
ENGR 112 – Introduction to Engineering Computing

SECTION 6:
USER-DEFINED FUNCTIONS

K. Webb ENGR 112

2

User-Defined Functions

 By now you’re accustomed to using built-in MATLAB
functions in your m-files

 Consider, for example, mean.m
 Commonly-used function
 Need not write code each time an average is calculated
 An m-file – written using other MATLAB functions

 Functions allow reuse of commonly-used blocks of code
 Executable from any m-file or the command line

 Can create user-defined functions as well
 Just like built-in functions – similar syntax, structure,

reusability, etc.

K. Webb ENGR 112

3

User-Defined Functions

 Functions are a specific type of m-file
 Function m-files start with the word function
 Can accept input arguments and return outputs
 Useful for tasks that must be performed repeatedly

 Functions can be called from the command line, from
within m-files, or from within other functions

 Variables within a function are local in scope
 Internal variables – not outputs – are not saved to the

workspace after execution
 Workspace variables not available inside a function, unless

passed in as input arguments

K. Webb ENGR 112

4

Anatomy of a Function

Input
Argument(s)

Function
NameOutput(s)

Function m-file must
begin with the word
‘function’

Help comments –
displayed when help is
requested at the
command line:

MATLAB commands that
define the function

Terminate the function
with the word ‘end’

Always comment your code

K. Webb ENGR 112

5

Commenting Functions

 Any function – built-in or user-defined – is accessible by
the command-line help system
 Type: help functionName

 Help text that appears is the first comment block
following the function declaration in the function m-file
 Make this comment block particularly descriptive and

detailed

 Comments are particularly important for functions
 Often reused long after they are written
 Often used by other users

K. Webb ENGR 112

6

M-Files vs. Functions

M-Files Functions

Scope of variables Global
Facilitates debugging

Local
Use debugger to access
internal function variables

Inputs/Outputs No
All variables in memory at the
time of execution are
available. All variables remain
in the workspace following
execution.

Yes

Reuse Yes Yes

Help contents No Yes

 Most code you write in MATLAB can be written as
regular (non-function) m-files

 Functions are most useful for frequently-repeated
operations

K. Webb ENGR 112

7

The MATLAB Path

 All functions outside of the PWD – user-defined or
built-in – must be in the path to be accessed

 Add a directory to
your path for
frequently-used
functions, e.g.,
C:\Users\Documents\MATLAB\

K. Webb ENGR 112

8

Function Inputs and Outputs

function y = func(x)

 Here, x is the input passed to the function func
 Passed to the function from the calling m-file
 Not defined within the function

 y is the output returned from the function
 Defined within the function
 Passed out to the calling m-file
 The only function variable available upon return from the

function call

K. Webb ENGR 112

9

Multiple Inputs and Outputs

function [y1,y2] = func(x1,x2,x3)

 Functions may have more than one input and/or
output

 Here, three inputs: x1, x2, and x3
and two outputs: y1 and y2

 Inputs separated by commas
 Outputs enclosed in square brackets and separated by

commas

K. Webb ENGR 112

10

Function – Example

 Consider a function that converts a distance in kilometers to a
distance in both miles and feet
 One input, two outputs

K. Webb ENGR 112

Optional Input Arguments11

K. Webb ENGR 112

12

Optional Input Arguments

 Functions often have optional input arguments
 Variable number of input arguments may be required when

calling the function
 Optional inputs may have default values
 Function behavior may differ depending on what inputs are

specified

 For example, MATLAB’s mean.m function:

y = mean(x)

 Optionally, specify the dimension along which to calculate
mean values:

y = mean(x,dim)

K. Webb ENGR 112

13

Optional Input Arguments

 mean.m allows you to
specify the dimension
along which the mean is
calculated
 Default is dim = 1
 If dim is not specified, it

is set to 1 within the
function

 Calculate mean values of
columns

 Setting dim = 2
calculates mean values
of rows

K. Webb ENGR 112

14

Optional Input Arguments

 Just like built-in functions, user-defined functions
can also have optional inputs

 Code executed when function is called depends on
the number of input arguments

 nargin.m returns the number of input arguments
passed to a function
 Allows for checking how many input arguments were

specified
 Use conditional statements to control code branching
 If an input was not specified, set it to a default value

K. Webb ENGR 112

15

Optional Inputs – Example 1

 For example,
consider a function
designed to return a
vector of values
between xi and xf

 Third input
argument, N, the
number of elements
in the output vector,
is optional
 Default is N = 10

K. Webb ENGR 112

16

Optional Input Arguments

 Sometimes we want to allow for optional inputs in
the middle, not at the end, of the input list
 For example, maybe the second of three inputs is

optional (or the second and third inputs)
 nargin.m alone won’t work here
 Can’t differentiate between skipping the second of

three inputs or the third of three inputs
 nargin == 2 in both cases

 Instead of skipping the input altogether, pass an
empty set, [], in its place

K. Webb ENGR 112

17

Optional Inputs – Example 2

 Revisit the same vector-
generating function

 Now both the first
input, xi, and the third
input, N, are optional
 If xi is not specified it

defaults to xi = 0
 Single input, intended

to be xf, is assumed to
be xi, the first listed
input argument
 Must assign the single

input argument to xf

K. Webb ENGR 112

18

Error Checking Using nargin.m

 Can use nargin.m
to provide error
checking
 Ensure that the

correct number of
inputs were specified

 Use error.m to
terminate execution
and display an error
message

K. Webb ENGR 112

Sub-Functions19

K. Webb ENGR 112

20

Sub-Functions

 Functions are useful for blocks of code that get
called repeatedly
 We often have such blocks within functions themselves
 Can define additional functions in separate m-files
 Or, if the code is only useful within that specific

function, define a sub-function
 Sub-Functions

 A function defined within another function m-file
 Local scope: only available from within that function
 Organizes, simplifies overall function code

K. Webb ENGR 112

21

Sub-Functions – Example

 Here, two sub-
functions are defined
and called from within
the main function

Sub-function 1

Sub-function 2

Main function

K. Webb ENGR 112

Anonymous Functions22

K. Webb ENGR 112

23

Anonymous Functions

 It is often desirable to create a function without having to
create a separate function file for it

 Anonymous functions:
 Can be defined within an m-file or at the command line

 Function data type is function_handle
 A pointer to the function

 Can accept inputs, return outputs

 May contain only a single MATLAB expression
 Only one output

 Useful for passing functions to functions
 E.g. using quad.m (a built-in MATLAB function) to integrate a

mathematical function (a user-defined function)

K. Webb ENGR 112

24

Anonymous Functions - Syntax

fhandle = @(arglist) expression

Function name
 A variable of type
function_handle

 Pointer to the function

@ symbol
generates a handle
for the function

Function definition
 A single executable

MATLAB expression
 E.g. x.^2+3*y;

A list of input variables
 E.g. @(x,y);
 Note that outputs are not

explicitly defined

K. Webb ENGR 112

25

Anonymous Functions – Examples

 Simple function that returns
half of the input value

 May have multiple inputs
 First-order system response –

inputs: time constant, value of
time

 Inputs may be vectors
 Outputs may be vectors as

well

K. Webb ENGR 112

26

Passing Functions to Functions

 We often want to perform MATLAB functions on other
functions
 E.g. integration, roots finding, optimization, solution of

differential equations – these are function functions
 This is the real value of anonymous functions

 Define an anonymous function
 Pass the associated function

handle to the function as an
input

 Here, integrate the function, f,
from 0 to 10 using MATLAB’s
quad.m function

K. Webb ENGR 112

27

Function Function – Example

 Consider a function that
calculates the mean of a
mathematical function
evaluated at a vector of
independent variable
values

 Inputs:
 Function handle
 Vector of 𝑥𝑥 values

 Output:
 Mean value of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

K. Webb ENGR 112

Recursion28

K. Webb ENGR 112

29

Recursive Functions

 Recursion is a problem solving approach in which a
larger problem is solved by solving many smaller,
self-similar problems

 A recursive function is one that calls itself
 Each time it calls itself, it, again, calls itself

 Two components to a recursive function:
 A base case
 A single case that can be solved without recursion

 A general case
 A recursive relationship, ultimately leading to the base case

K. Webb ENGR 112

30

Recursion Example 1 – Factorial

 We have considered iterative algorithms for computing
𝑦𝑦 = 𝑛𝑛!
 for loop, while loop

 Factorial can also be computed using recursion
 It can be defined with a base case and a general case:

𝑛𝑛! = �1 𝑛𝑛 = 1
𝑛𝑛 ∗ 𝑛𝑛 − 1 ! 𝑛𝑛 > 1

 The general case leads back to the base case
 𝑛𝑛! defined in terms of 𝑛𝑛 − 1 !, which is, in turn, defined in terms

of 𝑛𝑛 − 2 !, and so on
 Ultimately, the base case, for 𝑛𝑛 = 1, is reached

K. Webb ENGR 112

31

Recursion Example 1 – Factorial

𝑛𝑛! = �1 𝑥𝑥 = 1
𝑥𝑥 ∗ 𝑥𝑥 − 1 ! 𝑥𝑥 > 1

 The general case is a recursive relationship, because it
defines the factorial function using the factorial function
 The function calls itself

 In MATLAB:

K. Webb ENGR 112

32

Recursion Example 1 – Factorial

 Consider, for example: 𝑦𝑦 = 4!
 fact.m recursively called four

times
 Fourth function call terminates first,

once the base case is reached
 Function calls terminate in reverse

order
 Function call doesn’t terminate until

all successive calls have terminated

K. Webb ENGR 112

33

Recursion Example 2 – Binary Search

 A common search algorithm is the binary search
 Similar to searching for a name in a phone book or a word in

a dictionary
 Look at the middle value to determine if the search item is

in the upper or lower half
 Look at the middle value of the half that contains the search

item to determine if it is in that half’s upper or lower half, …

 The search function gets called recursively, each time
on half of the previous set
 Search range shrinks by half on each function call
 Recursion continues until the middle value is the search

item – this is the required base case

K. Webb ENGR 112

34

Recursion Example 2 – Binary Search

 Recursive binary search – the basic algorithm:

 Find the index, 𝑖𝑖, of 𝑥𝑥 in the sorted list, 𝐴𝐴, in the range of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

1) Calculate the middle index of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ :

𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = floor
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

2

2) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 == 𝑥𝑥, then 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚, and we’re done

3) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 > 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 − 1

4) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 + 1: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

K. Webb ENGR 112

35

Recursion Example 2 – Binary Search

 Find the index of the 𝑥𝑥 = 9 in:

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 5 = 6
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥
 Start over for 𝐴𝐴 6: 10

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 8 = 12
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 > 𝑥𝑥
 Start over for 𝐴𝐴 6: 7

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 6 = 7
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥

 Start over for 𝐴𝐴 7

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 7 = 9
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 == 𝑥𝑥

 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 7

K. Webb ENGR 112

36

Recursion Example 2 – Binary Search

 Recursive binary
search algorithm in
MATLAB

 Base case for
A(imid) == x

 Function is called
recursively on
successively halved
ranges until base
case is reached

K. Webb ENGR 112

37

Recursion Example 2 – Binary Search

 A=[0,1,3,5,6,7,9,12,16,20]

 x=9

 ind = binsearch(A,x,1,10)
 ind = 7

	Section 6: �User-Defined Functions
	User-Defined Functions
	User-Defined Functions
	Anatomy of a Function
	Commenting Functions
	M-Files vs. Functions
	The MATLAB Path
	Function Inputs and Outputs
	Multiple Inputs and Outputs
	Function – Example
	Optional Input Arguments
	Optional Input Arguments
	Optional Input Arguments
	Optional Input Arguments
	Optional Inputs – Example 1
	Optional Input Arguments
	Optional Inputs – Example 2
	Error Checking Using nargin.m
	Sub-Functions
	Sub-Functions
	Sub-Functions – Example
	Anonymous Functions
	Anonymous Functions
	Anonymous Functions - Syntax
	Anonymous Functions – Examples
	Passing Functions to Functions
	Function Function – Example
	Recursion
	Recursive Functions
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search

