
ENGR 112 – Introduction to Engineering Computing

SECTION 4:
ALGORITHMIC THINKING

K. Webb ENGR 112

Algorithmic Thinking2

K. Webb ENGR 112

3

Algorithmic Thinking

 Algorithmic thinking:
 The ability to identify and analyze problems, and to

develop and refine algorithms for the solution of those
problems

 Algorithm:
 Detailed step-by-step procedure for the performance of

a task
 Learning to program is about developing

algorithmic thinking skills, not about learning a
programming language

K. Webb ENGR 112

4

Algorithms

 Ultimately, algorithms will be implemented by
writing code in a particular programming language

 Algorithm design is (mostly) language-independent
 A procedure that can be implemented in any language

 Universal algorithm representations:
 Flowcharts
 Graphical representation

 Pseudocode
 Natural language
 Not necessarily language-independent

K. Webb ENGR 112

Flowcharts5

K. Webb ENGR 112

6

Flow Charts

 Flowcharts are graphical representations of
algorithms

 Interconnection of different types of blocks
 Start/End
 Process
 Conditional
 Input/Output

 Connection paths indicate flow from one step in the
procedure to the next

 Well-constructed flowcharts are easily translated
into code later

K. Webb ENGR 112

7

Flowchart Blocks

 Start/End
 Always indicate the start and end of any

flowchart

 Process
 Indicates the performance of some

action

 Conditional
 Performs a check and makes a decision
 Binary result: True/False, Yes/No, 1/0
 Algorithm flow branches depending on

result

 Input/Output
 Input or output of variables or data

K. Webb ENGR 112

8

Flowchart – Example

 Consider the very simple
example of making toast

 Process flows from Start to the
End through the process and
conditional blocks
 Arrows indicate flow
 Conditional blocks control flow

branching
 Note the loop defining the

waiting process
 Wait block is unnecessary

K. Webb ENGR 112

9

Flowchart – Example

 Flowchart for a given procedure
is not unique
 Varying levels of complexity and

detail are always possible
 Often important to think about

and account for various possible
outcomes and cases
 For example, is your toast always

done after it first pops up?
 Here, part of the procedure is

repeated if necessary

K. Webb ENGR 112

10

Flowchart – Example

 Taking this example further,
consider the possibility of burnt
toast or the desire for butter
 Another loop added for

continued scraping until edible
 Also possible to bypass portions

of the procedure – e.g., the
scraping of the toast or the
application of butter

 Can imagine significantly more
complex flow chart for the
same simple procedure …

K. Webb ENGR 112

Common Flowchart Structures 11

K. Webb ENGR 112

12

Common Flowchart Structures

 Several basic structures occur frequently in many
different types of flowcharts
 Recurrent basic structures in many algorithms

 Ultimately translate to recurrent code structures
 Two primary categories

 Conditional statements
 Loops

 In this section of notes, we’ll gain an understanding of
flowchart structures that fall into these two categories

 In the next section of notes we’ll learn how to
implement these structures in code

K. Webb ENGR 112

• if statements
• Logical and relational operators
• if…else statements

Conditional Statements13

K. Webb ENGR 112

14

Conditional Statements – if

 Flowcharts represent a set of
instructions
 Blocks and block structures can be

thought of as statements

 Simplest conditional statement
is a single conditional block
 An if structure
 If X is true, then do Y, if not, don’t do Y
 In either case, then proceed to do Z
 Y and Z could be any type of process or action
 E.g. add two numbers, turn on a motor, butter the toast, etc.

 X is a logical expression or Boolean expression
 Evaluates to either true (1) or false (0)

K. Webb ENGR 112

15

Conditional Statements – if … else

 Can instead specify an action
to perform if X is not true
 An if … else structure
 If X is true, then do A, else do B
 Then, move on to do C

 Here, a different process is
performed depending on the
value of X (1/0, T/F, Y/N)

K. Webb ENGR 112

16

Conditional Statements – if … else

 Logical expression with a single
relational operator

𝑥𝑥 > 9
 Either true (Y) or false (N)
 If true, 𝑥𝑥 = 1
 If false, 𝑥𝑥 = −1

 Logical expression may also include a
logical operator

𝑥𝑥 > 9 || 𝑥𝑥 < −9
 Again, statement is either true or false
 Next process step dependent on value

of the conditional logical expression

K. Webb ENGR 112

17

Logical or Relational Expressions

 Logical expressions use logical and relational operators
Operator Relationship or Logical Operation Example

== Equal to x == b

~= Not equal to k ~= 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

~ NOT– negates the logical value of an
expression ~(b < 4*g)

&& AND – both expressions must evaluate to
true for result to be true (t > 0)&&(c == 5)

|| OR – either expression must evaluate to true
for result to be true (p > 1)||(m > 3)

K. Webb ENGR 112

18

Logical Expressions – Examples

 Let 𝑥𝑥 = 12 and 𝑦𝑦 = −3
 Consider the following logical expressions:

Logical Expression Value

𝑥𝑥 + 𝑦𝑦 == 15 0

𝑦𝑦 == 2 || 𝑥𝑥 > 8 1

~ 𝑦𝑦 < 0 0

(𝑦𝑦/2 + 1 < −1) 0

𝑥𝑥 == 12 &&~(𝑦𝑦 ≥ 5) 1

𝑦𝑦~ = 2 || 𝑥𝑥 < 10 || 𝑥𝑥 < 𝑦𝑦 1

𝑥𝑥 == 2 && 𝑦𝑦 < 0 || 𝑥𝑥 ≥ 5 && 𝑦𝑦~ = 8 1

K. Webb ENGR 112

19

Conditional Statements – if … elseif … else

 Two conditional logical
expressions
 If the X is true, do A
 If X is false, evaluate Y
 If Y is true, do B
 If Y is false, do C

 The if … elseif … else
structure

 Can include an arbitrary
number of elseif statements
 Successive logical statements evaluated only if preceding

statement is false

K. Webb ENGR 112

20

if … elseif … else – Example

 Consider a
piecewise linear
function of 𝑥𝑥
 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) not

defined by a single
function

 Function depends
on the value of 𝑥𝑥

 Can implement
with an
if … elseif … else
structure

K. Webb ENGR 112

21

if Statements – Other Configurations

 In previous examples, successive logical statements only
evaluated if preceding statement is false

 Result of a true logical expression can also be the
evaluation of a second logical expression

K. Webb ENGR 112

• while loops
• for loops

Loops22

K. Webb ENGR 112

23

Loops

 We’ve already seen some examples of flow charts
that contain loops:

 Structures where the algorithmic flow loops back and
repeats process steps
 Repeats as long as a certain condition is met, e.g., toaster

has not popped up, toast is inedible, etc.

K. Webb ENGR 112

24

Loops

 Algorithms employ two primary types of loops:
 while loops: loops that execute as long as a specified

condition is met – loop executes as many times as is
necessary

 for loops: loops that execute a specified exact number
of times

 Similar looking flowchart structures
 for loop can be thought of as a special case of a while

loop
 However, the distinction between the two is very

important

K. Webb ENGR 112

while Loop25

K. Webb ENGR 112

26

while Loop

 Repeatedly execute an instruction or set of instructions
as long as (while) a certain condition is met (is true)

 Repeat A while X is true
 As soon as X is no longer true, break

out of the loop and continue on to B
 A may never execute
 A may execute only once
 A may execute forever – an infinite

loop
 If A never causes X to be false
 Usually not intentional

K. Webb ENGR 112

27

while Loop

 Algorithm loops while 𝑥𝑥 ≤ 4
 Loops three times:

Iteration x

0 1

1 6
3

2 8
4

3 9
4.5

 Value of 𝑥𝑥 exceeds 4 several times during
execution
 𝑥𝑥 value checked at the beginning of the loop

 Final value of 𝑥𝑥 is greater than 4

K. Webb ENGR 112

28

while Loop – Infinite Loop

 Now looping continues as long as 𝑥𝑥 < 12
 𝑥𝑥 never exceeds 12
 Loops forever – an infinite loop

Iteration x

0 1

1 6
3

2 8
4

3 9
4.5

4 9.5
4.75

5 9.75
4.875

6 9.875
4.9375

⋮ ⋮

K. Webb ENGR 112

29

Infinite Loops

 Occasionally infinite loops are
desirable
 Consider for example microcontroller

code for an environmental monitoring
system
 Continuously takes measurements and

displays results while powered on

 Note the logical statement in the
conditional block
 Logical statements are either true (Y, 1)

or false (N, 0)
 1 is the Boolean representation of true

or Y

K. Webb ENGR 112

30

while Loop – Example 1

 Consider the following
algorithm:
 Read in a number (e.g. user

input, from a file, etc.)
 Determine the number of times

that number can be
successively divided by 2 before
the result is ≤ 1

 Use a while loop
 Divide by 2 while number is > 1

K. Webb ENGR 112

31

while Loop – Example 1

 Number of loop iterations
depends on value of the input
variable, x
 Characteristic of while loops
 # of iterations unknown a priori

 If x ≤ 1 loop instructions never
execute

 Note the data I/O blocks
 Typical – many algorithms

have inputs and outputs

K. Webb ENGR 112

32

while Loop – Example 1

 Consider a few different input,
x, values:

count x x x

0 5 16 0.8

1 2.5 8 -

2 1.25 4 -

3 0.625 2 -

4 - 1 -

5 - - -

K. Webb ENGR 112

33

while Loop – Example 2

 Next, consider an algorithm to
calculate x!, the factorial of x:
 Read in a number, x
 Compute the product of all

integers between 1 and x
 Initialize result, fact, to 1
 Multiply fact by x
 Decrement x by 1

 Use a while loop
 Multiply fact by x, then

decrement x while x > 1

K. Webb ENGR 112

34

while Loop – Example 2

 Consider a few different input,
x, values:

x fact x fact x fact

5 1 4 1 0 1

5 5 4 4 - -

4 20 3 12 - -

3 60 2 24 - -

2 120 1 24 - -

1 120 - - - -

K. Webb ENGR 112

35

while Loop – Example 2

 Let’s say we want to define our
factorial algorithm only for
integer arguments

 Add error checking to the
algorithm
 After reading in a value for x,

check if it is an integer
 If not, generate an error message

and exit
 Could also imagine rounding x,

generating a warning message
and continuing

K. Webb ENGR 112

for Loop36

K. Webb ENGR 112

37

for Loop

 We’ve seen that the number of while loop iterations is
not known ahead of time
 May depend on inputs, for example

 Sometimes we want a loop to execute an exact,
specified number of times

 A for loop
 Utilize a loop counter
 Increment (or decrement) the counter on each iteration
 Loop until the counter reaches a certain value

 Can be thought of as a while loop with the addition of a
loop counter
 But, a very distinct entity when implemented in code

K. Webb ENGR 112

38

for Loop

 Initialize the loop counter
 i, j, k are common, but name

does not matter

 Set the range for i
 Not necessary to define

variable istop

 Execute loop instructions, A
 Increment loop counter, i
 Repeat until loop counter

reaches its stopping value
 Continue on to B

K. Webb ENGR 112

39

for Loop

 for loops are counted loops
 Number of loop iterations is

known and is constant
 Here loop executes 10 times

 Stopping value not
necessarily hard-coded
 Could depend on an input or

vector size, etc.

K. Webb ENGR 112

40

for Loop

 Loop counter may start at
value other than 1

 Increment size may be a
value other than 1

 Loop counter may count
backwards

Iteration cntr Process

1 6 A

2 4 A

3 2 A

4 0 A

5 -2 A

6 -4 B

K. Webb ENGR 112

41

for Loop – Example 1

 Here, the loop counter, i, is used
to update a variable, x, on each
iteration

Iteration i x

1 1 1

2 2 4

3 3 9

4 4 16

5 5 25

 When loop terminates, and flow
proceeds to the next process
step, x = 25
 A scalar
 No record of previous values of x

K. Webb ENGR 112

42

for Loop – Example 2

 Now, modify the loop process to store
values of x as a vector
 Use loop counter to index the vector

i x(i) x

1 1 [1]

2 4 [1, 4]

3 9 [1, 4, 9]

4 16 [1, 4, 9, 16]

5 25 [1, 4, 9, 16, 25]

 When loop terminates,
x = [1, 4, 9, 16, 25]
 A vector
 x grows with each iteration

K. Webb ENGR 112

43

for Loop – Example 3

 The loop counter does not
need to be used within the
loop
 Used as a counter only

 Here, a random number is
generated and displayed
each of the 10 times through
the loop
 Counter, i, has nothing to do

with the values of the
random numbers displayed

K. Webb ENGR 112

44

for Loop – Example 4

 Have a vector of values, x
 Find the mean of those

values
 Sum all values in x
 A for loop
 # of iterations equal to the

length of x
 Loop counter indexes x

 Divide the sum by the
number of elements in x
 After exiting the loop

K. Webb ENGR 112

Nested Loops45

K. Webb ENGR 112

46

Nested Loops

 A loop repeats some process some number of times
 The repeated process can, itself, be a loop
 A nested loop

 Can have nested for loops or while loops
 Can nest for loops within while loops and vice versa

 One application of a nested for loop is to step
through every element in a matrix
 Loop counter variables used as matrix indices
 Outer loop steps through rows (or columns)
 Inner loop steps through columns (or rows)

K. Webb ENGR 112

47

Nested for Loop – Example

 Recall how we index the elements within a matrix:
 𝐴𝐴𝑖𝑖𝑖𝑖 is the element on the 𝑖𝑖𝑡𝑡𝑡 row and 𝑗𝑗𝑡𝑡𝑡 column of the matrix 𝐴𝐴
 Using MATLAB syntax: A(i,j)

 Consider a 3 × 2 matrix

𝐵𝐵 =
−2 1
0 8
7 −3

 To access every element in 𝐵𝐵:
 start on the first row and increment through all columns
 Increment to the second row and increment through all columns
 Continue through all rows
 Two nested for loops

K. Webb ENGR 112

48

Nested for Loop – Example

𝐵𝐵 =
−2 1
0 8
7 −3

 Generate a matrix 𝐶𝐶
whose entries are the
squares of all of the
elements in 𝐵𝐵
 Nested for loop
 Outer loop steps through

rows
 Counter is row index

 Inner loop steps through
columns
 Counter is column index

K. Webb ENGR 112

Pseudocode & Top-Down Design 49

K. Webb ENGR 112

50

Pseudocode

 Flowcharts provide a useful tool for designing
algorithms
 Allow for describing algorithmic structure
 Ultimately used for generation of code
 Details neglected in favor of concise structural and

functional description
 Pseudocode provides a similar tool

 One step closer to actual code
 Textual description of an algorithm
 Natural language mixed with language-specific syntax

K. Webb ENGR 112

51

Pseudocode – Example

 Consider an algorithm for
determining the maximum of a
vector of values

 Pseudocode might look like:
N = length of x

max_x = x(1)

for i = 2:N

if x(i) is greater than current
max_x, then set max_x = x(i)

end

 Note the for loop syntax
 We’ll cover this in the following

section of notes

K. Webb ENGR 112

52

Top-Down Design

 Flowcharts and pseudocode are useful tools for top-
down design
 A good approach to any complex engineering design (and

writing, as well)
 First, define the overall system or algorithm at the top level

(perhaps as a flowchart)
 Then, fill in the details of individual functional blocks

 Top-level flowchart identifies individual functional
blocks and shows how each fits into the algorithm
 Each functional block may comprise its own flow chart or

even multiple levels of flow charts
 Hierarchical design

K. Webb ENGR 112

53

Top-Down Design - Example

 Let’s say you have deflection data from FEM
analysis of a truss design
 Data stored in text files
 Deflection vs. location along truss

 Parametric study
 Three different component thicknesses
 Two different materials
 Six data sets

 Read in the data, calculate the max deflection and
plot the deflection vs. position

K. Webb ENGR 112

54

Top-Down Design - Example

Level 2:Level 1: Level 3:

	Section 4: �Algorithmic Thinking
	Algorithmic Thinking
	Algorithmic Thinking
	Algorithms
	Flowcharts
	Flow Charts
	Flowchart Blocks
	Flowchart – Example
	Flowchart – Example
	Flowchart – Example
	Common Flowchart Structures
	Common Flowchart Structures
	Conditional Statements
	Conditional Statements – if
	Conditional Statements – if … else
	Conditional Statements – if … else
	Logical or Relational Expressions
	Logical Expressions – Examples
	Conditional Statements – if … elseif … else
	if … elseif … else – Example
	if Statements – Other Configurations
	Loops
	Loops
	Loops
	while Loop
	while Loop
	while Loop
	while Loop – Infinite Loop
	Infinite Loops
	while Loop – Example 1
	while Loop – Example 1
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 2
	while Loop – Example 2
	for Loop
	for Loop
	for Loop
	for Loop
	for Loop
	for Loop – Example 1
	for Loop – Example 2
	for Loop – Example 3
	for Loop – Example 4
	Nested Loops
	Nested Loops
	Nested for Loop – Example
	Nested for Loop – Example
	Pseudocode & Top-Down Design
	Pseudocode
	Pseudocode – Example
	Top-Down Design
	Top-Down Design - Example
	Top-Down Design - Example

