
ENGR 112 – Introduction to Engineering Computing

SECTION 8:
FILE I/O

K. Webb ENGR 112

2

File I/O

 As engineers, we often generate large amounts of data
 Simulation – in MATLAB or other simulation tools
 Measurements

 Often need to process and analyze these data
 Export data from simulator to a file
 Read data into MATLAB
 Process data in MATLAB – analysis, display, etc.
 Write the data generated in MATLAB to a file

K. Webb ENGR 112

MATLAB Data (.mat) Files3

K. Webb ENGR 112

4

.mat-Files

 Often want to store data generated in MATLAB to
be later read back into MATLAB
 Not interfacing with any other tools

 Can use MATLAB-specific .mat files for data storage
 Useful when generating lots of data in MATLAB
 e.g. running many time-consuming simulations
 Save data to, possibly many, .mat-files
 Load later for processing and analysis

 Save data with MATLAB’s save.m function
 Load data with load.m

K. Webb ENGR 112

5

save.m and load.m

 To save workspace variables to a .mat-file

save(filename,variables)

 filename: data saved to filename.mat – a string
 variables: optional – workspace variables to be saved –

default is to save all variables – enclose each in single quotes and
separate by commas

 To load workspace variables from a .mat-file

load(filename,variables)

 filename: load data from filename.mat – a string
 variables: optional – load only the specified variables to the

workspace – enclose each in single quotes and separate by
commas

K. Webb ENGR 112

6

save.m – Example 1

 Variable names not
specified
 All variables saved by

default
 .mat extension appended

to filename automatically

K. Webb ENGR 112

7

load.m – Example 1

 All variables loaded by
default

 Need not include .mat
extension with filename

K. Webb ENGR 112

8

save.m – Example 2

 Save only specified
variables

 Enclose each in single
quotes

 Separate variables with
commas

K. Webb ENGR 112

9

load.m – Example 2

 someVars.mat file
contains only a subset of
the original workspace

K. Webb ENGR 112

10

load.m – Example 3

 Load only a subset of the
variables in a .mat file

 Enclose each in single quotes
 Separate variables with

commas

K. Webb ENGR 112

String and Number Formatting11

K. Webb ENGR 112

12

String Formatting

 Often want to create strings that include variable
values – numeric or strings

 sprintf.m – write formatted data to an output
string

 fprintf.m – write formatted data to a text file or to
the command window

 Can control the formatting of the variable values
that are inserted into the string, e.g.:
 integer
 fixed point format
 string

 scientific notation
 # of decimal places
 etc.

K. Webb ENGR 112

13

sprintf.m

 Write formatted data to an output string
str = sprintf(formatSpec,A1,A2,…,An)

 formatSpec: a string – may contain formatting sequences for
insertion of variable values

 A1,A2,…,An: variables whose values are to be inserted into
the string – one for each formatting sequence in formatSpec

 str: variable to which the created string is stored

 For example:

K. Webb ENGR 112

14

Formatting Sequences

 String may contain number formatting sequences
 Percent character (%) followed by conversion sequence

% 6 . 4 f

Indicates the
beginning of a

formatting sequence

Field width:
minimum number of

character spaces
used to display the

variable value

Conversion character:
here, f indicates
representation in fixed-
point format

Precision:
of digits to the right of the
decimal point (f, e, or E) or #
of significant digits (g or G)

K. Webb ENGR 112

15

Conversion Characters

 Conversion characters specify how to format variable
values within a string

Value Type Conversion
Character

Signed integer %d

Unsigned integer %u

Fixed-point notation %f

Exponential notation
(e.g., 1.6e-19)

%e

Exponential notation
(e.g., 1.6E-19)

%E

More compact of %e or %f %g

More compact of %E or%f %G

Single character %c

String %s

K. Webb ENGR 112

16

Formatting Sequences – Examples

 Integer: %d

 Fixed-point: %f

 Exponential notation

 Compact format

 Field-width control

K. Webb ENGR 112

Low-Level File I/O17

K. Webb ENGR 112

18

Low-Level File I/O

 MATLAB includes many high-level functions for
easily importing data from text files
 Usually use these – very easy to use
 We’ll cover these later in the notes

 MATLAB also includes low-level functions for
reading from and writing to files
 More of a manual operation – line-by-line operation
 Similar to other computer languages (e.g. C), which

may not include simple high-level file I/O functions

K. Webb ENGR 112

19

Opening a Text File – fopen.m

 Prior to reading from or writing to a text file, we must
first open the file

fileID = fopen(filename,permission)

 filename: name of the file to open – need not exist yet –
a string

 permission: optional – a string specifying file access
type, e.g. read-only, write access, etc. – default is read-only

 fileID: an integer file identifier – can be passed as input
to functions, such as fscanf.m and fprintf.m

K. Webb ENGR 112

20

File Permissions

 Optional permission sequences indicate the type of file
access when opening a file

Permission
String

Description

‘r’ Open file for reading (default)

‘w’ Open or create new file for writing – discard
existing contents

‘a’ Open or create new file for writing – append
data to the end of the file

‘r+’ Open file for reading and writing

‘w+’ Open or create new file for reading and writing
– discard existing contents

‘a+’ Open or create new file for reading and writing
– append data to the end of the file

K. Webb ENGR 112

21

Closing a text file – fclose.m

 After opening and writing to or reading from a text
file, that file must be closed

fclose(fid)

 fid is the file identifier obtained from execution of the
fopen command

K. Webb ENGR 112

22

Output Data to Text Files – fprintf.m

fprintf(fileID,formatSpec,A1,A2,…,An)

 fileID: optional file identifier – an integer obtained from an
fopen command – if not specified, data is output to the
command window

 formatSpec: a string – may contain formatting sequences for
insertion of variable values

 A1,A2,…,An: variables whose values are to be inserted into the
string – one for each formatting sequence in formatSpec

 For example:

K. Webb ENGR 112

23

Control Characters

 Control characters are available for inserting things
like tabs, new lines, and special characters

Control Character Description

%% Percent character

\\ Backslash

\t Horizontal tab

\n New line

 These are a few of the more common control
characters
 See MATLAB documentation for more

K. Webb ENGR 112

24

Writing to a Text File – Example

 Let’s say you generated data from a simulation in MATLAB
 Time vector and two corresponding output vectors

 Want to save these data to a text file for processing and
analysis at a later time

 Save the data to a text file as three columns
 t, y1(t), and y2(t)

K. Webb ENGR 112

25

Writing to a Text File – Example

 Write vectors as
columns

 Write data line-
by-line

 Here, columns
are separated by
spaces
 Could be tabs or

commas, or …

K. Webb ENGR 112

26

Writing to a Text File – Example

 The resulting text file:

K. Webb ENGR 112

27

Reading Data from Text Files – fscanf.m

A = fscanf(fileID,format,sizeA)

 fileID: file identifier –obtained from fopen

 format: a string enclosed in single quotes, describing the
contents of each field to be read – conversion characters

 sizeA: optional – dimension of the output matrix,
specified as:
 inf: read to end of file (default) and store as a column vector
 n: read n elements and store as an n×1 column vector
 [m,n]: read m*n elements, row-by-row, and store in column

order as an m×n matrix

 A: output matrix – stored in column order, even though data
is read line-by-line (row-by-row)

K. Webb ENGR 112

28

Reading from a Text File – Example

 First read header line
 File pointer advances

to start of data on
the following line

 Read line-by-line
 Three elements at a

time – one from each
column

 Store each element
to its corresponding
vector

 Continue reading
data until EOF or a
blank line is reached

K. Webb ENGR 112

High-Level File I/O Functions29

K. Webb ENGR 112

30

importdata.m

 Load column-oriented data from a text file

A = importdata(filename,delim,nheaderlines)

 filename: name of file from which to read – a string
 delim: type of delimiter between columns – a string,

e.g., ‘\t’ or ‘,’ or ‘ ’, etc.
 nheaderlines: number of non-data header lines in

the file – data is read starting at nheaderlines + 1
 A: data stored as either a matrix, multi-dimensional

array, or a structure, depending on file format

K. Webb ENGR 112

31

importdata.m – Example

 Oscilloscope data
 A comma-separated-variable, .csv, file
 Three sets of data: time, channel 1 data, and Channel 2 data
 Two header lines at the top of the file

K. Webb ENGR 112

32

importdata.m – Example

 In this case the data is read in as a structure:

 Plotting the
channel 1 data:

K. Webb ENGR 112

33

xlsread.m

 Read data from a Microsoft Excel spreadsheet file

A = xlsread(filename,sheet,range)

 filename: name of Excel file – a string
 sheet: optional name of worksheet within the

workbook – a string, e.g., ‘sheet1’ – default is the
first sheet

 range: optional rectangular cell range to read – a
string, e.g., ‘B2:D43’ – default is to read all data

 A: matrix of imported data

K. Webb ENGR 112

34

xlsread.m – Example

 Now, read the same data from an Excel spreadsheet
 Data is on first sheet – need not specify sheet or range
 Text column labels are skipped automatically

K. Webb ENGR 112

35

xlswrite.m

 Write MATLAB data to an Excel spreadsheet

xlswrite(filename,A,sheet,range)

 filename: name of Excel file – a string – if file does not
exist, it will be created

 A: matrix of data to export
 sheet: optional name of worksheet within the workbook –

a string, e.g., ‘sheet1’ – default is the first sheet
 range: optional rectangular cell range – if sheet is

specified then only the upper left-hand cell need be
specified, e.g., ‘C2’, if not rectangular range is required,
e.g., ‘C2:E18’

K. Webb ENGR 112

36

xlswrite.m – Example

 Write MATLAB simulation data to an Excel file

	Section 8: �File I/O
	File I/O
	MATLAB Data (.mat) Files
	.mat-Files
	save.m and load.m
	save.m – Example 1
	load.m – Example 1
	save.m – Example 2
	load.m – Example 2
	load.m – Example 3
	String and Number Formatting
	String Formatting
	sprintf.m
	Formatting Sequences
	Conversion Characters
	Formatting Sequences – Examples
	Low-Level File I/O
	Low-Level File I/O
	Opening a Text File – fopen.m
	File Permissions
	Closing a text file – fclose.m	
	Output Data to Text Files – fprintf.m
	Control Characters
	Writing to a Text File – Example
	Writing to a Text File – Example
	Writing to a Text File – Example
	Reading Data from Text Files – fscanf.m
	Reading from a Text File – Example
	High-Level File I/O Functions
	importdata.m
	importdata.m – Example
	importdata.m – Example
	xlsread.m
	xlsread.m – Example
	xlswrite.m
	xlswrite.m – Example

