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VECTORS AND MATRICES
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The “MAT” in MATLAB

 MATLAB
 The MATrix (not MAThematics) LABoratory

 MATLAB assumes all numeric variables are matrices
 Vectors and scalars are special cases of matrices

 This section of notes will introduce concept of 
vectors and matrices
 Matrix math – linear algebra fundamentals
 You’ll cover this in much more detail in your Linear 

Algebra course



K. Webb ENGR 112

4

Matrices

 Matrix
 Array of numerical values, e.g.:

𝐀𝐀 =
−7 0 1 4
4 −2 9 5
8 3 4 0

 The variable, 𝐀𝐀, is a matrix
 An 𝑚𝑚 × 𝑛𝑛 matrix has 𝑚𝑚 rows and 𝑛𝑛 columns 
 These are the dimensions of the matrix

 𝐀𝐀 is a 3 × 4 matrix
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Matrix Dimensions and Indexing

 An 𝑚𝑚 × 𝑛𝑛 matrix:

𝐀𝐀 =

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

 Use indices to refer to individual elements of a 
matrix
 𝑎𝑎𝑖𝑖𝑖𝑖:  the element of 𝐀𝐀 in the 𝑖𝑖𝑡𝑡𝑡 row and the 𝑗𝑗𝑡𝑡𝑡column
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Vectors

 Vectors
 A matrix with one dimension equal to one
 A matrix with one row or one column

 Row vector
 One row – a 1 × 𝑛𝑛 matrix, e.g.:

𝑥𝑥 = −9 1 −4
 A 1 × 3 row vector

 Column vector
 One column – an 𝑚𝑚 × 1 matrix, e.g.:

𝑥𝑥 =
5
1
8

 A 3 × 1 column vector
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Scalars

 Scalar
 A 1 × 1 matrix
 The numbers we are we are familiar with, e.g.: 

𝑏𝑏 = 4,       𝑥𝑥 = −3 + 𝑗𝑗𝑗.8,       𝑦𝑦 = −1 × 10−9

 We understand simple mathematical operations 
involving scalars
 Can add, subtract, multiply, or divide any pair of scalars
 Not true for matrices 
 Depends on the matrix dimensions
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Matrix Addition and Subtraction

 As long as matrices have the same dimensions, we can 
add or subtract them
 Addition and subtraction are done element-by-element, 

and the resulting matrix is the same size

4 8
0 3 + 1 −4

6 −1 = 5 4
6 2

4 8
0 3 − 1 −4

6 −1 = 3 12
−6 4

 We can also add scalars to (or subtract from) matrices

1 −4
6 −1 + 5 = 6 1

11 4
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Matrix Addition and Subtraction

 If matrices are not the same size, and neither is a scalar, 
addition/subtraction are not defined
 The following operations cannot be done

4 8
0 3 + 1 −4 6

6 −1 9 =?

8
3 − 1 −4

6 −1 =?

 Addition is commutative (order does not matter):

𝐀𝐀 + 𝐁𝐁 = 𝐁𝐁 + 𝐀𝐀 = 𝐂𝐂

4 8
0 3 + 1 −4

6 −1 = 1 −4
6 −1 + 4 8

0 3 = 5 4
6 2
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Matrix Multiplication

 In order to multiply matrices, their inner dimensions
must agree

 We can multiply 𝐀𝐀 � 𝐁𝐁 only if the number of columns
of 𝐀𝐀 is equal to the number of rows of 𝐁𝐁

 Resulting Matrix has same number of rows as 𝐀𝐀 and 
same number of columns as 𝐁𝐁

𝐀𝐀 � 𝐁𝐁 = 𝐂𝐂
(m x n) (n x p) (m x p) � =
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Matrix Multiplication – 𝐀𝐀 � 𝐁𝐁 = 𝐂𝐂

𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
⋅
𝑏𝑏11 ⋯ 𝑏𝑏1𝑝𝑝
⋮ ⋱ ⋮
𝑏𝑏𝑛𝑛1 ⋯ 𝑏𝑏𝑛𝑛𝑛𝑛

=
𝑐𝑐11 ⋯ 𝑐𝑐1𝑝𝑝
⋮ ⋱ ⋮

𝑐𝑐𝑚𝑚𝑚 ⋯ 𝑐𝑐𝑚𝑚𝑝𝑝

 The 𝑖𝑖, 𝑗𝑗𝑡𝑡𝑡 entry of 𝐂𝐂 is the dot product of the 𝑖𝑖𝑡𝑡𝑡 row of 
𝐀𝐀 with the 𝑗𝑗𝑡𝑡𝑡 column of 𝐁𝐁

𝑐𝑐𝑖𝑖𝑖𝑖 = �
𝑘𝑘=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑘𝑘𝑘𝑘

 Consider the multiplication of two 2 × 2 matrices:

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22 � 𝑏𝑏11 𝑏𝑏12

𝑏𝑏21 𝑏𝑏22
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21 𝑎𝑎11𝑏𝑏12 + 𝑎𝑎12𝑏𝑏22

𝑎𝑎21𝑏𝑏11 + 𝑎𝑎22𝑏𝑏21 𝑎𝑎21𝑏𝑏12 + 𝑎𝑎22𝑏𝑏22
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Matrix Multiplication – Examples

 A 2 × 2 and a 2 × 3 yield a 2 × 3

1 4
2 1 ⋅ 3 −1 5

6 2 0 = 27 7 5
12 0 10

 A 3 × 3 and a 3 × 1 result in a 3 × 1

1 5 0
0 4 8
2 7 3

⋅
6
1
2

=
11
20
25
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Matrix Multiplication – Properties 

 Matrix multiplication is not commutative
 Order matters
 Unlike scalars

 In general,
𝐀𝐀 ⋅ 𝐁𝐁 ≠ 𝐁𝐁 ⋅ 𝐀𝐀

 If 𝐴𝐴 and/or 𝐵𝐵 is not square then one of the above 
operations may not be possible anyway
 Inner dimensions may not agree for both product 

orders
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Matrix Multiplication – Properties

 Matrix multiplication is associative
 Insertion of parentheses anywhere within a product of 

multiple terms does not affect the result:

(𝐀𝐀 ⋅ 𝐁𝐁) ⋅ 𝐂𝐂 = 𝐃𝐃
𝐀𝐀 ⋅ (𝐁𝐁 ⋅ 𝐂𝐂) = 𝐃𝐃

 Matrix multiplication is distributive
 Multiplication distributes over addition
 Must maintain correct order, i.e. left- or right-multiplication

𝐀𝐀(𝐁𝐁 + 𝐂𝐂) = 𝐀𝐀𝐀𝐀 + 𝐀𝐀𝐂𝐂
(𝐁𝐁 + 𝐂𝐂)𝐀𝐀 = 𝐁𝐁𝐁𝐁 + 𝐂𝐂𝐂𝐂
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Identity Matrix

 Multiplication of a scalar by 1 results in that scalar
𝑎𝑎 ⋅ 1 = 1 ⋅ 𝑎𝑎 = 𝑎𝑎

 The matrix version of 1 is the identity matrix
 Ones along the diagonal, zeros everywhere else
 Square 𝑛𝑛 × 𝑛𝑛 matrix
 Denoted as 𝐈𝐈 or 𝐈𝐈𝐧𝐧, where 𝐧𝐧 is the matrix dimension, e.g.

𝐈𝐈𝟑𝟑 =
1 0 0
0 1 0
0 0 1

 Left- or right-multiplication by an identity matrix results in 
that matrix, unchanged

𝐀𝐀 ⋅ 𝐈𝐈 = 𝐈𝐈 ⋅ 𝐀𝐀 = 𝐀𝐀
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Identity Matrix

 Right-multiplication of an 𝑛𝑛 × 𝑛𝑛 matrix by an 𝑛𝑛 × 𝑛𝑛
identity matrix, 𝐈𝐈𝐧𝐧

1 5 0
0 4 8
2 7 3

⋅
1 0 0
0 1 0
0 0 1

=
1 5 0
0 4 8
2 7 3

 Same result if we left-multiply by 𝐈𝐈𝐧𝐧
1 0 0
0 1 0
0 0 1

⋅
1 5 0
0 4 8
2 7 3

=
1 5 0
0 4 8
2 7 3
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Identity Matrix

 Right-multiplication of an 𝑚𝑚 × 𝑛𝑛 matrix by an 𝑛𝑛 × 𝑛𝑛
identity matrix   

1 5 0
0 4 8 ⋅

1 0 0
0 1 0
0 0 1

= 1 5 0
0 4 8

 Same result if we left-multiply the 𝑚𝑚 × 𝑛𝑛 matrix by 
an 𝑚𝑚 × 𝑚𝑚 identity matrix

1 0
0 1 ⋅ 1 5 0

0 4 8 = 1 5 0
0 4 8
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Vector Multiplication

 Vectors are matrices, so inner dimensions must agree
 Two types of vector multiplication:
 Inner product (dot product)

 Result is a scalar

𝑎𝑎11 𝑎𝑎12 � 𝑏𝑏11𝑏𝑏21
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21

 Outer product
 Result for n-vectors is an n x n matrix

𝑎𝑎11
𝑎𝑎21 � 𝑏𝑏11 𝑏𝑏12 = 𝑎𝑎11𝑏𝑏11 𝑎𝑎11𝑏𝑏12

𝑎𝑎21𝑏𝑏11 𝑎𝑎21𝑏𝑏12
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Exponentiation

 As with scalars, raising a matrix to the power, n, is 
the multiplication of that matrix by itself n times

𝐀𝐀𝟑𝟑 = 𝐀𝐀 � 𝐀𝐀 � 𝐀𝐀
 What must be true of a matrix for exponentiation to 

be allowable?
 Inner matrix dimensions must agree
 Rows of 𝐀𝐀 must equal columns of 𝐀𝐀 – n x n
 Matrix must be square
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Matrix ‘Division’ – Multiplication by the Inverse

 Scalar division that we are accustomed to can be 
thought of as multiplication by an inverse:

𝑎𝑎 ÷ 𝑏𝑏 = 𝑎𝑎 �
1
𝑏𝑏

= 𝑎𝑎 � 𝑏𝑏−1

 This is how we ‘divide’ matrices as well

𝐀𝐀 � 𝐁𝐁 � 𝐁𝐁−𝟏𝟏 = 𝐀𝐀

 Multiplication of a scalar by its inverse is equal to 1. 
 For a matrix, the result is the identity matrix

𝐀𝐀 � 𝐀𝐀−𝟏𝟏 = 𝐈𝐈 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1
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Matrix Inverse

 Recall that matrix multiplication is not commutative
 Right- and left-multiplication are different operations

𝐀𝐀 � 𝐁𝐁 � 𝐁𝐁−𝟏𝟏 = 𝐀𝐀 ≠ 𝐁𝐁−𝟏𝟏 � 𝐀𝐀 � 𝐁𝐁

 The inverse does not exist for all matrices
 Non-invertible matrices are referred to as singular
 Matrix must be square for its inverse to exist
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Matrix Inverse

 Possible to calculate matrix inverses by hand
 Simple for small matrices
 Quickly becomes tedious as matrices get larger

 For example, the inverse of a 2 × 2 matrix:

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑

−1
=

1
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎

 For example:

𝐀𝐀 = 2 5
2 4

𝐀𝐀−𝟏𝟏 =
1

8 − 10
4 −5
−2 2 = −2 2.5

1 −1
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Matrix Inverse - Example

 Multiplication of a matrix by its inverse yields the identity matrix
 For example:

𝐀𝐀 ⋅ 𝐀𝐀−𝟏𝟏 = 2 5
2 4 ⋅ −2 2.5

1 −1 = 1 0
0 1

 Or, for a 3 × 3:

𝐀𝐀 =
2 0 2
0 1 2
0 0 2

,    𝐀𝐀−𝟏𝟏 =
0.5 0 −0.5
0 1 −1
0 0 0.5

2 0 2
0 1 2
0 0 2

⋅
0.5 0 −0.5
0 1 −1
0 0 0.5

=
1 0 0
0 1 0
0 0 1

 You’ll learn more about this in Linear Algebra – not critical here
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Matrix Transpose

 The transpose of a matrix is that matrix with rows and 
columns swapped
 First row becomes the first column, second row becomes 

the second column, and so on
 For example:

𝐀𝐀 =
0 9
2 7
6 3

𝐀𝐀𝐓𝐓 = 0 2 6
9 7 3

 Row vectors become column vectors and vice versa

𝐱𝐱 =
7
−1
−4

𝐱𝐱𝐓𝐓 = 7 −1 −4
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Why Do We Use Matrices?

 Vectors and matrices are used extensively in many 
engineering fields, for example:
 Modeling, analysis, and design of dynamic systems
 Controls engineering
 Image processing
 Etc. …

 Very common usage of vectors and matrices is to 
represent systems of equations
 These regularly occur in all fields of engineering 
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Systems of Equations

 Consider a system of three equations with three unknowns:

3𝑥𝑥1 + 5𝑥𝑥2 − 9𝑥𝑥3 = 6
−3𝑥𝑥1 + 7𝑥𝑥3 = −2
−𝑥𝑥2 + 4𝑥𝑥3 = 8

 Can represent this in matrix form:

3 5 −9
−3 0 7
0 −1 4

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
6
−2
8

 Or, more compactly as:
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 Perform algebra operations as we would if 𝐀𝐀, 𝐱𝐱, and 𝐛𝐛 were scalars
 Observing matrix-specific rules, e.g. multiplication order, etc.
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Defining Vectors and Matrices in MATLAB

 Let’s say we want to assign the following matrix variable 
in MATLAB:

𝐀𝐀 = 2 5 1
−4 6 0

 Enclose matrices in square brackets
 Elements on the same row are separated by spaces or 

commas
 Rows are separated by semicolons

 In MATLAB:
A = [2, 5, 1; -4, 6, 0];

or 
A = [2 5 1; -4 6 0];
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Ellipsis – Continuation Operator

 An ellipsis can be used 
as a continuation
operator 
 Tells MATLAB that a 

single command 
continues on the next 
line

 Improves readability
 Long expressions
 Large matrices 
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Vector and Matrix Generation

 Often want to automatically generate vectors and 
matrices without having to enter them element-by-
element

 A few of MATLAB’s array-generation functions:
 Colon operator (:)
 linspace(…) 
 ones(…)
 zeros(…)
 diag(…)
 eye(…)
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Vector Generation – Colon operator

 Create vectors of evenly-spaced values using the colon (:) operator

x = xstart:xstep:xstop;
 xstart: value of the first element in the vector 
 xstep: optional increment value – default: xstep = 1
 xstop: maximum value of vector entries
 x: vector of points that is created

 Number of elements in the vector:

𝑁𝑁 = floor
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+ 1

 Value of the last element in the vector is 

𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑁𝑁 − 1 ⋅ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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Vector Generation – Colon operator

 Default increment 
is 1

 Can specify 
increment value

 Vector values will 
not exceed the 
stop value
 May not include 

stop value

 Increment value 
can be negative
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Vector Generation – linspace(…)

x = linspace(xstart,xstop,N)

 xstart: value of the first element in the vector
 xstop: value of the last element in the vector
 N: Number of elements in the vector
 x: vector of linearly spaced points

 Colon operator:
 Stop value may not be in the vector
 Number of points not directly specified

 linspace(…):
 x(end) = xstop
 Increment value not directly specified



K. Webb ENGR 112

35

Array Generation – ones(…), zeros(…)

 Generate an 𝑁𝑁 × 𝑁𝑁 square matrix of all 1’s or all 0’s:

A = ones(N); or     A = zeros(N)

 Generate an 𝑚𝑚 × 𝑛𝑛 vector of all 1’s or 0’s

A = ones(m,n); or     A = zeros(m,n)
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Identity Matrix – eye(…)

I = eye(N)

 N: identity matrix dimension
 I: 𝑁𝑁 × 𝑁𝑁 identity matrix
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Random Number Generation – rand(…)

 Very often useful to generate random numbers
 Simulating the effect of noise
 Monte Carlo simulation, etc.

x = rand(m,n)

 m: number of rows in the matrix of random numbers
 n: number of columns in the matrix of random numbers
 x: 𝑚𝑚 × 𝑛𝑛 matrix of uniformly-distributed random values on the 

interval [0,1]

 If only one dimension specified (i.e. rand(N)), result is an 
𝑁𝑁 × 𝑁𝑁 matrix of random values

 For normally-distributed (Gaussian) values, use:

x = randn(m,n)
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Array Indexing

 We’ve seen how we can refer to specific elements in an 
array by their row, column indices, 𝑎𝑎𝑖𝑖𝑖𝑖:

𝐀𝐀 =

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

 MATLAB allows us to do the same thing
 Indices specified in parentheses immediately following the array 

variable name
 Indices must be positive
 Numbering begins at 1 

 For example, B(2,5) refers to the element in the 2nd row 
and 5th column of the matrix B

 Also possible to specify ranges of elements within an array
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Array Indexing

 Element of A in row i, column j:

A(i,j)

 Elements of A in row i, all columns:

A(i,:)

 Elements of A in all rows, column j:

A(:,j)

 Elements of A in rows i through k, columns j through q:

A(i:k,j:q)

 Elements of A in the second through last row and the last column:

A(2:end,end)
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Array Indexing – Single Index

 MATLAB also allows for indexing elements within an 
array with a single index – linear indexing
 Elements are counted down each column sequentially
 Very useful for vectors
 Not often useful for matrices

 For example, for a 3 × 4 matrix:

𝐴𝐴 =
𝑎𝑎1 𝑎𝑎4 𝑎𝑎7 𝑎𝑎10
𝑎𝑎2 𝑎𝑎5 𝑎𝑎8 𝑎𝑎11
𝑎𝑎3 𝑎𝑎6 𝑎𝑎9 𝑎𝑎12

 In MATLAB:   A(8) = A(2,3) = 𝑎𝑎8
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Array Indexing

 A(2,5) is the value in the 
2nd row, 5th column of A

 A colon (:) indicates all rows 
or columns

 Can index over a range of 
rows and/or columns

 Use end to index the last 
row or column
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Array Indexing

 Use indexing to redefine 
specific elements in an array

 Use colon indexing to 
replace entire row/column 
with a vector

 Can replace all elements 
within a range
 Can set all equal to a scalar
 Or, redefine as a matrix
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Array Indexing – Single Index

 Single indexing 
counts down 
successive columns

 end index indicates 
last row, last column

 Generally, more 
useful for vectors
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Matrix Size Functions – size, length

 size(A)
 Returns a 1 × 2 row 

vector containing 
number of rows and 
columns of A

 length(A)
 Returns a scalar equal to 

the greater of the 
number of rows or 
columns of A

 length(A) = max(size(A))

 Useful for vectors
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Multidimensional Arrays

 MATLAB allows for the definition of arrays with more than two dimensions
 Arbitrary number of dimensions allowed
 Three dimensional arrays are common
 Index an N-dimensional array with N indices

 For example, a 3 × 3 × 3 array looks like this:

(1,1,3) (1,2,3) (1,3,3)
(2,1,3) (2,2,3) (2,3,3)
(3,1,3) (3,2,3) (3,3,3)(1,1,2) (1,2,2) (1,3,2)

(2,1,2) (2,2,2) (2,3,2)
(3,1,2) (3,2,2) (3,3,2)(1,1,1) (1,2,1) (1,3,1)

(2,1,1) (2,2,1) (2,3,1)
(3,1,1) (3,2,1) (3,3,1)

ro
w

column
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Multidimensional Arrays

 A did not exist prior to 
assignment
 Size was undefined
 Defined as smallest 

possible array allowing for 
assignment (3 × 3 × 3)

 All other elements set to 
zero

 Three-dimensional array 
requires three indices
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Matrix Operations in MATLAB

 MATLAB treats all numeric variables as matrices
 Mathematical operations are matrix operations by 

default
 Addition, subtraction, multiplication …
 Matrix dimensions must be compatible

 Built-in functions designed to accept matrices as 
input arguments, e.g.:
 Trigonometric functions
 Exponential
 Square root
 Statistical functions, etc. …
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Matrix Operations in MATLAB

 Matrices can be added, as 
long as they are the same 
size

 Multiplication is matrix 
multiplication
 Inner dimensions must 

agree
 Otherwise, an error results

 Here, transposing d
satisfies inner dimension 
requirement
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Passing Matrices to Functions

 Can pass vectors and 
matrices to most 
functions, just as we 
would a scalar

 The sine of a vector of 
angles calculated all at 
once
 No need to pass one-at-

a-time
 Result is a vector of the 

same size

 abs(…) calculates the 
absolute value
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Array Operations

 Often, we want to operate on vectors and matrices 
element-by-element
 Array operations – not matrix operations
 MATLAB’s array operators:   .*,   ./,   .^

 For example:

𝐀𝐀 = 1 2
3 4 𝐁𝐁 = 3 4

7 5

𝐀𝐀 ∗ 𝐁𝐁 = 17 14
37 32

but

𝐀𝐀.∗ 𝐁𝐁 = 3 8
21 20
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Array Operations

 Matrices must be the same size to perform array operations
 Not only inner dimensions must agree

 For example:

𝐚𝐚 = 1 2 𝐛𝐛 = 3 4

𝐚𝐚 ∗ 𝐛𝐛 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐚𝐚.∗ 𝐛𝐛 = 3 8
Similarly,

𝐛𝐛/𝐚𝐚 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐛𝐛./𝐚𝐚 = 3 2
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Array Operations

 Matrix exponentiation requires square matrix and scalar exponent
 Array exponentiation by a scalar works for any matrix
 Also allows for exponentiation by another matrix of the same size

 For example:
𝐚𝐚 = 1 2 3 4 𝐛𝐛 = 4 3 2 1

𝐚𝐚^2 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐚𝐚. ^𝟐𝟐 = 1 4 9 16
And,

𝐚𝐚^𝐛𝐛 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
but

𝐚𝐚. ^𝐛𝐛 = 1 8 9 4
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