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Systems of Equations
-

Systems of equations common in all engineering disciplines

For N unknown variables, we need a system of N equations
o Can represent in matrix form:

Ax=Db

A: N X N matrix of known, constant coefficients
x: N X 1 vector of unknowns
b: N X 1 vector of known constants

Many tools exist for solving:

o By hand — substitution, Gaussian elimination, etc.

o Scientific calculators

o Here, we will look at the tools available within MATLAB
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A System of Equations — Example

Consider the following scenario
kl% kl% Three masses
R

m | x o m,, m,, and my
. % " Three springs
5 % o kg, ky, ks
- 1 Connected in series and
. % - suspended
m| | % Determine the displacement of
each mass from its unstretched

s position
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A System of Equations — Example

Three unknown displacements: x4, x,, X5

o Need three equations to find displacements

Apply Newton’s second law to each mass

kX1 ka(x2-x1) ks(x3-x2)

T T [ Three equations result:
m; m; ms myX; =myg + ky(xy — x1) — kyxq
[ ] ] Teesmeerktsmminhinon

MmzX3 = mzg — k3(x3 — x
Mg ka(X-x1) M8 Ks(X3-Xz) msg 343 39 3( 3 2)
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A System of Equations — Example
[
Steady-state, so no acceleration: X; =0, Vi

mig + ky(x; —x1) — kyx; =0
myg + ks(x3 —x3) — ky(x; — %) =0
mzg — k3(x3 —x) =0
Rearranging
(kq + k2)x4 —kyx;  +0x3 =myg
—koxq + (ky + k3)x; — ksxs =myg

0x1 — k3X2 + k3X3 — m3g
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A System of Equations — Example
-
Our system of three equations
(k1 + k2)xq —kyx; +0x3 =myg
—kyx; + (ky + k3)x,; — k3xg = myg
Oxl — k3x2 + k3X3 —_ m3g
can be put into matrix form
(kq + k2) —k; 0 |17 (g

_kz (kz + k3) —k3 myg
0 _k3 k3 | | X3 ‘msyg.

=
N
I
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A System of Equations — Example
-

(ky + k) —k; 0 |rx1] g
—kz (kz + k3) —k3 X2| = |M2d
0 _k3 k3 | X3 msd |

We can rewrite this matrix equation as
Ax=Db)

Can apply tools of linear algebra to determine the
vector of unknown displacements

X = |X2
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Solution Using Matrix Inverse
-0V
We have a system of equations:
Ax =D
If a solution exists, then the coefficient matrix, A, is
invertible
o Not always the case
Left-multiply by A~1 to solve for the vector of
unknowns, x
A"1Ax=A"1b
Ix=A"1b
x=A"1b
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Solution Using Matrix Inverse

Unstretched Stretched

Our linear system is described by the

ke % Ky % matrix equation
L (kq + k) —k, mlg
—k, (ky + k3) —k3 Ile = [ng

0 _k3 msg

M1 X1

1
i S Find the displacements, X, for the
ks % m; following system parameters

L ___ amy = 3kg) my; = 1kg; myg = 7kg

K. Webb ENGR 112



Solution Using Matrix Inverse

Unstretched Stretched Ei Editor - Ch\Users\webbly\Box\KWebb'\Classes\ENGR112\Motes\MATLAB... & X
1 % linSysEx.m
2
3= clear zll; clc
kl kl 4
3 % spring constants [F/m]
_\L £ - kl = 500;
- T 7 - k2 = 300;
mi X1 8- k3 = 400; x =
my g
10 % masses [kEg] 0.2158
ks, .y ¥ 0.3139
12 — m2 = 1;
ks - | [ 0.4556
14
ms 15 % grav. accel. [m/s"2] f{, =2 |
L 16 - g = 9.81;
KZ 17
m, 18 - A = [kl+k2, —k2, Or...
ks 19 _k2, k24k3, —k3:...
% 20 o, -k3, k31:
] 21
ks 22 - b = [ml*g; m2*g; m3*g];
M3 23
24 -  x = inv(A)*b -
25
ol
X3
m; x1 = 21.6cm, x,=31.4cm, x3=48.6cm
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Solution Using midivide.m, \

-
MATLAB has a second division function
0 Matrix left division: nldivide.m, \
Use midivide to solve

Ax=DbD
If A1 exists, then
X =A\Db;

is equivalent to
X=1nv(A)*b;

But, does not calculate A™1
o Faster and more numerically robust
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Solution Using midivide.m, \

Unstretched Stretched B Editor - C:\Users\webbky\Box\K\Webb\Classes\ENGR112\Notes\MATLAB\... @ X
1 % linSysEx.m
2
3 = clear zll; clc
k1 k1 4
5 % spring constants [H/m]
& — k1l = 500;
__L___ 7 - k2 = 800
= k3 = 400;
my X1 ;
m1 1ad % masses [Eg]
11 - ml = 3;
kz % 12— mz = 1;
13 - m3 = 7;
k2 14
15 % grav. accel. [m/="2]
m, 16 — g = 9.81;
17
- T~ 18 — A= [kl+kz, -k2z, or...
X2 1% -k2, k2+k3, -k3:...
k ms 20 o, -k3, k31:
3 21
22 — B = [ml*g; m2*%g; m3*g]:
T K 23
3 24 - x = inv(A)*b -
ms 25
26 — x = B\b -
27
P .
X3
m; x1 = 21.6cm, x,=31.4cm, x3=48.6cm
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Differentiation

-~
As engineers, we often deal with rates
o Changes in on quantity with respect to another

Often these are rates with respect to time, e.g.:
o Velocity: change in position w.r.t. time

o Acceleration: change in velocity w.r.t. time

O Power: time rate of energy transfer

o Changes in voltage or current w.r.t. time

o Etc.

Mathematically, these rates are described by
derivatives

Calculation of a derivative is differentiation
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Derivatives

For example, consider an object whose position as a
function of time is

x()=2m-(1—-e7Y)

|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

At any point in time, t, the object’s velocity, v(t), is given by
the time rate of change of position

o That is, the derivative w.r.t. time of position

dx
v(t) = yri x(t) = x'(t)
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Derivatives
X

Velocity is the rate of change of position | , , I
w.r.t. time

o Slope of the position graph

o The derivative of position

X

d
v(t) = — = ¥(t) A

1571

[m]

X(t)

You know/will learn to differentiate
mathematical expressions, e.g. 0.5} x(1.5), Velocity att = 1.5 sec

x()=2m-(1—e7?Y)

X’(t)=v(t) =2—.e7t 0 1 2 3 4 5
S time [sec]

Often, we would like to calculate a derivative, but we do not have a
mathematical expression, e.g.

o Measurement data
o Simulation data, etc.

Then, we can approximate the derivative numerically
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Numerical Differentiation

.
Data we want to 1 | | T Aol vaclory

- ~ o ® Sampled trajectory

differentiate are discrete s e -
0o Sampled — not continuous / "\
o Data only exist at discrete

points in time ar \

o Result of simulation or _ \
measurement, etc. \

A
D i i i i '
0 1 2 3 4 5

Numerical differentiation t lsea

o Approximation of the slope at each discrete data point
Several methods exist for numerical differentiation
o Varying complexity and accuracy

Here, we’ll focus on the forward difference method

x(t) [m]
‘ T
g
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Forward Difference Method

Forward difference method
o Approximate x(t;) using x(t;) and x(t;;1)
Data at the current time point and one time step forward

x(tipq) —x(t)  Ax

X (t ) ~
i tiv4 — t; At
i+1 l
10
S l“_‘-.
— — —Actual trajectory
® Sampled trajectory | |
— Actual slope at t=1
— Approx. slope at t=1
4 | I | I I
0 0.5 1 1.5 2 5 ’
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Forward Difference in MATLAB

-
Numerical differentiation in MATLAB

x(tivq) —x(t;) _ Ax
ti, —t; At

x(t;) =

We would have:

o Time vector, t

Possibly, but not necessarily evenly spaced
o Data vector, x(t)

Function to be differentiated

Use di1FF.mto calculate Ax and At vectors

Use array division, ./, to calculate Ax/At at each time
point

o No Ax/At value at the last time point
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Numerical Differentiation — Example
e

Consider again an |- i

object whose position |1~ x= = zeemee:

is given by: | b Lo e
x(t) — 2 m - (1 _ e—t) ?i = dxdt = dx./dt; % approximate derivative

Forward Difference Approximation of Velocity

Use forward difference :
to approximate

E
. 1 x(t)=2(1-e"
velocity %
o Assume a 200 msec % | 2 3 4 5
sample period ) |
T N true velocity
Error would improve SN SRR e o
with smaller time steps  ~ TN
0 1 2 3 4 5
time [sec]
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n Numerical Integration
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Integration
e

be(t)dt

Integration is a mathematical operation involving the calculation of
a continuous sum over some interval

o The inverse of differentiation — the antiderivative
| f'@®)dt = f(¢)

We have seen that the derivative represents the rate of change of a
function w.r.t. its independent variable
o For example, consider the position of an object, x(t)

o Velocity of the object is the derivative of position

d
(t) = d—’: = x'(8)

o The rate of change of position w.r.t. time
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Integration

Integration is the inverse of differentiation

o Mathematical transform between a rate of a quantity (e.g.,
v(t) = x'(t)) and that quantity (e.g., x(t))

x(t) = [v(t)dt = [ x'(t) dt

Examples of integral/derivative relationships:

: Integral s
Velocity Position
Acceleration Velocity
Power Energy
 C— :
Current Derivative | Electrical charge
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Integration

In your calculus class you learned/will learn to calculate the
integral of functions, e.g.,

Lot t
j e 2dt=-2-e 2‘
0 0

= —2(0.6065 —1)
1 ¢
j e 2 dt =0.787
0

As was the case for differentiation, we often do not have a
mathematical expression for the data we want to integrate

o E.g., measurement data or simulation data
o Only have discrete data points
O Integrate numerically
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Numerical Integration

The derivative of a function is the slope of its graph
The integral of a function is the area under its graph

For example, distance traveled is the integral of velocity

o Consider a car that travels at a speed of 80 km/h for 1 hour

and 120 km/h for 2 hours
How far has the car traveled after three hours?

N

120

80
120 km/h - 2 hr

Velocity [km/h]

40 80 km/h -1 hr

v

| |
1 2 3
Time [hr]
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Numerical Integration
R

Distance att = 3 hr:

120+

3
x(3) =f v(t) dt
0

80

city [km/h]

120 km/h - 2 hr

Velo

1 3
x(3) =f v(t) dt+J v(t) dt e
0 1

80 km/h:1hr

km km S
x(3) =80—-1hr+120—-2 hr i 2 3 ]
h h Time [hr]
x(3) =320 km

Numerical integration

o Numerical approximation of area under a curve defined by a
function or a discrete data set

o We will focus on one simple method: the trapezoidal rule
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Trapezoidal Rule Integration

Approximate the integral between adjacent time point:

0 Approximate area under the curve between those time points
Area of a trapezoid

Trapezoidal Rule Integration

100

80

60 [

f(t)

40 -

201

0

N fQ@) + f(tise)

5 - (tip1 — t)

Area = (Avg. height) - (width)
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Trapezoidal Rule Integration

Overall integral approximated by the approximate total area
o Sum of all individual trapezoidal segment areas

Trapezoidal Rule Integration

te

6
f(t)dtzZAl :Al +A2 +A3 +A4_+A5+A6
Lo i=1
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Trapezoidal Rule Integration
e

Trapezoidal Rule Integration

te
f(t) dt = (Lig1 — t)
to :

if(ti) + F(tisn)
2
1=0

[f(to) ;f(ﬁ) (g — to)] N [f(t1) ‘;f(tz) .

te
f@)dt ~ (t, —tl)] + o
to

ey lf(ts) erf(t6) e — ts)]
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Trapezoidal Rule in MATLAB —trapz.-m
.

| =trapz(X,y)

o X: vector of independent variable data

O y: vector of dependent variable data

o I: trapezoidal rule approximation to the integral of
Y with respect to X (a scalar)

Data need not be equally-spaced
o Segment widths calculated from X values
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Trapezoidal Rule — Example
3

Trapezoidal Rule Integration

120 -

E]
5 % the function to be integrated (MATLAB's humps.m  + 20)
& % in practice, we would generally not hawve this
7 - £f=8(t) 1./((t-.3).72 + .01) + 1l./((t-.98).72 + .04) + 1l4;
100 | 1]
g % expression of true integral
10 % in practice, we would generally not hawve this either
L= intf = @(t) 1l4*t + lO0*atan(l0*t - 3) + S*atan(5S*t - 9/2):
12
BD i N = 6 i 13 % evaluate f£(t) over [a,k] with H segments, N4l samples
I =49.858 = -V
true 1= b =1;
= I = 49.916 |-
= ED r apprﬂ){ . 1 i; - t = linspacela,b,N+1):
£ = U. IZLFD 19 — v = £(t): % data to be integrated
20
40 21 % approx. the integral over [a,b] using trapz.m
22 — Ihat = trapz(t,v):
23
24 % the wvalue of the true integral over [a,b]
25 — I = intf(k) - intf(a):
20 26
27 % percent error of the numerical approximation
28 — err = (Ihat - I)/I * 100;
29
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Trapezoidal Rule — Example
-

Error decreases as
o Number of segments (sampling frequency) increases
O Segment size (sampling period) decreases

Trapezoidal Rule Integration Trapezoidal Rule Integration

120 120
N =16
L. =49.858
I =49.811

approx

e =-0.10%

0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
t t

Trapezoidal Rule Integration Trapezoidal Rule Integration

120 120
100 N=8 \ N =32
e L. =49.858 I, = 49.858
I - 49.331 I ~ 49.846
= a0 approx approx
= ¢ = -1.06% ¢ = -0.02%
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Indefinite Integrals
e

Sometimes, we want to know the result of an integral from
atob

o A definite integral
o A number
o E.g., given velocity v(t), find the total distance traveled

b
Ax = x(b) — x(a) = j v(t) dt

Other times, we would like the result of an integral as a
function of time

o An indefinite integral or a cumulative integral
o E.g., given v(t), find the distance traveled as a function of time

t
x(t) =j v(t) dt
0
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Indefinite Integrals
-

120+

Velocity, v(t): :

g 120 km/h - 2 hr

~ 404 80km/h:1hr
Integrate velocity L ;
to get distance as a A
function of time: ™

E 2404
x(t) — fv(t) dt % 160 -

; ; 7
Time [hr]

K. Webb ENGR 112



Trapezoidal Rule in MATLAB — cumtrapz.m
[

| = cumtrapz(x,y)

O X: n-vector of independent variable data
O y: n-vector of dependent variable data

o I: trapezoidal rule approximation to the cumulative
integral of y with respect to X (an n-vector)

Result is a vector — equivalent to:

1(x) =f y(X) dx

X1

Data need not be equally-spaced
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trapz.mand cumtrapz.m
o

Integrating with trapz.m and cumtrapz.m ; ¥ trapz_test.m
1HD 3 - clear all; clc
4
H % create the data to be integrated
6 = ® = linspace (0,1,2000)
g? 50t 4 ; - ¥ = humps (x);
| % definite integral
10 |= I = trapz(x,v):
11
ﬂ i ) ) ) 12 % cumulative or indefinite integral
0 0.2 0.4 0.6 0.8 1 el ¢ T AR
15— figure(l); clf
16 — subplot (211)
30 ' ' ' ' Tl = plot (®,v,'-B', 'LineWidch', 2)
13 - ylabel ("£(x)")
1% — title('Integrating with trapz.m and cumtrapz.m'", ...
20 1 20 'FontWeight!', 'Bold’)
— 21
= I = 29.8583 22 -  subplot(212)
10t i 23 - plot (%x,Ic,'-k', 'LineWidth',2):
24 — xXlabel('x"); vlabel ("I (x)")
25 — text (0.65,15,['I = ", num2=str (I, "%1.4E€")],...
26 'FontS5ize',12, 'FontHame"', 'Tahoma' )
0 ' ' ' ' 27
0 0.2 0.4 0.6 0.8 1 28
t
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Integrating Functions — Integral .m

If we do have an expression for the function to be
integrated, we can use MATLAB’s integral .m
function:

| = integral(f,a,b)

o T: handle to the function to be integrated
o a: lower integration limit
o b: upper integration limit
o I: numerical approximation of the integral

Calculates I = fff(x)dx

K. Webb ENGR 112



o

K. Webb ENGR 112



Curve Fitting
e

Engineers often deal with discrete data sets, e.g.
o E.g.,, measurement or simulation data

Typically, that data is noisy
o Measurement noise
o Random variations, external disturbances, etc.

Typically don’t have a mathematical expression for the data
o But, we may want one

o Sometimes, we may know the data should follow a certain type of
function

E.g., linear, quadratic, exponential, etc.
We can fit a curve to the data

o Determine function parameters that best fit the data
E.g., slope and intercept values for a linear relationship

o Or, determine what type of function provides the best fit
E.g., linear, quadratic, exponential, etc.
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Curve Fitting
e

Consider the following engineering example:

An inexpensive temperature sensor is to be used to measure
ambient temperature

0 Temperature measured and recorded by a micro-controller

o Low accuracy (inexpensive)

Sensor output compared to actual temperature may look like:

N
— — — |deal (Ts=T)

100 —

Sensor characteristic -~

Sensor Temperature (T,)

N
| I I | | I I I | | | 4
20 40 60 80 100

Actual Temperature (T)
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Curve Fitting

— — — Ideal (Ts=T)
100 —

Sensor characteristic -~

Sensor Temperature (T;)

Actual Temperature (T)

Ideally, the sensor temperature, T, would equal the true
temperature, T':

T, =T
But, due to inaccuracy:

Ts=a4-T+ aqg
O aq: proportional error
O a,: offset error
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Curve Fitting

To achieve accurate measurements, we could calibrate
the sensor

o Measure a range of temperatures with the inexpensive
sensor and an accurate sensor

O Obtain a dataset representing sensor temperature, T, as a
function of true temperature, T

o That is, determine a; and ay such that

Ty =f(T) =T + ag
Then, we Can map Sensor temperature to true
temperature
r_ls %
a, aq
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Curve Fitting
e

In practice, there would be two sources of error between
actual and measured temperatures

o Inherent sensor inaccuracy
o Measurement noise

Actual measured data, T, may look like:

N

Sensor characteristic
100 — m

Measured temperature, T

Measured Temperature (T)

N

20 40 60 80 100
Actual Temperature (T)
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Curve Fitting

<

Measured Temperature (T)

100 =

Sensor characteristic

Measured temperature,?

80
Actual Temperature (T)

100

Determine the blue line (a; and ay) that provides
the best fit to the measured data (red squares)

How do we define “best fit”?

K. Webb
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Least-Squares Fit

-
What constitutes the best fit?
Want to determine inherent sensor behavior,

TS =4aq - T + ap
given noisy measurement data,
T=T,+e

where e represents measurement error

Sensor characteristic

~

N B Measured temperature, T

= R

L 60— T2 .

= -

g €2 e3

o

§ 50 7,

'_

o

o

=

vy

o 40— -7 &1

= T

N

| | 1 7
40 50 60

Actual Temperature (T)
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Least-Squares Fit

-
Errors between data

Sensor characteristic

points and the line fitto = T "

the data are called 2 T -
residuals HES A

Best fit criterion: E wf TP

0 Minimize the sum of the T T T >

squares of the residuals Actual Temperature (T
o A least-squares fit

Minimize:
A 2
Sr = z ef = E[Ti — (a4 T; + ay)]
i i
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Goodness of Fit
-

How well does a function fit the data?

Is a linear fit best? A quadratic, higher-order polynomial, or
other non-linear function?

Want a way to be able to quantify goodness of fit

Quantify spread of data about the mean prior to regression:

St = Z(yz — }_’)2

Following regression, quantify spread of data about the
regression line (or curve):

5= ) 0= — %)
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Goodness of Fit
-

St quantifies the spread of the data about the mean

S, quantifies spread about the best-fit line (curve)
O The spread that remains after the trend is explained
o0 The unexplained sum of the squares

S: — S, represents the reduction in data spread
after regression explains the underlying trend

Normalize to §S; - the coefficient of determination
St o Sr
St

r? =
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Coefficient of Determination

For a perfect fit:
o No variation in data about the regression line

oS, =0 - r?=1

If the fit provides no improvement over simply
characterizing data by its mean value:
s, =S - r2=0

If the fit is worse at explaining the data than their mean
value:

s, >S, - r2<0
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Coefficient of Determination

.
Don’t rely too heavily on the value of r?
Anscombe’s famous data sets:

15— 15 —
10 10
= @ ®

5 5

P [5]
D_lJIL|JlIJ|lJIl|IlIJ| D_llll|JIIJ|lJIl|llIl|
0 5 10 15 20 0 5 10 15 20
15— 15—

s L ] E
10 10

— [ ] E

BiIS 5
0:||||I||||I||||I||||I n:|||||||||l||||l||||l
0 5 10 15 20 0 5 10 15 20

Same line fit to all four data sets
r? = 0.67 in each case
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Curve Fitting in MATLAB
e
So far we have considered fitting a line to data

o A linear least-squares line fit

Can also fit other functions to data, e.g.,

o Higher-order polynomials — quadratic, cubic, etc.
o Exponentials

o Sinusoids

o Power equation, etc.

MATLAB has built-in functions to perform curve fitting
o polyfit._m- for fitting polynomials
o Fi1t.m-for fitting any other user-specified curves
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Polynomial Regression —polyfit.m
-

p=polyfrt(x,y,m)

O X: n-vector of independent variable data values

O y: n-vector of dependent variable data values

o m: order of the polynomial to be fit to the data (m < n)
o P: (m + 1)-vector of best-fit polynomial coefficients

Polynomial coefficients in MATLAB
o Consider a polynomial created by polyfit.m

y = a,x* + a;x + ag
o MATLAB would return
p=1[a;.a;,a0]
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Polynomial Evaluation —polyval .m

-
nth-order polynomial represented as (n + 1)-vector
For example, the cubic polynomial
y =2x3 —8x%+3x — 4
would be represented as
p=[2,-8,3,-4]

Use polyval.m to evaluate that polynomial over a vector of
independent variable values

y = polyval (p,Xx)

o p: (n + 1)-vector of nt"-order polynomial coefficients
o X: vector of independent variable data values
O Y: vector result of evaluating the polynomial at all values in X
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Polynomial Fit — Example
3

g %% create dataset
Best-Fit Cubic g % noiseless data
60 T T T T 10 % polynomial with roots at 1, 3, and 9
11 % y=x"3 - 13x"2 + 39x - 27
12 - p = polvi([l,3,9]);
_ 3 2 13 = ®x = linspace (0,10,25);
40 B y - 0-94)( + '1 1.95)( + 3327X + '19.21 14 — v = polyval (p,x):
I_2 _ 15
- 092927 16 % add noise to y data
17 = gig = 0%g;
. 180 = v = gig*randn(size(v)):
19— Vo = ¥ + W]
20
21
22 %% nse polyfit.m to perform the fit
23
24 — pfit = polyfit(x,vn,3):
23
26
27 %% evalunate the best-fit cmbic
28
29 — xfit = linspace (min(x),max (x),200);
a0 = v3 = polyval (pfit, xfit);
31 — v3ir2z = polyval (pfit,x):
32
33
34 %% coefficient of determination
35
36 — vbar = mean (yn);
37 - 5t = sum( (vn - vbar)."2);
38 - Sr = sum((vn - v3r2)."2):
3g — r2 = (5t - 5r)/5t
X -
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Fitting User-Specified Curves — Fr1t.m
-
To fit a curve other than a polynomial, use f1t.m

fitobject=Ti1t(X,y,fittype)

o X: column vector of independent variable data values
O y: column vector of dependent variable data values

o Frttype: model type to fit — specified as a library
model or created with the F1ttype.m function

o Fitobject: cfit object containing fit parameters
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Specifying the Model — Fittype.m
-
Define the model to be used by F1t.m

fitmod = Fittype(expression,name,value,..)

O expression: mathematical function to be fit to data
— user-specified or a standard library model (see help)

O name: property name to specify (see help)

o value: value assigned to name — can specify multiple
property name/value pairs

o Fitmod: Fittype object to be passed to fit.m
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Exponential Fit - Example
3

Best-Fit Exponential il % cveate dataset
0.45 T T T T 9 2 noiseless data
10— t = linspace(0,1e-3,25)"';
11— tau = 120e-6; % time constant
04 F 12— v = 400e-3%(1 - exp(-t/tau));
13
14 % add noise to y data
035+ 1L5= sig = 1be-3;
1l(5= n = sig*randn(size(v)):
17 — vn = v + n;
0.3} 18
19 %% fit an exponential to the data
20— expFit fittype ('VE*(1 - exp(-t/tau))',...
E 0.25 21 'independent', 't');
22
= V(t) =0 41(1 _ e-t!‘I ,4E-04) 23—  expFitObj = fit (t,vn,expFit);
> 02 ’ 1 24
r2 - 0-9789 23] %% extract fit parameters from cfit object
26— VE fit expFitObj.VL;
0.15 i 2T = tau fit expFitObj.tau;
28
29 %% evaluate the fit
0.1 i 30— tfit = linspace (0,t (end),2000);
SilL= viit = VEf fit* (1 - exp(-tfit/tau fit));
SiE—= viitr2 = VE fit* (1 - exp(-t/tau fit));
0.05 1 33 = -
34 %% coefficient of determination
SE= vbar = mean (vn) ;
0 A | A \ 36i= St = sum({(vn - wvbar)."2);
0 0.2 0.4 0.6 0.8 1 3= Sr = sum((vn - vfitr2)."2);
38— r? = (St - Sr)/st
t [msec] o
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