SECTION 3: RESISTIVE CIRCUIT ANALYSIS II

ENGR 201 - Electrical Fundamentals I

Resistive Network Analysis

Circuit Analysis Methods

\square Circuit analysis objective is to determine all:

- Node voltages
- Branch currents
\square Circuit analysis tools:
- Ohm's law
- Kirchhoff's laws - KVL, KCL
\square Circuit analysis methods:
- Nodal analysis
- Systematic application of KCL
- Mesh/loop analysis
- Systematic application of KVL

4
 Nodal Analysis

Nodal Analysis

\square Nodal analysis
\square Systematic application of KCL

- Generate a system of equations
- Node voltages are the unknown variables
- Number of equations equals number of unknown node voltages
\square Solve equations to determine node voltages
\square Apply Ohm's law to determine branch currents

Nodal Analysis - Step-by-Step Procedure

1) Identify and label all nodes in the circuit - distinguish known from unknown node voltages
2) Assign and label polarities of currents through all branches
3) Apply KCL at each node, using Ohm's Law to express branch currents in terms of node voltages
4) Solve the resulting simultaneous system of equations using substitution, calculator, Cramer's Rule, etc.
5) Use Ohm's Law and node voltages to determine branch currents

Nodal Analysis - Example

\square Apply nodal analysis to determine all node voltages and branch currents in the following circuit

Nodal Analysis - Step 1

\square Step 1: Identify and label all nodes in the circuit - distinguish known from
unknown node voltages
$\square V_{s}$ is a known node voltage (5 V)
$\square V_{1}$ and V_{2} are unknown

Nodal Analysis - Step 2

Step 2: Assign and label polarities of currents through all branches

- Assumed polarities needn't be correct
- Correct polarity given by the sign of the determined quantity

Nodal Analysis - Step 3

\square Step 3: Apply KCL at each node, using Ohm's Law to express branch currents in terms of node voltages

KCL at node 1

$$
\begin{aligned}
& I_{1}-I_{2}-I_{3}=0 \\
& \frac{5 V-V_{1}}{R_{1}}-\frac{V_{1}}{R_{2}}-\frac{V_{1}-V_{2}}{R_{3}}=0
\end{aligned}
$$

KCL at node 2

$$
I_{3}-I_{4}=0
$$

$$
\frac{V_{1}-V_{2}}{R_{3}}-\frac{V_{2}}{R_{4}}=0
$$

Nodal Analysis - Step 4

Step 4: Solve the resulting system of equations

- First, organize the equations

$$
\begin{aligned}
& \frac{5 V-V_{1}}{R_{1}}-\frac{V_{1}}{R_{2}}-\frac{V_{1}-V_{2}}{R_{3}}=0 \\
& \frac{V_{1}-V_{2}}{R_{2}}-\frac{V_{2}}{R_{1}}=0
\end{aligned} \begin{aligned}
& V_{1}\left(-\frac{1}{R_{1}}-\frac{1}{R_{2}}-\frac{1}{R_{3}}\right)+V_{2}\left(\frac{1}{R_{3}}\right)=-\frac{5 V}{R_{1}} \\
& V_{1}\left(\frac{1}{R_{3}}\right)+V_{2}\left(-\frac{1}{R_{3}}-\frac{1}{R_{4}}\right)=0
\end{aligned}
$$

\square Solve using Gaussian elimination, Cramer's rule, or using calculator or computer

- Put into matrix form for solution in calculator or MATLAB:

$$
\left[\begin{array}{cc}
-\frac{1}{R_{1}}-\frac{1}{R_{2}}-\frac{1}{R_{3}} & \frac{1}{R_{3}} \\
\frac{1}{R_{3}} & -\frac{1}{R_{3}}-\frac{1}{R_{4}}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 V}{R_{1}} \\
0
\end{array}\right] \longleftrightarrow\left[\begin{array}{cc}
-8 m S & 5 m S \\
5 m S & -7.5 m S
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
-10 m A \\
0
\end{array}\right]
$$

$$
\mathbf{G V}=\mathbf{I}
$$

Nodal Analysis - Step 5

\square Step 5: Use Ohm's Law and node voltages to determine branch currents

- Solution to system of equations yields node voltages:

$$
\begin{aligned}
& V_{1}=2.14 \mathrm{~V} \\
& V_{2}=1.43 \mathrm{~V}
\end{aligned}
$$

- Branch currents are

$$
\begin{aligned}
& I_{1}=\frac{5 V-V_{1}}{R_{1}}=\frac{5 \mathrm{~V}-2.14 \mathrm{~V}}{500 \Omega}=\mathbf{5 . 7 1} \mathbf{~ m A} \\
& I_{2}=\frac{V_{1}}{R_{2}}=\frac{2.14 \mathrm{~V}}{1 \mathrm{k} \Omega}=\mathbf{2 . 1 4 ~ \mathbf { m A }} \\
& I_{3}=I_{4}=\frac{V_{2}}{R_{4}}=\frac{1.43 \mathrm{~V}}{400 \Omega}=\mathbf{3 . 5 7} \mathbf{~ m A}
\end{aligned}
$$

Nodal Analysis

\square Nodal analysis yields all node voltages and branch currents

${ }^{14}$ Supernodes

Nodal Analysis - Floating Voltage Sources

\square When performing nodal analysis on circuits with voltage sources, there are two possible scenarios:

- Voltage source connected to the reference node
- As in the last example
- Voltage source is floating
- Both terminals connected to non-reference nodes

Nodal Analysis - Supernodes

\square Floating voltage sources pose a problem

- Cannot use Ohm's law to represent the current through the source
- Ohm's law applies only to resistors
\square Solution:
- Form a supernode enclosing the source
- Formed by two non-reference nodes
- Apply KCL to the supernode
- One equation for the two unknown nodes
- Apply KVL to relate the voltages of the nodes forming the supernode
- Providing the required additional equation

Supernode - Example

\square Nodes V_{1} and V_{2} form a supernode, enclosing the floating voltage source
\square Circuit has two unknown node voltages, V_{1} and V_{2}

- System of two equations is required
\square KCL will be applied at the supernode
- Only one equation will result

\square Additional required equation obtained by applying KVL to relate V_{1} to V_{2}

Nodal Analysis with Supernodes - Step-by-Step

1) Identify and label all nodes in the circuit - distinguish known from unknown node voltages
2) Assign and label polarities of currents through all branches
3) Generate a system of equations
a) Apply KCL at each node and each supernode, using Ohm's Law to express branch currents in terms of node voltages
b) Apply KVL to relate the voltages of the nodes that form the supernodes
4) Solve the resulting simultaneous system of equations using substitution, calculator, Cramer's Rule, etc.
5) Use Ohm's Law and node voltages to determine branch currents

Supernode - Example

\square Step 1: Identify and label all nodes in the circuit

- Any supernodes are identified and labeled in this step
\square Step 2: Assign and label all branch currents
\square Step 3a: Apply KCL at all nodes and all supernodes
- Here we have only the one supernode:

$$
\begin{aligned}
& I_{1}-I_{2}+I_{3}-I_{4}=0 \\
& \frac{10 V-V_{1}}{2 \Omega}-\frac{V_{1}}{8 \Omega}+\frac{10 V-V_{2}}{4 \Omega}-\frac{V_{2}}{6 \Omega}=0 \\
& V_{1}\left(\frac{1}{2 \Omega}+\frac{1}{8 \Omega}\right)+V_{2}\left(\frac{1}{4 \Omega}+\frac{1}{6 \Omega}\right)=7.5 \mathrm{~A}
\end{aligned}
$$

Supernode - Example

\square Step 3b: Apply KVL to relate the voltages of the nodes that form the supernode

$$
\begin{aligned}
& V_{1}-5 V-V 2=0 \\
& V_{1}-V_{2}=5 V
\end{aligned}
$$

\square Step 4: Solve the resulting system of equations

$$
\begin{aligned}
& V_{1} \cdot 625 \mathrm{mS}+V_{2} \cdot 416.7 \mathrm{mS}=7.5 \mathrm{~A} \\
& V_{1}-V_{2}=5 \mathrm{~V}
\end{aligned}
$$

- Putting these into matrix form:

$$
\left[\begin{array}{cc}
625 \mathrm{mS} & 416.7 \mathrm{mS} \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
7.5 \mathrm{~A} \\
5 \mathrm{~V}
\end{array}\right]
$$

Supernode - Example

$$
\left[\begin{array}{cc}
625 m S & 416.7 m S \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
7.5 A \\
5 V
\end{array}\right]
$$

\square Note that coefficient matrix on the left-hand side is no longer a conductance matrix

- Second-row elements are dimensionless
- Mix of KCL and KVL equations
\square Solve using your method of choice
\square Here, solved using MATLAB

$$
\begin{aligned}
& V_{1}=9.2 \mathrm{~V} \\
& V_{2}=4.2 \mathrm{~V}
\end{aligned}
$$

Command Window

```
    >> A = [0.625,0.41667;1,-1]
    A =
    0.6250 0.4167
    1.0000 -1.0000
    >> b = [7.5;5]
    b =
    7.5000
    5 . 0 0 0 0
    >>V = A\b
    v =

\section*{Supernode - Example}

Step 5: Use Ohm's law and branch currents to determine node voltages
\[
\begin{aligned}
& I_{1}=\frac{10 \mathrm{~V}-9.2 \mathrm{~V}}{2 \Omega}=\frac{0.8 \mathrm{~V}}{2 \Omega}=0.4 \mathrm{~A} \\
& I_{2}=\frac{9.2 \mathrm{~V}}{8 \Omega}=1.15 \mathrm{~A} \\
& I_{3}=\frac{10 \mathrm{~V}-4.2 \mathrm{~V}}{4 \Omega}=\frac{5.8 \mathrm{~V}}{4 \Omega}=1.45 \mathrm{~A} \\
& I_{4}=\frac{4.2 \mathrm{~V}}{6 \Omega}=0.7 \mathrm{~A}
\end{aligned}
\]

\[
\begin{aligned}
I_{1} & =0.4 \mathrm{~A} \\
I_{2} & =1.15 \mathrm{~A} \\
I_{3} & =1.45 \mathrm{~A} \\
I_{4} & =0.7 \mathrm{~A}
\end{aligned}
\]

\section*{23 \\ Example Problems}

Apply nodal analysis to determine \(\mathrm{V}_{0}\) in the following circuit.


KCL at \(V_{3}\) :
\[
\begin{gathered}
I_{1}-I_{2}-I_{3}=0 \\
\frac{6 \mathrm{~V}-V_{0}}{10 \Omega}-\frac{\left(V_{0}-(-10 \mathrm{~V})\right)}{15 \Omega}-\frac{V_{0}}{20 \Omega}=0 \\
V_{0}\left(\frac{1}{10 \Omega}+\frac{1}{15 \Omega}+\frac{1}{20 \Omega}\right)=\frac{6 \mathrm{~V}}{10 \Omega}-\frac{10 \mathrm{~V}}{15 \Omega} \\
V_{0}(216.7 \mathrm{~ms})=-66.7 \mathrm{~mA} \\
V_{0}=\frac{-66.7 \mathrm{~mA}}{216.7 \mathrm{~ms}} \\
V_{0}=-307.7 \mathrm{mV}
\end{gathered}
\]

Apply nodal analysis to determine \(\mathrm{V}_{1}\) and \(V_{2}\).

\(K C L\) at \(V_{1}\) :
\[
\begin{align*}
& -I_{1}-I_{2}+I_{3}=0 \\
& -\frac{V_{1}}{50 \Omega}-\frac{V_{1}}{100 \Omega}+\frac{V_{2}-V_{1}}{50 \Omega}=0 \\
& V_{1}\left(\frac{1}{50 \Omega}+\frac{1}{100 \Omega}+\frac{1}{50 \Omega}\right)+V_{2}\left(-\frac{1}{50 \Omega}\right)=0 \\
& V_{1}(50 \mathrm{~ms})+V_{2}(-20 \mathrm{~ms})=0 \tag{1}
\end{align*}
\]

KCL at \(V_{2}\) :
\[
\begin{align*}
& -I_{3}-I_{4}+I_{5}=0 \\
& \frac{\left(V_{2}-V_{1}\right)}{50 \Omega}-\frac{V_{2}}{80 \Omega}+\frac{12 V-V_{2}}{20 \Omega}= \\
& \left.V_{1}\left(-\frac{1}{50 \Omega}\right)+V_{2}\left(\frac{1}{50 \Omega}+\frac{1}{80 \Omega}+\frac{1}{20 \Omega}\right)=\frac{12 V}{20 \Omega} \right\rvert\,\left\{\left.100 \Omega \frac{I}{4} \right\rvert\,\right\} \\
& V_{1}(-20 \mathrm{~ms})+V_{2}(82.5 \mathrm{~ms})=600 \mathrm{~mA} \tag{2}
\end{align*}
\]

System of equations
\[
\begin{aligned}
& {\left[\begin{array}{cc}
50 \mathrm{~ms} & -20 \mathrm{~ms} \\
-20 \mathrm{~ms} & 82.5 \mathrm{~ms}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
600 \mathrm{~mA}
\end{array}\right]} \\
& \text { Solving } \longrightarrow \quad V_{2}=8.05 \mathrm{~V}
\end{aligned}
\]

Apply nodal analysis to determine \(\mathrm{V}_{\mathrm{o}}\).


KCL at \(\mathrm{v}_{0}\) :
\[
\begin{gathered}
100 \mathrm{~mA}-I_{1}-I_{2}-0.25 V_{0}=0 \\
100 \mathrm{~mA}-\frac{V_{0}}{100 \Omega}-\frac{V_{0}}{30 \Omega}-0.25 V_{0}=0 \\
V_{0}\left(\frac{1}{100 \Omega}+\frac{1}{50 \Omega}+0.0255\right)=100 \mathrm{~mA} \\
V_{0}(55 \mathrm{~ms})=100 \mathrm{~mA} \\
V_{0}=\frac{100 \mathrm{~mA}}{55 \mathrm{~ms}} \\
V_{0}=1.82 \mathrm{~V}
\end{gathered}
\]

Apply nodal analysis to determine \(\mathrm{V}_{1}, \mathrm{~V}_{2}\), and \(V_{3}\).


KCL at thesupernode:
\[
\begin{align*}
& 1 \mathrm{~A}-I_{1}-I_{2}=0 \\
& 1 \mathrm{~A}-\frac{V_{1}}{10 \Omega}-\frac{\left(V_{2}-V_{3}\right)}{30 \Omega}=0 \\
& V_{1}\left(\frac{1}{10 \Omega}\right)+V_{2}\left(\frac{1}{30 \Omega}\right)+V_{3}\left(-\frac{1}{30 \Omega}\right)=1 \mathrm{~A} \\
& V_{1}(100 \mathrm{~ms})+V_{2}(32.3 \mathrm{~ms})+V_{3}(-33.3 \mathrm{~ms})=1 \mathrm{~A} \tag{1}
\end{align*}
\]
\[
\begin{align*}
& \frac{\mathrm{KCL} a+V_{3}}{I_{2}-I_{3}-I_{4}=0} \\
& \frac{V_{2}-V_{3}}{30 \Omega}-\frac{V_{3}}{80 \Omega}-\frac{V_{3}}{50 \Omega}=0 \\
& V_{2}\left(\frac{1}{30 \Omega}\right)+V_{3}\left(-\frac{1}{30 \Omega}-\frac{1}{80 \Omega}-\frac{1}{50 \Omega}\right)=0 \\
& V_{2}(33.3 \mathrm{~ms})+V_{3}(-65.8 \mathrm{~ms})=0
\end{align*}
\]


KVL at the supernode
\[
\begin{gather*}
v_{1}-v_{2}=50 \mathrm{~V}  \tag{3}\\
{\left[\begin{array}{ccc}
100 \mathrm{~ms} & 33.3 \mathrm{~ms} & -33.3 \mathrm{~ms} \\
0 & 33.3 \mathrm{~ms} & -6.8 \mathrm{~ms} \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \mathrm{~A} \\
0 \\
50 \mathrm{v}
\end{array}\right] \longrightarrow \begin{array}{l}
v_{1}=15.65 \mathrm{~V} \\
v_{2}=-34.35 \mathrm{~V} \\
v_{3}=-17.39 \mathrm{~V}
\end{array}}
\end{gather*}
\]

Apply nodal analysis to determine \(\mathrm{V}_{1}, \mathrm{~V}_{2}\), and \(V_{3}\).


KCL at the supernode:
\[
\begin{align*}
& I_{1}-I_{2}-I_{3}=0 \\
& \frac{2 V_{3}-V_{1}}{20 \Omega}-\frac{V_{2}}{10 \Omega}-\frac{V_{1}-V_{3}}{50 \Omega}=0 \\
& V_{1}\left(-\frac{1}{20 \Omega}-\frac{1}{50 \Omega}\right)+V_{2}\left(-\frac{1}{10 \Omega}\right)+V_{3}\left(\frac{2}{20 \Omega}+\frac{1}{50 \Omega}\right)=0 \\
& V_{1}(-70 \mathrm{~ms})+V_{2}(-100 \mathrm{~ms})+V_{3}(120 \mathrm{~ms})=0 \tag{1}
\end{align*}
\]

KCL at \(V_{3}\) :
\[
\begin{aligned}
& I_{3}-I_{4}=0 \\
& \frac{V_{1}-V_{3}}{50 \Omega}-\frac{V_{3}}{505}=0 \\
& V_{1}(20 \mathrm{~ms})+V_{3}(-40 \mathrm{~ms})=0
\end{aligned}
\]

(2)

KVL at suparnode
\[
\begin{align*}
& v_{1}-v_{2}=6 \mathrm{~V}  \tag{3}\\
& {\left[\begin{array}{ccc}
-70 \mathrm{~ms} & -100 \mathrm{~ms} & 120 \mathrm{~ms} \\
20 \mathrm{~ms} & 0 & -40 \mathrm{~ms} \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
6 \mathrm{~V}
\end{array}\right]} \\
& \longrightarrow V_{1}=5.45 \mathrm{~V}, V_{2}=-0.55 \mathrm{~V}, v_{3}=2.73 \mathrm{~V}
\end{align*}
\]

Mesh Analysis

\section*{Mesh Analysis}

\section*{\(\square\) Mesh analysis}
\(\square\) Systematic application of \(\boldsymbol{K} V \boldsymbol{L}\)
- Generate a system of equations
- Mesh currents are the unknown variables
- Number of equations equals number of unknown mesh currents
\(\square\) Solve equations to determine mesh currents
- Determine branch currents as linear combinations of mesh currents
- Apply Ohm's law to determine node voltages

\section*{Meshes}

What is a mesh?
- A mesh is a loop that does not contain any other loops

- Loop 1 and Loop 2 are meshes, Loop 3 is not

\section*{Mesh Currents}
\(\square\) What is a mesh current?
- Fictitious circulating current in a mesh
- Components of the branch currents
- Branch currents are linear combinations of mesh currents, e.g.:
\[
\begin{aligned}
& i_{1}=I_{1} \\
& i_{3}=I_{1}-I_{2} \\
& i_{4}=I_{2}
\end{aligned}
\]
\(\square\) Conventions:
- Denote mesh currents with uppercase \(I\)
- Denote branch currents with lowercase \(i\)

- Mesh current direction is clockwise

\section*{Mesh Analysis - step-by-step procedure}
1) Identify and label all:
- Mesh currents, \(I_{n}\)
- Branch currents, \(i_{n}\)
- Unknown node voltages
2) Apply KVL around each mesh
- Follow CW direction of the mesh current
- Use Ohm's law to express voltage drops in terms of mesh currents
3) Solve the resulting simultaneous system of equations using Gaussian elimination, calculator, MATLAB, etc.
4) Determine branch currents from the mesh currents
5) Use Ohm's Law and branch currents to determine node voltages

\section*{Mesh Analysis - Example}
\(\square\) Use mesh analysis to determine all
- Node voltages
- Branch currents

\(\square\) Step 1: Identify and label all mesh currents, branch currents, and unknown node voltages
- Two unknown mesh currents
- Three distinct branch currents
- Two unknown node voltages


\section*{Mesh Analysis - Example}
\(\square\) Step 2: Apply KVL around each mesh
\(\square\) KVL around mesh 1:
\[
5 V-I_{1} \cdot 500 \Omega-I_{1} \cdot 1 k \Omega+I_{2} \cdot 1 k \Omega=0
\]

- Note that there are two components to the voltage across the \(1 \mathrm{k} \Omega\) resistor
- A drop due to \(I_{1}\)
- A rise due to \(I_{2}\)
- KVL around mesh 2:
\[
-I_{2} \cdot 1 k \Omega+I_{1} \cdot 1 k \Omega-I_{2} \cdot 200 \Omega-I_{2} \cdot 400 \Omega=0
\]
- Again, note the two voltage components across the \(1 k \Omega\) resistor

\section*{Mesh Analysis - Example}
\(\square\) Step 3: Solve the resulting system of mesh equations
- Cleaning up the two equations:
\[
\begin{aligned}
& I_{1} \cdot 1.5 k \Omega-I_{2} \cdot 1 k \Omega=5 \mathrm{~V} \\
& -I_{1} \cdot 1 k \Omega+I_{2} \cdot 1.6 k \Omega=0
\end{aligned}
\]

\(\square\) Organizing the system of two equations into matrix form:
\[
\left.\begin{array}{l}
{\left[\begin{array}{lll}
1.5 & k \Omega & -1
\end{array} \mathrm{k} \Omega\right.} \\
-1
\end{array} \mathrm{k} \Omega \quad 1.6 \mathrm{k} \Omega\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
5 \\
0
\end{array}\right]
\]
- Solving in MATLAB yields:
\[
\begin{aligned}
& I_{1}=5.71 \mathrm{~mA} \\
& I_{2}=3.57 \mathrm{~mA}
\end{aligned}
\]
- Mesh currents, not branch currents

\section*{Command Window}


\section*{Mesh Analysis - Example}
\(\square\) Step 4: Determine branch currents from mesh currents
- Branch current, \(i_{1}\), is the same as mesh current, \(I_{1}\)

\[
i_{1}=I_{1}=5.71 \mathrm{~mA}
\]
- Branch current, \(i_{2}\), is a combination of the two opposing mesh currents
- In the same direction as \(I_{1}\)
- In the opposite direction of \(I_{2}\)
\[
i_{2}=I_{1}-I_{2}=5.71 \mathrm{~mA}-3.57 \mathrm{~mA}=2.14 \mathrm{~mA}
\]
- Branch current, \(i_{3}\), is the same as mesh current, \(I_{2}\)
\[
i_{3}=I_{2}=3.57 \mathrm{~mA}
\]

\section*{Mesh Analysis - Example}
\[
\begin{aligned}
& i_{1}=5.71 \mathrm{~mA} \\
& i_{2}=2.14 \mathrm{~mA} \\
& i_{3}=3.57 \mathrm{~mA}
\end{aligned}
\]

\(\square\) Step 5: Use Ohm's law and branch currents to determine node voltages
\[
\begin{aligned}
& V_{1}=2.14 \mathrm{~mA} \cdot 1 \mathrm{k} \Omega=2.14 \mathrm{~V} \\
& V_{2}=3.57 \mathrm{~mA} \cdot 400 \Omega=1.43 \mathrm{~V}
\end{aligned}
\]
\[
\begin{aligned}
& V_{1}=2.14 \mathrm{~V} \\
& V_{2}=1.43 \mathrm{~V}
\end{aligned}
\]
\(\square\) Note that these results agree with those obtained through nodal analysis

\section*{\({ }^{42}\) Supermeshes}

\section*{Mesh Analysis - Current Sources}
\(\square\) Sometimes, we may want to perform mesh analysis on a circuit containing current sources
\(\square\) Two possible scenarios:
- Current source is part of only one mesh

- Here, \(I_{1}=2 A\)
- Only one unknown mesh current, \(I_{2}\)
- Only one mesh equation
- Mesh analysis proceeds as usual
- Current source is part of two meshes

- Can't apply KVL around either mesh
- Don't know the voltage drop across the current source

\section*{Supermesh}
\(\square\) Current source shared by two meshes poses a problem
- Need to apply KVL around each mesh, but don't know the voltage across the current source
\(\square\) Solution:
- Form a supermesh around the periphery of the two meshes that share the current source
- Apply KVL around the supermesh
- One equation for the two unknown mesh currents
- Apply KCL to a node on the branch common to the two meshes in the supermesh
- This provides the second required equation for the two unknown mesh currents

\section*{Supermesh - Example}
\(\square\) Meshes 1 and 2 are combined to form a supermesh
\(\square\) Circuit has two unknown mesh currents, \(I_{1}\) and \(I_{2}\)
- System of two equations is
 required
\(\square\) KVL will be applied around the supermesh
- Only one equation will result
\(\square\) Additional required equation obtained by applying KCL to a node on the branch common to both meshes
\(\square\) If multiple supermeshes intersect, they should be joined into a single supermesh

\section*{Mesh Analysis with Supermeshes - Step-by-Step}
1) Identify and label all:
- Mesh currents, \(I_{n}\)
- Branch currents, \(i_{n}\)
- Unknown node voltages
2) Generate a system of equations
a) Apply KVL around each supermesh and each mesh that is not part of a supermesh
b) Apply KCL at a node on each branch common to two meshes in each supermesh
3) Solve the resulting simultaneous system of equations using Gaussian elimination, calculator, MATLAB, etc.
4) Determine branch currents from the mesh currents
5) Use Ohm's Law and branch currents to determine node voltages

\section*{Supermesh - Example}
\(\square\) Step 1: Identify and label all mesh currents, branch currents, and unknown node voltages
- Any supermeshes are identified and labeled in this step

\(\square\) Step 2a: Apply KVL around each mesh and each supermesh
- Only one supermesh, and no other meshes
\[
-I_{1} \cdot 2 \Omega-I_{1} \cdot 8 \Omega-I_{2} \cdot 6 \Omega-I_{2} \cdot 12 \Omega=0
\]
\(\square\) Step 2b: Apply KCL at a node on the branch common to the two meshes in the supermesh
\[
I_{1}-I_{2}+2 A=0
\]
\(\square\) These are the two equations needed to solve for the two unknown mesh currents, \(I_{1}\) and \(I_{2}\)

\section*{Supermesh - Example}
\(\square\) Step 3: Solve the resulting system of equations
- Rearranging the equations:
\[
\begin{aligned}
& I_{1} \cdot 10 \Omega+I_{2} \cdot 18 \Omega=0 \\
& -I_{1}+I_{2}=2 \mathrm{~A}
\end{aligned}
\]

\(\square\) In matrix form, the system of equations is
\[
\left[\begin{array}{cc}
10 \Omega & 18 \Omega \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 A
\end{array}\right]
\]
- Note that, similar to the supernode analysis, the two equations now have different units
\(\square\) Solving in MATLAB yields
\[
\begin{aligned}
& I_{1}=-1.29 A \\
& I_{2}=0.714 A
\end{aligned}
\]

\section*{Supermesh - Example}
\(\square\) Step 4: Determine branch currents from the mesh currents
- Very simple in this example
\[
\begin{aligned}
& i_{1}=I_{1}=-1.29 \mathrm{~A} \\
& i_{2}=I_{2}=0.714 \mathrm{~A}
\end{aligned}
\]

\(\square\) Step 5: Use Ohm's law and branch currents to determine node voltages
\[
\begin{aligned}
& V_{1}=-i_{1} \cdot 2 \Omega=1.29 \mathrm{~A} \cdot 2 \Omega=2.57 \mathrm{~V} \\
& V_{2}=i_{2} \cdot 18 \Omega=0.714 \mathrm{~A} \cdot 18 \Omega=12.86 \mathrm{~V} \\
& V_{3}=i_{2} \cdot 12 \Omega=0.714 \mathrm{~A} \cdot 12 \Omega=8.57 \mathrm{~V}
\end{aligned}
\]
\(\square\) Results of the mesh analysis:
\[
\begin{aligned}
& i_{1}=-1.29 A \\
& i_{2}=0.714 A
\end{aligned}
\]
\[
\begin{aligned}
& V_{1}=2.57 \mathrm{~V} \\
& V_{2}=12.86 \mathrm{~V} \\
& V_{3}=8.57 \mathrm{~V}
\end{aligned}
\]

\section*{50 \\ Example Problems}

Apply mesh analysis to determine \(V_{1}, V_{2}, i_{1}, i_{2}\), and \(i_{3}\) in the following circuit.


KVL around Mesh 1:
\[
\begin{align*}
& 10 \mathrm{~V}-I_{1} \cdot 50 \Omega+12 \mathrm{~V}-I_{i} \cdot 20 \Omega+I_{2} \cdot 20 \Omega=0 \\
& I_{1}(50 \Omega+20 \Omega)+I_{2}(-20 \Omega)=22 \mathrm{~V} \\
& I_{1}(70 \Omega)+I_{2}(-20 \Omega)=22 \mathrm{~V} \tag{1}
\end{align*}
\]

KUL awn mesh 2:
\[
\begin{aligned}
& -I_{2} \cdot 20 \Omega+I_{1} \cdot 20 \Omega-12 \mathrm{~V}-I_{2} \cdot 10 \Omega-I_{2} \cdot 30 \Omega=0 \\
& I_{1}(20 \Omega)+I_{2}(-20 \Omega-10 \Omega-30 \Omega)=12 \mathrm{~V}
\end{aligned}
\]
\[
{ }_{51}{ }_{\mathrm{kwebb}} I_{1}(20 \Omega)+I_{2}(-60 \Omega)=12 \mathrm{~V}
\]
(2)

In matrix form
\[
\left[\begin{array}{ll}
70 \Omega & -20 \Omega \\
20 \Omega & -60 \Omega
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
22 \mathrm{~V} \\
12 \mathrm{~V}
\end{array}\right]
\]


Solving yields
\[
I_{1}=284.2 \mathrm{~mA} \quad \text { and } \quad I_{2}=-105.3 \mathrm{~mA}
\]

Branch currents are
\[
\begin{aligned}
& i_{1}=I_{1}=284.2 \mathrm{~mA} \\
& i_{2}=I_{1}-I_{2}=284.2 \mathrm{~mA}+105.3 \mathrm{~mA}=389.5 \mathrm{~mA} \\
& i_{3}=I_{2}=-105.3 \mathrm{~mA}
\end{aligned}
\]

Node voltages:
\[
\begin{aligned}
& V_{1}=10 \mathrm{~V}-i_{1} .50 \Omega \\
& V_{1}=10 \mathrm{~V}-284.2 \mathrm{~mA} \cdot 50 \Omega \\
& V_{1}=-4.21 \mathrm{~V} \\
& V_{2}=i_{3} .30 \Omega=-105.3 \mathrm{~mA} \cdot 30 \Omega \\
& V_{2}=-3.16 \mathrm{~V} \\
& V_{1}=-4.21 \mathrm{~V} \\
& V_{2}=-3.16 \mathrm{~V}
\end{aligned} \begin{aligned}
& i_{1}=284.2 \mathrm{~mA} \\
& i_{2}=389.5 \mathrm{~mA} \\
& i_{3}=-105.3 \mathrm{~mA}
\end{aligned}
\]

Apply mesh analysis to determine the power supplied/absorbed by each of the sources in the following circuit.


KvL around super mesh:
\[
\begin{align*}
& 20 \mathrm{~V}-I_{1} \cdot 500 \Omega-I_{2} \cdot 400 \Omega-10 \mathrm{~V}=0 \\
& I_{1} \cdot 500 \Omega+I_{2} \cdot 400 \Omega=10 \mathrm{~V} \tag{1}
\end{align*}
\]

KCl at \(V_{1}\) :
\[
\begin{align*}
& I_{1}+50 \mathrm{~mA}-I_{2}=0 \\
& I_{1}-I_{2}=-50 \mathrm{~mA}  \tag{2}\\
& {\left[\begin{array}{cc}
500 \Omega & 400 \Omega \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
10 \mathrm{~V} \\
-50 \mathrm{~mA}
\end{array}\right] \rightarrow \begin{array}{l}
I_{1}=-11.1 \mathrm{~mA} \\
I_{2}=38.9 \mathrm{~mA}
\end{array}}
\end{align*}
\]

Node voltages
\[
\begin{aligned}
& V_{1}=20 \mathrm{~V}-I_{1} \cdot 500 \Omega \\
& V_{1}=20 \mathrm{~V}+11.1 \mathrm{~mA} \cdot 500 \Omega \\
& V_{1}=25.56 \mathrm{~V} \\
& V_{2}=-50 \mathrm{~mA} \cdot 200 \Omega=-10 \mathrm{~V}
\end{aligned}
\]


Power of 20 V source
\[
P_{200}=20 \mathrm{~V}\left(-I_{1}\right)=20 \mathrm{~V}(11.1 \mathrm{~mA})=222 \mathrm{~mW}
\]
(absorbal)
Power of 10 V sone
\[
P_{10 \mathrm{~V}}=10 \mathrm{~V}\left(I_{2}\right)=10 \mathrm{~V}(38.9 \mathrm{~mA})=389 \mathrm{~mW}
\]
(absorbed)

Pour of 50 mA Sonata
\[
\begin{aligned}
& P_{\text {somA }}=\left(V_{2}-V_{1}\right) \cdot 50 \mathrm{~mA}=(-10 \mathrm{~V}-25.56 \mathrm{~V}) \cdot 50 \mathrm{~mA} \\
& P_{\text {som } 4}=-35.56 \mathrm{~V} \cdot 50 \mathrm{~mA}=-1.78 \mathrm{~W} \quad \text { (Supplied) }
\end{aligned}
\]

Apply mesh analysis to determine \(\mathrm{V}_{\mathrm{x}}\).


KVL around mesh 1
\[
\begin{align*}
& 8 \mathrm{~V}-I_{1} \cdot 100 \Omega-I_{1} \cdot 50 \Omega+I_{2} \cdot 50 \Omega=0 \\
& I_{1}(100 \Omega+50 \Omega)+I_{2}(-50 \Omega)=8 \mathrm{~V} \\
& I_{1}(150 \Omega)+I_{2}(-50 \Omega)=8 \mathrm{~V} \tag{1}
\end{align*}
\]

KVL around mesh 2
\[
\begin{aligned}
& I_{1} 50 \Omega-I_{2} 50 \Omega-I_{2} \cdot 80 \Omega-2 V_{x}=0 \\
& V_{x}=I_{1} \cdot 50 \Omega-I_{2} \cdot 50 \Omega \\
& I_{1} 50 \Omega-I_{2} 50 \Omega-I_{2} \cdot 80 \Omega-2 \cdot I_{1} 50 \Omega+2 I_{2} \cdot 50 \Omega=0
\end{aligned}
\]
\[
\begin{equation*}
I_{1}(-50 \Omega)+I_{2}(-30 \Omega)=0 \tag{2}
\end{equation*}
\]

In matrix form:
\[
\begin{aligned}
& {\left[\begin{array}{ll}
150 \Omega & -50 \Omega \\
-50 \Omega & -30 \Omega
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
8 \mathrm{~V} \\
0
\end{array}\right] \longrightarrow \begin{array}{l}
I_{1}=34.3 \mathrm{~mA} \\
I_{2}=-57.1 \mathrm{~mA}
\end{array}} \\
& V_{x}=\left(I_{1}-I_{2}\right) \cdot 50 \Omega=(34.3 \mathrm{~mA}+57.1 \mathrm{~mA}) 50 \Omega \\
& V_{x}=4.57 \mathrm{~V}
\end{aligned}
\]


\section*{58}

\section*{Linearity \& Superposition}

\section*{Systems}
\(\square\) System
- Some entity - component, group of components - with inputs and outputs
- Electrical component
- Electrical circuit
- Motor, engine, robot, aircraft, etc. ...

\(\square\) Can think of the system as a mathematical function that operates on the input to provide the output
\[
y=f(x)
\]

\(\square\) A resistor is a system with voltage as the input and current as the output (or vice versa)
\[
i=\frac{1}{R} v
\]


\section*{Linear Systems}
\(\square\) Linear system
\(\square\) A system whose constitutive relationship is linear
- Function relating input to output is an equation for a line
\(\square\) An ideal resistor is an example of a linear system
- Voltage in, current out:
\[
i=\frac{1}{R} \cdot v
\]

- A line with slope \(1 / R\)
- Current in, voltage out:
\[
v=R \cdot i
\]
- A line with slope \(R\)


\section*{Superposition}
\(\square\) Linear systems obey the principle of superposition
\(\square\) Two components to the superposition principle:
- Additivity
\[
f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)
\]

- Homogeneity
\[
f(\alpha \cdot x)=\alpha \cdot f(x)
\]


\section*{Superposition}
\(\square\) Consider an \(4 \Omega\) resistor
\[
\begin{aligned}
& i=\frac{v}{R} \\
& v_{1}=2 \mathrm{~V} \\
& i_{1}=\frac{2 \mathrm{~V}}{4 \Omega}=0.5 \mathrm{~A} \\
& v_{2}=6 \mathrm{~V} \\
& i_{2}=\frac{3 \cdot 2 \mathrm{~V}}{4 \Omega}=3 \cdot 0.5 \mathrm{~A}=1.5 \mathrm{~A} \\
& v_{3}=8 \mathrm{~V} \\
& i_{3}=\frac{2 \mathrm{~V}+6 \mathrm{~V}}{4 \Omega}=0.5 \mathrm{~A}+1.5 \mathrm{~A}=2 \mathrm{~A}
\end{aligned}
\]



\section*{Superposition - Electrical Circuits}
\(\square\) Superposition applied to electrical circuits
- Tool for analyzing networks with multiple sources
\(\square\) For example:
- Output, \(V_{\text {out }}\), is some linear combination of the inputs:
\[
V_{o u t}=a_{1} V_{s}+a_{2} I_{s}
\]
- \(a_{1}\) and \(a_{2}\) are constants
- If we know them, we know \(V_{\text {out }}\)

\(\square\) To determine \(a_{1}\)
- Set \(I_{S}=0\)
- Analyze the circuit to determine \(V_{\text {out }}\)
\(\square\) To determine \(a_{2}\)
- Set \(V_{s}=0\)
- Analyze the circuit to determine \(V_{\text {out }}\)

\section*{Superposition}

The output of a multiple-input system is the sum of the outputs due to each independent source acting individually
\(\square\) Circuit analysis using superposition:
\(\square\) Set all independent sources to zero, except for one
- Determine the output component due to that source
- Repeat for all independent sources
- Sum all output components to find the total output
\(\square\) Setting sources to zero:
- Voltage sources become short circuits ( \(v=0\) )
- Current sources become open circuits ( \(i=0\) )

\section*{Superposition - Example}
\(\square\) Apply superposition to determine the output voltage, \(V_{\text {out }}\)

\(\square\) First, set the current source to zero
- Replace it with an open circuit
- Analyze the circuit to determine the output components due to the voltage source acting alone:

\[
\left.V_{\text {out }}\right|_{V_{S}}
\]

\section*{Superposition - Example}
\(\square\) A simple voltage-divider circuit
\[
\begin{aligned}
& \left.V_{\text {out }}\right|_{V_{s}}=V_{s} \frac{R_{3}}{R_{1}+R_{2}+R_{3}} \\
& \left.V_{\text {out }}\right|_{V_{s}}=5 \mathrm{~V} \frac{2 \mathrm{k} \Omega}{6 \mathrm{k} \Omega} \\
& \left.V_{\text {out }}\right|_{V_{s}}=1.67 \mathrm{~V}
\end{aligned}
\]

\(\square\) Next, set the voltage source to zero
- Replace it with a short circuit
- Analyze the circuit to determine the output components due to the current source acting alone:
\[
\left.V_{\text {out }}\right|_{I_{s}}
\]


\section*{Superposition - Example}
\(\square\) In this case, we have a current-divider circuit
- First, determine the current, \(I_{3}\), flowing through \(R_{3}\)
\[
\begin{aligned}
& I_{3}=I_{s} \frac{R_{1}}{R_{1}+R_{2}+R_{3}} \\
& I_{3}=10 \mathrm{~mA} \frac{1 \mathrm{k} \Omega}{6 \mathrm{k} \Omega} \\
& I_{3}=1.67 \mathrm{~mA}
\end{aligned}
\]

\(\square\) Applying Ohm's law to \(R_{3}\) gives the output voltage due to the current source
\[
\begin{aligned}
& \left.V_{\text {out }}\right|_{I_{s}}=I_{3} R_{3}=1.67 \mathrm{~mA} \cdot 2 \mathrm{k} \Omega \\
& \left.V_{\text {out }}\right|_{I_{s}}=3.33 \mathrm{~V}
\end{aligned}
\]

\section*{Superposition - Example}
\(\square\) The total output due to both sources is the sum of the individual output components
\[
\begin{aligned}
& V_{\text {out }}=\left.V_{\text {out }}\right|_{V_{s}}+\left.V_{\text {out }}\right|_{I_{s}} \\
& V_{\text {out }}=1.67 \mathrm{~V}+3.33 \mathrm{~V}
\end{aligned}
\]
\[
V_{\text {out }}=5 \mathrm{~V}
\]
\(\square\) Comments:
- Superposition applies to circuits with any number of sources and any mix of voltage and/or current sources
- Becomes a more useful tool as circuits get more complex
- Applies to all types of linear systems - not just electrical

\section*{69 \\ Example Problems}

Apply superposition to determine \(\mathrm{V}_{\mathrm{o}}\) in the following circuit.

\[
V_{0}=\left.V_{0}\right|_{100 \mathrm{~mA}}+\left.V_{0}\right|_{4 V}
\]

First, set the \(4 V\) source to zero


Patent voltage is
\[
\left.V_{0}\right|_{100 \mathrm{~mA}}=-I_{2}\left(50 \Omega-(100 \Omega)=-I_{2} \cdot 33 \cdot 3 \Omega\right.
\]

Apply Current division to get \(I_{2}\)
\[
\begin{aligned}
& I_{2}=100 \mathrm{~mA} \cdot \frac{100 \Omega}{100 \Omega+50 \Omega+33.3 \Omega}=54.5 \mathrm{~mA} \\
& \left.V_{0}\right|_{100 \mathrm{~mA}}=-54.5 \mathrm{~mA} \cdot 33.3 \Omega=-1.82 \mathrm{~V}
\end{aligned}
\]

Next, set the 100 mA source to zero


Applying voltage division
\[
\begin{aligned}
\left.V_{0}\right|_{4 V} & =4 V \frac{(50 \Omega+100 \Omega) \| 100 \Omega}{50 \Omega+(50 \Omega+100 \Omega) \| 100 \Omega}=4 V \frac{60 \Omega}{50 \Omega+60 \Omega} \\
\left.V_{0}\right|_{4 V} & =2.18 \mathrm{~V}
\end{aligned}
\]

Finally, applying superposition
\[
\begin{aligned}
& V_{0}=\left.V_{0}\right|_{100 \mathrm{~mA}}+\left.V_{0}\right|_{4 \mathrm{~V}} \\
& V_{0}=-1.82 \mathrm{~V}+2.18 \mathrm{~V} \\
& V_{0}=364 \mathrm{mV}
\end{aligned}
\]

Apply superposition to determine \(\mathrm{V}_{0}\) in the following circuit.


First, set the 50 mA source to zero

\[
\begin{gathered}
\left.V_{0}\right|_{80 m A}=80 \mathrm{~mA} \cdot 50 \Omega \\
\left.V_{0}\right|_{80 m A}=4 \mathrm{~V}
\end{gathered}
\]

Next, set the 80 mA source to zero

\[
\left.V_{0}\right|_{\operatorname{somA}}=-50 \mathrm{~mA} \cdot 50 \Omega=-2.5 \mathrm{~V}
\]

Apply superposition
\[
\begin{gathered}
V_{0}=\left.V_{0}\right|_{80 \mathrm{~mA}}+\left.V_{0}\right|_{50 \mathrm{~mA}}=4 \mathrm{~V}-2.5 \mathrm{~V} \\
V_{0}=1.5 \mathrm{~V}
\end{gathered}
\]

Apply superposition to determine \(\mathrm{V}_{\mathrm{o}}\) in the following circuit.


First, set the \(8 V\) source to zero


Apply voltage division twice. First, find \(V_{x}\). Then
\[
\left.V_{0}\right|_{12 v}=V_{x} \frac{150 \Omega}{150 \Omega+150 \Omega}=\frac{V_{x}}{2}
\]
\[
\begin{aligned}
& V_{x}=12 \mathrm{~V} \frac{100 \sim 11(150 \Omega+100 \Omega)}{200 \Omega+100 \Omega 11(150 \Omega+150 \Omega)}=12 \mathrm{~V} \frac{75 \Omega}{275 \Omega}=3.27 \mathrm{~V} \\
& \left.V_{0}\right|_{12 \mathrm{~V}}=\frac{V_{x}}{2}=\frac{3.27 \mathrm{~V}}{2}=1.64 \mathrm{~V}
\end{aligned}
\]

Next, set the 12 V source to zero


Again, apply voltage division twice. First, find \(V_{y}\). The
\[
\left.V_{0}\right|_{\delta v}=V_{y} \frac{150 \Omega}{100 \Omega+150 \pi}=\frac{V_{y}}{2}
\]
\[
\begin{aligned}
& V_{y}=8 \mathrm{~V} \frac{200 \Omega / 1300 \Omega}{100 \Omega+200 \Omega / 1300 \Omega}=8 \mathrm{~V} \frac{120 \Omega}{220 \Omega}=4.36 \mathrm{~V} \\
& \left.V_{0}\right|_{8 \mathrm{~V}}=\frac{V_{y}}{2}=\frac{4.36 \mathrm{~V}}{2}=2.18 \mathrm{~V}
\end{aligned}
\]

Anplying suparposition
\[
\begin{gathered}
V_{0}=\left.V_{0}\right|_{12 \mathrm{~V}}+\left.V_{0}\right|_{8 \mathrm{~V}}=1.64 \mathrm{~V}+2.18 \mathrm{~V} \\
V_{0}=3.82 \mathrm{~V}
\end{gathered}
\]

Thévenin \& Norton Equivalents

\section*{Thévenin Equivalent Circuits}
\(\square\) Thévenin's theorem:
Any two-terminal linear network of resistors and sources can be represented as single resistor in series with a single independent voltage source
\(\square\) The resistor is the Thévenin equivalent resistance, \(R_{\text {th }}\)
\(\square\) The voltage source is the open-circuit voltage, \(V_{o c}\)


Léon Charles Thévenin, 1857-1926

\section*{Thévenin Equivalent Circuits}
\(\square\) Simplifies the analysis of complex networks
- Quickly determine current, voltage, or power to any load connected to the network terminals

\section*{Complex network}

Thévenin equivalent network


\section*{Open-Circuit Voltage - \(V_{O c}\)}
\(\square\) Open-circuit voltage, \(V_{o c}\)
- The terminal voltage with no load attached
\(\square\) Determine \(V_{o c}\) by using most convenient method
- Ohm's Law
- Kirchhoff's Laws
- Voltage or current divider
- Nodal or mesh analysis


\section*{Thévenin Resistance \(-R_{t h}\)}
\(\square\) Thévenin equivalent resistance, \(R_{\text {th }}\)
- Resistance seen between the two terminals with all independent sources set to zero
- Voltage sources \(\rightarrow\) short circuits
- Current sources \(\rightarrow\) open circuits


\section*{Thévenin Equivalent - Example}
\(\square\) For a \(100 \Omega\) load connected to the following network, determine:
- Load current, \(I_{L}\)
- Load voltage, \(V_{L}\)

\(\square\) Transform to a Thévenin equivalent circuit, then connect a \(100 \Omega\) load
\(\square I_{\llcorner }\)and \(V_{L}\) are then easily determined using Ohm's Law

\section*{Thévenin Equivalent - Example}
\(\square\) Analyze the circuit using any convenient technique
- Nodal analysis would be a reasonable choice
- Two independent sources - we'll use superposition

\(\square\) First, find \(V_{O C}\) due to \(V_{S}\)
\(\square R_{1}\) is in parallel with a voltage source, so it can be neglected
\(\square\) No current flows through \(R_{5}\) so it can be neglected
\(\square\) Circuit reduces to a simple voltage divider
\[
\left.V_{o c}\right|_{V_{s}}=10 \mathrm{~V} \cdot \frac{500 \Omega}{1000 \Omega}=5 \mathrm{~V}
\]

\section*{Thévenin Equivalent - Example}
\(\square\) Next, find \(V_{o c}\) due to \(I_{S}\)
\(\square \quad R_{1}\) gets shorted, so it can be neglected
\(\square\) No current flows through \(R_{5}\) so
 it can be neglected
\(\square\) Circuit reduces to a simple current divider
\(\square\) Find \(I_{3}\) to determine the terminal voltage
\[
I_{3}=10 \mathrm{~mA} \frac{200 \Omega}{1000 \Omega}=2 \mathrm{~mA}
\]

\(\square\) Terminal voltage is negative due to current direction
\[
\left.V_{o c}\right|_{I_{s}}=-I_{3} R_{4}=-2 \mathrm{~mA} \cdot 500 \Omega=-1 \mathrm{~V}
\]
\(\square\) Open-circuit voltage is the sum of the individual components
\[
V_{o c}=\left.V_{o c}\right|_{V_{s}}+\left.V_{o c}\right|_{I_{s}}=5 \mathrm{~V}-1 \mathrm{~V}=4 \mathrm{~V}
\]

\section*{Thévenin Equivalent - Example}
\(\square\) Next, determine the Thévenin equivalent resistance, \(R_{t h}\)
- Set independent sources to zero
- \(V_{S} \rightarrow\) short circuit \((V=0)\)
- \(I_{S} \rightarrow\) open circuit ( \(I=0\) )
- Determine equivalent resistance between the terminals
\(\square R_{1}\) is shorted
- In parallel with a short circuit
\(\square\) Combine other series and parallel resistors

\[
\begin{aligned}
& R_{t h}=R_{5}+R_{4} \|\left(R_{2}+R_{3}\right) \\
& R_{t h}=50 \Omega+500 \Omega \|(200 \Omega+300 \Omega)
\end{aligned}
\]
\[
R_{t h}=300 \Omega
\]


\section*{Thévenin Equivalent - Example}
\(\square\) The Thévenin equivalent circuit with a \(100 \Omega\) load connected:
\(\square\) Voltage division gives the load voltage
\[
V_{L}=V_{o c} \frac{R_{L}}{R_{t h}+R_{L}}=4 V \frac{100 \Omega}{400 \Omega}
\]
\[
V_{L}=1 V
\]
\(\square\) Ohm's law gives the load current
\[
I_{L}=\frac{V_{L}}{R_{L}}=\frac{1 V}{100 \Omega}
\]
\[
I_{L}=10 \mathrm{~mA}
\]

\section*{Norton Equivalent Circuits}
\(\square\) Norton's theorem:
Any two-terminal linear network of resistors and sources can be represented as single resistor in parallel with a single independent current source
\(\square\) The resistor is the Thévenin equivalent resistance, \(R_{\text {th }}\)
\(\square\) The current source is the short-circuit current, \(I_{S c}\)


Edward Lawry Norton, 1898-1983

\section*{Norton Equivalent Circuits}
\(\square\) An extension of Thévenin's Theorem
\(\square\) Motivated by the development of vacuum tubes
- More appropriately modeled with current sources
- Same is true of the successors to tubes: transistors

Complex network Norton equivalent network


\section*{Short-Circuit Current- \(I_{S C}\)}
\(\square\) Short-circuit current, \(I_{s c}\)
- The current that flows between the short-circuited terminals
\(\square\) Determine \(I_{s c}\) by using most convenient method
- Ohm's Law
- Kirchhoff's Laws
- Voltage or current divider
- Nodal or mesh analysis


\section*{Thévenin Resistance \(-R_{t h}\)}
\(\square\) Thévenin equivalent resistance, \(R_{\text {th }}\),
- The same for a Norton equivalent circuit as for a Thévenin equivalent circuit
- The resistance seen between the two terminals with all independent sources set to zero


\section*{Thévenin and Norton Equivalents}
\(\square\) Easily convert between Thévenin and Norton equivalent circuits


\section*{93 \\ Example Problems}

Determine both the Thévenin and Norton equivalents for the following circuit.


First, find \(V_{0 c}\)
\[
V_{0 .}=-I_{2} .40 \Omega
\]
- No current through \(20 \Omega\) resistor at terminals, s- it has no impact on Voc.
- Apply current division
\[
\begin{aligned}
& I_{2}=200 \mathrm{~mA} \frac{20 \Omega}{20 \Omega+10 \Omega+40 \Omega}=57.14 \mathrm{~mA} \\
& V_{0 c}=-57.14 \mathrm{~mA} \cdot 40 \Omega=-2.29 \mathrm{~V}
\end{aligned}
\]

Next, find Ruth

\[
R_{\text {th }}=20 \Omega+40 \Omega / /(10 \Omega+20 \Omega)=37.1 \Omega
\]

Theremin equitant:


Norton equivalent
\[
\begin{aligned}
& I_{s c}=\frac{V_{o c}}{R_{M}}=-\frac{2.29 \mathrm{~V}}{37.1 \Omega} \\
& I_{s c}=-615 \mathrm{~mA}
\end{aligned}
\]

Determine the Thévenin equivalent for the following circuit.


First, find Voe. Apply KCL at \(V_{x}\) :
\[
\begin{align*}
& I_{1}-I_{2}+I_{3}=0 \\
& \frac{5 v-V_{x}}{100 \pi}-\frac{V_{x}}{100 \Omega}+\frac{V_{0 c}-V_{x}}{100 \Omega}-100 \mathrm{~mA}=0 \\
& V_{x}\left(-\frac{1}{100 \pi}-\frac{1}{100 \pi}-\frac{1}{100 \Omega}\right)+V_{0 c}\left(\frac{1}{100 \Omega}\right)=100 \mathrm{~mA}-\frac{5 V}{100 \pi} \\
& V_{x}(-30 \mathrm{mS})+V_{0 c}(10 \mathrm{~ms})=50 \mathrm{~mA} \tag{1}
\end{align*}
\]

KCl at \(\mathrm{VOC}_{0}\)
\[
\begin{aligned}
100 \mathrm{~mA}-I_{3} & =0 \\
100 \mathrm{~mA} & -\frac{V_{s c}-v_{x}}{106 \Omega}=0
\end{aligned}
\]
\[
\begin{align*}
& V_{0 c}-V_{x}=100 \mathrm{~mA} \cdot 100 \Omega \\
& V_{0 c}=V_{x}+10 \mathrm{~V} \tag{2}
\end{align*}
\]

Substitute (2) \(\rightarrow\) (1)

\[
\begin{aligned}
& v_{x}(-30 \mathrm{~ms})+v_{x}(10 \mathrm{~ms})+10 \mathrm{~V}(10 \mathrm{~ms})=50 \mathrm{~mA} \\
& v_{x}(-20 \mathrm{~ms})=50 \mathrm{~mA}-100 \mathrm{~mA}=-50 \mathrm{~mA} \\
& V_{x}=\frac{-50 \mathrm{~mA}}{-20 \mathrm{~ms}}=2.5 \mathrm{~V}
\end{aligned}
\]

Substitute \(V_{x}\) ints (2)
\[
V_{0 c}=2.5 v+10 V=12.5 \mathrm{~V}
\]

Fin-lly, fird \(R_{\text {sh }}\) :

\[
\begin{aligned}
R_{\text {H }} & =100 \Omega+(100 \Omega \| 100 \Omega) \\
R_{H h} & =50 \Omega
\end{aligned}
\]

Thevenin equibalent:


Alterantively, could do a soure transformatim on the curreent source

\(V_{0 c}=I_{s c} \cdot R_{t h}=100 \mathrm{~mA} \cdot 100 \Omega\) \(V_{x}=10 \mathrm{~V}\)


Now, apply voltage division to get \(V_{x}\)
\[
V_{x}=5 \mathrm{~V} \frac{100 \Omega}{100 \Omega+100 \Omega}=2.5 \mathrm{~V}
\]

And, clearly now, we have
\[
V_{0 c}=V_{x}+10 \mathrm{~V}=12.5 \mathrm{~V} \rightarrow V_{0 c}=12.5 \mathrm{~V}
\]
\(R_{\text {th }}\) is the same as before

\[
\begin{aligned}
& R_{k}=100 \Omega+100 \Omega / 1100 \Omega \\
& R_{M}=150 \Omega
\end{aligned}
\]```

