
ENGR 112 – Introduction to Engineering Computing

SECTION 6:
USER-DEFINED FUNCTIONS

K. Webb ENGR 112

2

User-Defined Functions

 By now you’re accustomed to using built-in MATLAB
functions in your m-files

 Consider, for example, mean.m
 Commonly-used function
 Need not write code each time an average is calculated
 An m-file – written using other MATLAB functions

 Functions allow reuse of commonly-used blocks of code
 Executable from any m-file or the command line

 Can create user-defined functions as well
 Just like built-in functions – similar syntax, structure,

reusability, etc.

K. Webb ENGR 112

3

User-Defined Functions

 Functions are a specific type of m-file
 Function m-files start with the word function
 Can accept input arguments and return outputs
 Useful for tasks that must be performed repeatedly

 Functions can be called from the command line, from
within m-files, or from within other functions

 Variables within a function are local in scope
 Internal variables – not outputs – are not saved to the

workspace after execution
 Workspace variables not available inside a function, unless

passed in as input arguments

K. Webb ENGR 112

4

Anatomy of a Function

Input
Argument(s)

Function
NameOutput(s)

Function m-file must
begin with the word
‘function’

Help comments –
displayed when help is
requested at the
command line:

MATLAB commands that
define the function

Terminate the function
with the word ‘end’

Always comment your code

K. Webb ENGR 112

5

Commenting Functions

 Any function – built-in or user-defined – is accessible by
the command-line help system
 Type: help functionName

 Help text that appears is the first comment block
following the function declaration in the function m-file
 Make this comment block particularly descriptive and

detailed

 Comments are particularly important for functions
 Often reused long after they are written
 Often used by other users

K. Webb ENGR 112

6

M-Files vs. Functions

M-Files Functions

Scope of variables Global
Facilitates debugging

Local
Use debugger to access
internal function variables

Inputs/Outputs No
All variables in memory at the
time of execution are
available. All variables remain
in the workspace following
execution.

Yes

Reuse Yes Yes

Help contents No Yes

 Most code you write in MATLAB can be written as
regular (non-function) m-files

 Functions are most useful for frequently-repeated
operations

K. Webb ENGR 112

7

The MATLAB Path

 All functions outside of the PWD – user-defined or
built-in – must be in the path to be accessed

 Add a directory to
your path for
frequently-used
functions, e.g.,
C:\Users\Documents\MATLAB\

K. Webb ENGR 112

8

Function Inputs and Outputs

function y = func(x)

 Here, x is the input passed to the function func
 Passed to the function from the calling m-file
 Not defined within the function

 y is the output returned from the function
 Defined within the function
 Passed out to the calling m-file
 The only function variable available upon return from the

function call

K. Webb ENGR 112

9

Multiple Inputs and Outputs

function [y1,y2] = func(x1,x2,x3)

 Functions may have more than one input and/or
output

 Here, three inputs: x1, x2, and x3
and two outputs: y1 and y2

 Inputs separated by commas
 Outputs enclosed in square brackets and separated by

commas

K. Webb ENGR 112

10

Function – Example

 Consider a function that converts a distance in kilometers to a
distance in both miles and feet
 One input, two outputs

K. Webb ENGR 112

Optional Input Arguments11

K. Webb ENGR 112

12

Optional Input Arguments

 Functions often have optional input arguments
 Variable number of input arguments may be required when

calling the function
 Optional inputs may have default values
 Function behavior may differ depending on what inputs are

specified

 For example, MATLAB’s mean.m function:

y = mean(x)

 Optionally, specify the dimension along which to calculate
mean values:

y = mean(x,dim)

K. Webb ENGR 112

13

Optional Input Arguments

 mean.m allows you to
specify the dimension
along which the mean is
calculated
 Default is dim = 1
 If dim is not specified, it

is set to 1 within the
function

 Calculate mean values of
columns

 Setting dim = 2
calculates mean values
of rows

K. Webb ENGR 112

14

Optional Input Arguments

 Just like built-in functions, user-defined functions
can also have optional inputs

 Code executed when function is called depends on
the number of input arguments

 nargin.m returns the number of input arguments
passed to a function
 Allows for checking how many input arguments were

specified
 Use conditional statements to control code branching
 If an input was not specified, set it to a default value

K. Webb ENGR 112

15

Optional Inputs – Example 1

 For example,
consider a function
designed to return a
vector of values
between xi and xf

 Third input
argument, N, the
number of elements
in the output vector,
is optional
 Default is N = 10

K. Webb ENGR 112

16

Optional Input Arguments

 Sometimes we want to allow for optional inputs in
the middle, not at the end, of the input list
 For example, maybe the second of three inputs is

optional (or the second and third inputs)
 nargin.m alone won’t work here
 Can’t differentiate between skipping the second of

three inputs or the third of three inputs
 nargin == 2 in both cases

 Instead of skipping the input altogether, pass an
empty set, [], in its place

K. Webb ENGR 112

17

Optional Inputs – Example 2

 Revisit the same vector-
generating function

 Now both the first
input, xi, and the third
input, N, are optional
 If xi is not specified it

defaults to xi = 0
 Single input, intended

to be xf, is assumed to
be xi, the first listed
input argument
 Must assign the single

input argument to xf

K. Webb ENGR 112

18

Error Checking Using nargin.m

 Can use nargin.m
to provide error
checking
 Ensure that the

correct number of
inputs were specified

 Use error.m to
terminate execution
and display an error
message

K. Webb ENGR 112

Sub-Functions19

K. Webb ENGR 112

20

Sub-Functions

 Functions are useful for blocks of code that get
called repeatedly
 We often have such blocks within functions themselves
 Can define additional functions in separate m-files
 Or, if the code is only useful within that specific

function, define a sub-function
 Sub-Functions

 A function defined within another function m-file
 Local scope: only available from within that function
 Organizes, simplifies overall function code

K. Webb ENGR 112

21

Sub-Functions – Example

 Here, two sub-
functions are defined
and called from within
the main function

Sub-function 1

Sub-function 2

Main function

K. Webb ENGR 112

Anonymous Functions22

K. Webb ENGR 112

23

Anonymous Functions

 It is often desirable to create a function without having to
create a separate function file for it

 Anonymous functions:
 Can be defined within an m-file or at the command line

 Function data type is function_handle
 A pointer to the function

 Can accept inputs, return outputs

 May contain only a single MATLAB expression
 Only one output

 Useful for passing functions to functions
 E.g. using quad.m (a built-in MATLAB function) to integrate a

mathematical function (a user-defined function)

K. Webb ENGR 112

24

Anonymous Functions - Syntax

fhandle = @(arglist) expression

Function name
 A variable of type
function_handle

 Pointer to the function

@ symbol
generates a handle
for the function

Function definition
 A single executable

MATLAB expression
 E.g. x.^2+3*y;

A list of input variables
 E.g. @(x,y);
 Note that outputs are not

explicitly defined

K. Webb ENGR 112

25

Anonymous Functions – Examples

 Simple function that returns
half of the input value

 May have multiple inputs
 First-order system response –

inputs: time constant, value of
time

 Inputs may be vectors
 Outputs may be vectors as

well

K. Webb ENGR 112

26

Passing Functions to Functions

 We often want to perform MATLAB functions on other
functions
 E.g. integration, roots finding, optimization, solution of

differential equations – these are function functions
 This is the real value of anonymous functions

 Define an anonymous function
 Pass the associated function

handle to the function as an
input

 Here, integrate the function, f,
from 0 to 10 using MATLAB’s
quad.m function

K. Webb ENGR 112

27

Function Function – Example

 Consider a function that
calculates the mean of a
mathematical function
evaluated at a vector of
independent variable
values

 Inputs:
 Function handle
 Vector of 𝑥𝑥 values

 Output:
 Mean value of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

K. Webb ENGR 112

Recursion28

K. Webb ENGR 112

29

Recursive Functions

 Recursion is a problem solving approach in which a
larger problem is solved by solving many smaller,
self-similar problems

 A recursive function is one that calls itself
 Each time it calls itself, it, again, calls itself

 Two components to a recursive function:
 A base case
 A single case that can be solved without recursion

 A general case
 A recursive relationship, ultimately leading to the base case

K. Webb ENGR 112

30

Recursion Example 1 – Factorial

 We have considered iterative algorithms for computing
𝑦𝑦 = 𝑛𝑛!
 for loop, while loop

 Factorial can also be computed using recursion
 It can be defined with a base case and a general case:

𝑛𝑛! = �1 𝑛𝑛 = 1
𝑛𝑛 ∗ 𝑛𝑛 − 1 ! 𝑛𝑛 > 1

 The general case leads back to the base case
 𝑛𝑛! defined in terms of 𝑛𝑛 − 1 !, which is, in turn, defined in terms

of 𝑛𝑛 − 2 !, and so on
 Ultimately, the base case, for 𝑛𝑛 = 1, is reached

K. Webb ENGR 112

31

Recursion Example 1 – Factorial

𝑛𝑛! = �1 𝑥𝑥 = 1
𝑥𝑥 ∗ 𝑥𝑥 − 1 ! 𝑥𝑥 > 1

 The general case is a recursive relationship, because it
defines the factorial function using the factorial function
 The function calls itself

 In MATLAB:

K. Webb ENGR 112

32

Recursion Example 1 – Factorial

 Consider, for example: 𝑦𝑦 = 4!
 fact.m recursively called four

times
 Fourth function call terminates first,

once the base case is reached
 Function calls terminate in reverse

order
 Function call doesn’t terminate until

all successive calls have terminated

K. Webb ENGR 112

33

Recursion Example 2 – Binary Search

 A common search algorithm is the binary search
 Similar to searching for a name in a phone book or a word in

a dictionary
 Look at the middle value to determine if the search item is

in the upper or lower half
 Look at the middle value of the half that contains the search

item to determine if it is in that half’s upper or lower half, …

 The search function gets called recursively, each time
on half of the previous set
 Search range shrinks by half on each function call
 Recursion continues until the middle value is the search

item – this is the required base case

K. Webb ENGR 112

34

Recursion Example 2 – Binary Search

 Recursive binary search – the basic algorithm:

 Find the index, 𝑖𝑖, of 𝑥𝑥 in the sorted list, 𝐴𝐴, in the range of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

1) Calculate the middle index of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ :

𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = floor
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

2

2) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 == 𝑥𝑥, then 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚, and we’re done

3) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 > 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 − 1

4) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 + 1: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

K. Webb ENGR 112

35

Recursion Example 2 – Binary Search

 Find the index of the 𝑥𝑥 = 9 in:

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 5 = 6
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥
 Start over for 𝐴𝐴 6: 10

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 8 = 12
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 > 𝑥𝑥
 Start over for 𝐴𝐴 6: 7

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 6 = 7
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥

 Start over for 𝐴𝐴 7

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 7 = 9
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 == 𝑥𝑥

 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 7

K. Webb ENGR 112

36

Recursion Example 2 – Binary Search

 Recursive binary
search algorithm in
MATLAB

 Base case for
A(imid) == x

 Function is called
recursively on
successively halved
ranges until base
case is reached

K. Webb ENGR 112

37

Recursion Example 2 – Binary Search

 A=[0,1,3,5,6,7,9,12,16,20]

 x=9

 ind = binsearch(A,x,1,10)
 ind = 7

	Section 6: �User-Defined Functions
	User-Defined Functions
	User-Defined Functions
	Anatomy of a Function
	Commenting Functions
	M-Files vs. Functions
	The MATLAB Path
	Function Inputs and Outputs
	Multiple Inputs and Outputs
	Function – Example
	Optional Input Arguments
	Optional Input Arguments
	Optional Input Arguments
	Optional Input Arguments
	Optional Inputs – Example 1
	Optional Input Arguments
	Optional Inputs – Example 2
	Error Checking Using nargin.m
	Sub-Functions
	Sub-Functions
	Sub-Functions – Example
	Anonymous Functions
	Anonymous Functions
	Anonymous Functions - Syntax
	Anonymous Functions – Examples
	Passing Functions to Functions
	Function Function – Example
	Recursion
	Recursive Functions
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search

