SECTION 4:
ALGORITHMIC THINKING

- ENGR 112 — Introduction to Engineering Computing

- Algorithmic Thinking

Algorithmic Thinking
-~

Algorithmic thinking:

o The ability to identify and analyze problems, and to
develop and refine algorithms for the solution of those
problems

Algorithm:

o Detailed step-by-step procedure for the performance of
a task

Learning to program is about developing
algorithmic thinking skills, not about learning a
programming language

K. Webb ENGR 112

Algorithms
R

Ultimately, algorithms will be implemented by
writing code in a particular programming language

Algorithm design is (mostly) language-independent
o A procedure that can be implemented in any language

Universal algorithm representations:
o Flowcharts
Graphical representation

O Pseudocode
Natural language
Not necessarily language-independent

K. Webb ENGR 112

- Flowcharts

K. Webb ENGR 112

Flow Charts
-

Flowcharts are graphical representations of
algorithms

Interconnection of different types of blocks
o Start/End

O Process

o Conditional

o Input/Output

Connection paths indicate flow from one step in the
procedure to the next

Well-constructed flowcharts are easily translated
into code later

K. Webb ENGR 112

Flowchart Blocks

Start/End
Start

o Always indicate the start and end of any
flowchart

Process

o Indicates the performance of some iz it2
action

Conditional
o Performs a check and makes a decision

o Binary result: True/False, Yes/No, 1/0 Jealy
o Algorithm flow branches depending on
result
ead
InPUt/OUtPUt temEerature
O Input or output of variables or data data from

file.

K. Webb ENGR 112

Flowchart — Example

Consider the very simple PR
example of making toast L

Process flows from Start to the f
End through the process and

llllll

conditional blocks |
o Arrows indicate flow Depress e

o Conditional blocks control flow
branching |

Note the loop defining the l T
waiting process

o Wait block is unnecessary Ol

ttttt

K. Webb ENGR 112

Flowchart — Example
R

Flowchart for a given procedure T
IS not unique

o Varying levels of complexity and
detail are always possible —

Often important to think about e

and account for various possible N

outcomes and cases l N

o For example, is your toast always %_“’“_
done after it first pops up?

enough?

o Here, part of the procedure is
repeated if necessary

K. Webb ; End) ENGR 112

Flowchart — Example
-
Taking this example further,

consider the possibility of burnt | 1
toast or the desire for butter e e
o Another loop added for S e l

continued scraping until edible

o Also possible to bypass portions tzzpre;r::r [
of the procedure — e.g., the - g
scraping of the toast or the o~ !
application of butter Sl

Can imagine significantly more i

complex flow chart for the
same simple procedure ... ()

K. Webb ENGR 112

Common Flowchart Structures

K. Webb ENGR 112

Common Flowchart Structures

Several basic structures occur frequently in many
different types of flowcharts

o Recurrent basic structures in many algorithms

Ultimately translate to recurrent code structures

Two primary categories
o Conditional statements
o Loops

In this section of notes, we’ll gain an understanding of
flowchart structures that fall into these two categories

In the next section of notes we’ll learn how to
implement these structures in code

K. Webb ENGR 112

- Conditional Statements

1 T statements

Logical and relational operators
1T..else statements

K. Webb ENGR 112

Conditional Statements — if

Flowcharts represent a set of |

instructions

o Blocks and block structures can be N
thought of as statements l

Simplest conditional statement YJ

is a single conditional block

o An if structure ~
o If Xis true, then do Y, if not, don’tdo Y 7
o In either case, then proceed to do Z

o Y and Z could be any type of process or action
E.g. add two numbers, turn on a motor, butter the toast, etc.

o X is a logical expression or Boolean expression
Evaluates to either true (1) or false (0)

K. Webb ENGR 112

Conditional Statements — if ... else
e

Can instead specify an action
to perform if X is not true l

o An if ... else structure o
o If X is true, then do A, else do B |
o Then, move ontodo C

-
I S

Here, a different process is
performed depending on the
value of X (1/0, T/F, Y/N)

<
(@] < A

K. Webb ENGR 112

Conditional Statements — if ... else
e

Logical expression with a single l
relational operator __
o Either true (Y) or false (N)

o Iftrue,x =1 Y
o If false, x = —1 x=1 ‘ XW

Logical expression may also include a

logical operator l
(x>9)]|(x < —9)
(x>9)]](x<-9)
o Again, statement is either true or false N
o Next process step dependent on value l
of the conditional logical expression | o

K. Webb ENGR 112

Logical or Relational Expressions
e
Logical expressions use logical and relational operators

&&

K. Webb

Equal to

Not equal to

Less than

Greater than

Less than or equal to

Greater than or equal to

NOT- negates the logical value of an
expression

AND — both expressions must evaluate to
true for result to be true

OR — either expression must evaluate to true
for result to be true

N 9 = X X
N
=
N

(4+r/6) >= 2
~(b < 4*g)

(t > 0)&&(c == 5)

(P> DIJIm > 3)

ENGR 112

Logical Expressions — Examples

.
letx =12andy = —3
Consider the following logical expressions:

Logical Expression

(x +y) == 15 0
(y == 2)||(x > 8) 1
~(y <0) 0
(y/2+1<-1) 0
(x == 12)&&~(y = 5) 1
(v~ =2)||(x <10)[|(x < y) 1

((x == 2)&&(y < 0))]]((x = 5)&&(y~ = 8)) 1

K. Webb ENGR 112

Conditional Statements — if ... elseif ... else

Two conditional logical

expressions l

o If the X is true, do A N

o If X is false, evaluate Y IXt l
If Y is true, do B Yl ey trued

If Y is false, do C

The if ... elseif ... else J l v

structure i

Can include an arbitrary
number of elseif statements

O Successive logical statements evaluated only if preceding
statement is false

K. Webb ENGR 112

if ... elseif ... else — Example

Consider a 5 ey

piecewise linear [% :

function of x -

oy = f(x) not — N
defined by asingle | : D T :)
function

o Function depends 1
on the value of x JT

o Can implement

with an J |
if ... elseif ... else
structure 1

y=-x+15

y=0

K. Webb ENGR 112

if Statements — Other Configurations
-

In previous examples, successive logical statements only
evaluated if preceding statement is false

Result of a true logical expression can also be the
evaluation of a second logical expression

Y
li __ IsXtrue? Nj

N N
- IsY true? > _ IsZ true?

K. Webb ENGR 112

Sl

while loops
for loops

K. Webb ENGR 112

Loops

We’ve already seen some examples of flow charts
that contain loops:

Y

Structures where the algorithmic flow loops back and
repeats process steps

O Repeats as long as a certain condition is met, e.g., toaster
has not popped up, toast is inedible, etc.

K. Webb ENGR 112

Loops
e
Algorithms employ two primary types of loops:

0 while loops: loops that execute as long as a specified
condition is met — loop executes as many times as is
necessary

o for loops: loops that execute a specified exact number
of times

Similar looking flowchart structures

o for loop can be thought of as a special case of a while
loop

o However, the distinction between the two is very
Important

K. Webb ENGR 112

- while Loop

K. Webb ENGR 112

while Loop

Repeatedly execute an instruction or set of instructions
as long as (while) a certain condition is met (is true)

Repeat A while X is true

o As soon as X is no longer true, break
out of the loop and continue on to B

O A may never execute
O A may execute only once

o A may execute forever — an infinite
loop
If A never causes X to be false
Usually not intentional

K. Webb

4.1

N
< IsXtrue?

ENGR 112

while Loop

Algorithm loops while x < 4

O Loops three times: | l
teration x| x=1
0 1
1 6
3
4 O
3 9 Yl
4.5 |

Value of x exceeds 4 several times during

|
execution |

o x value checked at the beginning of the loop

Final value of x is greater than 4 R —

K. Webb ENGR 112

while Loop — Infinite Loop
-

Now looping continues as longas x < 12
O x never exceeds 12 l
o Loops forever — an infinite loop

0 1
1 6
2 8 x<12 .M
4 ~]
3 9 Yl
4.5
4 9.5 X=X+5
4.75
5 9.75 |
4.875
6 9.875 X=x/2
49375

K. Webb ENGR 112

Infinite Loops

Occasionally infinite loops are
desirable

o Consider for example microcontroller i

code for an environmental monitoring
system

Continuously takes measurements and
displays results while powered on

Note the logical statement in the
conditional block

Loop
o Logical statements are either true (Y, 1) Instructions

or false (N, 0)

o 1 is the Boolean representation of true
orY

K. Webb ENGR 112

while Loop — Example 1
R

Consider the following | l |
algorithm:
O Read in a number (e.g. user S

input, from a file, etc.)

o Determine the number of times
that number can be 4’1
successively divided by 2 before o1 A
theresultis <1 o l

Use a while loop
o Divide by 2 while numberis > 1 l | l

K. Webb ENGR 112

while Loop — Example 1

Start

Number of loop iterations o
depends on value of the input oo/
variable, x | l
o Characteristic of while loops

of iterations unknown a priori l
o If x < 1 loop instructions never
execute o l

Note the data 1/O blocks o
o Typical — many algorithms |
have inputs and outputs I . ‘

ENGR 112

K. Webb

while Loop — Example 1

-1 Consider a few different input,
X, values: o
Lo

count | x| | x| | x__ l
16 0.8

0 5
1 2.5 8 i -~
2 1.25 4 a1 N
3 0.625 2
ttttttttttt ____/
5 e

e ENGR 112

while Loop — Example 2

Next, consider an algorithm to
calculate x!, the factorial of x:

o Read in a number, x

o Compute the product of all
integers between 1 and x

o Initialize result, fact, to 1 —»l
o Multiply fact by x O\
o Decrement x by 1 0 l

Use a while loop

o Multiply fact by x, then l l
decrement x while x > 1 |

K. Webb ENGR 112

while Loop — Example 2

- Consider a few different input,
X, values: o

DONEENCEEErT -
4 1 0 1

5 1

5 5 4 4 - i i g

4 20 3 12

3 60 2 24

2 120 1 24 — _/
1 120 /o

K. Webb ENGR 112

while Loop — Example 2

Let’s say we want to define our 7
factorial algorithm only for
integer arguments _ﬁ
Add error checking to the saan e
algorithm b l
o After reading in a value for x,
check if it is an integer 4{ - |
o If not, generate an error message N\
and exit .

o Could also imagine rounding x,
generating a warning message

and continuing l ,

ENGR 112

K. Webb

o

K. Webb ENGR 112

for Loop
e

We've seen that the number of while loop iterations is
not known ahead of time

o May depend on inputs, for example

Sometimes we want a loop to execute an exact,
specified number of times

A for loop

o Utilize a loop counter

o Increment (or decrement) the counter on each iteration
o Loop until the counter reaches a certain value

Can be thought of as a while loop with the addition of a
loop counter

o But, a very distinct entity when implemented in code

K. Webb ENGR 112

for Loop

Initialize the loop counter

o i, j, kare common, but name
does not matter

Set the range for i

o Not necessary to define
variable istop

Execute loop instructions, A
Increment loop counter, i

Repeat until loop counter
reaches its stopping value

Continueonto B

K. Webb

ENGR 112

for Loop

for loops are counted loops

Number of loop iterations is

known and is constant |

O Here loop executes 10 times | 1 |

Stopping value not l

necessarily hard-coded l

o Could depend on an input or Ag B
vector size, etc. —_

K. Webb ENGR 112

for Loop

.,
Loop counter may start at

value other than 1 ol

Increment size may be a

value other than 1

Loop counter may count

| Iteration | cntr | Process | l
1 6 A A B
2 4 A |
3 2 A \ ¢
4 O A cntr =cntr—2
5 2 A
6 -4 B

K. Webb ENGR 112

for Loop — Example 1
-

Here, the loop counter, i, is used l
to update a variable, x, on each
iteration

— Yl

25

o B~ W N -
oau A~ W NN BB
/

IA
[}
—

When loop terminates, and flow
proceeds to the next process !
step, x =25

O A scalar

o No record of previous values of x

K. Webb ENGR 112

for Loop — Example 2
-

Now, modify the loop process to store l
values of x as a vector
o Use loop counter to index the vector a
] i) |
1 1 [1] 'l
2 4 [1, 4] N,
3 9 [1, 4, 9] 5
4 16 [1, 4, 9, 16] i l
5 25 [1, 4,9, 16, 25]
x(i) = i?
When loop terminates, !
x=1[1,4,9, 16, 25]
o A vector o

O x grows with each iteration
K. Webb ENGR 112

for Loop — Example 3
R

The loop counter does not !
need to be used within the
loop
O Used as a counter only 'l
Here, a random number is
generated and displayed l l
each of the 10 times through Senesend
the loop ?ﬁfﬁ;‘fﬂi}{iﬂiﬁ?
o Counter, i, has nothing to do o
with the values of the I B
random numbers displayed

K. Webb ENGR 112

for Loop — Example 4
R

Have a vector of values, x -
Find the mean of those - el of:
values .
o Sum all values in x ’l
A for |00p I<N N
of iterations equal to the l
length of x "
Loop counter indexes x sumx = sumx + () meanx = sumx/N
o Divide the sum by the | i i
number of elements in x

After exiting the loop

K. Webb ENGR 112

- Nested Loops

K. Webb ENGR 112

Nested Loops
-
A loop repeats some process some number of times
O The repeated process can, itself, be a loop

o A nested loop

Can have nested for loops or while loops
o Can nest for loops within while loops and vice versa

One application of a nested for loop is to step
through every element in a matrix

O Loop counter variables used as matrix indices

o Outer loop steps through rows (or columns)

o Inner loop steps through columns (or rows)

K. Webb ENGR 112

Nested for Loop — Example
-

Recall how we index the elements within a matrix:

o A;j is the element on the i*" row and j** column of the matrix 4
o Using MATLAB syntax: A(i,j)

Consider a 3 X 2 matrix

-2 1
B=1]0 8
L7 =3

To access every element in B:

O start on the first row and increment through all columns

o Increment to the second row and increment through all columns
o Continue through all rows

o Two nested for loops

K. Webb ENGR 112

Nested for Loop — Example

-2 1 =
B=|0 8
7 =3
Generate a matrix C |
whose entries are the 2
f l
squares of all of the v
elementsin B
o0 Nested for loop |
o Outer loop steps through N
rows |
Counter is row index ct =i
o Inner loop steps through I
columns
Counter is column index

K. Webb ENGR 112

“ Pseudocode & Top-Down Design

Pseudocode
e
Flowcharts provide a useful tool for designing
algorithms
o Allow for describing algorithmic structure
o Ultimately used for generation of code

o Details neglected in favor of concise structural and
functional description

Pseudocode provides a similar tool

o One step closer to actual code

O Textual description of an algorithm

o Natural language mixed with language-specific syntax

K. Webb ENGR 112

Pseudocode — Example

Consider an algorithm for l

determining the maximum of a

vector of values IR
Pseudocode might look like: T

N = length of X {

max_x = x(1)

for i = 2:N - .
if x(i) is greater than current Yl l
max_X, then set max x = x(1)

end RS

If so, that’s the new
value of max_x

.

— i=i+1

Note the for loop syntax

o We’'ll cover this in the following
section of notes

K. Webb ENGR 112

Top-Down Design
.
Flowcharts and pseudocode are useful tools for top-
down design

o A good approach to any complex engineering design (and
writing, as well)

o First, define the overall system or algorithm at the top level
(perhaps as a flowchart)

o Then, fill in the details of individual functional blocks

Top-level flowchart identifies individual functional
blocks and shows how each fits into the algorithm

o Each functional block may comprise its own flow chart or
even multiple levels of flow charts

O Hierarchical design

K. Webb ENGR 112

Top-Down Design - Example
R

Let’s say you have deflection data from FEM
analysis of a truss design

0 Data stored in text files
Deflection vs. location along truss

o Parametric study
Three different component thicknesses
Two different materials
Six data sets

Read in the data, calculate the max deflection and
plot the deflection vs. position

K. Webb ENGR 112

Top-Down Design - Example
=N

Level 1: Level 2: Level 3:

1 1
1 1
1 1
1 1
1 l 1
1 1
1 1
— 1 Read data for 1
' material A, 1
Start :l 1 thickness 1 1 QRS Siogee
— S 1 1
E—— I I
: | 1
y 1 1 ¢
1 Read data for 1
: material A, : N = # of data point
Read in the data i thickness 2 I in the file
1 1 i=1
1 1
1 1
1 1
I I L.
: : g
1 I vy
Calculate the 1 1 IS
maximum | 1 .
displacement | 1 ~ i<N b
1 1 ™~ V' a
1 1 . Vs
1 Read data for 1 N)
1 material B, 1 ~
v 1 thickness 1 1 l
1 1
1 B 1
: l : Read in row i
Plot the data I I Store values as x(i)
1 Read data for and d(i)
material B,
| thickness 2
' v
1 I—
Y 1
[End JIl |
\ - _ 1 Read data for i=i+1
1 material B,
: thickness 3
1

| v

K. Webb ENGR 112

	Section 4: �Algorithmic Thinking
	Algorithmic Thinking
	Algorithmic Thinking
	Algorithms
	Flowcharts
	Flow Charts
	Flowchart Blocks
	Flowchart – Example
	Flowchart – Example
	Flowchart – Example
	Common Flowchart Structures
	Common Flowchart Structures
	Conditional Statements
	Conditional Statements – if
	Conditional Statements – if … else
	Conditional Statements – if … else
	Logical or Relational Expressions
	Logical Expressions – Examples
	Conditional Statements – if … elseif … else
	if … elseif … else – Example
	if Statements – Other Configurations
	Loops
	Loops
	Loops
	while Loop
	while Loop
	while Loop
	while Loop – Infinite Loop
	Infinite Loops
	while Loop – Example 1
	while Loop – Example 1
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 2
	while Loop – Example 2
	for Loop
	for Loop
	for Loop
	for Loop
	for Loop
	for Loop – Example 1
	for Loop – Example 2
	for Loop – Example 3
	for Loop – Example 4
	Nested Loops
	Nested Loops
	Nested for Loop – Example
	Nested for Loop – Example
	Pseudocode & Top-Down Design
	Pseudocode
	Pseudocode – Example
	Top-Down Design
	Top-Down Design - Example
	Top-Down Design - Example

