
ENGR 201 – Electrical Fundamentals I

SECTION 3:
RESISTIVE CIRCUIT ANALYSIS II
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Circuit Analysis Methods

 Circuit analysis objective is to determine all:
 Node voltages
 Branch currents

 Circuit analysis tools:
 Ohm’s law
 Kirchhoff’s laws – KVL, KCL

 Circuit analysis methods:
 Nodal analysis
 Systematic application of KCL

 Mesh/loop analysis
 Systematic application of KVL
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Nodal Analysis

 Nodal analysis
 Systematic application of KCL
 Generate a system of equations
 Node voltages are the unknown variables
 Number of equations equals number of unknown node 

voltages
 Solve equations to determine node voltages
 Apply Ohm’s law to determine branch currents
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Nodal Analysis – Step-by-Step Procedure

1) Identify and label all nodes in the circuit – distinguish 
known from unknown node voltages

2) Assign and label polarities of currents through all 
branches

3) Apply KCL at each node, using Ohm’s Law to express 
branch currents in terms of node voltages

4) Solve the resulting simultaneous system of equations 
using substitution, calculator, Cramer’s Rule, etc.

5) Use Ohm’s Law and node voltages to determine 
branch currents



K. Webb ENGR 201

7

Nodal Analysis – Example

 Apply nodal analysis to determine all node voltages 
and branch currents in the following circuit
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Nodal Analysis – Step 1

 Step 1: Identify and 
label all nodes in the 
circuit – distinguish 
known from 
unknown node 
voltages

 Vs is a known node 
voltage (5 V) 

 V1 and V2 are 
unknown
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Nodal Analysis – Step 2

 Step 2: Assign and 
label polarities of 
currents through all 
branches

 Assumed polarities 
needn’t be correct
 Correct polarity given 

by the sign of the 
determined quantity
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Nodal Analysis – Step 3

 Step 3: Apply KCL at each node, using Ohm’s Law to 
express branch currents in terms of node voltages

KCL at node 1

KCL at node 2

𝐼𝐼1 − 𝐼𝐼2 − 𝐼𝐼3 = 0

5𝑉𝑉 − 𝑉𝑉1
𝑅𝑅1

−
𝑉𝑉1
𝑅𝑅2

−
𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

= 0

𝐼𝐼3 − 𝐼𝐼4 = 0

𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

−
𝑉𝑉2
𝑅𝑅4

= 0
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Nodal Analysis – Step 4

 Step 4: Solve the resulting system of equations
 First, organize the equations

5𝑉𝑉 − 𝑉𝑉1
𝑅𝑅1

−
𝑉𝑉1
𝑅𝑅2

−
𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

= 0

𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

−
𝑉𝑉2
𝑅𝑅4

= 0

𝑉𝑉1 −
1
𝑅𝑅1

−
1
𝑅𝑅2

−
1
𝑅𝑅3

+ 𝑉𝑉2
1
𝑅𝑅3

= −
5𝑉𝑉
𝑅𝑅1

𝑉𝑉1
1
𝑅𝑅3

+ 𝑉𝑉2 −
1
𝑅𝑅3

−
1
𝑅𝑅4

= 0

 Solve using Gaussian elimination, Cramer’s rule, or using calculator or 
computer
 Put into matrix form for solution in calculator or MATLAB:

−
1
𝑅𝑅1

−
1
𝑅𝑅2

−
1
𝑅𝑅3

1
𝑅𝑅3

1
𝑅𝑅3

−
1
𝑅𝑅3

−
1
𝑅𝑅4

𝑉𝑉1
𝑉𝑉2

= −
5𝑉𝑉
𝑅𝑅1
0

−8𝑚𝑚𝑚𝑚 5𝑚𝑚𝑚𝑚
5𝑚𝑚𝑚𝑚 −7.5𝑚𝑚𝑚𝑚

𝑉𝑉1
𝑉𝑉2

= −10𝑚𝑚𝑚𝑚
0

𝐆𝐆𝐆𝐆 = 𝐈𝐈
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Nodal Analysis – Step 5

 Step 5: Use Ohm’s Law and node voltages to determine branch 
currents
 Solution to system of equations yields node voltages:

𝑉𝑉1 = 𝟐𝟐.𝟏𝟏𝟏𝟏 𝑽𝑽
𝑉𝑉2 = 𝟏𝟏.𝟏𝟏𝟒𝟒 𝑽𝑽

 Branch currents are

𝐼𝐼1 =
5𝑉𝑉 − 𝑉𝑉1
𝑅𝑅1

=
5 𝑉𝑉 − 2.14 𝑉𝑉

500 Ω
= 𝟓𝟓.𝟕𝟕𝟏𝟏𝒎𝒎𝒎𝒎

𝐼𝐼2 =
𝑉𝑉1
𝑅𝑅2

=
2.14 𝑉𝑉
1 𝑘𝑘Ω

= 𝟐𝟐.𝟏𝟏𝟏𝟏𝒎𝒎𝒎𝒎

𝐼𝐼3 = 𝐼𝐼4 =
𝑉𝑉2
𝑅𝑅4

=
1.43 𝑉𝑉
400 Ω

= 𝟒𝟒.𝟓𝟓𝟕𝟕𝒎𝒎𝒎𝒎
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Nodal Analysis

 Nodal analysis yields all node voltages and branch 
currents
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Nodal Analysis – Floating Voltage Sources

 When performing nodal analysis on circuits with voltage 
sources, there are two possible scenarios:
 Voltage source connected to the reference node
 As in the last example

 Voltage source is floating
 Both terminals connected to non-reference nodes



K. Webb ENGR 201

16

Nodal Analysis - Supernodes

 Floating voltage sources pose a problem
 Cannot use Ohm’s law to represent the current through the 

source
 Ohm’s law applies only to resistors

 Solution:
 Form a supernode enclosing the source
 Formed by two non-reference nodes

 Apply KCL to the supernode
 One equation for the two unknown nodes

 Apply KVL to relate the voltages of the nodes forming the 
supernode
 Providing the required additional equation
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Supernode – Example 

 Nodes 𝑉𝑉1 and 𝑉𝑉2 form a supernode, enclosing the floating 
voltage source

 Circuit has two unknown node 
voltages, 𝑉𝑉1 and 𝑉𝑉2
 System of two equations is 

required

 KCL will be applied at the 
supernode
 Only one equation will result

 Additional required equation obtained by applying KVL to 
relate 𝑉𝑉1 to 𝑉𝑉2
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Nodal Analysis with Supernodes – Step-by-Step

1) Identify and label all nodes in the circuit – distinguish 
known from unknown node voltages

2) Assign and label polarities of currents through all branches

3) Generate a system of equations
a) Apply KCL at each node and each supernode, using Ohm’s Law to 

express branch currents in terms of node voltages
b) Apply KVL to relate the voltages of the nodes that form the 

supernodes

4) Solve the resulting simultaneous system of equations using 
substitution, calculator, Cramer’s Rule, etc.

5) Use Ohm’s Law and node voltages to determine branch 
currents
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Supernode – Example 

 Step 1: Identify and label all nodes in the circuit 
 Any supernodes are identified and labeled in this step

 Step 2: Assign and label all 
branch currents

 Step 3a: Apply KCL at all nodes 
and all supernodes
 Here we have only the one 

supernode:

𝐼𝐼1 − 𝐼𝐼2 + 𝐼𝐼3 − 𝐼𝐼4 = 0

10 𝑉𝑉 − 𝑉𝑉1
2 Ω −

𝑉𝑉1
8 Ω +

10 𝑉𝑉 − 𝑉𝑉2
4 Ω −

𝑉𝑉2
6 Ω = 0

𝑉𝑉1
1

2 Ω +
1

8 Ω + 𝑉𝑉2
1

4 Ω +
1

6 Ω = 7.5 𝑚𝑚
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Supernode – Example 

 Step 3b: Apply KVL to relate the voltages of the nodes 
that form the supernode

𝑉𝑉1 − 5𝑉𝑉 − 𝑉𝑉𝑉 = 0

𝑉𝑉1 − 𝑉𝑉2 = 5 𝑉𝑉

 Step 4: Solve the resulting system of equations
𝑉𝑉1 ⋅ 625 𝑚𝑚𝑚𝑚 + 𝑉𝑉2 ⋅ 416.7 𝑚𝑚𝑚𝑚 = 7.5 𝑚𝑚

𝑉𝑉1 − 𝑉𝑉2 = 5 𝑉𝑉

 Putting these into matrix form:

625 𝑚𝑚𝑚𝑚 416.7 𝑚𝑚𝑚𝑚
1 −1

𝑉𝑉1
𝑉𝑉2

= 7.5 𝑚𝑚
5 𝑉𝑉
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Supernode – Example 

625 𝑚𝑚𝑚𝑚 416.7 𝑚𝑚𝑚𝑚
1 −1

𝑉𝑉1
𝑉𝑉2

= 7.5 𝑚𝑚
5 𝑉𝑉

 Note that coefficient matrix on 
the left-hand side is no longer a 
conductance matrix
 Second-row elements are 

dimensionless
 Mix of KCL and KVL equations

 Solve using your method of choice
 Here, solved using MATLAB

𝑉𝑉1 = 9.2 𝑉𝑉

𝑉𝑉2 = 4.2 𝑉𝑉
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Supernode – Example 

 Step 5: Use Ohm’s law and 
branch currents to determine 
node voltages 

𝐼𝐼1 =
10 𝑉𝑉 − 9.2 𝑉𝑉

2 Ω =
0.8 𝑉𝑉
2 Ω = 0.4 𝑚𝑚

𝐼𝐼2 =
9.2 𝑉𝑉
8 Ω = 1.15 𝑚𝑚

𝐼𝐼3 =
10 𝑉𝑉 − 4.2 𝑉𝑉

4 Ω
=

5.8 𝑉𝑉
4 Ω

= 1.45 𝑚𝑚

𝐼𝐼4 =
4.2 𝑉𝑉
6 Ω

= 0.7 𝑚𝑚

𝐼𝐼1 = 0.4 𝑚𝑚

𝐼𝐼2 = 1.15 𝑚𝑚

𝐼𝐼3 = 1.45 𝑚𝑚

𝐼𝐼4 = 0.7 𝑚𝑚
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Apply nodal analysis to 
determine Vo in the 
following circuit.

24
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Apply nodal analysis 
to determine V1 and 
V2.

25
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Apply nodal analysis 
to determine Vo.

27
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Apply nodal analysis 
to determine V1, V2, 
and V3.

28
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Apply nodal analysis 
to determine V1, V2, 
and V3.

30
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Mesh Analysis

 Mesh analysis
 Systematic application of KVL
 Generate a system of equations
Mesh currents are the unknown variables
 Number of equations equals number of unknown mesh 

currents
 Solve equations to determine mesh currents
 Determine branch currents as linear combinations of 

mesh currents
 Apply Ohm’s law to determine node voltages
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Meshes

 What is a mesh?
 A mesh is a loop that does not contain any other loops

 Loop 1 and Loop 2 are meshes, Loop 3 is not
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Mesh Currents

 What is a mesh current?
 Fictitious circulating current in a mesh
 Components of the branch currents

 Branch currents are linear combinations of mesh currents, e.g.:

𝑖𝑖1 = 𝐼𝐼1
𝑖𝑖3 = 𝐼𝐼1 − 𝐼𝐼2
𝑖𝑖4 = 𝐼𝐼2

 Conventions:
 Denote mesh currents with 

uppercase 𝐼𝐼
 Denote branch currents with 

lowercase 𝑖𝑖
 Mesh current direction is 

clockwise
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Mesh Analysis – step-by-step procedure

1) Identify and label all:
 Mesh currents, 𝐼𝐼𝑛𝑛
 Branch currents, 𝑖𝑖𝑛𝑛
 Unknown node voltages

2) Apply KVL around each mesh
 Follow CW direction of the mesh current
 Use Ohm’s law to express voltage drops in terms of mesh currents

3) Solve the resulting simultaneous system of equations using 
Gaussian elimination, calculator, MATLAB, etc.

4) Determine branch currents from the mesh currents

5) Use Ohm’s Law and branch currents to determine node 
voltages
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Mesh Analysis – Example

 Use mesh analysis to 
determine all 
 Node voltages 
 Branch currents

 Step 1: Identify and label all 
mesh currents, branch 
currents, and unknown node 
voltages
 Two unknown mesh currents
 Three distinct branch currents
 Two unknown node voltages
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Mesh Analysis – Example

 Step 2: Apply KVL  around each 
mesh
 KVL around mesh 1:

5 𝑉𝑉 − 𝐼𝐼1 ⋅ 500 Ω − 𝐼𝐼1 ⋅ 1 𝑘𝑘Ω + 𝐼𝐼2 ⋅ 1 𝑘𝑘Ω = 0

 Note that there are two components to the voltage across 
the 1 𝑘𝑘Ω resistor
 A drop due to 𝐼𝐼1
 A rise due to 𝐼𝐼2

 KVL around mesh 2:
−𝐼𝐼2 ⋅ 1 𝑘𝑘Ω + 𝐼𝐼1 ⋅ 1 𝑘𝑘Ω − 𝐼𝐼2 ⋅ 200 Ω − 𝐼𝐼2 ⋅ 400 Ω = 0

 Again, note the two voltage components across the 1 𝑘𝑘Ω
resistor
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Mesh Analysis – Example

 Step 3: Solve the resulting system of mesh 
equations
 Cleaning up the two equations:

𝐼𝐼1 ⋅ 1.5 𝑘𝑘Ω − 𝐼𝐼2 ⋅ 1 𝑘𝑘Ω = 5 𝑉𝑉

−𝐼𝐼1 ⋅ 1 𝑘𝑘Ω + 𝐼𝐼2 ⋅ 1.6 𝑘𝑘Ω = 0

 Organizing the system of two equations into matrix 
form:

1.5 𝑘𝑘Ω −1 𝑘𝑘Ω
−1 𝑘𝑘Ω 1.6 𝑘𝑘Ω

𝐼𝐼1
𝐼𝐼2

= 5 𝑉𝑉
0

𝐑𝐑 𝐈𝐈 = 𝐆𝐆

 Solving in MATLAB yields:

𝐼𝐼1 = 5.71 𝑚𝑚𝑚𝑚

𝐼𝐼2 = 3.57 𝑚𝑚𝑚𝑚

 Mesh currents, not branch currents
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Mesh Analysis – Example

 Step 4: Determine branch 
currents from mesh currents
 Branch current, 𝑖𝑖1, is the same as 

mesh current, 𝐼𝐼1
𝑖𝑖1 = 𝐼𝐼1 = 5.71 𝑚𝑚𝑚𝑚

 Branch current, 𝑖𝑖2, is a combination of the two opposing 
mesh currents
 In the same direction as 𝐼𝐼1
 In the opposite direction of 𝐼𝐼2

𝑖𝑖2 = 𝐼𝐼1 − 𝐼𝐼2 = 5.71 𝑚𝑚𝑚𝑚 − 3.57 𝑚𝑚𝑚𝑚 = 2.14 𝑚𝑚𝑚𝑚

 Branch current, 𝑖𝑖3, is the same as mesh current, 𝐼𝐼2
𝑖𝑖3 = 𝐼𝐼2 = 3.57 𝑚𝑚𝑚𝑚
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Mesh Analysis – Example

𝑖𝑖1 = 5.71 𝑚𝑚𝑚𝑚

𝑖𝑖2 = 2.14 𝑚𝑚𝑚𝑚

𝑖𝑖3 = 3.57 𝑚𝑚𝑚𝑚

 Step 5: Use Ohm’s law and branch 
currents to determine node voltages

𝑉𝑉1 = 2.14 𝑚𝑚𝑚𝑚 ⋅ 1 𝑘𝑘Ω = 2.14 𝑉𝑉

𝑉𝑉2 = 3.57 𝑚𝑚𝑚𝑚 ⋅ 400 Ω = 1.43 𝑉𝑉

 Note that these results agree with 
those obtained through nodal analysis

𝑉𝑉1 = 2.14 𝑉𝑉

𝑉𝑉2 = 1.43 𝑉𝑉
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Mesh Analysis – Current Sources

 Sometimes, we may want to perform mesh analysis on a circuit 
containing current sources

 Two possible scenarios:

 Current source is part of only 
one mesh

 Current source is part of two 
meshes

 Here, 𝐼𝐼1 = 2 𝑚𝑚
 Only one unknown mesh 

current, 𝐼𝐼2
 Only one mesh equation

 Mesh analysis proceeds as 
usual

 Can’t apply KVL around 
either mesh 
 Don’t know the voltage drop 

across the current source
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Supermesh

 Current source shared by two meshes poses a problem
 Need to apply KVL around each mesh, but don’t know the 

voltage across the current source

 Solution:
 Form a supermesh around the periphery of the two meshes 

that share the current source
 Apply KVL around the supermesh
 One equation for the two unknown mesh currents

 Apply KCL to a node on the branch common to the two 
meshes in the supermesh
 This provides the second required equation for the two unknown 

mesh currents
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Supermesh – Example 

 Meshes 1 and 2 are combined 
to form a supermesh

 Circuit has two unknown 
mesh currents, 𝐼𝐼1 and 𝐼𝐼2
 System of two equations is 

required

 KVL will be applied around the supermesh
 Only one equation will result

 Additional required equation obtained by applying KCL to a 
node on the branch common to both meshes

 If multiple supermeshes intersect, they should be joined 
into a single supermesh
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Mesh Analysis with Supermeshes – Step-by-Step

1) Identify and label all:
 Mesh currents, 𝐼𝐼𝑛𝑛
 Branch currents, 𝑖𝑖𝑛𝑛
 Unknown node voltages

2) Generate a system of equations
a) Apply KVL around each supermesh and each mesh that is not part of a 

supermesh
b) Apply KCL at a node on each branch common to two meshes in each 

supermesh

3) Solve the resulting simultaneous system of equations using Gaussian 
elimination, calculator, MATLAB, etc.

4) Determine branch currents from the mesh currents

5) Use Ohm’s Law and branch currents to determine node voltages
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Supermesh – Example 

 Step 1: Identify and label all 
mesh currents, branch currents, 
and unknown node voltages
 Any supermeshes are identified 

and labeled in this step

 Step 2a: Apply KVL around each mesh and each supermesh
 Only one supermesh, and no other meshes

−𝐼𝐼1 ⋅ 2 Ω − 𝐼𝐼1 ⋅ 8 Ω − 𝐼𝐼2 ⋅ 6Ω − 𝐼𝐼2 ⋅ 12 Ω = 0

 Step 2b: Apply KCL at a node on the branch common to the two 
meshes in the supermesh

𝐼𝐼1 − 𝐼𝐼2 + 𝑉𝑚𝑚 = 0

 These are the two equations needed to solve for the two unknown 
mesh currents, 𝐼𝐼1 and 𝐼𝐼2
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Supermesh – Example 

 Step 3: Solve the resulting 
system of equations
 Rearranging the equations:

𝐼𝐼1 ⋅ 10 Ω + 𝐼𝐼2 ⋅ 18 Ω = 0

−𝐼𝐼1 + 𝐼𝐼2 = 2 𝑚𝑚
 In matrix form, the system of equations is

10 Ω 18 Ω
−1 1

𝐼𝐼1
𝐼𝐼2

= 0
2 𝑚𝑚

 Note that, similar to the supernode analysis, the two equations now 
have  different units 

 Solving in MATLAB yields

𝐼𝐼1 = −1.29 𝑚𝑚

𝐼𝐼2 = 0.714 𝑚𝑚
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Supermesh – Example 

 Step 4: Determine branch currents 
from the mesh currents
 Very simple in this example

𝑖𝑖1 = 𝐼𝐼1 = −1.29 𝑚𝑚

𝑖𝑖2 = 𝐼𝐼2 = 0.714 𝑚𝑚

 Step 5: Use Ohm’s law and branch currents to determine node voltages 

𝑉𝑉1 = −𝑖𝑖1 ⋅ 2 Ω = 1.29 𝑚𝑚 ⋅ 2 Ω = 2.57 𝑉𝑉

𝑉𝑉2 = 𝑖𝑖2 ⋅ 18 Ω = 0.714 𝑚𝑚 ⋅ 18 Ω = 12.86 𝑉𝑉

𝑉𝑉3 = 𝑖𝑖2 ⋅ 12 Ω = 0.714 A ⋅ 12 Ω = 8.57 V

 Results of the mesh analysis:

𝑖𝑖1 = −1.29 𝑚𝑚

𝑖𝑖2 = 0.714 𝑚𝑚

𝑉𝑉1 = 2.57 𝑉𝑉

𝑉𝑉2 = 12.86 𝑉𝑉

𝑉𝑉3 = 8.57 𝑉𝑉
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Apply mesh analysis to 
determine V1, V2, i1, i2, and 
i3 in the following circuit.

51
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Apply mesh analysis to 
determine the power 
supplied/absorbed by each of 
the sources in the following 
circuit.

54
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Apply mesh analysis 
to determine Vx.

56
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Linearity & Superposition58
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Systems

 System
 Some entity – component, group of components – with inputs and 

outputs
 Electrical component
 Electrical circuit
 Motor, engine, robot, aircraft, etc. …

 Can think of the system as a mathematical function that operates 
on the input to provide the output

𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

 A resistor is a system with voltage as the input and current as the 
output (or vice versa)

𝑖𝑖 =
1
𝑅𝑅
𝑣𝑣
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Linear Systems

 Linear system
 A system whose constitutive relationship is linear
 Function relating input to output is an equation for a line

 An ideal resistor is an example of a linear system
 Voltage in, current out:

𝑖𝑖 =
1
𝑅𝑅
⋅ 𝑣𝑣

 A line with slope 1/𝑅𝑅

 Current in, voltage out:

𝑣𝑣 = 𝑅𝑅 ⋅ 𝑖𝑖

 A line with slope 𝑅𝑅
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Superposition

 Linear systems obey the principle of superposition
 Two components to the superposition principle:

 Additivity

𝑓𝑓 𝑥𝑥1 + 𝑥𝑥2 = 𝑓𝑓 𝑥𝑥1 + 𝑓𝑓 𝑥𝑥2

 Homogeneity

𝑓𝑓 𝛼𝛼 ⋅ 𝑥𝑥 = 𝛼𝛼 ⋅ 𝑓𝑓(𝑥𝑥)
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Superposition

 Consider an 4 Ω resistor

𝑖𝑖 =
𝑣𝑣
𝑅𝑅

 𝑣𝑣1 = 2 𝑉𝑉

𝑖𝑖1 =
2 𝑉𝑉
4 Ω

= 0.5 𝑚𝑚

 𝑣𝑣2 = 6 𝑉𝑉

𝑖𝑖2 =
3 ⋅ 2 𝑉𝑉

4 Ω
= 3 ⋅ 0.5 𝑚𝑚 = 1.5 𝑚𝑚

 𝑣𝑣3 = 8 𝑉𝑉

𝑖𝑖3 =
2 𝑉𝑉 + 6 𝑉𝑉

4 Ω
= 0.5 𝑚𝑚 + 1.5 𝑚𝑚 = 2 𝑚𝑚
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Superposition – Electrical Circuits

 Superposition applied to electrical circuits
 Tool for analyzing networks with multiple sources

 For example:
 Output, 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜, is some linear 

combination of the inputs:

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎1𝑉𝑉𝑠𝑠 + 𝑎𝑎2𝐼𝐼𝑠𝑠

 𝑎𝑎1 and 𝑎𝑎2 are constants
 If we know them, we know 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

 To determine 𝑎𝑎1
 Set 𝐼𝐼𝑠𝑠 = 0
 Analyze the circuit to determine 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

 To determine 𝑎𝑎2
 Set 𝑉𝑉𝑠𝑠 = 0
 Analyze the circuit to determine 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
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Superposition

 Circuit analysis using superposition:
 Set all independent sources to zero, except for one
 Determine the output component due to that source 
 Repeat for all independent sources
 Sum all output components to find the total output

 Setting sources to zero:
 Voltage sources become short circuits (𝑣𝑣 = 0)
 Current sources become open circuits (𝑖𝑖 = 0)

The output of a multiple-input system is the sum of the 
outputs due to each independent source acting individually
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Superposition - Example

 Apply superposition to determine 
the output voltage, 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

 First, set the current source to zero
 Replace it with an open circuit
 Analyze the circuit to determine the 

output components due to the 
voltage source acting alone:

�𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑠𝑠
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Superposition - Example

 A simple voltage-divider circuit

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
= 𝑉𝑉𝑠𝑠

𝑅𝑅3
𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
= 5 𝑉𝑉

2 𝑘𝑘Ω
6 𝑘𝑘Ω

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
= 1.67 𝑉𝑉

 Next, set the voltage source to zero
 Replace it with a short circuit
 Analyze the circuit to determine the output 

components due to the current source acting 
alone:

�𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝐼𝐼𝑠𝑠
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Superposition - Example

 First, determine the current, 𝐼𝐼3, 
flowing through 𝑅𝑅3

𝐼𝐼3 = 𝐼𝐼𝑠𝑠
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3

𝐼𝐼3 = 10 𝑚𝑚𝑚𝑚
1 𝑘𝑘Ω
6 𝑘𝑘Ω

𝐼𝐼3 = 1.67 𝑚𝑚𝑚𝑚

 Applying Ohm’s law to 𝑅𝑅3 gives the output voltage due to the 
current source

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝐼𝐼𝑠𝑠
= 𝐼𝐼3𝑅𝑅3 = 1.67 𝑚𝑚𝑚𝑚 ⋅ 2 𝑘𝑘Ω

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝐼𝐼𝑠𝑠
= 3.33 𝑉𝑉

 In this case, we have a current-divider circuit
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Superposition - Example

 The total output due to both sources is 
the sum of the individual output 
components

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
+ 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝐼𝐼𝑠𝑠

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 1.67 𝑉𝑉 + 3.33 𝑉𝑉

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 5 𝑉𝑉

 Comments:
 Superposition applies to circuits with any number of sources and any 

mix of voltage and/or current sources
 Becomes a more useful tool as circuits get more complex
 Applies to all types of linear systems – not just electrical
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Apply superposition to 
determine Vo in the 
following circuit.

70
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Apply superposition 
to determine Vo in the 
following circuit.

73
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Apply superposition to 
determine Vo in the 
following circuit.

75
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Thévenin & Norton Equivalents78
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Thévenin Equivalent Circuits

 The resistor is the Thévenin 
equivalent resistance, 𝑅𝑅𝑜𝑜𝑡

 The voltage source is the 
open-circuit voltage, 𝑉𝑉𝑜𝑜𝑜𝑜

 Thévenin’s theorem:

Any two-terminal linear network of resistors and 
sources can be represented as single resistor in series 
with a single independent voltage source

Léon Charles Thévenin, 1857 – 1926
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Thévenin Equivalent Circuits

 Simplifies the analysis of complex networks
 Quickly determine current, voltage, or power to any 

load connected to the network terminals

Complex network Thévenin equivalent network
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Open-Circuit Voltage - 𝑉𝑉𝑜𝑜𝑜𝑜
 Open-circuit voltage, 𝑉𝑉𝑜𝑜𝑜𝑜

 The terminal voltage with no load attached

 Determine 𝑉𝑉𝑜𝑜𝑜𝑜 by using most convenient method  
 Ohm’s Law 
 Kirchhoff’s Laws 
 Voltage or current divider
 Nodal or mesh analysis
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Thévenin Resistance - 𝑅𝑅𝑜𝑜𝑡

 Thévenin equivalent resistance, 𝑅𝑅𝑜𝑜𝑡
 Resistance seen between the two terminals with all 

independent sources set to zero
 Voltage sources → short circuits
 Current sources → open circuits
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Thévenin Equivalent – Example

 For a 100 Ω load connected to the following network, 
determine:
 Load current, 𝐼𝐼𝐿𝐿
 Load voltage, 𝑉𝑉𝐿𝐿

 Transform to a Thévenin equivalent circuit, then 
connect a 100 Ω load
 IL and VL are then easily determined using Ohm’s Law
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Thévenin Equivalent – Example

 Analyze the circuit using any convenient technique
 Nodal analysis would be a reasonable choice
 Two independent sources – we’ll use superposition

 First, find 𝑉𝑉𝑜𝑜𝑜𝑜 due to 𝑉𝑉𝑠𝑠
 𝑅𝑅1 is in parallel with a voltage 

source, so it can be neglected
 No current flows through 𝑅𝑅5

so it can be neglected
 Circuit reduces to a simple 

voltage divider 

𝑉𝑉𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
= 10 𝑉𝑉 ⋅

500 Ω
1000 Ω

= 5 𝑉𝑉
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Thévenin Equivalent – Example

 Next, find 𝑉𝑉𝑜𝑜𝑜𝑜 due to 𝐼𝐼𝑠𝑠
 𝑅𝑅1 gets shorted, so it can be 

neglected
 No current flows through 𝑅𝑅5 so 

it can be neglected

 Circuit reduces to a simple current divider
 Find 𝐼𝐼3 to determine the terminal voltage

𝐼𝐼3 = 10 𝑚𝑚𝑚𝑚
200 Ω

1000 Ω
= 2 𝑚𝑚𝑚𝑚

 Terminal voltage is negative due to current direction

𝑉𝑉𝑜𝑜𝑜𝑜 �
𝐼𝐼𝑠𝑠

= −𝐼𝐼3𝑅𝑅4 = −2 𝑚𝑚𝑚𝑚 ⋅ 500 Ω = −1 𝑉𝑉

 Open-circuit voltage is the sum of the individual components

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜 �
𝑉𝑉𝑠𝑠

+ 𝑉𝑉𝑜𝑜𝑜𝑜 �
𝐼𝐼𝑠𝑠

= 5 𝑉𝑉 − 1 𝑉𝑉 = 4 𝑉𝑉
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Thévenin Equivalent – Example

 Next, determine the Thévenin equivalent resistance, 𝑅𝑅𝑜𝑜𝑡
 Set independent sources to zero 

 𝑉𝑉𝑠𝑠 → short circuit (𝑉𝑉 = 0)
 𝐼𝐼𝑠𝑠 → open circuit (𝐼𝐼 = 0)

 Determine equivalent resistance between the terminals

 𝑅𝑅1 is shorted
 In parallel with a short circuit

 Combine other series and parallel 
resistors 

𝑅𝑅𝑜𝑜𝑡 = 𝑅𝑅5 + 𝑅𝑅4|| 𝑅𝑅2 + 𝑅𝑅3
𝑅𝑅𝑜𝑜𝑡 = 50 Ω + 500 Ω|| 200 Ω + 300 Ω

𝑅𝑅𝑜𝑜𝑡 = 300 Ω
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Thévenin Equivalent – Example

 The Thévenin equivalent circuit with a 
100 Ω load connected:

 Voltage division gives the load voltage

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝑜𝑜𝑜𝑜
𝑅𝑅𝐿𝐿

𝑅𝑅𝑜𝑜𝑡 + 𝑅𝑅𝐿𝐿
= 4 𝑉𝑉

100 Ω
400 Ω

𝑉𝑉𝐿𝐿 = 1 𝑉𝑉

 Ohm’s law gives the load current

𝐼𝐼𝐿𝐿 =
𝑉𝑉𝐿𝐿
𝑅𝑅𝐿𝐿

=
1 𝑉𝑉

100 Ω

𝐼𝐼𝐿𝐿 = 10 𝑚𝑚𝑚𝑚
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Norton Equivalent Circuits

 The resistor is the Thévenin 
equivalent resistance, 𝑅𝑅𝑜𝑜𝑡

 The current source is the 
short-circuit current, 𝐼𝐼𝑠𝑠𝑜𝑜

 Norton’s theorem:

Any two-terminal linear network of resistors and 
sources can be represented as single resistor in parallel 
with a single independent current source

Edward Lawry Norton, 1898 – 1983
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Norton Equivalent Circuits

 An extension of Thévenin’s Theorem
 Motivated by the development of vacuum tubes 

 More appropriately modeled with current sources
 Same is true of the successors to tubes: transistors

Complex network Norton equivalent network
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Short-Circuit Current- 𝐼𝐼𝑠𝑠𝑜𝑜
 Short-circuit current, 𝐼𝐼𝑠𝑠𝑜𝑜

 The current that flows between the short-circuited terminals

 Determine 𝐼𝐼𝑠𝑠𝑜𝑜 by using most convenient method  
 Ohm’s Law 
 Kirchhoff’s Laws 
 Voltage or current divider
 Nodal or mesh analysis
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Thévenin Resistance - 𝑅𝑅𝑜𝑜𝑡

 Thévenin equivalent resistance, 𝑅𝑅𝑜𝑜𝑡, 
 The same for a Norton equivalent circuit as for a Thévenin 

equivalent circuit
 The resistance seen between the two terminals with all 

independent sources set to zero
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Thévenin and Norton Equivalents

 Easily convert between Thévenin and Norton equivalent 
circuits

Thévenin Norton

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝐼𝐼𝑠𝑠𝑜𝑜 ⋅ 𝑅𝑅𝑜𝑜𝑡 𝐼𝐼𝑠𝑠𝑜𝑜 =
𝑉𝑉𝑜𝑜𝑜𝑜
𝑅𝑅𝑜𝑜𝑡
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Determine both the Thévenin 
and Norton equivalents for the 
following circuit.

94
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Determine the Thévenin 
equivalent for the 
following circuit.
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