \\
6 & 2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
27 & 7 & 5 \\
12 & 0 & 10
\end{array}\right]
$$

\square A 3×3 and a 3×1 result in a 3×1

$$
\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
11 \\
20 \\
25
\end{array}\right]
$$

Matrix Multiplication - Properties

\square Matrix multiplication is not commutative

- Order matters
- Unlike scalars
\square In general,

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}
$$

\square If A and/or B is not square then one of the above operations may not be possible anyway

- Inner dimensions may not agree for both product orders

Matrix Multiplication - Properties

\square Matrix multiplication is associative

- Insertion of parentheses anywhere within a product of multiple terms does not affect the result:

$$
\begin{aligned}
(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} & =\mathbf{D} \\
\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C}) & =\mathbf{D}
\end{aligned}
$$

\square Matrix multiplication is distributive

- Multiplication distributes over addition
- Must maintain correct order, i.e. left- or right-multiplication

$$
\begin{aligned}
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \\
& (\mathbf{B}+\mathbf{C}) \mathbf{A}=\mathbf{B A}+\mathbf{C A}
\end{aligned}
$$

Identity Matrix

\square Multiplication of a scalar by 1 results in that scalar

$$
a \cdot 1=1 \cdot a=a
$$

\square The matrix version of 1 is the identity matrix

- Ones along the diagonal, zeros everywhere else
- Square $(n \times n)$ matrix
- Denoted as \mathbf{I} or $\mathbf{I}_{\mathbf{n}}$, where \mathbf{n} is the matrix dimension, e.g.

$$
\mathbf{I}_{\mathbf{3}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

\square Left- or right-multiplication by an identity matrix results in that matrix, unchanged

$$
\mathbf{A} \cdot \mathbf{I}=\mathbf{I} \cdot \mathbf{A}=\mathbf{A}
$$

Identity Matrix

\square Right-multiplication of an $n \times n$ matrix by an $n \times n$ identity matrix, $\mathbf{I}_{\mathbf{n}}$

$$
\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right]
$$

\square Same result if we left-multiply by $\mathbf{I}_{\mathbf{n}}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right]
$$

Identity Matrix

\square Right-multiplication of an $m \times n$ matrix by an $n \times n$ identity matrix

$$
\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right]
$$

\square Same result if we left-multiply the $m \times n$ matrix by an $m \times m$ identity matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right]
$$

Vector Multiplication

\square Vectors are matrices, so inner dimensions must agree
\square Two types of vector multiplication:
\square Inner product (dot product)

- Result is a scalar

$$
\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{11} \\
b_{21}
\end{array}\right]=a_{11} b_{11}+a_{12} b_{21}
$$

\square Outer product

- Result for n-vectors is an $n \times n$ matrix

$$
\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] \cdot\left[\begin{array}{ll}
b_{11} & b_{12}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} b_{11} & a_{11} b_{12} \\
a_{21} b_{11} & a_{21} b_{12}
\end{array}\right]
$$

Exponentiation

\square As with scalars, raising a matrix to the power, n, is the multiplication of that matrix by itself n times

$$
\mathbf{A}^{\mathbf{3}}=\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}
$$

\square What must be true of a matrix for exponentiation to be allowable?

- Inner matrix dimensions must agree
\square Rows of A must equal columns of $\mathbf{A}-\mathrm{nx} \mathrm{n}$
- Matrix must be square

Matrix 'Division' - Multiplication by the Inverse

\square Scalar division that we are accustomed to can be thought of as multiplication by an inverse:

$$
a \div b=a \cdot \frac{1}{b}=a \cdot b^{-1}
$$

\square This is how we 'divide' matrices as well

$$
\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{B}^{-1}=\mathbf{A}
$$

\square Multiplication of a scalar by its inverse is equal to 1 .
\square For a matrix, the result is the identity matrix

$$
\mathbf{A} \cdot \mathbf{A}^{-\mathbf{1}}=\mathbf{I}=\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]
$$

Matrix Inverse

\square Recall that matrix multiplication is not commutative
\square Right- and left-multiplication are different operations

$$
\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{B}^{-1}=\mathbf{A} \neq \mathbf{B}^{-1} \cdot \mathbf{A} \cdot \mathbf{B}
$$

\square The inverse does not exist for all matrices

- Non-invertible matrices are referred to as singular
\square Matrix must be square for its inverse to exist

Matrix Inverse

\square Possible to calculate matrix inverses by hand

- Simple for small matrices
- Quickly becomes tedious as matrices get larger
\square For example, the inverse of a 2×2 matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

\square For example:

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ll}
2 & 5 \\
2 & 4
\end{array}\right] \\
& \mathbf{A}^{-\mathbf{1}}=\frac{1}{8-10}\left[\begin{array}{cc}
4 & -5 \\
-2 & 2
\end{array}\right]=\left[\begin{array}{cc}
-2 & 2.5 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

Matrix Inverse - Example

\square Multiplication of a matrix by its inverse yields the identity matrix
\square For example:

$$
\mathbf{A} \cdot \mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{ll}
2 & 5 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{cc}
-2 & 2.5 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Or, for a 3×3 :

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right], \quad \mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{ccc}
0.5 & 0 & -0.5 \\
0 & 1 & -1 \\
0 & 0 & 0.5
\end{array}\right] \\
& {\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] \cdot\left[\begin{array}{ccc}
0.5 & 0 & -0.5 \\
0 & 1 & -1 \\
0 & 0 & 0.5
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

\square You'll learn more about this in Linear Algebra - not critical here

Matrix Transpose

\square The transpose of a matrix is that matrix with rows and columns swapped

- First row becomes the first column, second row becomes the second column, and so on
\square For example:

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 9 \\
2 & 7 \\
6 & 3
\end{array}\right] \quad \mathbf{A}^{\mathbf{T}}=\left[\begin{array}{lll}
0 & 2 & 6 \\
9 & 7 & 3
\end{array}\right]
$$

\square Row vectors become column vectors and vice versa

$$
\mathbf{x}=\left[\begin{array}{c}
7 \\
-1 \\
-4
\end{array}\right] \quad \mathbf{x}^{\mathbf{T}}=\left[\begin{array}{lll}
7 & -1 & -4
\end{array}\right]
$$

Why Do We Use Matrices?

\square Vectors and matrices are used extensively in many engineering fields, for example:
\square Modeling, analysis, and design of dynamic systems
\square Controls engineering

- Image processing
- Etc. ...
\square Very common usage of vectors and matrices is to represent systems of equations
\square These regularly occur in all fields of engineering

Systems of Equations

\square Consider a system of three equations with three unknowns:

$$
\begin{aligned}
3 x_{1}+5 x_{2} & -9 x_{3}=6 \\
-3 x_{1}+7 x_{3} & =-2 \\
-x_{2}+4 x_{3} & =8
\end{aligned}
$$

\square Can represent this in matrix form:

$$
\left[\begin{array}{ccc}
3 & 5 & -9 \\
-3 & 0 & 7 \\
0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2 \\
8
\end{array}\right]
$$

\square Or, more compactly as:

$$
\mathbf{A x}=\mathbf{b}
$$

\square Perform algebra operations as we would if \mathbf{A}, \mathbf{x}, and \mathbf{b} were scalars

- Observing matrix-specific rules, e.g. multiplication order, etc.

Vectors \& Matrices in MATLAB

Defining Vectors and Matrices in MATLAB

\square Let's say we want to assign the following matrix variable in MATLAB:

$$
A=\left[\begin{array}{ccc}
2 & 5 & 1 \\
-4 & 6 & 0
\end{array}\right]
$$

- Enclose matrices in square brackets
- Elements on the same row are separated by spaces or commas
\square Rows are separated by semicolons
\square In MATLAB:

$$
A=[2,5,1 ;-4,6,0] ;
$$

or

$$
A=\left[\begin{array}{ccccc}
2 & 5 & 1 ; & -4 & 6
\end{array}\right] ;
$$

Ellipsis - Continuation Operator

\square An ellipsis can be used as a continuation operator

- Tells MATLAB that a single command continues on the next line
\square Improves readability
- Long expressions
- Large matrices

Command Window

$$
\begin{aligned}
& >A=\left[\begin{array}{rrrr}
1 & 3 & -4 & 6 ; \ldots \\
-9 & 0 & 2 & -7 ; \ldots \\
3 & -1 & 5 & 4 ; \ldots \\
-2 & -1 & 0 & 3 ; \ldots \\
6 & 8 & 7 & 1]
\end{array}\right. \\
& \mathrm{A}= \\
& \begin{array}{rrrr}
1 & 3 & -4 & 6 \\
-9 & 0 & 2 & -7 \\
3 & -1 & 5 & 4 \\
-2 & -1 & 0 & 3 \\
6 & 8 & 7 & 1
\end{array} \\
& \text { fx } \gg 1
\end{aligned}
$$

Vector and Matrix Generation

\square Often want to automatically generate vectors and matrices without having to enter them element-byelement
\square A few of MATLAB's array-generation functions:

- Colon operator (:)
- linspace(...)
- ones(...)
- zeros(...)
- diag(...)
- eye(...)

Vector Generation - Colon operator

\square Create vectors of evenly-spaced values using the colon (:) operator
x = xstart:xstep:xstop;

- xstart: value of the first element in the vector
- xstep: optional increment value - default: xstep = 1
- Xstop: maximum value of vector entries
- X: vector of points that is created
\square Number of elements in the vector:

$$
N=\text { floor }\left(\frac{\left(x_{\text {stop }}-x_{\text {start }}\right)}{x_{\text {step }}}\right)+1
$$

\square Value of the last element in the vector is

$$
x_{l a s t}=x_{\text {start }}+(N-1) \cdot x_{\text {step }}
$$

Vector Generation - Colon operator

\square Default increment is 1
\square Can specify increment value
\square Vector values will not exceed the stop value

- May not include stop value
\square Increment value can be negative

Command Window

 \(\gg x=1: 8\)
 \(x=\)
 >> \(x=2: 0.5: 4\)
 \(\mathrm{x}=\)
 2.0000
 2.5000

Vector Generation - linspace(...)

```
x = linspace(xstart,xstop,N)
```

- xstart: value of the first element in the vector
- Xstop: value of the last element in the vector
- N: Number of elements in the vector
\square X: vector of linearly spaced points
\square Colon operator:
- Stop value may not be in the vector
- Number of points not directly specified
\square linspace(...):
- x (end) $=x$ stop
- Increment value not directly specified

Array Generation - ones (...), zeros(...)

\square Generate an $N \times N$ square matrix of all 1's or all 0's:

$$
A=\operatorname{ones}(N) ; \text { or } A=\operatorname{zeros}(N)
$$

\square Generate an $m \times n$ vector of all 1's or 0's

$$
A=\operatorname{ones}(m, n) ; \text { or } A=\operatorname{zeros}(m, n)
$$

Command Window					
$\gg A=$ ones (5)					
$\mathrm{A}=$					
1	1	1	1	1	
1	1	1	1	1	
1	1	1	1	1	
1	1	1	1	1	
1	1	1	1	1	
$\gg A=$ ones (1, 6)					
$\mathrm{A}=$					
1	1	1	1	1	1

Command Window			
>> $\mathrm{A}=$ zeros (3)			
$\mathrm{A}=$			
0	0	0	
0	0	0	
0	0	0	
$\gg A=z e r o s(2,4)$			
$\mathrm{A}=$			
0	0	0	0
0	0	0	0

Identity Matrix - eye(...)

I = eye(N)
$\square \mathrm{N}$: identity matrix dimension
■ I: $N \times N$ identity matrix

Command Window ©					
>> 15 = eye (5)					
I5 $=$					
1	0	0	0	0	
0	1	0	0	0	
0	0	1	0	0	
0	0	0	1	0	
0	0	0	0	1	
$f_{x} \ggg 1$					

Random Number Generation - rand (...)

\square Very often useful to generate random numbers

- Simulating the effect of noise
- Monte Carlo simulation, etc.

$$
x=\operatorname{rand}(m, n)
$$

- m: number of rows in the matrix of random numbers
- n : number of columns in the matrix of random numbers
- X: $m \times n$ matrix of uniformly-distributed random values on the interval [0,1]
\square If only one dimension specified (i.e. $\operatorname{rand}(N)$), result is an $N \times N$ matrix of random values
\square For normally-distributed (Gaussian) values, use:

$$
x=\operatorname{randn}(m, n)
$$

38

Array Indexing in MATLAB

Array Indexing

\square We've seen how we can refer to specific elements in an array by their row, column indices, $a_{i j}$:

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

\square MATLAB allows us to do the same thing

- Indices specified in parentheses immediately following the array variable name
- Indices must be positive
- Numbering begins at 1
\square For example, $B(2,5)$ refers to the element in the $2^{\text {nd }}$ row and $5^{\text {th }}$ column of the matrix B
\square Also possible to specify ranges of elements within an array

Array Indexing

\square Element of A in row i , column j :

$$
A(i, j)
$$

\square Elements of A in row i, all columns:
A(i,:)
\square Elements of A in all rows, column j :

$$
A(:, j)
$$

\square Elements of A in rows i through k, columns j through q :

$$
A(i: k, j: q)
$$

\square Elements of A in the second through last row and the last column:
A(2:end,end)

Array Indexing - Single Index

\square MATLAB also allows for indexing elements within an array with a single index - linear indexing
\square Elements are counted down each column sequentially
\square Very useful for vectors

- Not often useful for matrices
\square For example, for a 3×4 matrix:

$$
A=\left[\begin{array}{llll}
a_{1} & a_{4} & a_{7} & a_{10} \\
a_{2} & a_{5} & a_{8} & a_{11} \\
a_{3} & a_{6} & a_{9} & a_{12}
\end{array}\right]
$$

$\square \operatorname{In}$ MATLAB: $\mathrm{A}(8)=\mathrm{A}(2,3)=a_{8}$

Array Indexing

$A(2,5)$ is the value in the $2^{\text {nd }}$ row, $5^{\text {th }}$ column of A

A colon (:) indicates all rows or columns
\square Can index over a range of rows and/or columns
\square Use end to index the last row or column

Array Indexing

\square Use indexing to redefine specific elements in an array
\square Use colon indexing to replace entire row/column with a vector
\square Can replace all elements within a range
\square Can set all equal to a scalar
\square Or, redefine as a matrix

Array Indexing - Single Index

Matrix Size Functions - size, length

\square size (A)

- Returns a 1×2 row vector containing number of rows and columns of A
\square length (A)
- Returns a scalar equal to the greater of the number of rows or columns of A
- length $(A)=\max (\operatorname{size}(A))$
- Useful for vectors

Multidimensional Arrays

\square MATLAB allows for the definition of arrays with more than two dimensions

- Arbitrary number of dimensions allowed
- Three dimensional arrays are common
- Index an N -dimensional array with N indices
\square For example, a $3 \times 3 \times 3$ array looks like this:

Multidimensional Arrays

\square A did not exist prior to assignment
\square Size was undefined
\square Defined as smallest possible array allowing for assignment $(3 \times 3 \times 3)$

- All other elements set to zero
\square Three-dimensional array requires three indices

48

Matrix Operations in MATLAB

Matrix Operations in MATLAB

\square MATLAB treats all numeric variables as matrices
\square Mathematical operations are matrix operations by default

- Addition, subtraction, multiplication ...
- Matrix dimensions must be compatible
\square Built-in functions designed to accept matrices as input arguments, e.g.:
- Trigonometric functions
- Exponential
\square Square root
\square Statistical functions, etc. ...

Matrix Operations in MATLAB

\square Matrices can be added, as long as they are the same size
\square Multiplication is matrix multiplication

- Inner dimensions must agree
- Otherwise, an error results
\square Here, transposing d satisfies inner dimension requirement

Passing Matrices to Functions

\square Can pass vectors and matrices to most functions, just as we would a scalar
\square The sine of a vector of angles calculated all at once

- No need to pass one-at-a-time
- Result is a vector of the same size
\square abs (...) calculates the absolute value

```
    >> theta = [0:pi/4:2*pi]'
```

 theta \(=\)
 0
 0.7854
0.7854
1.5708
2.3562
3.1416
3.9270
4.7124
5.4978
6.2832
$\gg y=\sin ($ theta)
$\mathrm{y}=$
0.7071
1.0000
0.7071
0.0000
-0.7071
-1.0000
-0.7071
-0.0000
$\gg z=a b s(y)$
$z=$
0.7071
1.0000
0.7071
0.0000
0.7071
1.0000
0.7071
0.0000

Array Operations

\square Often, we want to operate on vectors and matrices element-by-element

- Array operations - not matrix operations
- MATLAB's array operators: .*, ./, .^
\square For example:

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ll}
3 & 4 \\
7 & 5
\end{array}\right] \\
\mathbf{A} * \mathbf{B}=\left[\begin{array}{ll}
17 & 14 \\
37 & 32
\end{array}\right]
\end{gathered}
$$

but

$$
\mathbf{A} \cdot * \mathbf{B}=\left[\begin{array}{cc}
3 & 8 \\
21 & 20
\end{array}\right]
$$

Array Operations

\square Matrices must be the same size to perform array operations

- Not only inner dimensions must agree
\square For example:

$$
\begin{gathered}
\mathbf{a}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \\
\mathbf{a} * \mathbf{b}=E R R O R
\end{gathered}
$$

but

$$
\mathbf{a} \cdot * \mathbf{b}=\left[\begin{array}{ll}
3 & 8
\end{array}\right]
$$

Similarly,

$$
\mathbf{b} / \mathbf{a}=E R R O R
$$

but

$$
\mathbf{b} . / \mathbf{a}=\left[\begin{array}{ll}
{[3} & 2]
\end{array}\right.
$$

Array Operations

\square Matrix exponentiation requires square matrix and scalar exponent

- Array exponentiation by a scalar works for any matrix
- Also allows for exponentiation by another matrix of the same size
\square For example:

$$
\begin{aligned}
& \mathbf{a}= {\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{llll}
4 & 3 & 2 & 1
\end{array}\right] } \\
& \mathbf{a}^{\wedge} 2=E R R O R
\end{aligned}
$$

but

$$
\text { a. }{ }^{\wedge} 2=\left[\begin{array}{llll}
1 & 4 & 9 & 16
\end{array}\right]
$$

And,

$$
\mathbf{a}^{\wedge} \mathbf{b}=E R R O R
$$

but

$$
\mathbf{a} .^{\wedge} \mathbf{b}=\left[\begin{array}{llll}
1 & 8 & 9 & 4
\end{array}\right]
$$

