
ENGR 112 – Introduction to Engineering Computing

SECTION 8:
FILE I/O

K. Webb ENGR 112

2

File I/O

 As engineers, we often generate large amounts of data
 Simulation – in MATLAB or other simulation tools
 Measurements

 Often need to process and analyze these data
 Export data from simulator to a file
 Read data into MATLAB
 Process data in MATLAB – analysis, display, etc.
 Write the data generated in MATLAB to a file

K. Webb ENGR 112

MATLAB Data (.mat) Files3

K. Webb ENGR 112

4

.mat-Files

 Often want to store data generated in MATLAB to
be later read back into MATLAB
 Not interfacing with any other tools

 Can use MATLAB-specific .mat files for data storage
 Useful when generating lots of data in MATLAB
 e.g. running many time-consuming simulations
 Save data to, possibly many, .mat-files
 Load later for processing and analysis

 Save data with MATLAB’s save.m function
 Load data with load.m

K. Webb ENGR 112

5

save.m and load.m

 To save workspace variables to a .mat-file

save(filename,variables)

 filename: data saved to filename.mat – a string
 variables: optional – workspace variables to be saved –

default is to save all variables – enclose each in single quotes and
separate by commas

 To load workspace variables from a .mat-file

load(filename,variables)

 filename: load data from filename.mat – a string
 variables: optional – load only the specified variables to the

workspace – enclose each in single quotes and separate by
commas

K. Webb ENGR 112

6

save.m – Example 1

 Variable names not
specified
 All variables saved by

default
 .mat extension appended

to filename automatically

K. Webb ENGR 112

7

load.m – Example 1

 All variables loaded by
default

 Need not include .mat
extension with filename

K. Webb ENGR 112

8

save.m – Example 2

 Save only specified
variables

 Enclose each in single
quotes

 Separate variables with
commas

K. Webb ENGR 112

9

load.m – Example 2

 someVars.mat file
contains only a subset of
the original workspace

K. Webb ENGR 112

10

load.m – Example 3

 Load only a subset of the
variables in a .mat file

 Enclose each in single quotes
 Separate variables with

commas

K. Webb ENGR 112

String and Number Formatting11

K. Webb ENGR 112

12

String Formatting

 Often want to create strings that include variable
values – numeric or strings

 sprintf.m – write formatted data to an output
string

 fprintf.m – write formatted data to a text file or to
the command window

 Can control the formatting of the variable values
that are inserted into the string, e.g.:
 integer
 fixed point format
 string

 scientific notation
 # of decimal places
 etc.

K. Webb ENGR 112

13

sprintf.m

 Write formatted data to an output string
str = sprintf(formatSpec,A1,A2,…,An)

 formatSpec: a string – may contain formatting sequences for
insertion of variable values

 A1,A2,…,An: variables whose values are to be inserted into
the string – one for each formatting sequence in formatSpec

 str: variable to which the created string is stored

 For example:

K. Webb ENGR 112

14

Formatting Sequences

 String may contain number formatting sequences
 Percent character (%) followed by conversion sequence

% 6 . 4 f

Indicates the
beginning of a

formatting sequence

Field width:
minimum number of

character spaces
used to display the

variable value

Conversion character:
here, f indicates
representation in fixed-
point format

Precision:
of digits to the right of the
decimal point (f, e, or E) or #
of significant digits (g or G)

K. Webb ENGR 112

15

Conversion Characters

 Conversion characters specify how to format variable
values within a string

Value Type Conversion
Character

Signed integer %d

Unsigned integer %u

Fixed-point notation %f

Exponential notation
(e.g., 1.6e-19)

%e

Exponential notation
(e.g., 1.6E-19)

%E

More compact of %e or %f %g

More compact of %E or%f %G

Single character %c

String %s

K. Webb ENGR 112

16

Formatting Sequences – Examples

 Integer: %d

 Fixed-point: %f

 Exponential notation

 Compact format

 Field-width control

K. Webb ENGR 112

Low-Level File I/O17

K. Webb ENGR 112

18

Low-Level File I/O

 MATLAB includes many high-level functions for
easily importing data from text files
 Usually use these – very easy to use
 We’ll cover these later in the notes

 MATLAB also includes low-level functions for
reading from and writing to files
 More of a manual operation – line-by-line operation
 Similar to other computer languages (e.g. C), which

may not include simple high-level file I/O functions

K. Webb ENGR 112

19

Opening a Text File – fopen.m

 Prior to reading from or writing to a text file, we must
first open the file

fileID = fopen(filename,permission)

 filename: name of the file to open – need not exist yet –
a string

 permission: optional – a string specifying file access
type, e.g. read-only, write access, etc. – default is read-only

 fileID: an integer file identifier – can be passed as input
to functions, such as fscanf.m and fprintf.m

K. Webb ENGR 112

20

File Permissions

 Optional permission sequences indicate the type of file
access when opening a file

Permission
String

Description

‘r’ Open file for reading (default)

‘w’ Open or create new file for writing – discard
existing contents

‘a’ Open or create new file for writing – append
data to the end of the file

‘r+’ Open file for reading and writing

‘w+’ Open or create new file for reading and writing
– discard existing contents

‘a+’ Open or create new file for reading and writing
– append data to the end of the file

K. Webb ENGR 112

21

Closing a text file – fclose.m

 After opening and writing to or reading from a text
file, that file must be closed

fclose(fid)

 fid is the file identifier obtained from execution of the
fopen command

K. Webb ENGR 112

22

Output Data to Text Files – fprintf.m

fprintf(fileID,formatSpec,A1,A2,…,An)

 fileID: optional file identifier – an integer obtained from an
fopen command – if not specified, data is output to the
command window

 formatSpec: a string – may contain formatting sequences for
insertion of variable values

 A1,A2,…,An: variables whose values are to be inserted into the
string – one for each formatting sequence in formatSpec

 For example:

K. Webb ENGR 112

23

Control Characters

 Control characters are available for inserting things
like tabs, new lines, and special characters

Control Character Description

%% Percent character

\\ Backslash

\t Horizontal tab

\n New line

 These are a few of the more common control
characters
 See MATLAB documentation for more

K. Webb ENGR 112

24

Writing to a Text File – Example

 Let’s say you generated data from a simulation in MATLAB
 Time vector and two corresponding output vectors

 Want to save these data to a text file for processing and
analysis at a later time

 Save the data to a text file as three columns
 t, y1(t), and y2(t)

K. Webb ENGR 112

25

Writing to a Text File – Example

 Write vectors as
columns

 Write data line-
by-line

 Here, columns
are separated by
spaces
 Could be tabs or

commas, or …

K. Webb ENGR 112

26

Writing to a Text File – Example

 The resulting text file:

K. Webb ENGR 112

27

Reading Data from Text Files – fscanf.m

A = fscanf(fileID,format,sizeA)

 fileID: file identifier –obtained from fopen

 format: a string enclosed in single quotes, describing the
contents of each field to be read – conversion characters

 sizeA: optional – dimension of the output matrix,
specified as:
 inf: read to end of file (default) and store as a column vector
 n: read n elements and store as an n×1 column vector
 [m,n]: read m*n elements, row-by-row, and store in column

order as an m×n matrix

 A: output matrix – stored in column order, even though data
is read line-by-line (row-by-row)

K. Webb ENGR 112

28

Reading from a Text File – Example

 First read header line
 File pointer advances

to start of data on
the following line

 Read line-by-line
 Three elements at a

time – one from each
column

 Store each element
to its corresponding
vector

 Continue reading
data until EOF or a
blank line is reached

K. Webb ENGR 112

High-Level File I/O Functions29

K. Webb ENGR 112

30

importdata.m

 Load column-oriented data from a text file

A = importdata(filename,delim,nheaderlines)

 filename: name of file from which to read – a string
 delim: type of delimiter between columns – a string,

e.g., ‘\t’ or ‘,’ or ‘ ’, etc.
 nheaderlines: number of non-data header lines in

the file – data is read starting at nheaderlines + 1
 A: data stored as either a matrix, multi-dimensional

array, or a structure, depending on file format

K. Webb ENGR 112

31

importdata.m – Example

 Oscilloscope data
 A comma-separated-variable, .csv, file
 Three sets of data: time, channel 1 data, and Channel 2 data
 Two header lines at the top of the file

K. Webb ENGR 112

32

importdata.m – Example

 In this case the data is read in as a structure:

 Plotting the
channel 1 data:

K. Webb ENGR 112

33

xlsread.m

 Read data from a Microsoft Excel spreadsheet file

A = xlsread(filename,sheet,range)

 filename: name of Excel file – a string
 sheet: optional name of worksheet within the

workbook – a string, e.g., ‘sheet1’ – default is the
first sheet

 range: optional rectangular cell range to read – a
string, e.g., ‘B2:D43’ – default is to read all data

 A: matrix of imported data

K. Webb ENGR 112

34

xlsread.m – Example

 Now, read the same data from an Excel spreadsheet
 Data is on first sheet – need not specify sheet or range
 Text column labels are skipped automatically

K. Webb ENGR 112

35

xlswrite.m

 Write MATLAB data to an Excel spreadsheet

xlswrite(filename,A,sheet,range)

 filename: name of Excel file – a string – if file does not
exist, it will be created

 A: matrix of data to export
 sheet: optional name of worksheet within the workbook –

a string, e.g., ‘sheet1’ – default is the first sheet
 range: optional rectangular cell range – if sheet is

specified then only the upper left-hand cell need be
specified, e.g., ‘C2’, if not rectangular range is required,
e.g., ‘C2:E18’

K. Webb ENGR 112

36

xlswrite.m – Example

 Write MATLAB simulation data to an Excel file

	Section 8: �File I/O
	File I/O
	MATLAB Data (.mat) Files
	.mat-Files
	save.m and load.m
	save.m – Example 1
	load.m – Example 1
	save.m – Example 2
	load.m – Example 2
	load.m – Example 3
	String and Number Formatting
	String Formatting
	sprintf.m
	Formatting Sequences
	Conversion Characters
	Formatting Sequences – Examples
	Low-Level File I/O
	Low-Level File I/O
	Opening a Text File – fopen.m
	File Permissions
	Closing a text file – fclose.m	
	Output Data to Text Files – fprintf.m
	Control Characters
	Writing to a Text File – Example
	Writing to a Text File – Example
	Writing to a Text File – Example
	Reading Data from Text Files – fscanf.m
	Reading from a Text File – Example
	High-Level File I/O Functions
	importdata.m
	importdata.m – Example
	importdata.m – Example
	xlsread.m
	xlsread.m – Example
	xlswrite.m
	xlswrite.m – Example

