
ENGR 112 – Introduction to Engineering Computing

SECTION 5:
STRUCTURED
PROGRAMMING IN MATLAB

K. Webb ENGR 112

• if statements
• if…else statements
• Logical and relational operators
• switch…case statements

Conditional Statements2

K. Webb ENGR 112

3

The if Statement

 We’ve already seen the if structure
 If X is true, do Y, if not, don’t do Y
 In either case, then proceed to do Z

 In MATLAB:
if condition

statements
end

 Statements are executed if condition is true
 Condition is a logical expression

 Either true (evaluates to 1) or false (evaluates to 0)
 Makes use of logical and relational operators

 May use a single line for a single statement:

if condition, statement, end

K. Webb ENGR 112

4

Logical and Relational Operators

Operator Relationship or Logical Operation Example

== Equal to x == b

~= Not equal to k ~= 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

~ NOT– negates the logical value of an
expression ~(b < 4*g)

& or && AND – both expressions must
evaluate to true for result to be true (t > 0)&&(c == 5)

| or || OR – either expression must
evaluate to true for result to be true (p > 1)||(m > 3)

K. Webb ENGR 112

5

Short-Circuit Logical Operators

 Note that there are two AND and two OR operators
available in MATLAB
 AND: & or &&
 OR: | or ||

 Can always use the single operators: & and |

 The double operators are short-circuit operators
 Only evaluate the second expression if necessary –

faster
 Can only be used with scalar expressions

K. Webb ENGR 112

6

The if…else Structure

 The if … else structure
 Perform one process if a condition

is true
 Perform another if it is false

 In MATLAB:

if condition
statements1

else
statements2

end

K. Webb ENGR 112

7

The if…elseif…else Structure

 In MATLAB:

if condition1
statements1

elseif condition2
statements2

else
statements3

end

 The if … elseif … else structure
 If a condition evaluates as false, check another condition
 May have an arbitrary number of elseif statements

K. Webb ENGR 112

8

The if…else, if…elseif…else Structures

 Some examples:

 Note that && and || are used here, because
expressions involve scalars
 The single logical operators, & and |, would work just

as well

K. Webb ENGR 112

9

The if…elseif Structure

 We can have an if statement
without an else

 Similarly, an if…elseif
structure need not have an
else

 In MATLAB:

if condition1
statements1

elseif condition2
statements2

end

K. Webb ENGR 112

10

The switch Structure

 The switch structure evaluates a single test expression
 Branching determined by the value of the test expression

switch testexpression
case value1

statements1
case value2

statements2
otherwise

statements3
end

 An alternative to an if…elseif…else structure

K. Webb ENGR 112

11

The switch Structure

 An example – set the value of variable B to different
values depending on the value of variable A:

 otherwise serves the same purpose as else
 If the test expression does not equal any of the specified

cases, execute the commands in the otherwise block

K. Webb ENGR 112

12

The switch Structure

 In flowchart form, there is no direct translation for the switch
structure
 We’d represent it using an if…elseif…else structure
 But, if there were, it might look something like this:

switch A
case 1

B = 2;
case 2

B = 8;
case 3

B = -5;
otherwise

B = 84;
end

K. Webb ENGR 112

13

The switch Structure

 An alternative to an if…elseif…else structure
 Result is the same
 Code may be more readable

K. Webb ENGR 112

while Loops14

K. Webb ENGR 112

15

The while loop

 The while loop
 While X is true, do A
 Once X becomes false, proceed to B

 In MATLAB:
while condition

statements

end

 Statements are executed as long
as condition remains true

 Condition is a logical expression

K. Webb ENGR 112

16

while Loop – Example 1

 Consider the following while loop example
 Repeatedly increment x by 7 as long as x is less than or equal to 30
 Value of x is displayed on each iteration, due to lack of output-

suppressing semicolon

 x values displayed: 19, 26, 33
 x gets incremented beyond 30

 All loop code is executed as long as the condition was true at the
start of the loop

K. Webb ENGR 112

17

The break Statement

 Let’s say we don’t want x to increment beyond 30
 Add a conditional break statement to the loop

 break statement causes loop exit before executing all code
 Now, if (x+7)>30, the program will break out of the loop and

continue with the next line of code
 x values displayed: 19, 26
 For nested loops, a break statement breaks out of the current

loop level only

K. Webb ENGR 112

18

while Loop – Example 1

 The previous example could be simplified by modifying the
while condition, and not using a break at all

 Now the result is the same as with the break statement
 x values displayed: 19, 26

 This is not always the case
 The break statement can be very useful
 May want to break based on a condition other than the loop condition

 break works with both while and for loops

K. Webb ENGR 112

19

while Loop – Example 2

 Next, let’s revisit the while loop
examples from Section 4

 Use input.m to prompt for input
 Use display.m to return the result

K. Webb ENGR 112

20

while Loop – Example 3

 Here, we use a while loop to
calculate the factorial value of a
specified number

K. Webb ENGR 112

21

while Loop – Example 3

 Add error checking to ensure that x
is an integer

 One way to check if x is an integer:

K. Webb ENGR 112

22

while Loop – Example 3

 Another possible method for
checking if x is an integer:

K. Webb ENGR 112

23

Infinite Loops

 A loop that never terminates is an infinite loop
 Often, this unintentional

 Coding error
 Other times infinite loops are intentional

 E.g., microcontroller in a control system
 A while loop will never terminate if the while condition

is always true
 By definition, 1 is always true:

while (1)
statements repeat infinitely

end

K. Webb ENGR 112

24

while (1)

 The while (1) syntax can be used in conjunction with a
break statement, e.g.:

 Useful for
multiple break
conditions

 Control over
break point

 Could also
modify the
while condition

K. Webb ENGR 112

for Loops25

K. Webb ENGR 112

26

The for Loop

 The for loop
 Loop instructions execute a specified

number of times
 In MATLAB:

for index = start:step:stop
statements

end

 Note the syntax – looks like a vector
definition
 Statements are executed once for each

element in the vector
 However, index is actually a scalar

 Increments through the vector of values

K. Webb ENGR 112

27

for Loop – Example 1

 Next, we’ll revisit the for loop
examples from Section 4

 Loop iterates 5 times
 Value of scalar variable, x, reassigned

on each iteration

K. Webb ENGR 112

28

for Loop – Example 2

 Here, x is defined as a vector
 Loop still iterates 5 times

 Successive values appended to the
end of x

 x grows with each iteration

K. Webb ENGR 112

29

for Loop – Example 3

 In this case the loop counter is not
used at all within the loop

 Random number generated on each
of 10 iterations

K. Webb ENGR 112

Nested Loops30

K. Webb ENGR 112

31

Nested Loop – Example 1

 Recall the nested for loop example
from Section 4

 Generate a matrix 𝐶𝐶 whose entries
are the squares of the elements in 𝐵𝐵
 Nested for loop
 Outer loop steps through rows
 Counter is row index

 Inner loop steps through columns
 Counter is column index

K. Webb ENGR 112

32

Nested Loop – Example 1

K. Webb ENGR 112

33

Nested for Loop – Example 2

 Evaluate a function of two variables:

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

over a range of −2 ≤ 𝑥𝑥 ≤ 2 and −2 ≤ 𝑦𝑦 ≤ 2

 A surface in three-
dimensional space

 In Section 7, we’ll learn how
to generate such a plot

K. Webb ENGR 112

34

Nested for Loop – Example 2

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

 Evaluate the function over a range of 𝑥𝑥 and 𝑦𝑦

 First, define x and y
vectors

 Use a nested for
loop to step through
all points in this
range of the x-y
plane

K. Webb ENGR 112

The MATLAB Debugger35

K. Webb ENGR 112

36

Debugging

 You’ve probably already realized that it’s not uncommon for your
code to have errors
 Computer code errors referred to as bugs

 Three main categories of errors
 Syntax errors prevent your code from running and generate a MATLAB

error message
 Runtime errors – not syntactically incorrect, but generate an error upon

execution – e.g., indexing beyond matrix dimensions
 Algorithmic errors don’t prevent your code from executing, but do

produce an unintended result

 Syntax and runtime errors are usually more easily fixed than
algorithmic errors

 Debugging – the process of identifying and fixing errors is an
important skill to develop
 MATLAB has a built-in debugger to facilitate this process

K. Webb ENGR 112

37

Debugging

 Identifying and fixing errors is difficult because:
 Programs run seemingly instantaneously
 Incorrect output results, but can’t see the intermediate

steps that produced that output

 Basic debugging principles:
 Slow code execution down – allow for stepping through

line-by-line
 Provide visibility into the code execution – allow for

monitoring of intermediate steps and variable values

K. Webb ENGR 112

38

MATLAB Debugger – Breakpoints

 Breakpoint – specification of a line of code at which
MATLAB should pause execution

 Set by clicking on the dash to the left of a line of code in
an m-file
 MATLAB will execute the m-file up to this line, then pause

 Clicking here sets a
breakpoint

 Indicated by red
circle

K. Webb ENGR 112

39

MATLAB Debugger – Breakpoints

 Click Run to begin execution
 Execution halts at the

breakpoint
 Before executing that line

 Command window prompt
changes to K>>
 Can now interactively enter

commands

 Toolbar buttons change
from RUN to DEBUG

K. Webb ENGR 112

40

MATLAB Debugger – Breakpoints

 Click Step to execute the
current line of code

 Green arrow indicator
advances to the next line

 Variable, m, defined on
previous line (line 16) is
now available in the
workspace
 Can be displayed in the

command window

K. Webb ENGR 112

41

Debugger – Example

 Recall a previous example of an algorithm to square every
element in a matrix

 Let’s say we run our m-file and get the following result:

 Resulting matrix is transposed
 Use the debugger to figure out why

K. Webb ENGR 112

42

Debugger – Example

 Set a breakpoint in the
innermost for loop

 Click Run, code executes
through the first iteration
of the inner for loop

 Workspace shows i=1
and j=1

 Display B(i,j) and
C(i,j) in the command
window
 Both are as expected

K. Webb ENGR 112

43

Debugger – Example

 Click Continue, code
executes until it hits the
breakpoint again
 One more iteration of

inner for loop
 Now, i=1 and j=2

 First row, second column
 B(i,j) = 2, as

expected
 But, C(i,j) = 81

 Should be 4

K. Webb ENGR 112

44

Debugger – Example

 We see that C(1,2) is being set to B(2,1)^2
 This leads us to an error on line 21 of the code

K. Webb ENGR 112

Miscellany 45

K. Webb ENGR 112

46

Sections

 Define sections within an m-file
 Execute isolated blocks of code
 Starts with a double comment
 Ends at the start of the next

section
 Useful for debugging, particularly

if running the entire m-file is
time-consuming

 To run a section:
 Place cursor in section and type

Ctrl+Enter
 Click the Run Section button

K. Webb ENGR 112

47

Preallocation

 Note the red line to the right of line 14 and the red squiggle
under x in the following for loop:

 Mouse over the line or the squiggle to see the following
warning:

 The size of x grows with each iteration of the loop
 Inefficient - slow

K. Webb ENGR 112

48

Preallocation

 When you assign a variable, MATLAB must store it
in memory
 Amount of memory allocated for storage depends on

the size of the array
 If the variable grows it must be copied to a new, larger

block of available memory – slow

 If the ultimate size of a variable is known ahead of
time, we can preallocate memory for it
 Assign a full-sized array of all zeros
 Overwrite elements on each iteration
 Array size remains constant

K. Webb ENGR 112

49

Preallocation – Example

 A nested for loop stepping
through an 𝑁𝑁 × 𝑁𝑁 matrix
 Here N = 100

 Time the loop with and
without preallocation
 Use tic … toc

 Preallocation speeds up
the loop up significantly
 But …

K. Webb ENGR 112

50

Preallocation – Example

 An accurate comparison
must account for the cost
of preallocation
 Start the timer before

preallocating

 Still significantly faster,
even accounting for
preallocation
 Note that times vary from

run to run
 But …

K. Webb ENGR 112

51

Preallocation – Example

 6 msec vs. 9 msec? So what?
 Difference is imperceptible

 Now, increase N to 5e3
 25e6 elements in A!
 A significant, and very

noticeable, difference
 Preallocation is always a

good practice

	Section 5: �Structured Programming in MATLAB
	Conditional Statements
	The if Statement
	Logical and Relational Operators
	Short-Circuit Logical Operators
	The if…else Structure
	The if…elseif…else Structure
	The if…else, if…elseif…else Structures
	The if…elseif Structure
	The switch Structure
	The switch Structure
	The switch Structure
	The switch Structure
	while Loops
	The while loop
	while Loop – Example 1
	The break Statement
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 3
	while Loop – Example 3
	while Loop – Example 3
	Infinite Loops
	while (1)
	for Loops
	The for Loop
	for Loop – Example 1
	for Loop – Example 2
	for Loop – Example 3
	Nested Loops
	Nested Loop – Example 1
	Nested Loop – Example 1
	Nested for Loop – Example 2
	Nested for Loop – Example 2
	The MATLAB Debugger
	Debugging
	Debugging
	MATLAB Debugger – Breakpoints
	MATLAB Debugger – Breakpoints
	MATLAB Debugger – Breakpoints
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Miscellany
	Sections
	Preallocation
	Preallocation
	Preallocation – Example
	Preallocation – Example
	Preallocation – Example

