
ENGR 201 – Electrical Fundamentals I

SECTION 2:
RESISTIVE CIRCUIT ANALYSIS I
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Resistance

 Resistance
 The degree to which a circuit element opposes the flow 

of electrical current
 Schematic symbol:

 Units: ohms (Ω)
 May be discrete, intentional circuit components, or 

parasitic resistance of wires, cables, interconnects, 
etc.

R
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Resistance – Fluid Analogy

 Electrical resistance is analogous to the resistance of a 
pipe to fluid flow due to friction

large-diameter pipe

d2

small-diameter pipe

d1

d1 < d2 R1 > R2

large resistor

small resistor

𝑞𝑞1

𝑞𝑞2
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Resistance – Thermal Analogy

 Electrical resistance is analogous to the resistance of 
heat conduction through a solid

R1 > R2

large resistor

small resistor

w1 > w2

thick slab

w1

w2

thin slab
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Conductance

 Electrical conductance is the degree to which a 
circuit element allows the flow of electrical current

 Conductance is the inverse of resistance

𝐺𝐺 =
1
𝑅𝑅

 Schematic symbol: 

 Units: siemens or mhos (𝑆𝑆 or Ω−1)

G
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Real Resistors

 Resistors for use in electronic circuits come in many 
shapes and sizes depending on their target 
application

 Size primarily determined by power handling 
capability
 Larger resistors can dissipate more power

 Two primary form factors: 
 Axial lead resistors
 Chip resistors
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Axial Lead resistors

 Cylindrical resistive component with 
wire leads extending from each end

 Used with through-hole technology 
printed circuit boards (PCB’s)
 Useful for prototyping
 Size varies with power handling capacity

http://www.doctronics.co.uk/resistor.htm

http://www.doctronics.co.uk/resistor.htm
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Resistor Color Code

http://www.elexp.com/t_resist.htm
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Chip Resistors

http://www.mini-systemsinc.com/msithick/chipanat.asp

 Small rectangular 
footprint
 0805 – 0.080” x 0.050”
 0603 – 0.060” x 0.030”
 0402 – 0.040” x 0.020”
 0201 – 0.020” x 0.010”

 Used with surface-
mount technology
PCB’s

 More common than 
axial lead in modern 
electronics
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Ohm’s Law11
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Ohm’s Law

“The current through a resistor is proportional to the voltage across 
the resistor and inversely proportional to the resistance.”

𝐼𝐼 =
𝑉𝑉
𝑅𝑅

Georg Simon Ohm, 1789 – 1854 
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Ohm’s Law – said differently

Georg Simon Ohm, 1789 – 1854 

“The voltage across a resistor is proportional to the current through the 
resistor and proportional to the resistance.”

𝑉𝑉 = 𝐼𝐼 ⋅ 𝑅𝑅
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Ohm’s Law – fluid analogy

 Voltage is analogous to pressure
 Driving potentials

 Electrical current is analogous to flow rate
 A pipe carrying fluid has some resistance determined by physical 

characteristics (length, diameter, roughness, etc.)

Resistor

𝑉𝑉1 𝑉𝑉2
𝐼𝐼

𝑃𝑃2𝑃𝑃1

Section of pipe

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐼𝐼 ∝ 𝑉𝑉1 − 𝑉𝑉2 , 𝐼𝐼 ∝
1
𝑅𝑅

𝑉𝑉1 − 𝑉𝑉2 ∝ 𝐼𝐼, (𝑉𝑉1 − 𝑉𝑉2) ∝ 𝑅𝑅

𝑄𝑄 ∝ 𝑃𝑃1 − 𝑃𝑃2 , 𝑄𝑄 ∝
1

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑃𝑃1 − 𝑃𝑃2 ∝ 𝑄𝑄, 𝑃𝑃1 − 𝑃𝑃2 ∝ 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑄𝑄
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Ohm’s Law – thermal analogy

 Voltage is analogous to temperature
 Driving potentials

 Electrical current is analogous to heat flux
 A solid slab or wall has some thermal resistance determined by physical 

characteristics (thickness, material properties, etc.)

Solid wall

𝑇𝑇1 𝑇𝑇2

𝐼𝐼 ∝ 𝑉𝑉1 − 𝑉𝑉2 , 𝐼𝐼 ∝
1
𝑅𝑅

𝑉𝑉1 − 𝑉𝑉2 ∝ 𝐼𝐼, (𝑉𝑉1 − 𝑉𝑉2) ∝ 𝑅𝑅

Resistor

𝑉𝑉1 𝑉𝑉2
𝐼𝐼

𝑅𝑅𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡

�̇�𝑞

�̇�𝑞 ∝ 𝑇𝑇1 − 𝑇𝑇2 , �̇�𝑞 ∝
1

𝑅𝑅𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡

𝑇𝑇1 − 𝑇𝑇2 ∝ �̇�𝑞, (𝑇𝑇1 − 𝑇𝑇2) ∝ 𝑅𝑅𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡



K. Webb ENGR 201

16

Power in Resistors

 Resistors dissipate power
 Rate of power dissipation given by

𝑃𝑃 = 𝑉𝑉 ⋅ 𝐼𝐼

 According to Ohm’s law

𝑉𝑉 = 𝐼𝐼 ⋅ 𝑅𝑅 and     𝐼𝐼 = 𝑉𝑉/𝑅𝑅

 So for resistors (only), power is given by

𝑃𝑃 = 𝐼𝐼2𝑅𝑅
and

𝑃𝑃 =
𝑉𝑉2

𝑅𝑅
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Example Problems17
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Find:
 I1, I2, I3, and Is.
 The power dissipated 

by each resistor 
three different ways.

 The power supplied 
by the source.

18
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How much current does a 50 W incandescent 
lightbulb draw? What is its resistance?

20
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The following circuit represents a battery 
connected to a load through a long wire.

How much current flows through the wire to 
the load?

How much power is delivered to the load?

How much power is lost in the wire?

21
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A 24 V source supplies 160 mA to a resistive load. How much power is 
delivered to the load? What is the equivalent resistance of the load?

22
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Series & Parallel Circuits23
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Series Circuits

 Series-connected components 
 Share one common node
 Nothing else connected to that node

 Connected end-to-end
 Equal current through each component

Resistors, R1 and R2,  and 
voltage source, Vs, are all 
connected in series

Is = I1 = I2

Is

I2
I1
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Parallel Circuits

 Components in parallel 
 Share two common nodes
 Connected side-by-side
 Equal voltage across each component

Resistors, R1 and R2,  and 
voltage source, Vs, are all 
connected in parallel

Vs = V1 = V2

Is

I2
I1 +

V1
-

+
V2
-
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Series Resistance

 Resistances in series add

𝑅𝑅𝑝𝑝𝑒𝑒 = 𝑅𝑅1 + 𝑅𝑅2
 In general,

𝑅𝑅𝑝𝑝𝑒𝑒 = �𝑅𝑅𝑝𝑝
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Parallel Resistance

 Conductances in parallel add

𝑅𝑅𝑝𝑝𝑒𝑒 = �
1
𝑅𝑅𝑝𝑝

−1

 For two parallel resistors (only):

𝑅𝑅𝑝𝑝𝑒𝑒 =
1
𝑅𝑅1

+
1
𝑅𝑅2

−1

=
𝑅𝑅1𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2
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Voltage & Current Dividers28
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Voltage Dividers

 Voltage across series resistors divides proportional to resistance
 Consider two series resistors:

 Current through the resistors

𝐼𝐼 =
𝑉𝑉𝑠𝑠

𝑅𝑅1 + 𝑅𝑅2

 Ohm’s law gives the voltage across either resistor

𝑉𝑉𝑛𝑛 = 𝐼𝐼𝑅𝑅𝑛𝑛

𝑉𝑉1 =
𝑉𝑉𝑠𝑠

𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1 = 𝑉𝑉𝑠𝑠

𝑅𝑅1
𝑅𝑅1 + 𝑅𝑅2

𝑉𝑉2 =
𝑉𝑉𝑠𝑠

𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅2 = 𝑉𝑉𝑠𝑠

𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2
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Voltage Dividers

 In general, the voltage across one in a series of resistors is 
given by

𝑉𝑉𝑛𝑛 = 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⋅
𝑅𝑅𝑛𝑛
Σ𝑅𝑅𝑝𝑝

 For example:

𝑉𝑉3 = 16 𝑉𝑉
300 Ω

1 𝑘𝑘Ω + 200 Ω + 300 Ω + 100 Ω

𝑉𝑉3 = 16 𝑉𝑉
300 Ω
1.6 𝑘𝑘Ω

= 3 𝑉𝑉
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Current Dividers

 Current through parallel-connected resistances divides proportional to 
conductance

 Consider two parallel resistors:
 Voltage across the resistors

𝑉𝑉𝑡𝑡 =
𝐼𝐼𝑆𝑆

𝐺𝐺1 + 𝐺𝐺2
=

𝐼𝐼𝑆𝑆
1
𝑅𝑅1

+ 1
𝑅𝑅2

= 𝐼𝐼𝑆𝑆
𝑅𝑅1𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

 Ohm’s law gives the current through either resistor

𝐼𝐼𝑛𝑛 =
𝑉𝑉𝑡𝑡
𝑅𝑅𝑛𝑛

𝐼𝐼1 =
𝐼𝐼𝑆𝑆
𝑅𝑅1

𝑅𝑅1𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

= 𝐼𝐼𝑠𝑠
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2

𝐼𝐼2 =
𝐼𝐼𝑆𝑆
𝑅𝑅2

𝑅𝑅1𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

= 𝐼𝐼𝑠𝑠
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2
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Current Dividers

 Current through one of two parallel resistors is given by

𝐼𝐼1 = 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⋅
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
𝐼𝐼2 = 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⋅

𝑅𝑅1
𝑅𝑅1 + 𝑅𝑅2

 One of the two resistors may be a parallel combination of 
multiple resistors

 More generally, expressed in terms of conductance
 Applies to any number of parallel resistances

𝐼𝐼𝑛𝑛 = 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⋅
𝐺𝐺𝑛𝑛
Σ𝐺𝐺𝑝𝑝
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Current Dividers

 Next, apply the current divider equation:

𝐼𝐼1 = 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2

𝐼𝐼1 = 22 𝐴𝐴
75 Ω

200 Ω + 75 Ω

𝐼𝐼1 = 6 𝐴𝐴

 For example, determine 𝐼𝐼1
 First, combine the 300 Ω and 100 Ω resistors in parallel

𝑅𝑅𝑝𝑝𝑒𝑒 =
1

300 Ω
+

1
100 Ω

−1

= 75 Ω
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Current Dividers

 Or, using conductances:

𝐼𝐼1 = 22 𝐴𝐴
1

200 Ω
1

200 Ω + 1
300 Ω + 1

100 Ω

𝐼𝐼1 = 22 𝐴𝐴 ⋅
5 𝑚𝑚𝑆𝑆

5 𝑚𝑚𝑆𝑆 + 3.33 𝑚𝑚𝑆𝑆 + 10 𝑚𝑚𝑆𝑆

𝐼𝐼1 = 22 𝐴𝐴 ⋅ 0.2727

𝐼𝐼1 = 6 𝐴𝐴
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Example Problems35
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Determine the equivalent 
input resistance, Req, for 
the following network.

36
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How much power is 
delivered by the 
voltage source in the 
following network?

38
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Determine V1, V2, V3, and V4.

39
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Determine R1 and R2, such that 
V1 = 2 V, and V2 = 1.25 V.

40
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Determine Vo in the 
following circuit.

42
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Kirchhoff’s Laws43
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Kirchhoff’s Current Law - KCL

 Charge cannot accumulate in a node
 What flows in, must flow out

Gustav Kirchhoff, 1824 – 1887 

“The algebraic sum of currents entering 
any node must be zero.”

 Analogous to the conservation of mass
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KCL & the Conservation of Mass

 Consider fluid-carrying pipes connected in a Tee
 Tee connector is analogous to electrical node
 Pipes analogous to branches

 According to the conservation of mass, what flows in must flow out
 Sum of the flow rates must be zero

node

branches �
𝑝𝑝

𝑄𝑄𝑝𝑝 = 0

𝑄𝑄3

𝑄𝑄2

𝑄𝑄1
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KCL - Example

 Determine the current through the 
1 𝑘𝑘Ω resistor, 𝐼𝐼3

 Applying KCL

𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 = 0

𝐼𝐼3 = −𝐼𝐼1 − 𝐼𝐼2

 𝐼𝐼1 and 𝐼𝐼2 are known:

𝐼𝐼1 = 10 𝑚𝑚𝐴𝐴,   𝐼𝐼2 = −1𝑚𝑚𝐴𝐴

 Solving for 𝐼𝐼3:

𝐼𝐼3 = −10 𝑚𝑚𝐴𝐴 + 1 𝑚𝑚𝐴𝐴

𝐼𝐼3 = −9 𝑚𝑚𝐴𝐴

 The negative sign indicates that 𝐼𝐼3 flows in the opposite direction of 
what was assumed
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Kirchhoff’s Voltage Law - KVL

Gustav Kirchhoff, 1824 – 1887 

“The algebraic sum of voltage changes taken 
around any loop in a network is equal to zero.”

KVL around Loop 1 KVL around Loop 2

 Conservation of energy applied to electric circuits

𝑉𝑉1 − 𝑉𝑉2 − 𝑉𝑉3 = 0 𝑉𝑉1 − 𝑉𝑉2 − 𝑉𝑉4 − 𝑉𝑉5 = 0
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KVL & the Conservation of Energy

 Voltage drops around a circuit are 
analogous to changes in potential energy 
while traversing a loop

 PE varies with elevation
 Increases with each climb
 Decreases with each descent

 Initial/final elevation & PE are the same
 Sum of PE rises/drops around the loop 

is zero 
 Just like voltage drops around a circuit

Elevation
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KVL – Example 

 Determine the voltage, 𝑉𝑉2, across the 
3.3 𝑘𝑘Ω resistor

 Applying KVL

𝑉𝑉1 − 𝑉𝑉2 − 𝑉𝑉3 = 0

𝑉𝑉2 = 𝑉𝑉1 − 𝑉𝑉3

 𝑉𝑉1 and 𝑉𝑉3 are known:

𝑉𝑉1 = 4 𝑉𝑉,   𝑉𝑉3 = 12 𝑉𝑉

 Solving for 𝑉𝑉2:

𝑉𝑉2 = 4 𝑉𝑉 − 12 𝑉𝑉

𝑉𝑉2 = −8 𝑉𝑉

 The negative sign indicates that the polarity of 𝑉𝑉2 is the opposite of 
what was assumed
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Delta and Wye Networks50
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Delta and Wye Networks

 Circuits may comprise components that are connected neither in 
series nor in parallel, e.g.:
 Wheatstone bridge circuit
 Three-phase AC power systems

 Motors
 Generators
 Transformers

 Often, these include wye and/or delta networks 

Wye network Delta network

Bridge network
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Y-Δ Transformations

 Circuit analysis is often simplified if we are able to convert 
between Y and Δ networks

 To aid in developing the Y-Δ conversion relationships, we 
can redraw the Δ network as a Π network:

 And the Y network as a T network:
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Δ-to-Y Conversion

 For a Y network and Δ network to be equivalent, they must have 
equal resistance between corresponding terminals
 Between node A and node C:

𝑅𝑅𝐴𝐴𝐶𝐶𝑌𝑌 = 𝑅𝑅1 + 𝑅𝑅3 = 𝑅𝑅𝐴𝐴𝐶𝐶Δ = 𝑅𝑅𝑏𝑏|| 𝑅𝑅𝑡𝑡 + 𝑅𝑅𝐶𝐶

𝑅𝑅1 + 𝑅𝑅3 = 𝑅𝑅𝑏𝑏 𝑅𝑅𝑎𝑎+𝑅𝑅𝑐𝑐
𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐

(1)

 Between B and C:

𝑅𝑅𝐵𝐵𝐶𝐶𝑌𝑌 = 𝑅𝑅2 + 𝑅𝑅3 = 𝑅𝑅𝐵𝐵𝐶𝐶Δ = 𝑅𝑅𝑡𝑡|| 𝑅𝑅𝑏𝑏 + 𝑅𝑅𝐶𝐶

𝑅𝑅2 + 𝑅𝑅3 = 𝑅𝑅𝑎𝑎 𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐
𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐

(2)
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Δ-to-Y Conversion

 Similarly, between nodes A and B:
𝑅𝑅𝐴𝐴𝐵𝐵𝑌𝑌 = 𝑅𝑅1 + 𝑅𝑅2 = 𝑅𝑅𝐴𝐴𝐵𝐵Δ = 𝑅𝑅𝑐𝑐|| 𝑅𝑅𝑡𝑡 + 𝑅𝑅𝑏𝑏

𝑅𝑅1 + 𝑅𝑅2 = 𝑅𝑅𝑐𝑐 𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏
𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐

(3)

 Subtracting (2) from (1) yields:

𝑅𝑅1 − 𝑅𝑅2 = 𝑅𝑅𝑐𝑐 𝑅𝑅𝑏𝑏−𝑅𝑅𝑎𝑎
𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐

(4)
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Δ-to-Y Conversion

 Adding (4) to (3) gives an expression for 𝑅𝑅1:

𝑅𝑅1 = 𝑅𝑅𝑏𝑏𝑅𝑅𝑐𝑐
𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐

(5)

 Subtracting (4) from (3) gives

𝑅𝑅2 = 𝑅𝑅𝑎𝑎𝑅𝑅𝑐𝑐
𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐

(6)

 And, finally, subtracting (5) from (1) gives

𝑅𝑅3 = 𝑅𝑅𝑎𝑎𝑅𝑅𝑏𝑏
𝑅𝑅𝑎𝑎+𝑅𝑅𝑏𝑏+𝑅𝑅𝑐𝑐

(7)
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Y-to-Δ Conversion

 We can derive a similar set of relationships for converting 
from a Y network to a Δ network

𝑅𝑅𝑡𝑡 =
𝑅𝑅1𝑅𝑅2 + 𝑅𝑅2𝑅𝑅3 + 𝑅𝑅3𝑅𝑅1

𝑅𝑅1

𝑅𝑅𝑏𝑏 =
𝑅𝑅1𝑅𝑅2 + 𝑅𝑅2𝑅𝑅3 + 𝑅𝑅3𝑅𝑅1

𝑅𝑅2

𝑅𝑅𝑐𝑐 =
𝑅𝑅1𝑅𝑅2 + 𝑅𝑅2𝑅𝑅3 + 𝑅𝑅3𝑅𝑅1

𝑅𝑅3
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Y-Δ Transformations

Each resistor in the 
equivalent Y network 
is the product of the 
resistors in the two 
adjacent 𝛥𝛥 branches, 
divided by the sum of 
the three 𝛥𝛥 resistors

Each resistor in the 
equivalent 𝛥𝛥 network 
is the sum of all 
possible products of Y 
resistors taken two at 
a time, divided by the 
opposite Y resistor

𝑅𝑅1 =
𝑅𝑅𝑏𝑏𝑅𝑅𝑐𝑐

𝑅𝑅𝑡𝑡 + 𝑅𝑅𝑏𝑏 + 𝑅𝑅𝑐𝑐

𝑅𝑅2 =
𝑅𝑅𝑡𝑡𝑅𝑅𝑐𝑐

𝑅𝑅𝑡𝑡 + 𝑅𝑅𝑏𝑏 + 𝑅𝑅𝑐𝑐

𝑅𝑅3 =
𝑅𝑅𝑡𝑡𝑅𝑅𝑏𝑏

𝑅𝑅𝑡𝑡 + 𝑅𝑅𝑏𝑏 + 𝑅𝑅𝑐𝑐

𝑅𝑅𝑡𝑡 =
𝑅𝑅1𝑅𝑅2 + 𝑅𝑅2𝑅𝑅3 + 𝑅𝑅3𝑅𝑅1

𝑅𝑅1

𝑅𝑅𝑏𝑏 =
𝑅𝑅1𝑅𝑅2 + 𝑅𝑅2𝑅𝑅3 + 𝑅𝑅3𝑅𝑅1

𝑅𝑅2

𝑅𝑅𝑐𝑐 =
𝑅𝑅1𝑅𝑅2 + 𝑅𝑅2𝑅𝑅3 + 𝑅𝑅3𝑅𝑅1

𝑅𝑅3
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Determine I1, I2, I3, I4, and 
I5.
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Find V1, V2, and V3.
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Determine the current 
through the circuit, I1.
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Determine the voltage, V1.
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Determine V1 and V2
in the following 
circuit.

63



K. Webb ENGR 201

Determine I and V1 in 
the following circuit.
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