SECTION 2: RESISTIVE CIRCUIT ANALYSIS I

ENGR 201 - Electrical Fundamentals I

Resistance \& Conductance

Resistance

\square Resistance

- The degree to which a circuit element opposes the flow of electrical current
\square Schematic symbol:

\square Units: ohms (Ω)
\square May be discrete, intentional circuit components, or parasitic resistance of wires, cables, interconnects, etc.

Resistance - Fluid Analogy

\square Electrical resistance is analogous to the resistance of a pipe to fluid flow due to friction

Resistance - Thermal Analogy

\square Electrical resistance is analogous to the resistance of heat conduction through a solid

Conductance

\square Electrical conductance is the degree to which a circuit element allows the flow of electrical current
\square Conductance is the inverse of resistance

$$
G=\frac{1}{R}
$$

\square Schematic symbol:

\square Units: siemens or mhos $\left(S\right.$ or $\left.\Omega^{-1}\right)$

Real Resistors

\square Resistors for use in electronic circuits come in many shapes and sizes depending on their target application
\square Size primarily determined by power handling capability

- Larger resistors can dissipate more power
\square Two primary form factors:
- Axial lead resistors
- Chip resistors

Axial Lead resistors

\square Cylindrical resistive component with wire leads extending from each end
\square Used with through-hole technology printed circuit boards (PCB’s)

- Useful for prototyping
- Size varies with power handling capacity

Resistor Color Code

Chip Resistors

\square Small rectangular footprint
व 0805-0.080" x 0.050"
ㅁ 0603-0.060" x 0.030"

- 0402-0.040" x 0.020"

口 0201-0.020" x 0.010"
\square Used with surfacemount technology PCB's
\square More common than axial lead in modern electronics

11
 Ohm's Law

Ohm's Law

Georg Simon Ohm, 1789-1854

$I=\frac{V}{R}$

"The current through a resistor is proportional to the voltage across the resistor and inversely proportional to the resistance."

Ohm's Law - said differently

"The voltage across a resistor is proportional to the current through the resistor and proportional to the resistance."

Ohm's Law - fluid analogy

\square Voltage is analogous to pressure

- Driving potentials
\square Electrical current is analogous to flow rate
\square A pipe carrying fluid has some resistance determined by physical characteristics (length, diameter, roughness, etc.)

$$
\begin{array}{ll}
I \propto\left(V_{1}-V_{2}\right), & I \propto \frac{1}{R} \\
\left(V_{1}-V_{2}\right) \propto I, & \left(V_{1}-V_{2}\right) \propto R
\end{array}
$$

Section of pipe

$\frac{\text { Section of pipe }}{}$	$Q \propto\left(P_{1}-P_{2}\right)$,	$Q \propto \frac{1}{R_{\text {pipe }}}$
$\xrightarrow{Q} \quad R_{\text {pipe }}$	P_{2}	
	$\left(P_{1}-P_{2}\right) \propto Q$,	$\left(P_{1}-P_{2}\right) \propto R_{\text {pipe }}$

Ohm's Law - thermal analogy

\square Voltage is analogous to temperature

- Driving potentials
\square Electrical current is analogous to heat flux
\square A solid slab or wall has some thermal resistance determined by physical characteristics (thickness, material properties, etc.)

Power in Resistors

\square Resistors dissipate power
\square Rate of power dissipation given by

$$
P=V \cdot I
$$

\square According to Ohm's law

$$
V=I \cdot R \quad \text { and } \quad I=V / R
$$

\square So for resistors (only), power is given by

$$
P=I^{2} R
$$

and

$$
P=\frac{V^{2}}{R}
$$

17 Example Problems

Find:

- I_{1}, I_{2}, I_{3}, and I_{s}.
- The power dissipated by each resistor three different ways.
- The power supplied by the source.

How much current does a 50 W incandescent lightbulb draw? What is its resistance?

The following circuit represents a battery
connected to a load through a long wire.
How much current flows through the wire to the load?

How much power is delivered to the load?
How much power is lost in the wire?

A 24 V source supplies 160 mA to a resistive load. How much power is delivered to the load? What is the equivalent resistance of the load?

Series \& Parallel Circuits

Series Circuits

\square Series-connected components
\square Share one common node

- Nothing else connected to that node
- Connected end-to-end
- Equal current through each component

Resistors, R_{1} and R_{2}, and voltage source, V_{s}, are all connected in series

$$
I_{s}=I_{1}=I_{2}
$$

Parallel Circuits

\square Components in parallel
\square Share two common nodes
\square Connected side-by-side
\square Equal voltage across each component

Resistors, R_{1} and R_{2}, and voltage source, V_{s}, are all connected in parallel

$$
V_{s}=V_{1}=V_{2}
$$

Series Resistance

\square Resistances in series add

$$
R_{e q}=R_{1}+R_{2}
$$

\square In general,

$$
R_{e q}=\sum R_{i}
$$

Parallel Resistance

\square Conductances in parallel add

\square For two parallel resistors (only):

$$
R_{e q}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

28

Voltage \& Current Dividers

Voltage Dividers

\square Voltage across series resistors divides proportional to resistance
\square Consider two series resistors:

- Current through the resistors

$$
I=\frac{V_{s}}{R_{1}+R_{2}}
$$

- Ohm's law gives the voltage across either resistor

$$
\begin{aligned}
V_{n} & =I R_{n} \\
V_{1} & =\frac{V_{s}}{R_{1}+R_{2}} R_{1}=V_{s} \frac{R_{1}}{R_{1}+R_{2}} \\
V_{2} & =\frac{V_{s}}{R_{1}+R_{2}} R_{2}=V_{s} \frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Voltage Dividers

\square In general, the voltage across one in a series of resistors is given by

$$
V_{n}=V_{\text {total }} \cdot \frac{R_{n}}{\Sigma R_{i}}
$$

- For example:

$$
\begin{aligned}
& V_{3}=16 V \frac{300 \Omega}{1 k \Omega+200 \Omega+300 \Omega+100 \Omega} \\
& V_{3}=16 V \frac{300 \Omega}{1.6 k \Omega}=3 V
\end{aligned}
$$

Current Dividers

\square Current through parallel-connected resistances divides proportional to conductance
\square Consider two parallel resistors:

- Voltage across the resistors

$$
V_{o}=\frac{I_{S}}{G_{1}+G_{2}}=\frac{I_{S}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=I_{S} \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

- Ohm's law gives the current through either resistor

$$
\begin{aligned}
& I_{n}=\frac{V_{o}}{R_{n}} \\
& I_{1}=\frac{I_{S}}{R_{1}} \frac{R_{1} R_{2}}{R_{1}+R_{2}}=I_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=\frac{I_{S}}{R_{2}} \frac{R_{1} R_{2}}{R_{1}+R_{2}}=I_{s} \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

Current Dividers

\square Current through one of two parallel resistors is given by

$$
I_{1}=I_{\text {total }} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

$$
I_{2}=I_{\text {total }} \cdot \frac{R_{1}}{R_{1}+R_{2}}
$$

- One of the two resistors may be a parallel combination of multiple resistors
\square More generally, expressed in terms of conductance
- Applies to any number of parallel resistances

$$
I_{n}=I_{\text {total }} \cdot \frac{G_{n}}{\sum G_{i}}
$$

Current Dividers

\square For example, determine I_{1}
\square First, combine the 300Ω and 100Ω resistors in parallel

$$
R_{e q}=\left(\frac{1}{300 \Omega}+\frac{1}{100 \Omega}\right)^{-1}=75 \Omega
$$

\square Next, apply the current divider equation:

$$
\begin{aligned}
& I_{1}=I_{\text {total }} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{1}=22 A \frac{75 \Omega}{200 \Omega+75 \Omega} \\
& I_{1}=6 A
\end{aligned}
$$

Current Dividers

\square Or, using conductances:

$$
I_{1}=22 A \frac{\frac{1}{200 \Omega}}{\frac{1}{200 \Omega}+\frac{1}{300 \Omega}+\frac{1}{100 \Omega}}
$$

$$
\begin{aligned}
& I_{1}=22 \mathrm{~A} \cdot \frac{5 \mathrm{mS}}{5 \mathrm{mS}+3.33 \mathrm{mS}+10 \mathrm{mS}} \\
& I_{1}=22 \mathrm{~A} \cdot 0.2727 \\
& I_{1}=6 \mathrm{~A}
\end{aligned}
$$

35
 Example Problems

Determine the equivalent input resistance, $\mathrm{R}_{\text {eq }}$, for the following network.

Determine R_{1} and R_{2}, such that $\mathrm{V}_{1}=2 \mathrm{~V}$, and $\mathrm{V}_{2}=1.25 \mathrm{~V}$.

Determine V_{o} in the following circuit.

43

Kirchhoff's Laws

Kirchhoff's Current Law - KCL

"The algebraic sum of currents entering any node must be zero."

Gustav Kirchhoff, 1824-1887
\square Charge cannot accumulate in a node
\square What flows in, must flow out

\square Analogous to the conservation of mass

KCL \& the Conservation of Mass

\square Consider fluid-carrying pipes connected in a Tee

- Tee connector is analogous to electrical node
- Pipes analogous to branches
\square According to the conservation of mass, what flows in must flow out
- Sum of the flow rates must be zero

KCL - Example

\square Determine the current through the $1 \mathrm{k} \Omega$ resistor, I_{3}
\square Applying KCL

$$
\begin{aligned}
& I_{1}+I_{2}+I_{3}=0 \\
& I_{3}=-I_{1}-I_{2}
\end{aligned}
$$

$\square I_{1}$ and I_{2} are known:

$$
I_{1}=10 m A, \quad I_{2}=-1 m A
$$

\square Solving for I_{3} :

$$
\begin{aligned}
& I_{3}=-10 m A+1 m A \\
& I_{3}=-9 m A
\end{aligned}
$$

\square The negative sign indicates that I_{3} flows in the opposite direction of what was assumed

Kirchhoff's Voltage Law - KVL

Gustav Kirchhoff, 1824-1887
"The algebraic sum of voltage changes taken around any loop in a network is equal to zero."

KVL around Loop 1
KVL around Loop 2
$V_{1}-V_{2}-V_{3}=0 \quad V_{1}-V_{2}-V_{4}-V_{5}=0$
\square Conservation of energy applied to electric circuits

KVL \& the Conservation of Energy

\square Voltage drops around a circuit are analogous to changes in potential energy while traversing a loop
\square PE varies with elevation
\square Increases with each climb
\square Decreases with each descent

- Initial/final elevation \& PE are the same
\square Sum of PE rises/drops around the loop is zero
\square Just like voltage drops around a circuit

KVL - Example

\square Determine the voltage, V_{2}, across the $3.3 \mathrm{k} \Omega$ resistor
\square Applying KVL

$$
\begin{aligned}
& V_{1}-V_{2}-V_{3}=0 \\
& V_{2}=V_{1}-V_{3}
\end{aligned}
$$

$\square V_{1}$ and V_{3} are known:

$$
V_{1}=4 \mathrm{~V}, \quad V_{3}=12 \mathrm{~V}
$$

\square Solving for V_{2} :

$$
\begin{aligned}
& V_{2}=4 \mathrm{~V}-12 \mathrm{~V} \\
& V_{2}=-8 \mathrm{~V}
\end{aligned}
$$

\square The negative sign indicates that the polarity of V_{2} is the opposite of what was assumed

Delta and Wye Networks

Delta and Wye Networks

\square Circuits may comprise components that are connected neither in series nor in parallel, e.g.:

- Wheatstone bridge circuit
- Three-phase AC power systems
- Motors
- Generators
- Transformers
\square Often, these include wye and/or delta networks

Bridge network

Wye network

Delta network

Y- Δ Transformations

\square Circuit analysis is often simplified if we are able to convert between Y and Δ networks
\square To aid in developing the Y - Δ conversion relationships, we can redraw the Δ network as a Π network:

\square And the Y network as a T network:

Δ-to-Y Conversion

\square For a Y network and Δ network to be equivalent, they must have equal resistance between corresponding terminals

- Between node A and node C:

$$
\begin{align*}
& R_{A C_{Y}}=R_{1}+R_{3}=R_{A C_{\Delta}}=R_{b} \|\left(R_{a}+R_{C}\right) \\
& R_{1}+R_{3}=\frac{R_{b}\left(R_{a}+R_{c}\right)}{R_{a}+R_{b}+R_{c}} \tag{1}
\end{align*}
$$

- Between B and C :

$$
\begin{align*}
& R_{B C_{Y}}=R_{2}+R_{3}=R_{B C_{\Delta}}=R_{a} \|\left(R_{b}+R_{C}\right) \\
& R_{2}+R_{3}=\frac{R_{a}\left(R_{b}+R_{c}\right)}{R_{a}+R_{b}+R_{c}} \tag{2}
\end{align*}
$$

Δ-to-Y Conversion

\square Similarly, between nodes A and B :

$$
\begin{align*}
& R_{A B_{Y}}=R_{1}+R_{2}=R_{A B_{\Delta}}=R_{c} \|\left(R_{a}+R_{b}\right) \\
& R_{1}+R_{2}=\frac{R_{c}\left(R_{a}+R_{b}\right)}{R_{a}+R_{b}+R_{c}} \tag{3}
\end{align*}
$$

\square Subtracting (2) from (1) yields:

$$
\begin{equation*}
R_{1}-R_{2}=\frac{R_{c}\left(R_{b}-R_{a}\right)}{R_{a}+R_{b}+R_{c}} \tag{4}
\end{equation*}
$$

Δ-to-Y Conversion

\square Adding (4) to (3) gives an expression for R_{1} :

$$
\begin{equation*}
R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}} \tag{5}
\end{equation*}
$$

\square Subtracting (4) from (3) gives

$$
\begin{equation*}
R_{2}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} \tag{6}
\end{equation*}
$$

\square And, finally, subtracting (5) from (1) gives

$$
\begin{equation*}
R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}} \tag{7}
\end{equation*}
$$

Y-to- Δ Conversion

\square We can derive a similar set of relationships for converting from a Y network to a Δ network

$$
\begin{aligned}
& R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} \\
& R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} \\
& R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
\end{aligned}
$$

Y- Δ Transformations

Each resistor in the equivalent Y network is the product of the resistors in the two adjacent Δ branches, divided by the sum of the three Δ resistors

$$
\begin{aligned}
R_{1} & =\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}} \\
R_{2} & =\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} \\
R_{3} & =\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}
\end{aligned}
$$

58

Example Problems

Find V_{1}, V_{2}, and V_{3}.

Determine the current through the circuit, I_{1}.

Determine V_{1} and V_{2} in the following circuit.

