SECTION 9: ENGINEERING APPLICATIONS

ENGR 112 - Introduction to Engineering Computing

2
 Systems of Equations

Systems of Equations

\square Systems of equations common in all engineering disciplines
\square For N unknown variables, we need a system of N equations

- Can represent in matrix form:

$$
\mathbf{A x}=\mathbf{b}
$$

- A : $N \times N$ matrix of known, constant coefficients
- $x: N \times 1$ vector of unknowns
- $b: N \times 1$ vector of known constants
\square Many tools exist for solving:
- By hand - substitution, Gaussian elimination, etc.
- Scientific calculators
- Here, we will look at the tools available within MATLAB

A System of Equations - Example

\square Consider the following scenario
\square Three masses
$\square m_{1}, m_{2}$, and m_{3}
\square Three springs
$\square k_{1}, k_{2}, k_{3}$
\square Connected in series and suspended
\square Determine the displacement of each mass from its unstretched position

A System of Equations - Example

Three unknown displacements: x_{1}, x_{2}, x_{3}
\square Need three equations to find displacements
\square Apply Newton's second law to each mass

A System of Equations - Example

\square Steady-state, so no acceleration: $\quad \ddot{x}_{i}=0, \forall i$

$$
\begin{aligned}
& m_{1} g+k_{2}\left(x_{2}-x_{1}\right)-k_{1} x_{1}=0 \\
& m_{2} g+k_{3}\left(x_{3}-x_{2}\right)-k_{2}\left(x_{2}-x_{1}\right)=0 \\
& m_{3} g-k_{3}\left(x_{3}-x_{2}\right)=0
\end{aligned}
$$

\square Rearranging

$$
\begin{array}{rr}
\left(k_{1}+k_{2}\right) x_{1} & -k_{2} x_{2}+0 x_{3}=m_{1} g \\
-k_{2} x_{1}+\left(k_{2}+k_{3}\right) x_{2}-k_{3} x_{3}=m_{2} g \\
0 x_{1}-k_{3} x_{2}+k_{3} x_{3}=m_{3} g
\end{array}
$$

A System of Equations - Example

\square Our system of three equations

$$
\begin{gathered}
\left(k_{1}+k_{2}\right) x_{1} \quad-k_{2} x_{2} \quad+0 x_{3}=m_{1} g \\
-k_{2} x_{1}+\left(k_{2}+k_{3}\right) x_{2}-k_{3} x_{3}=m_{2} g \\
0 x_{1}-k_{3} x_{2}+k_{3} x_{3}=m_{3} g
\end{gathered}
$$

can be put into matrix form

$$
\left[\begin{array}{ccc}
\left(k_{1}+k_{2}\right) & -k_{2} & 0 \\
-k_{2} & \left(k_{2}+k_{3}\right) & -k_{3} \\
0 & -k_{3} & k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
m_{1} g \\
m_{2} g \\
m_{3} g
\end{array}\right]
$$

A System of Equations - Example

$$
\left[\begin{array}{ccc}
\left(k_{1}+k_{2}\right) & -k_{2} & 0 \\
-k_{2} & \left(k_{2}+k_{3}\right) & -k_{3} \\
0 & -k_{3} & k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
m_{1} g \\
m_{2} g \\
m_{3} g
\end{array}\right]
$$

\square We can rewrite this matrix equation as

$$
\mathbf{A x}=\mathbf{b}
$$

\square Can apply tools of linear algebra to determine the vector of unknown displacements

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Solution Using Matrix Inverse

\square We have a system of equations:

$$
\mathbf{A x}=\mathbf{b}
$$

\square If a solution exists, then the coefficient matrix, \mathbf{A}, is invertible

- Not always the case
\square Left-multiply by $\mathbf{A}^{\mathbf{- 1}}$ to solve for the vector of unknowns, x

$$
\begin{aligned}
& A^{-1} A x=A^{-1} b \\
& I x=A^{-1} b \\
& x=A^{-1} b
\end{aligned}
$$

Solution Using Matrix Inverse

\square Our linear system is described by the matrix equation

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\left(k_{1}+k_{2}\right) & -k_{2} & 0 \\
-k_{2} & \left(k_{2}+k_{3}\right) & -k_{3} \\
0 & -k_{3} & k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
m_{1} g \\
m_{2} g \\
m_{3} g
\end{array}\right]} \\
\mathbf{A x}=\mathbf{b}
\end{gathered}
$$

Find the displacements, \mathbf{x}, for the following system parameters

- $k_{1}=500 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{2}=800 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{3}=400 \frac{\mathrm{~N}}{\mathrm{~m}}$

口 $m_{1}=3 \mathrm{~kg}, m_{2}=1 \mathrm{~kg}, m_{3}=7 \mathrm{~kg}$

Solution Using Matrix Inverse

Solution Using mldivide.m,

\square MATLAB has a second division function
\square Matrix left division: mldivide .m, \}
\square Use mldivide to solve

$$
\mathbf{A x}=\mathbf{b}
$$

\square If \mathbf{A}^{-1} exists, then

$$
x=A \backslash b ;
$$

is equivalent to

$$
x=\operatorname{inv}(A) * b ;
$$

\square But, does not calculate \mathbf{A}^{-1}
\square Faster and more numerically robust

Solution Using mldivide.m, \}

Numerical Differentiation

Differentiation

\square As engineers, we often deal with rates

- Changes in on quantity with respect to another
\square Often these are rates with respect to time, e.g.:
- Velocity: change in position w.r.t. time
\square Acceleration: change in velocity w.r.t. time
- Power: time rate of energy transfer
\square Changes in voltage or current w.r.t. time
\square Etc.
\square Mathematically, these rates are described by derivatives
\square Calculation of a derivative is differentiation

Derivatives

\square For example, consider an object whose position as a function of time is

$$
x(t)=2 m \cdot\left(1-e^{-t}\right)
$$

\square At any point in time, t, the object's velocity, $v(t)$, is given by the time rate of change of position

- That is, the derivative w.r.t. time of position

$$
v(t)=\frac{d x}{d t}=\dot{x}(t)=x^{\prime}(t)
$$

Derivatives

\square Velocity is the rate of change of position w.r.t. time

- Slope of the position graph
- The derivative of position

$$
v(t)=\frac{d x}{d t}=\dot{x}(t)
$$

\square You know/will learn to differentiate mathematical expressions, e.g.

$$
\begin{aligned}
& x(t)=2 m \cdot\left(1-e^{-t}\right) \\
& \dot{x}(t)=v(t)=2 \frac{m}{s} \cdot e^{-t}
\end{aligned}
$$

\square Often, we would like to calculate a derivative, but we do not have a mathematical expression, e.g.

- Measurement data
- Simulation data, etc.
\square Then, we can approximate the derivative numerically

Numerical Differentiation

\square Data we want to differentiate are discrete

- Sampled - not continuous
- Data only exist at discrete points in time
- Result of simulation or measurement, etc.
\square Numerical differentiation

- Approximation of the slope at each discrete data point
\square Several methods exist for numerical differentiation
\square Varying complexity and accuracy
\square Here, we'll focus on the forward difference method

Forward Difference Method

Forward difference method

- Approximate $\dot{x}\left(t_{i}\right)$ using $x\left(t_{i}\right)$ and $x\left(t_{i+1}\right)$
- Data at the current time point and one time step forward

$$
\dot{x}\left(t_{i}\right) \approx \frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{t_{i+1}-t_{i}}=\frac{\Delta x}{\Delta t}
$$

Forward Difference in MATLAB

\square Numerical differentiation in MATLAB

$$
\dot{x}\left(t_{i}\right) \approx \frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{t_{i+1}-t_{i}}=\frac{\Delta x}{\Delta t}
$$

\square We would have:

- Time vector, t
- Possibly, but not necessarily evenly spaced
- Data vector, $x(t)$
- Function to be differentiated
\square Use diff. m to calculate Δx and Δt vectors
\square Use array division, . /, to calculate $\Delta x / \Delta t$ at each time point
\square No $\Delta x / \Delta t$ value at the last time point

Numerical Differentiation - Example

\square Consider again an object whose position is given by: $x(t)=2 m \cdot\left(1-e^{-t}\right)$
\square Use forward difference to approximate velocity

- Assume a 200 msec sample period
\square Error would improve with smaller time steps
\% time differences
\% position differences
\% approximate derivative

Numerical Integration

Integration

$$
\int_{a}^{b} f(t) d t
$$

\square Integration is a mathematical operation involving the calculation of a continuous sum over some interval

- The inverse of differentiation - the antiderivative

$$
\int f^{\prime}(t) d t=f(t)
$$

\square We have seen that the derivative represents the rate of change of a function w.r.t. its independent variable

- For example, consider the position of an object, $x(t)$
- Velocity of the object is the derivative of position

$$
v(t)=\frac{d x}{d t}=x^{\prime}(t)
$$

- The rate of change of position w.r.t. time

Integration

\square Integration is the inverse of differentiation

- Mathematical transform between a rate of a quantity (e.g., $\left.v(t)=x^{\prime}(t)\right)$ and that quantity (e.g., $x(t)$)

$$
x(t)=\int v(t) d t=\int x^{\prime}(t) d t
$$

\square Examples of integral/derivative relationships:

Velocity
Acceleration
Power
Current

Position
Velocity
Energy
Electrical charge

Integration

\square In your calculus class you learned/will learn to calculate the integral of functions, e.g.,

$$
\begin{aligned}
\int_{0}^{1} e^{-\frac{t}{2}} d t= & -\left.2 \cdot e^{-\frac{t}{2}}\right|_{0} ^{1} \\
& =-2(0.6065-1) \\
\int_{0}^{1} e^{-\frac{t}{2}} d t= & 0.787
\end{aligned}
$$

\square As was the case for differentiation, we often do not have a mathematical expression for the data we want to integrate

- E.g., measurement data or simulation data
- Only have discrete data points
- Integrate numerically

Numerical Integration

\square The derivative of a function is the slope of its graph
\square The integral of a function is the area under its graph
\square For example, distance traveled is the integral of velocity

- Consider a car that travels at a speed of $80 \mathrm{~km} / \mathrm{h}$ for 1 hour and $120 \mathrm{~km} / \mathrm{h}$ for 2 hours
- How far has the car traveled after three hours?

Numerical Integration

\square Distance at $t=3 \mathrm{hr}$:

$$
\begin{aligned}
& x(3)=\int_{0}^{3} v(t) d t \\
& x(3)=\int_{0}^{1} v(t) d t+\int_{1}^{3} v(t) d t \\
& x(3)=80 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot 1 \mathrm{hr}+120 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot 2 \mathrm{hr} \\
& x(3)=320 \mathrm{~km}
\end{aligned}
$$

\square Numerical integration
\square Numerical approximation of area under a curve defined by a function or a discrete data set
\square We will focus on one simple method: the trapezoidal rule

Trapezoidal Rule Integration

\square Approximate the integral between adjacent time point:

- Approximate area under the curve between those time points
- Area of a trapezoid

$$
\begin{aligned}
& \text { Area } \approx \frac{f\left(t_{i}\right)+f\left(t_{i+1}\right)}{2} \cdot\left(t_{i+1}-t_{i}\right) \\
& \text { Area } \approx(\text { Avg } . \text { height }) \cdot(\text { width })
\end{aligned}
$$

Trapezoidal Rule Integration

\square Overall integral approximated by the approximate total area

- Sum of all individual trapezoidal segment areas

Trapezoidal Rule Integration

$$
\begin{aligned}
& \int_{t_{0}}^{t_{6}} f(t) d t \approx \sum_{i=0}^{5} \frac{f\left(t_{i}\right)+f\left(t_{i+1}\right)}{2} \cdot\left(t_{i+1}-t_{i}\right) \\
& \int_{t_{0}}^{t_{6}} f(t) d t \approx\left[\frac{f\left(t_{0}\right)+f\left(t_{1}\right)}{2} \cdot\left(t_{1}-t_{0}\right)\right]+\left[\frac{f\left(t_{1}\right)+f\left(t_{2}\right)}{2} \cdot\left(t_{2}-t_{1}\right)\right]+\cdots \\
& \cdots+\left[\frac{f\left(t_{5}\right)+f\left(t_{6}\right)}{2} \cdot\left(t_{6}-t_{5}\right)\right]
\end{aligned}
$$

Trapezoidal Rule in MATLAB - trapz .m

$$
\mathrm{I}=\operatorname{trapz}(\mathrm{x}, \mathrm{y})
$$

- X: vector of independent variable data
- y : vector of dependent variable data
\square I: trapezoidal rule approximation to the integral of y with respect to x (a scalar)
\square Data need not be equally-spaced
\square Segment widths calculated from X values

Trapezoidal Rule - Example


```
5 % the function to be integrated (MATLAB's humps.m + 20)
% in practice, we would generally not have this
f=@(t) 1./((t-.3).^2 +.01) + 1./((t-.9).^2 + .04) + 14;
% expression of true integral
% in practice, we would generally not have this either
intf = @(t) 14*t + 10*atan(10*t - 3) + 5*atan(5*t - 9/2);
% evaluate f(t) over [a,b] with N segments, N+1 samples
a =0;
b}=1
N}=6
t = linspace (a,b,N+1);
y = f(t); % data to be integrated
% approx. the integral over [a,b] using trapz.m
Ihat = trapz(t,y);
% the value of the true integral over [a,b]
I = intf(b) - intf(a);
% percent error of the numerical approximation
err = (Ihat - I)/I * 100;
```


Trapezoidal Rule - Example

\square Error decreases as

- Number of segments (sampling frequency) increases
- Segment size (sampling period) decreases

Indefinite Integrals

\square Sometimes, we want to know the result of an integral from a to b

- A definite integral
- A number
- E.g., given velocity $v(t)$, find the total distance traveled

$$
\Delta x=x(b)-x(a)=\int_{a}^{b} v(t) d t
$$

\square Other times, we would like the result of an integral as a function of time

- An indefinite integral or a cumulative integral
- E.g., given $v(t)$, find the distance traveled as a function of time

$$
x(t)=\int_{0}^{t} v(\tau) d \tau
$$

Indefinite Integrals

\square Velocity, $v(t)$:
\square Integrate velocity
 to get distance as a function of time:

$$
x(t)=\int v(t) d t
$$

Trapezoidal Rule in MATLAB - cumt rapz.m

I = cumtrapz (x, y)

$\square \mathrm{X}$: n -vector of independent variable data

- y : n -vector of dependent variable data
- I: trapezoidal rule approximation to the cumulative integral of y with respect to \times (an n-vector)
\square Result is a vector - equivalent to:

$$
I(x)=\int_{x_{1}}^{x} y(\tilde{x}) d \tilde{x}
$$

\square Data need not be equally-spaced

trapz.m and cumtrapz.m


```
% trapz_test.m
clear all; clc
% create the data to be integrated
x = linspace (0, 1, 2000);
y = humps (x);
% definite integral
I = trapz (x,y);
% cumulative or indefinite integral
Ic = cumtrapz(x,y);
figure(1); clf
subplot (211)
plot(x,y,'-b','LineWidth',2);
ylabel('f(x)')
title('Integrating with trapz.m and cumtrapz.m',...
    'FontWeight','Bold')
subplot (212)
plot(x, Ic,'-b','LineWidth', 2) ;
xlabel('x'); ylabel('I(x)')
text(0.65,15,['I = ',num2str(I,'%l.4f')],...
    'FontSize',12,'FontName','Tahoma')
```


Integrating Functions-integral.m

\square If we do have an expression for the function to be integrated, we can use MATLAB's integral.m function:
I = integral(f, a,b)

- f: handle to the function to be integrated
- a: lower integration limit
- b: upper integration limit
\square I: numerical approximation of the integral
\square Calculates $I=\int_{a}^{b} f(x) d x$

39
 Curve Fitting

Curve Fitting

\square Engineers often deal with discrete data sets, e.g.

- E.g., measurement or simulation data
\square Typically, that data is noisy
- Measurement noise
- Random variations, external disturbances, etc.
\square Typically don't have a mathematical expression for the data
- But, we may want one
- Sometimes, we may know the data should follow a certain type of function
E.g., linear, quadratic, exponential, etc.
\square We can fit a curve to the data
- Determine function parameters that best fit the data
- E.g., slope and intercept values for a linear relationship
- Or, determine what type of function provides the best fit
- E.g., linear, quadratic, exponential, etc.

Curve Fitting

\square Consider the following engineering example:
\square An inexpensive temperature sensor is to be used to measure ambient temperature

- Temperature measured and recorded by a micro-controller
- Low accuracy (inexpensive)
\square Sensor output compared to actual temperature may look like:

Curve Fitting

\square Ideally, the sensor temperature, T_{S}, would equal the true temperature, T :

$$
T_{s}=T
$$

\square But, due to inaccuracy:

$$
T_{s}=a_{1} \cdot T+a_{0}
$$

- a_{1} : proportional error
- a_{0} : offset error

Curve Fitting

\square To achieve accurate measurements, we could calibrate the sensor
\square Measure a range of temperatures with the inexpensive sensor and an accurate sensor

- Obtain a dataset representing sensor temperature, T_{s}, as a function of true temperature, T
- That is, determine a_{1} and a_{0} such that

$$
T_{S}=f(T)=a_{1} T+a_{0}
$$

\square Then, we can map sensor temperature to true temperature

$$
T=\frac{T_{S}}{a_{1}}-\frac{a_{0}}{a_{1}}
$$

Curve Fitting

\square In practice, there would be two sources of error between actual and measured temperatures

- Inherent sensor inaccuracy
- Measurement noise
\square Actual measured data, \widehat{T}, may look like:

Curve Fitting

\square Determine the blue line (a_{1} and a_{0}) that provides the best fit to the measured data (red squares)
\square How do we define "best fit"?

Least-Squares Fit

\square What constitutes the best fit?
\square Want to determine inherent sensor behavior,

$$
T_{S}=a_{1} \cdot T+a_{0}
$$

given noisy measurement data,

$$
\hat{T}=T_{s}+e
$$

where e represents measurement error

Least-Squares Fit

\square Errors between data points and the line fit to the data are called residuals
\square Best fit criterion:
\square Minimize the sum of the squares of the residuals

\square A least-squares fit
\square Minimize:

$$
S_{r}=\sum_{i} e_{i}^{2}=\sum_{i}\left[\hat{T}_{i}-\left(a_{1} T_{i}+a_{0}\right)\right]^{2}
$$

Goodness of Fit

\square How well does a function fit the data?
\square Is a linear fit best? A quadratic, higher-order polynomial, or other non-linear function?
\square Want a way to be able to quantify goodness of fit
\square Quantify spread of data about the mean prior to regression:

$$
S_{t}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

\square Following regression, quantify spread of data about the regression line (or curve):

$$
S_{r}=\sum\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

Goodness of Fit

$\square S_{t}$ quantifies the spread of the data about the mean
$\square S_{r}$ quantifies spread about the best-fit line (curve)
\square The spread that remains after the trend is explained

- The unexplained sum of the squares
$\square S_{t}-S_{r}$ represents the reduction in data spread after regression explains the underlying trend
\square Normalize to S_{t} - the coefficient of determination

$$
r^{2}=\frac{S_{t}-S_{r}}{S_{t}}
$$

Coefficient of Determination

$$
r^{2}=\frac{S_{t}-S_{r}}{S_{t}}
$$

\square For a perfect fit:
\square No variation in data about the regression line

- $S_{r}=0 \quad \rightarrow \quad r^{2}=1$
\square If the fit provides no improvement over simply characterizing data by its mean value:
- $S_{r}=S_{t} \quad \rightarrow \quad r^{2}=0$
\square If the fit is worse at explaining the data than their mean value:
- $S_{r}>S_{t} \quad \rightarrow \quad r^{2}<0$

Coefficient of Determination

\square Don't rely too heavily on the value of r^{2}
\square Anscombe's famous data sets:

\square Same line fit to all four data sets
$\square r^{2}=0.67$ in each case

Curve Fitting in MATLAB

\square So far we have considered fitting a line to data

- A linear least-squares line fit
\square Can also fit other functions to data, e.g.,
- Higher-order polynomials - quadratic, cubic, etc.
- Exponentials
\square Sinusoids
- Power equation, etc.
\square MATLAB has built-in functions to perform curve fitting
a polyfit.m-for fitting polynomials
- fit.m-for fitting any other user-specified curves

Polynomial Regression-polyfit.m

$$
\text { p = polyfit }(x, y, m)
$$

- $\mathrm{X}: n$-vector of independent variable data values
- y : n-vector of dependent variable data values
- m : order of the polynomial to be fit to the data $(m<n)$
- p: $(m+1)$-vector of best-fit polynomial coefficients
\square Polynomial coefficients in MATLAB
- Consider a polynomial created by polyfit.m

$$
y=a_{2} x^{2}+a_{1} x+a_{0}
$$

- MATLAB would return

$$
p=\left[a_{2}, a_{1}, a_{0}\right]
$$

Polynomial Evaluation - polyval.m

$\square \mathrm{n}^{\text {th }}$-order polynomial represented as $(n+1)$-vector
\square For example, the cubic polynomial

$$
y=2 x^{3}-8 x^{2}+3 x-4
$$

would be represented as

$$
p=[2,-8,3,-4]
$$

\square Use polyval.m to evaluate that polynomial over a vector of independent variable values

$$
y=\operatorname{polyval}(p, x)
$$

- $\mathrm{p}:(n+1)$-vector of $n^{\text {th }}$-order polynomial coefficients
- X : vector of independent variable data values
- y : vector result of evaluating the polynomial at all values in X

Polynomial Fit - Example

K. Webb

```
%% create dataset
% noiseless data
% polynomial with roots at 1, 3, and 9
%}y=\mp@subsup{x}{}{\wedge}3-13\mp@subsup{x}{}{\wedge}2+39x-2
p = poly ([1,3,9]);
x = linspace (0,10,25);
y = polyval (p,x) ;
% add noise to y data
sig = 0*8;
v = sig*randn(size(y));
yn}=\textrm{y}+\textrm{v}
%% use polyfit.m to perform the fit
pfit = polyfit(x,yn, 3);
%% evaluate the best-fit cubic
xfit = linspace(min(x),max(x), 200);
y3 = polyval(pfit,xfit);
y3r2 = polyval(pfit,x);
%% coefficient of determination
ybar = mean(yn);
St = sum((yn - ybar).^2);
Sr = sum((yn - y3r2).^2);
r2 = (St - Sr)/St
```


Fitting User-Specified Curves - fit.m

\square To fit a curve other than a polynomial, use fit .m
fitobject = fit(x,y,fittype)

- X: column vector of independent variable data values
- y : column vector of dependent variable data values
- fittype: model type to fit - specified as a library model or created with the fittype.m function
- fitobject: cfit object containing fit parameters

Specifying the Model - fittype.m

\square Define the model to be used by fit.m

```
fitmod = fittype(expression,name,value,...)
```

口 expression: mathematical function to be fit to data

- user-specified or a standard library model (see help)
- name: property name to specify (see help)
\square value: value assigned to name - can specify multiple property name/value pairs
- fitmod: fittype object to be passed to fit.m

Exponential Fit - Example

K. Webb

```
%% create dataset
% noiseless data
t = linspace (0,1e-3,25)';
tau = 120e-6; % time constant
v = 400e-3*(1 - exp(-t/tau));
% add noise to y data
sig = 15e-3;
n = sig*randn(size(v));
vn}=\textrm{v}+\textrm{n}\mathrm{ ;
%% fit an exponential to the data
expFit = fittype('Vf*(1 - exp(-t/tau))',...
    'independent','t');
expFitObj = fit(t,vn, expFit);
%% extract fit parameters from cfit object
Vf_fit = expFitObj.Vf;
tau fit = expFitObj.tau;
%% evaluate the fit
tfit = linspace(0,t (end), 2000);
vfit = Vf_fit*(1 - exp(-tfit/tau_fit));
vfitr2 = Vf_fit*(1 - exp(-t/tau_fit));
%% coefficient of determination
vbar = mean(vn);
St = sum((vn - vbar).^^2);
Sr = sum((vn - vfitr2).^2);
r2 = (St - Sr)/St
```

