
ENGR 112 – Introduction to Engineering Computing

SECTION 2:
VECTORS AND MATRICES

K. Webb ENGR 112

Vectors and Matrices2

K. Webb ENGR 112

3

The “MAT” in MATLAB

 MATLAB
 The MATrix (not MAThematics) LABoratory

 MATLAB assumes all numeric variables are matrices
 Vectors and scalars are special cases of matrices

 This section of notes will introduce concept of
vectors and matrices
 Matrix math – linear algebra fundamentals
 You’ll cover this in much more detail in your Linear

Algebra course

K. Webb ENGR 112

4

Matrices

 Matrix
 Array of numerical values, e.g.:

𝐀𝐀 =
−7 0 1 4
4 −2 9 5
8 3 4 0

 The variable, 𝐀𝐀, is a matrix
 An 𝑚𝑚 × 𝑛𝑛 matrix has 𝑚𝑚 rows and 𝑛𝑛 columns
 These are the dimensions of the matrix

 𝐀𝐀 is a 3 × 4 matrix

K. Webb ENGR 112

5

Matrix Dimensions and Indexing

 An 𝑚𝑚 × 𝑛𝑛 matrix:

𝐀𝐀 =

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

 Use indices to refer to individual elements of a
matrix
 𝑎𝑎𝑖𝑖𝑖𝑖: the element of 𝐀𝐀 in the 𝑖𝑖𝑡𝑡𝑡 row and the 𝑗𝑗𝑡𝑡𝑡column

K. Webb ENGR 112

6

Vectors

 Vectors
 A matrix with one dimension equal to one
 A matrix with one row or one column

 Row vector
 One row – a 1 × 𝑛𝑛 matrix, e.g.:

𝑥𝑥 = −9 1 −4
 A 1 × 3 row vector

 Column vector
 One column – an 𝑚𝑚 × 1 matrix, e.g.:

𝑥𝑥 =
5
1
8

 A 3 × 1 column vector

K. Webb ENGR 112

7

Scalars

 Scalar
 A 1 × 1 matrix
 The numbers we are we are familiar with, e.g.:

𝑏𝑏 = 4, 𝑥𝑥 = −3 + 𝑗𝑗𝑗.8, 𝑦𝑦 = −1 × 10−9

 We understand simple mathematical operations
involving scalars
 Can add, subtract, multiply, or divide any pair of scalars
 Not true for matrices
 Depends on the matrix dimensions

K. Webb ENGR 112

Mathematical Matrix Operations8

K. Webb ENGR 112

9

Matrix Addition and Subtraction

 As long as matrices have the same dimensions, we can
add or subtract them
 Addition and subtraction are done element-by-element,

and the resulting matrix is the same size

4 8
0 3 + 1 −4

6 −1 = 5 4
6 2

4 8
0 3 − 1 −4

6 −1 = 3 12
−6 4

 We can also add scalars to (or subtract from) matrices

1 −4
6 −1 + 5 = 6 1

11 4

K. Webb ENGR 112

10

Matrix Addition and Subtraction

 If matrices are not the same size, and neither is a scalar,
addition/subtraction are not defined
 The following operations cannot be done

4 8
0 3 + 1 −4 6

6 −1 9 =?

8
3 − 1 −4

6 −1 =?

 Addition is commutative (order does not matter):

𝐀𝐀 + 𝐁𝐁 = 𝐁𝐁 + 𝐀𝐀 = 𝐂𝐂

4 8
0 3 + 1 −4

6 −1 = 1 −4
6 −1 + 4 8

0 3 = 5 4
6 2

K. Webb ENGR 112

11

Matrix Multiplication

 In order to multiply matrices, their inner dimensions
must agree

 We can multiply 𝐀𝐀 � 𝐁𝐁 only if the number of columns
of 𝐀𝐀 is equal to the number of rows of 𝐁𝐁

 Resulting Matrix has same number of rows as 𝐀𝐀 and
same number of columns as 𝐁𝐁

𝐀𝐀 � 𝐁𝐁 = 𝐂𝐂
(m x n) (n x p) (m x p) � =

K. Webb ENGR 112

12

Matrix Multiplication – 𝐀𝐀 � 𝐁𝐁 = 𝐂𝐂

𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
⋅
𝑏𝑏11 ⋯ 𝑏𝑏1𝑝𝑝
⋮ ⋱ ⋮
𝑏𝑏𝑛𝑛1 ⋯ 𝑏𝑏𝑛𝑛𝑛𝑛

=
𝑐𝑐11 ⋯ 𝑐𝑐1𝑝𝑝
⋮ ⋱ ⋮

𝑐𝑐𝑚𝑚𝑚 ⋯ 𝑐𝑐𝑚𝑚𝑝𝑝

 The 𝑖𝑖, 𝑗𝑗𝑡𝑡𝑡 entry of 𝐂𝐂 is the dot product of the 𝑖𝑖𝑡𝑡𝑡 row of
𝐀𝐀 with the 𝑗𝑗𝑡𝑡𝑡 column of 𝐁𝐁

𝑐𝑐𝑖𝑖𝑖𝑖 = �
𝑘𝑘=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑘𝑘𝑘𝑘

 Consider the multiplication of two 2 × 2 matrices:

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22 � 𝑏𝑏11 𝑏𝑏12

𝑏𝑏21 𝑏𝑏22
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21 𝑎𝑎11𝑏𝑏12 + 𝑎𝑎12𝑏𝑏22

𝑎𝑎21𝑏𝑏11 + 𝑎𝑎22𝑏𝑏21 𝑎𝑎21𝑏𝑏12 + 𝑎𝑎22𝑏𝑏22

K. Webb ENGR 112

13

Matrix Multiplication – Examples

 A 2 × 2 and a 2 × 3 yield a 2 × 3

1 4
2 1 ⋅ 3 −1 5

6 2 0 = 27 7 5
12 0 10

 A 3 × 3 and a 3 × 1 result in a 3 × 1

1 5 0
0 4 8
2 7 3

⋅
6
1
2

=
11
20
25

K. Webb ENGR 112

14

Matrix Multiplication – Properties

 Matrix multiplication is not commutative
 Order matters
 Unlike scalars

 In general,
𝐀𝐀 ⋅ 𝐁𝐁 ≠ 𝐁𝐁 ⋅ 𝐀𝐀

 If 𝐴𝐴 and/or 𝐵𝐵 is not square then one of the above
operations may not be possible anyway
 Inner dimensions may not agree for both product

orders

K. Webb ENGR 112

15

Matrix Multiplication – Properties

 Matrix multiplication is associative
 Insertion of parentheses anywhere within a product of

multiple terms does not affect the result:

(𝐀𝐀 ⋅ 𝐁𝐁) ⋅ 𝐂𝐂 = 𝐃𝐃
𝐀𝐀 ⋅ (𝐁𝐁 ⋅ 𝐂𝐂) = 𝐃𝐃

 Matrix multiplication is distributive
 Multiplication distributes over addition
 Must maintain correct order, i.e. left- or right-multiplication

𝐀𝐀(𝐁𝐁 + 𝐂𝐂) = 𝐀𝐀𝐀𝐀 + 𝐀𝐀𝐂𝐂
(𝐁𝐁 + 𝐂𝐂)𝐀𝐀 = 𝐁𝐁𝐁𝐁 + 𝐂𝐂𝐂𝐂

K. Webb ENGR 112

16

Identity Matrix

 Multiplication of a scalar by 1 results in that scalar
𝑎𝑎 ⋅ 1 = 1 ⋅ 𝑎𝑎 = 𝑎𝑎

 The matrix version of 1 is the identity matrix
 Ones along the diagonal, zeros everywhere else
 Square 𝑛𝑛 × 𝑛𝑛 matrix
 Denoted as 𝐈𝐈 or 𝐈𝐈𝐧𝐧, where 𝐧𝐧 is the matrix dimension, e.g.

𝐈𝐈𝟑𝟑 =
1 0 0
0 1 0
0 0 1

 Left- or right-multiplication by an identity matrix results in
that matrix, unchanged

𝐀𝐀 ⋅ 𝐈𝐈 = 𝐈𝐈 ⋅ 𝐀𝐀 = 𝐀𝐀

K. Webb ENGR 112

17

Identity Matrix

 Right-multiplication of an 𝑛𝑛 × 𝑛𝑛 matrix by an 𝑛𝑛 × 𝑛𝑛
identity matrix, 𝐈𝐈𝐧𝐧

1 5 0
0 4 8
2 7 3

⋅
1 0 0
0 1 0
0 0 1

=
1 5 0
0 4 8
2 7 3

 Same result if we left-multiply by 𝐈𝐈𝐧𝐧
1 0 0
0 1 0
0 0 1

⋅
1 5 0
0 4 8
2 7 3

=
1 5 0
0 4 8
2 7 3

K. Webb ENGR 112

18

Identity Matrix

 Right-multiplication of an 𝑚𝑚 × 𝑛𝑛 matrix by an 𝑛𝑛 × 𝑛𝑛
identity matrix

1 5 0
0 4 8 ⋅

1 0 0
0 1 0
0 0 1

= 1 5 0
0 4 8

 Same result if we left-multiply the 𝑚𝑚 × 𝑛𝑛 matrix by
an 𝑚𝑚 × 𝑚𝑚 identity matrix

1 0
0 1 ⋅ 1 5 0

0 4 8 = 1 5 0
0 4 8

K. Webb ENGR 112

19

Vector Multiplication

 Vectors are matrices, so inner dimensions must agree
 Two types of vector multiplication:
 Inner product (dot product)

 Result is a scalar

𝑎𝑎11 𝑎𝑎12 � 𝑏𝑏11𝑏𝑏21
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21

 Outer product
 Result for n-vectors is an n x n matrix

𝑎𝑎11
𝑎𝑎21 � 𝑏𝑏11 𝑏𝑏12 = 𝑎𝑎11𝑏𝑏11 𝑎𝑎11𝑏𝑏12

𝑎𝑎21𝑏𝑏11 𝑎𝑎21𝑏𝑏12

K. Webb ENGR 112

20

Exponentiation

 As with scalars, raising a matrix to the power, n, is
the multiplication of that matrix by itself n times

𝐀𝐀𝟑𝟑 = 𝐀𝐀 � 𝐀𝐀 � 𝐀𝐀
 What must be true of a matrix for exponentiation to

be allowable?
 Inner matrix dimensions must agree
 Rows of 𝐀𝐀 must equal columns of 𝐀𝐀 – n x n
 Matrix must be square

K. Webb ENGR 112

21

Matrix ‘Division’ – Multiplication by the Inverse

 Scalar division that we are accustomed to can be
thought of as multiplication by an inverse:

𝑎𝑎 ÷ 𝑏𝑏 = 𝑎𝑎 �
1
𝑏𝑏

= 𝑎𝑎 � 𝑏𝑏−1

 This is how we ‘divide’ matrices as well

𝐀𝐀 � 𝐁𝐁 � 𝐁𝐁−𝟏𝟏 = 𝐀𝐀

 Multiplication of a scalar by its inverse is equal to 1.
 For a matrix, the result is the identity matrix

𝐀𝐀 � 𝐀𝐀−𝟏𝟏 = 𝐈𝐈 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

K. Webb ENGR 112

22

Matrix Inverse

 Recall that matrix multiplication is not commutative
 Right- and left-multiplication are different operations

𝐀𝐀 � 𝐁𝐁 � 𝐁𝐁−𝟏𝟏 = 𝐀𝐀 ≠ 𝐁𝐁−𝟏𝟏 � 𝐀𝐀 � 𝐁𝐁

 The inverse does not exist for all matrices
 Non-invertible matrices are referred to as singular
 Matrix must be square for its inverse to exist

K. Webb ENGR 112

23

Matrix Inverse

 Possible to calculate matrix inverses by hand
 Simple for small matrices
 Quickly becomes tedious as matrices get larger

 For example, the inverse of a 2 × 2 matrix:

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑

−1
=

1
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎

 For example:

𝐀𝐀 = 2 5
2 4

𝐀𝐀−𝟏𝟏 =
1

8 − 10
4 −5
−2 2 = −2 2.5

1 −1

K. Webb ENGR 112

24

Matrix Inverse - Example

 Multiplication of a matrix by its inverse yields the identity matrix
 For example:

𝐀𝐀 ⋅ 𝐀𝐀−𝟏𝟏 = 2 5
2 4 ⋅ −2 2.5

1 −1 = 1 0
0 1

 Or, for a 3 × 3:

𝐀𝐀 =
2 0 2
0 1 2
0 0 2

, 𝐀𝐀−𝟏𝟏 =
0.5 0 −0.5
0 1 −1
0 0 0.5

2 0 2
0 1 2
0 0 2

⋅
0.5 0 −0.5
0 1 −1
0 0 0.5

=
1 0 0
0 1 0
0 0 1

 You’ll learn more about this in Linear Algebra – not critical here

K. Webb ENGR 112

25

Matrix Transpose

 The transpose of a matrix is that matrix with rows and
columns swapped
 First row becomes the first column, second row becomes

the second column, and so on
 For example:

𝐀𝐀 =
0 9
2 7
6 3

𝐀𝐀𝐓𝐓 = 0 2 6
9 7 3

 Row vectors become column vectors and vice versa

𝐱𝐱 =
7
−1
−4

𝐱𝐱𝐓𝐓 = 7 −1 −4

K. Webb ENGR 112

26

Why Do We Use Matrices?

 Vectors and matrices are used extensively in many
engineering fields, for example:
 Modeling, analysis, and design of dynamic systems
 Controls engineering
 Image processing
 Etc. …

 Very common usage of vectors and matrices is to
represent systems of equations
 These regularly occur in all fields of engineering

K. Webb ENGR 112

27

Systems of Equations

 Consider a system of three equations with three unknowns:

3𝑥𝑥1 + 5𝑥𝑥2 − 9𝑥𝑥3 = 6
−3𝑥𝑥1 + 7𝑥𝑥3 = −2
−𝑥𝑥2 + 4𝑥𝑥3 = 8

 Can represent this in matrix form:

3 5 −9
−3 0 7
0 −1 4

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
6
−2
8

 Or, more compactly as:
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 Perform algebra operations as we would if 𝐀𝐀, 𝐱𝐱, and 𝐛𝐛 were scalars
 Observing matrix-specific rules, e.g. multiplication order, etc.

K. Webb ENGR 112

Vectors & Matrices in MATLAB28

K. Webb ENGR 112

29

Defining Vectors and Matrices in MATLAB

 Let’s say we want to assign the following matrix variable
in MATLAB:

𝐀𝐀 = 2 5 1
−4 6 0

 Enclose matrices in square brackets
 Elements on the same row are separated by spaces or

commas
 Rows are separated by semicolons

 In MATLAB:
A = [2, 5, 1; -4, 6, 0];

or
A = [2 5 1; -4 6 0];

K. Webb ENGR 112

30

Ellipsis – Continuation Operator

 An ellipsis can be used
as a continuation
operator
 Tells MATLAB that a

single command
continues on the next
line

 Improves readability
 Long expressions
 Large matrices

K. Webb ENGR 112

31

Vector and Matrix Generation

 Often want to automatically generate vectors and
matrices without having to enter them element-by-
element

 A few of MATLAB’s array-generation functions:
 Colon operator (:)
 linspace(…)
 ones(…)
 zeros(…)
 diag(…)
 eye(…)

K. Webb ENGR 112

32

Vector Generation – Colon operator

 Create vectors of evenly-spaced values using the colon (:) operator

x = xstart:xstep:xstop;
 xstart: value of the first element in the vector
 xstep: optional increment value – default: xstep = 1
 xstop: maximum value of vector entries
 x: vector of points that is created

 Number of elements in the vector:

𝑁𝑁 = floor
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+ 1

 Value of the last element in the vector is

𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑁𝑁 − 1 ⋅ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

K. Webb ENGR 112

33

Vector Generation – Colon operator

 Default increment
is 1

 Can specify
increment value

 Vector values will
not exceed the
stop value
 May not include

stop value

 Increment value
can be negative

K. Webb ENGR 112

34

Vector Generation – linspace(…)

x = linspace(xstart,xstop,N)

 xstart: value of the first element in the vector
 xstop: value of the last element in the vector
 N: Number of elements in the vector
 x: vector of linearly spaced points

 Colon operator:
 Stop value may not be in the vector
 Number of points not directly specified

 linspace(…):
 x(end) = xstop
 Increment value not directly specified

K. Webb ENGR 112

35

Array Generation – ones(…), zeros(…)

 Generate an 𝑁𝑁 × 𝑁𝑁 square matrix of all 1’s or all 0’s:

A = ones(N); or A = zeros(N)

 Generate an 𝑚𝑚 × 𝑛𝑛 vector of all 1’s or 0’s

A = ones(m,n); or A = zeros(m,n)

K. Webb ENGR 112

36

Identity Matrix – eye(…)

I = eye(N)

 N: identity matrix dimension
 I: 𝑁𝑁 × 𝑁𝑁 identity matrix

K. Webb ENGR 112

37

Random Number Generation – rand(…)

 Very often useful to generate random numbers
 Simulating the effect of noise
 Monte Carlo simulation, etc.

x = rand(m,n)

 m: number of rows in the matrix of random numbers
 n: number of columns in the matrix of random numbers
 x: 𝑚𝑚 × 𝑛𝑛 matrix of uniformly-distributed random values on the

interval [0,1]

 If only one dimension specified (i.e. rand(N)), result is an
𝑁𝑁 × 𝑁𝑁 matrix of random values

 For normally-distributed (Gaussian) values, use:

x = randn(m,n)

K. Webb ENGR 112

Array Indexing in MATLAB38

K. Webb ENGR 112

39

Array Indexing

 We’ve seen how we can refer to specific elements in an
array by their row, column indices, 𝑎𝑎𝑖𝑖𝑖𝑖:

𝐀𝐀 =

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

 MATLAB allows us to do the same thing
 Indices specified in parentheses immediately following the array

variable name
 Indices must be positive
 Numbering begins at 1

 For example, B(2,5) refers to the element in the 2nd row
and 5th column of the matrix B

 Also possible to specify ranges of elements within an array

K. Webb ENGR 112

40

Array Indexing

 Element of A in row i, column j:

A(i,j)

 Elements of A in row i, all columns:

A(i,:)

 Elements of A in all rows, column j:

A(:,j)

 Elements of A in rows i through k, columns j through q:

A(i:k,j:q)

 Elements of A in the second through last row and the last column:

A(2:end,end)

K. Webb ENGR 112

41

Array Indexing – Single Index

 MATLAB also allows for indexing elements within an
array with a single index – linear indexing
 Elements are counted down each column sequentially
 Very useful for vectors
 Not often useful for matrices

 For example, for a 3 × 4 matrix:

𝐴𝐴 =
𝑎𝑎1 𝑎𝑎4 𝑎𝑎7 𝑎𝑎10
𝑎𝑎2 𝑎𝑎5 𝑎𝑎8 𝑎𝑎11
𝑎𝑎3 𝑎𝑎6 𝑎𝑎9 𝑎𝑎12

 In MATLAB: A(8) = A(2,3) = 𝑎𝑎8

K. Webb ENGR 112

42

Array Indexing

 A(2,5) is the value in the
2nd row, 5th column of A

 A colon (:) indicates all rows
or columns

 Can index over a range of
rows and/or columns

 Use end to index the last
row or column

K. Webb ENGR 112

43

Array Indexing

 Use indexing to redefine
specific elements in an array

 Use colon indexing to
replace entire row/column
with a vector

 Can replace all elements
within a range
 Can set all equal to a scalar
 Or, redefine as a matrix

K. Webb ENGR 112

44

Array Indexing – Single Index

 Single indexing
counts down
successive columns

 end index indicates
last row, last column

 Generally, more
useful for vectors

K. Webb ENGR 112

45

Matrix Size Functions – size, length

 size(A)
 Returns a 1 × 2 row

vector containing
number of rows and
columns of A

 length(A)
 Returns a scalar equal to

the greater of the
number of rows or
columns of A

 length(A) = max(size(A))

 Useful for vectors

K. Webb ENGR 112

46

Multidimensional Arrays

 MATLAB allows for the definition of arrays with more than two dimensions
 Arbitrary number of dimensions allowed
 Three dimensional arrays are common
 Index an N-dimensional array with N indices

 For example, a 3 × 3 × 3 array looks like this:

(1,1,3) (1,2,3) (1,3,3)
(2,1,3) (2,2,3) (2,3,3)
(3,1,3) (3,2,3) (3,3,3)(1,1,2) (1,2,2) (1,3,2)

(2,1,2) (2,2,2) (2,3,2)
(3,1,2) (3,2,2) (3,3,2)(1,1,1) (1,2,1) (1,3,1)

(2,1,1) (2,2,1) (2,3,1)
(3,1,1) (3,2,1) (3,3,1)

ro
w

column

K. Webb ENGR 112

47

Multidimensional Arrays

 A did not exist prior to
assignment
 Size was undefined
 Defined as smallest

possible array allowing for
assignment (3 × 3 × 3)

 All other elements set to
zero

 Three-dimensional array
requires three indices

K. Webb ENGR 112

Matrix Operations in MATLAB48

K. Webb ENGR 112

49

Matrix Operations in MATLAB

 MATLAB treats all numeric variables as matrices
 Mathematical operations are matrix operations by

default
 Addition, subtraction, multiplication …
 Matrix dimensions must be compatible

 Built-in functions designed to accept matrices as
input arguments, e.g.:
 Trigonometric functions
 Exponential
 Square root
 Statistical functions, etc. …

K. Webb ENGR 112

50

Matrix Operations in MATLAB

 Matrices can be added, as
long as they are the same
size

 Multiplication is matrix
multiplication
 Inner dimensions must

agree
 Otherwise, an error results

 Here, transposing d
satisfies inner dimension
requirement

K. Webb ENGR 112

51

Passing Matrices to Functions

 Can pass vectors and
matrices to most
functions, just as we
would a scalar

 The sine of a vector of
angles calculated all at
once
 No need to pass one-at-

a-time
 Result is a vector of the

same size

 abs(…) calculates the
absolute value

K. Webb ENGR 112

52

Array Operations

 Often, we want to operate on vectors and matrices
element-by-element
 Array operations – not matrix operations
 MATLAB’s array operators: .*, ./, .^

 For example:

𝐀𝐀 = 1 2
3 4 𝐁𝐁 = 3 4

7 5

𝐀𝐀 ∗ 𝐁𝐁 = 17 14
37 32

but

𝐀𝐀.∗ 𝐁𝐁 = 3 8
21 20

K. Webb ENGR 112

53

Array Operations

 Matrices must be the same size to perform array operations
 Not only inner dimensions must agree

 For example:

𝐚𝐚 = 1 2 𝐛𝐛 = 3 4

𝐚𝐚 ∗ 𝐛𝐛 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐚𝐚.∗ 𝐛𝐛 = 3 8
Similarly,

𝐛𝐛/𝐚𝐚 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐛𝐛./𝐚𝐚 = 3 2

K. Webb ENGR 112

54

Array Operations

 Matrix exponentiation requires square matrix and scalar exponent
 Array exponentiation by a scalar works for any matrix
 Also allows for exponentiation by another matrix of the same size

 For example:
𝐚𝐚 = 1 2 3 4 𝐛𝐛 = 4 3 2 1

𝐚𝐚^2 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐚𝐚. ^𝟐𝟐 = 1 4 9 16
And,

𝐚𝐚^𝐛𝐛 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐚𝐚. ^𝐛𝐛 = 1 8 9 4

	Section 2: �Vectors and Matrices
	Vectors and Matrices
	The “MAT” in MATLAB
	Matrices
	Matrix Dimensions and Indexing
	Vectors
	Scalars
	Mathematical Matrix Operations
	Matrix Addition and Subtraction
	Matrix Addition and Subtraction
	Matrix Multiplication
	Matrix Multiplication – 𝐀∙𝐁=𝐂
	Matrix Multiplication – Examples
	Matrix Multiplication – Properties
	Matrix Multiplication – Properties
	Identity Matrix
	Identity Matrix
	Identity Matrix
	Vector Multiplication
	Exponentiation
	Matrix ‘Division’ – Multiplication by the Inverse
	Matrix Inverse
	Matrix Inverse
	Matrix Inverse - Example
	Matrix Transpose
	Why Do We Use Matrices?
	Systems of Equations
	Vectors & Matrices in MATLAB
	Defining Vectors and Matrices in MATLAB
	Ellipsis – Continuation Operator
	Vector and Matrix Generation
	Vector Generation – Colon operator
	Vector Generation – Colon operator
	Vector Generation – linspace(…)
	Array Generation – ones(…), zeros(…)
	Identity Matrix – eye(…)
	Random Number Generation – rand(…)
	Array Indexing in MATLAB
	Array Indexing
	Array Indexing
	Array Indexing – Single Index
	Array Indexing
	Array Indexing
	Array Indexing – Single Index
	Matrix Size Functions – size, length
	Multidimensional Arrays
	Multidimensional Arrays
	Matrix Operations in MATLAB
	Matrix Operations in MATLAB
	Matrix Operations in MATLAB
	Passing Matrices to Functions
	Array Operations
	Array Operations
	Array Operations

