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STRUCTURED 
PROGRAMMING IN MATLAB
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• if statements
• if…else statements
• Logical and relational operators
• switch…case statements

Conditional Statements2



K. Webb ENGR 112

3

The if Statement

 We’ve already seen the if structure
 If X is true, do Y, if not, don’t do Y
 In either case, then proceed to do Z

 In MATLAB:          
if condition

statements
end

 Statements are executed if condition is true
 Condition is a logical expression

 Either true (evaluates to 1) or false (evaluates to 0)
 Makes use of logical and relational operators

 May use a single line for a single statement:

if condition, statement, end
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Logical and Relational Operators

Operator Relationship or Logical Operation Example

== Equal to x == b

~= Not equal to k ~= 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

~ NOT– negates the logical value of an 
expression ~(b < 4*g)

& or && AND – both expressions must 
evaluate to true for result to be true (t > 0)&&(c == 5)

| or || OR – either expression must 
evaluate to true for result to be true (p > 1)||(m > 3)
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Short-Circuit Logical Operators

 Note that there are two AND and two OR operators 
available in MATLAB
 AND: &  or  &&
 OR: |  or  ||

 Can always use the single operators: &  and |

 The double operators are short-circuit operators
 Only evaluate the second expression if necessary –

faster
 Can only be used with scalar expressions
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The if…else Structure

 The if … else structure
 Perform one process if a condition 

is true
 Perform another if it is false

 In MATLAB:

if condition
statements1

else
statements2

end
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The if…elseif…else Structure

 In MATLAB:

if condition1
statements1

elseif condition2
statements2

else
statements3

end

 The if … elseif … else structure
 If a condition evaluates as false, check another condition
 May have an arbitrary number of elseif statements
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The if…else, if…elseif…else Structures

 Some examples:

 Note that && and || are used here, because 
expressions involve scalars
 The single logical operators, & and |, would work just 

as well
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The if…elseif Structure

 We can have an if statement 
without an else

 Similarly, an if…elseif
structure need not have an 
else

 In MATLAB:

if condition1
statements1

elseif condition2
statements2

end
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The switch Structure

 The switch structure evaluates a single test expression
 Branching determined by the value of the test expression

switch testexpression
case value1

statements1
case value2

statements2
otherwise

statements3
end

 An alternative to an if…elseif…else structure
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The switch Structure

 An example – set the value of variable B to different 
values depending on the value of variable A: 

 otherwise serves the same purpose as else
 If the test expression does not equal any of the specified 

cases, execute the commands in the otherwise block



K. Webb ENGR 112

12

The switch Structure

 In flowchart form, there is no direct translation for the switch 
structure
 We’d represent it using an if…elseif…else structure
 But, if there were, it might look something like this:

switch A
case 1

B = 2; 
case 2

B = 8; 
case 3

B = -5;
otherwise

B = 84;
end
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The switch Structure

 An alternative to an if…elseif…else structure
 Result is the same
 Code may be more readable
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while Loops14
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The while loop

 The while loop
 While X is true, do A
 Once X becomes false, proceed to B

 In MATLAB:          
while condition

statements

end

 Statements are executed as long 
as condition remains true

 Condition is a logical expression
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while Loop – Example 1 

 Consider the following while loop example
 Repeatedly increment x by 7 as long as x is less than or equal to 30
 Value of x is displayed on each iteration, due to lack of output-

suppressing semicolon

 x values displayed: 19, 26, 33
 x gets incremented beyond 30

 All loop code is executed as long as the condition was true at the 
start of the loop
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The break Statement

 Let’s say we don’t want x to increment beyond 30
 Add a conditional break statement to the loop

 break statement causes loop exit before executing all code
 Now, if (x+7)>30, the program will break out of the loop and 

continue with the next line of code
 x values displayed: 19, 26
 For nested loops, a break statement breaks out of the current 

loop level only
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while Loop – Example 1 

 The previous example could be simplified by modifying the 
while condition, and not using a break at all

 Now the result is the same as with the break statement
 x values displayed: 19, 26

 This is not always the case
 The break statement can be very useful
 May want to break based on a condition other than the loop condition

 break works with both while and for loops
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while Loop – Example 2 

 Next, let’s revisit the while loop 
examples from Section 4

 Use input.m to prompt for input
 Use display.m to return the result
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while Loop – Example 3 

 Here, we use a while loop to 
calculate the factorial value of a 
specified number
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while Loop – Example 3 

 Add error checking to ensure that x
is an integer

 One way to check if x is an integer:
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while Loop – Example 3 

 Another possible method for 
checking if x is an integer:
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Infinite Loops

 A loop that never terminates is an infinite loop
 Often, this unintentional

 Coding error
 Other times infinite loops are intentional

 E.g., microcontroller in a control system
 A while loop will never terminate if the while condition 

is always true
 By definition, 1 is always true:

while (1)
statements repeat infinitely

end
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while (1)

 The while (1) syntax can be used in conjunction with a 
break statement, e.g.:

 Useful for 
multiple break 
conditions

 Control over 
break point

 Could also 
modify the 
while condition
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The for Loop

 The for loop
 Loop instructions execute a specified 

number of times
 In MATLAB:          

for index = start:step:stop
statements

end

 Note the syntax – looks like a vector
definition
 Statements are executed once for each 

element in the vector
 However, index is actually a scalar

 Increments through the vector of values
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for Loop – Example 1

 Next, we’ll revisit the for loop 
examples from Section 4

 Loop iterates 5 times
 Value of scalar variable, x, reassigned 

on each iteration
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for Loop – Example 2

 Here, x is defined as a vector
 Loop still iterates 5 times

 Successive values appended to the 
end of x

 x grows with each iteration
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for Loop – Example 3

 In this case the loop counter is not 
used at all within the loop

 Random number generated on each 
of 10 iterations
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Nested Loop – Example 1 

 Recall the nested for loop example 
from Section 4

 Generate a matrix 𝐶𝐶 whose entries 
are the squares of the elements in 𝐵𝐵
 Nested for loop
 Outer loop steps through rows
 Counter is row index

 Inner loop steps through columns
 Counter is column index
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Nested Loop – Example 1 
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Nested for Loop – Example 2

 Evaluate a function of two variables:

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

over a range of    −2 ≤ 𝑥𝑥 ≤ 2 and  −2 ≤ 𝑦𝑦 ≤ 2

 A surface in three-
dimensional space

 In Section 7, we’ll learn how 
to generate such a plot
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Nested for Loop – Example 2

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

 Evaluate the function over a range of 𝑥𝑥 and 𝑦𝑦

 First, define x and y 
vectors 

 Use a nested for 
loop to step through 
all points in this 
range of the x-y 
plane
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The MATLAB Debugger35
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Debugging

 You’ve probably already realized that it’s not uncommon for your 
code to have errors
 Computer code errors referred to as bugs

 Three main categories of errors
 Syntax errors prevent your code from running and generate a MATLAB 

error message
 Runtime errors – not syntactically incorrect, but generate an error upon 

execution – e.g., indexing beyond matrix dimensions 
 Algorithmic errors don’t prevent your code from executing, but do 

produce an unintended result

 Syntax and runtime errors are usually more easily fixed than 
algorithmic errors

 Debugging – the process of identifying and fixing errors is an 
important skill to develop
 MATLAB has a built-in debugger to facilitate this process
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Debugging

 Identifying and fixing errors is difficult because: 
 Programs run seemingly instantaneously
 Incorrect output results, but can’t see the intermediate 

steps that produced that output

 Basic debugging principles: 
 Slow code execution down – allow for stepping through 

line-by-line
 Provide visibility into the code execution – allow for 

monitoring of intermediate steps and variable values
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MATLAB Debugger – Breakpoints 

 Breakpoint – specification of a line of code at which 
MATLAB should pause execution

 Set by clicking on the dash to the left of a line of code in 
an m-file
 MATLAB will execute the m-file up to this line, then pause

 Clicking here sets a 
breakpoint

 Indicated by red 
circle
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MATLAB Debugger – Breakpoints 

 Click Run to begin execution
 Execution halts at the 

breakpoint 
 Before executing that line

 Command window prompt 
changes to K>>
 Can now interactively enter 

commands

 Toolbar buttons change 
from RUN to DEBUG
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MATLAB Debugger – Breakpoints 

 Click Step to execute the 
current line of code

 Green arrow indicator 
advances to the next line

 Variable, m, defined on 
previous line (line 16) is 
now available in the 
workspace
 Can be displayed in the 

command window
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Debugger – Example 

 Recall a previous example of an algorithm to square every 
element in a matrix

 Let’s say we run our m-file and get the following result:

 Resulting matrix is transposed
 Use the debugger to figure out why
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Debugger – Example 

 Set a breakpoint in the 
innermost for loop

 Click Run, code executes 
through the first iteration 
of the inner for loop

 Workspace shows i=1
and j=1

 Display B(i,j) and 
C(i,j) in the command 
window
 Both are as expected
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Debugger – Example 

 Click Continue, code 
executes until it hits the 
breakpoint again
 One more iteration of 

inner for loop
 Now, i=1 and j=2

 First row, second column
 B(i,j) = 2, as 

expected  
 But, C(i,j) = 81

 Should be 4
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Debugger – Example 

 We see that C(1,2) is being set to B(2,1)^2
 This leads us to an error on line 21 of the code
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Sections

 Define sections within an m-file
 Execute isolated blocks of code
 Starts with a double comment
 Ends at the start of the next 

section
 Useful for debugging, particularly 

if running the entire m-file is 
time-consuming

 To run a section:
 Place cursor in section and type 

Ctrl+Enter
 Click the Run Section button
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Preallocation

 Note the red line to the right of line 14 and the red squiggle 
under x in the following for loop:

 Mouse over the line or the squiggle to see the following 
warning:

 The size of x grows with each iteration of the loop
 Inefficient - slow
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Preallocation

 When you assign a variable, MATLAB must store it 
in memory
 Amount of memory allocated for storage depends on 

the size of the array
 If the variable grows it must be copied to a new, larger 

block of available memory – slow

 If the ultimate size of a variable is known ahead of 
time, we can preallocate memory for it
 Assign a full-sized array of all zeros
 Overwrite elements on each iteration
 Array size remains constant
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Preallocation – Example 

 A nested for loop stepping 
through an 𝑁𝑁 × 𝑁𝑁 matrix
 Here N = 100

 Time the loop with and 
without preallocation 
 Use tic … toc

 Preallocation speeds up 
the loop up significantly
 But …
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Preallocation – Example 

 An accurate comparison 
must account for the cost 
of preallocation
 Start the timer before 

preallocating

 Still significantly faster, 
even accounting for 
preallocation
 Note that times vary from 

run to run
 But …
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Preallocation – Example 

 6 msec vs. 9 msec? So what? 
 Difference is imperceptible

 Now, increase N to 5e3
 25e6 elements in A!
 A significant, and very 

noticeable, difference
 Preallocation is always a 

good practice
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