
ENGR 112 – Introduction to Engineering Computing

SECTION 5:
STRUCTURED
PROGRAMMING IN MATLAB

K. Webb ENGR 112

• if statements
• if…else statements
• Logical and relational operators
• switch…case statements

Conditional Statements2

K. Webb ENGR 112

3

The if Statement

 We’ve already seen the if structure
 If X is true, do Y, if not, don’t do Y
 In either case, then proceed to do Z

 In MATLAB:
if condition

statements
end

 Statements are executed if condition is true
 Condition is a logical expression

 Either true (evaluates to 1) or false (evaluates to 0)
 Makes use of logical and relational operators

 May use a single line for a single statement:

if condition, statement, end

K. Webb ENGR 112

4

Logical and Relational Operators

Operator Relationship or Logical Operation Example

== Equal to x == b

~= Not equal to k ~= 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

~ NOT– negates the logical value of an
expression ~(b < 4*g)

& or && AND – both expressions must
evaluate to true for result to be true (t > 0)&&(c == 5)

| or || OR – either expression must
evaluate to true for result to be true (p > 1)||(m > 3)

K. Webb ENGR 112

5

Short-Circuit Logical Operators

 Note that there are two AND and two OR operators
available in MATLAB
 AND: & or &&
 OR: | or ||

 Can always use the single operators: & and |

 The double operators are short-circuit operators
 Only evaluate the second expression if necessary –

faster
 Can only be used with scalar expressions

K. Webb ENGR 112

6

The if…else Structure

 The if … else structure
 Perform one process if a condition

is true
 Perform another if it is false

 In MATLAB:

if condition
statements1

else
statements2

end

K. Webb ENGR 112

7

The if…elseif…else Structure

 In MATLAB:

if condition1
statements1

elseif condition2
statements2

else
statements3

end

 The if … elseif … else structure
 If a condition evaluates as false, check another condition
 May have an arbitrary number of elseif statements

K. Webb ENGR 112

8

The if…else, if…elseif…else Structures

 Some examples:

 Note that && and || are used here, because
expressions involve scalars
 The single logical operators, & and |, would work just

as well

K. Webb ENGR 112

9

The if…elseif Structure

 We can have an if statement
without an else

 Similarly, an if…elseif
structure need not have an
else

 In MATLAB:

if condition1
statements1

elseif condition2
statements2

end

K. Webb ENGR 112

10

The switch Structure

 The switch structure evaluates a single test expression
 Branching determined by the value of the test expression

switch testexpression
case value1

statements1
case value2

statements2
otherwise

statements3
end

 An alternative to an if…elseif…else structure

K. Webb ENGR 112

11

The switch Structure

 An example – set the value of variable B to different
values depending on the value of variable A:

 otherwise serves the same purpose as else
 If the test expression does not equal any of the specified

cases, execute the commands in the otherwise block

K. Webb ENGR 112

12

The switch Structure

 In flowchart form, there is no direct translation for the switch
structure
 We’d represent it using an if…elseif…else structure
 But, if there were, it might look something like this:

switch A
case 1

B = 2;
case 2

B = 8;
case 3

B = -5;
otherwise

B = 84;
end

K. Webb ENGR 112

13

The switch Structure

 An alternative to an if…elseif…else structure
 Result is the same
 Code may be more readable

K. Webb ENGR 112

while Loops14

K. Webb ENGR 112

15

The while loop

 The while loop
 While X is true, do A
 Once X becomes false, proceed to B

 In MATLAB:
while condition

statements

end

 Statements are executed as long
as condition remains true

 Condition is a logical expression

K. Webb ENGR 112

16

while Loop – Example 1

 Consider the following while loop example
 Repeatedly increment x by 7 as long as x is less than or equal to 30
 Value of x is displayed on each iteration, due to lack of output-

suppressing semicolon

 x values displayed: 19, 26, 33
 x gets incremented beyond 30

 All loop code is executed as long as the condition was true at the
start of the loop

K. Webb ENGR 112

17

The break Statement

 Let’s say we don’t want x to increment beyond 30
 Add a conditional break statement to the loop

 break statement causes loop exit before executing all code
 Now, if (x+7)>30, the program will break out of the loop and

continue with the next line of code
 x values displayed: 19, 26
 For nested loops, a break statement breaks out of the current

loop level only

K. Webb ENGR 112

18

while Loop – Example 1

 The previous example could be simplified by modifying the
while condition, and not using a break at all

 Now the result is the same as with the break statement
 x values displayed: 19, 26

 This is not always the case
 The break statement can be very useful
 May want to break based on a condition other than the loop condition

 break works with both while and for loops

K. Webb ENGR 112

19

while Loop – Example 2

 Next, let’s revisit the while loop
examples from Section 4

 Use input.m to prompt for input
 Use display.m to return the result

K. Webb ENGR 112

20

while Loop – Example 3

 Here, we use a while loop to
calculate the factorial value of a
specified number

K. Webb ENGR 112

21

while Loop – Example 3

 Add error checking to ensure that x
is an integer

 One way to check if x is an integer:

K. Webb ENGR 112

22

while Loop – Example 3

 Another possible method for
checking if x is an integer:

K. Webb ENGR 112

23

Infinite Loops

 A loop that never terminates is an infinite loop
 Often, this unintentional

 Coding error
 Other times infinite loops are intentional

 E.g., microcontroller in a control system
 A while loop will never terminate if the while condition

is always true
 By definition, 1 is always true:

while (1)
statements repeat infinitely

end

K. Webb ENGR 112

24

while (1)

 The while (1) syntax can be used in conjunction with a
break statement, e.g.:

 Useful for
multiple break
conditions

 Control over
break point

 Could also
modify the
while condition

K. Webb ENGR 112

for Loops25

K. Webb ENGR 112

26

The for Loop

 The for loop
 Loop instructions execute a specified

number of times
 In MATLAB:

for index = start:step:stop
statements

end

 Note the syntax – looks like a vector
definition
 Statements are executed once for each

element in the vector
 However, index is actually a scalar

 Increments through the vector of values

K. Webb ENGR 112

27

for Loop – Example 1

 Next, we’ll revisit the for loop
examples from Section 4

 Loop iterates 5 times
 Value of scalar variable, x, reassigned

on each iteration

K. Webb ENGR 112

28

for Loop – Example 2

 Here, x is defined as a vector
 Loop still iterates 5 times

 Successive values appended to the
end of x

 x grows with each iteration

K. Webb ENGR 112

29

for Loop – Example 3

 In this case the loop counter is not
used at all within the loop

 Random number generated on each
of 10 iterations

K. Webb ENGR 112

Nested Loops30

K. Webb ENGR 112

31

Nested Loop – Example 1

 Recall the nested for loop example
from Section 4

 Generate a matrix 𝐶𝐶 whose entries
are the squares of the elements in 𝐵𝐵
 Nested for loop
 Outer loop steps through rows
 Counter is row index

 Inner loop steps through columns
 Counter is column index

K. Webb ENGR 112

32

Nested Loop – Example 1

K. Webb ENGR 112

33

Nested for Loop – Example 2

 Evaluate a function of two variables:

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

over a range of −2 ≤ 𝑥𝑥 ≤ 2 and −2 ≤ 𝑦𝑦 ≤ 2

 A surface in three-
dimensional space

 In Section 7, we’ll learn how
to generate such a plot

K. Webb ENGR 112

34

Nested for Loop – Example 2

𝑧𝑧 = 𝑥𝑥 ⋅ 𝑒𝑒−𝑥𝑥2−𝑦𝑦2

 Evaluate the function over a range of 𝑥𝑥 and 𝑦𝑦

 First, define x and y
vectors

 Use a nested for
loop to step through
all points in this
range of the x-y
plane

K. Webb ENGR 112

The MATLAB Debugger35

K. Webb ENGR 112

36

Debugging

 You’ve probably already realized that it’s not uncommon for your
code to have errors
 Computer code errors referred to as bugs

 Three main categories of errors
 Syntax errors prevent your code from running and generate a MATLAB

error message
 Runtime errors – not syntactically incorrect, but generate an error upon

execution – e.g., indexing beyond matrix dimensions
 Algorithmic errors don’t prevent your code from executing, but do

produce an unintended result

 Syntax and runtime errors are usually more easily fixed than
algorithmic errors

 Debugging – the process of identifying and fixing errors is an
important skill to develop
 MATLAB has a built-in debugger to facilitate this process

K. Webb ENGR 112

37

Debugging

 Identifying and fixing errors is difficult because:
 Programs run seemingly instantaneously
 Incorrect output results, but can’t see the intermediate

steps that produced that output

 Basic debugging principles:
 Slow code execution down – allow for stepping through

line-by-line
 Provide visibility into the code execution – allow for

monitoring of intermediate steps and variable values

K. Webb ENGR 112

38

MATLAB Debugger – Breakpoints

 Breakpoint – specification of a line of code at which
MATLAB should pause execution

 Set by clicking on the dash to the left of a line of code in
an m-file
 MATLAB will execute the m-file up to this line, then pause

 Clicking here sets a
breakpoint

 Indicated by red
circle

K. Webb ENGR 112

39

MATLAB Debugger – Breakpoints

 Click Run to begin execution
 Execution halts at the

breakpoint
 Before executing that line

 Command window prompt
changes to K>>
 Can now interactively enter

commands

 Toolbar buttons change
from RUN to DEBUG

K. Webb ENGR 112

40

MATLAB Debugger – Breakpoints

 Click Step to execute the
current line of code

 Green arrow indicator
advances to the next line

 Variable, m, defined on
previous line (line 16) is
now available in the
workspace
 Can be displayed in the

command window

K. Webb ENGR 112

41

Debugger – Example

 Recall a previous example of an algorithm to square every
element in a matrix

 Let’s say we run our m-file and get the following result:

 Resulting matrix is transposed
 Use the debugger to figure out why

K. Webb ENGR 112

42

Debugger – Example

 Set a breakpoint in the
innermost for loop

 Click Run, code executes
through the first iteration
of the inner for loop

 Workspace shows i=1
and j=1

 Display B(i,j) and
C(i,j) in the command
window
 Both are as expected

K. Webb ENGR 112

43

Debugger – Example

 Click Continue, code
executes until it hits the
breakpoint again
 One more iteration of

inner for loop
 Now, i=1 and j=2

 First row, second column
 B(i,j) = 2, as

expected
 But, C(i,j) = 81

 Should be 4

K. Webb ENGR 112

44

Debugger – Example

 We see that C(1,2) is being set to B(2,1)^2
 This leads us to an error on line 21 of the code

K. Webb ENGR 112

Miscellany 45

K. Webb ENGR 112

46

Sections

 Define sections within an m-file
 Execute isolated blocks of code
 Starts with a double comment
 Ends at the start of the next

section
 Useful for debugging, particularly

if running the entire m-file is
time-consuming

 To run a section:
 Place cursor in section and type

Ctrl+Enter
 Click the Run Section button

K. Webb ENGR 112

47

Preallocation

 Note the red line to the right of line 14 and the red squiggle
under x in the following for loop:

 Mouse over the line or the squiggle to see the following
warning:

 The size of x grows with each iteration of the loop
 Inefficient - slow

K. Webb ENGR 112

48

Preallocation

 When you assign a variable, MATLAB must store it
in memory
 Amount of memory allocated for storage depends on

the size of the array
 If the variable grows it must be copied to a new, larger

block of available memory – slow

 If the ultimate size of a variable is known ahead of
time, we can preallocate memory for it
 Assign a full-sized array of all zeros
 Overwrite elements on each iteration
 Array size remains constant

K. Webb ENGR 112

49

Preallocation – Example

 A nested for loop stepping
through an 𝑁𝑁 × 𝑁𝑁 matrix
 Here N = 100

 Time the loop with and
without preallocation
 Use tic … toc

 Preallocation speeds up
the loop up significantly
 But …

K. Webb ENGR 112

50

Preallocation – Example

 An accurate comparison
must account for the cost
of preallocation
 Start the timer before

preallocating

 Still significantly faster,
even accounting for
preallocation
 Note that times vary from

run to run
 But …

K. Webb ENGR 112

51

Preallocation – Example

 6 msec vs. 9 msec? So what?
 Difference is imperceptible

 Now, increase N to 5e3
 25e6 elements in A!
 A significant, and very

noticeable, difference
 Preallocation is always a

good practice

	Section 5: �Structured Programming in MATLAB
	Conditional Statements
	The if Statement
	Logical and Relational Operators
	Short-Circuit Logical Operators
	The if…else Structure
	The if…elseif…else Structure
	The if…else, if…elseif…else Structures
	The if…elseif Structure
	The switch Structure
	The switch Structure
	The switch Structure
	The switch Structure
	while Loops
	The while loop
	while Loop – Example 1
	The break Statement
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 3
	while Loop – Example 3
	while Loop – Example 3
	Infinite Loops
	while (1)
	for Loops
	The for Loop
	for Loop – Example 1
	for Loop – Example 2
	for Loop – Example 3
	Nested Loops
	Nested Loop – Example 1
	Nested Loop – Example 1
	Nested for Loop – Example 2
	Nested for Loop – Example 2
	The MATLAB Debugger
	Debugging
	Debugging
	MATLAB Debugger – Breakpoints
	MATLAB Debugger – Breakpoints
	MATLAB Debugger – Breakpoints
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Debugger – Example
	Miscellany
	Sections
	Preallocation
	Preallocation
	Preallocation – Example
	Preallocation – Example
	Preallocation – Example

