
ENGR 201 – Electrical Fundamentals I

SECTION 3:
RESISTIVE CIRCUIT ANALYSIS II
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Circuit Analysis Methods

 Circuit analysis objective is to determine all:
 Node voltages
 Branch currents

 Circuit analysis tools:
 Ohm’s law
 Kirchhoff’s laws – KVL, KCL

 Circuit analysis methods:
 Nodal analysis
 Systematic application of KCL

 Mesh/loop analysis
 Systematic application of KVL
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Nodal Analysis

 Nodal analysis
 Systematic application of KCL
 Generate a system of equations
 Node voltages are the unknown variables
 Number of equations equals number of unknown node 

voltages
 Solve equations to determine node voltages
 Apply Ohm’s law to determine branch currents



K. Webb ENGR 201

6

Nodal Analysis – Step-by-Step Procedure

1) Identify and label all nodes in the circuit – distinguish 
known from unknown node voltages

2) Assign and label polarities of currents through all 
branches

3) Apply KCL at each node, using Ohm’s Law to express 
branch currents in terms of node voltages

4) Solve the resulting simultaneous system of equations 
using substitution, calculator, Cramer’s Rule, etc.

5) Use Ohm’s Law and node voltages to determine 
branch currents
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Nodal Analysis – Example

 Apply nodal analysis to determine all node voltages 
and branch currents in the following circuit
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Nodal Analysis – Step 1

 Step 1: Identify and 
label all nodes in the 
circuit – distinguish 
known from 
unknown node 
voltages

 Vs is a known node 
voltage (5 V) 

 V1 and V2 are 
unknown
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Nodal Analysis – Step 2

 Step 2: Assign and 
label polarities of 
currents through all 
branches

 Assumed polarities 
needn’t be correct
 Correct polarity given 

by the sign of the 
determined quantity
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Nodal Analysis – Step 3

 Step 3: Apply KCL at each node, using Ohm’s Law to 
express branch currents in terms of node voltages

KCL at node 1

KCL at node 2

𝐼𝐼1 − 𝐼𝐼2 − 𝐼𝐼3 = 0

5𝑉𝑉 − 𝑉𝑉1
𝑅𝑅1

−
𝑉𝑉1
𝑅𝑅2

−
𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

= 0

𝐼𝐼3 − 𝐼𝐼4 = 0

𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

−
𝑉𝑉2
𝑅𝑅4

= 0
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Nodal Analysis – Step 4

 Step 4: Solve the resulting system of equations
 First, organize the equations

5𝑉𝑉 − 𝑉𝑉1
𝑅𝑅1

−
𝑉𝑉1
𝑅𝑅2

−
𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

= 0

𝑉𝑉1 − 𝑉𝑉2
𝑅𝑅3

−
𝑉𝑉2
𝑅𝑅4

= 0

𝑉𝑉1 −
1
𝑅𝑅1

−
1
𝑅𝑅2

−
1
𝑅𝑅3

+ 𝑉𝑉2
1
𝑅𝑅3

= −
5𝑉𝑉
𝑅𝑅1

𝑉𝑉1
1
𝑅𝑅3

+ 𝑉𝑉2 −
1
𝑅𝑅3

−
1
𝑅𝑅4

= 0

 Solve using Gaussian elimination, Cramer’s rule, or using calculator or 
computer
 Put into matrix form for solution in calculator or MATLAB:

−
1
𝑅𝑅1

−
1
𝑅𝑅2

−
1
𝑅𝑅3

1
𝑅𝑅3

1
𝑅𝑅3

−
1
𝑅𝑅3

−
1
𝑅𝑅4

𝑉𝑉1
𝑉𝑉2

= −
5𝑉𝑉
𝑅𝑅1
0

−8𝑚𝑚𝑚𝑚 5𝑚𝑚𝑚𝑚
5𝑚𝑚𝑚𝑚 −7.5𝑚𝑚𝑚𝑚

𝑉𝑉1
𝑉𝑉2

= −10𝑚𝑚𝑚𝑚
0

𝐆𝐆𝐆𝐆 = 𝐈𝐈
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Nodal Analysis – Step 5

 Step 5: Use Ohm’s Law and node voltages to determine branch 
currents
 Solution to system of equations yields node voltages:

𝑉𝑉1 = 𝟐𝟐.𝟏𝟏𝟏𝟏 𝑽𝑽
𝑉𝑉2 = 𝟏𝟏.𝟒𝟒𝟒𝟒 𝑽𝑽

 Branch currents are

𝐼𝐼1 =
5𝑉𝑉 − 𝑉𝑉1
𝑅𝑅1

=
5 𝑉𝑉 − 2.14 𝑉𝑉

500 Ω
= 𝟓𝟓.𝟕𝟕𝟕𝟕𝒎𝒎𝒎𝒎

𝐼𝐼2 =
𝑉𝑉1
𝑅𝑅2

=
2.14 𝑉𝑉
1 𝑘𝑘Ω

= 𝟐𝟐.𝟏𝟏𝟏𝟏𝒎𝒎𝒎𝒎

𝐼𝐼3 = 𝐼𝐼4 =
𝑉𝑉2
𝑅𝑅4

=
1.43 𝑉𝑉
400 Ω

= 𝟑𝟑.𝟓𝟓𝟓𝟓𝒎𝒎𝒎𝒎
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Nodal Analysis

 Nodal analysis yields all node voltages and branch 
currents
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Nodal Analysis – Floating Voltage Sources

 When performing nodal analysis on circuits with voltage 
sources, there are two possible scenarios:
 Voltage source connected to the reference node
 As in the last example

 Voltage source is floating
 Both terminals connected to non-reference nodes
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Nodal Analysis - Supernodes

 Floating voltage sources pose a problem
 Cannot use Ohm’s law to represent the current through the 

source
 Ohm’s law applies only to resistors

 Solution:
 Form a supernode enclosing the source
 Formed by two non-reference nodes

 Apply KCL to the supernode
 One equation for the two unknown nodes

 Apply KVL to relate the voltages of the nodes forming the 
supernode
 Providing the required additional equation
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Supernode – Example 

 Nodes 𝑉𝑉1 and 𝑉𝑉2 form a supernode, enclosing the floating 
voltage source

 Circuit has two unknown node 
voltages, 𝑉𝑉1 and 𝑉𝑉2
 System of two equations is 

required

 KCL will be applied at the 
supernode
 Only one equation will result

 Additional required equation obtained by applying KVL to 
relate 𝑉𝑉1 to 𝑉𝑉2
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Nodal Analysis with Supernodes – Step-by-Step

1) Identify and label all nodes in the circuit – distinguish 
known from unknown node voltages

2) Assign and label polarities of currents through all branches

3) Generate a system of equations
a) Apply KCL at each node and each supernode, using Ohm’s Law to 

express branch currents in terms of node voltages
b) Apply KVL to relate the voltages of the nodes that form the 

supernodes

4) Solve the resulting simultaneous system of equations using 
substitution, calculator, Cramer’s Rule, etc.

5) Use Ohm’s Law and node voltages to determine branch 
currents
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Supernode – Example 

 Step 1: Identify and label all nodes in the circuit 
 Any supernodes are identified and labeled in this step

 Step 2: Assign and label all 
branch currents

 Step 3a: Apply KCL at all nodes 
and all supernodes
 Here we have only the one 

supernode:

𝐼𝐼1 − 𝐼𝐼2 + 𝐼𝐼3 − 𝐼𝐼4 = 0

10 𝑉𝑉 − 𝑉𝑉1
2 Ω −

𝑉𝑉1
8 Ω +

10 𝑉𝑉 − 𝑉𝑉2
4 Ω −

𝑉𝑉2
6 Ω = 0

𝑉𝑉1
1

2 Ω +
1

8 Ω + 𝑉𝑉2
1

4 Ω +
1

6 Ω = 7.5 𝐴𝐴
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Supernode – Example 

 Step 3b: Apply KVL to relate the voltages of the nodes 
that form the supernode

𝑉𝑉1 − 5𝑉𝑉 − 𝑉𝑉𝑉 = 0

𝑉𝑉1 − 𝑉𝑉2 = 5 𝑉𝑉

 Step 4: Solve the resulting system of equations
𝑉𝑉1 ⋅ 625 𝑚𝑚𝑚𝑚 + 𝑉𝑉2 ⋅ 416.7 𝑚𝑚𝑚𝑚 = 7.5 𝐴𝐴

𝑉𝑉1 − 𝑉𝑉2 = 5 𝑉𝑉

 Putting these into matrix form:

625 𝑚𝑚𝑚𝑚 416.7 𝑚𝑚𝑚𝑚
1 −1

𝑉𝑉1
𝑉𝑉2

= 7.5 𝐴𝐴
5 𝑉𝑉
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Supernode – Example 

625 𝑚𝑚𝑚𝑚 416.7 𝑚𝑚𝑚𝑚
1 −1

𝑉𝑉1
𝑉𝑉2

= 7.5 𝐴𝐴
5 𝑉𝑉

 Note that coefficient matrix on 
the left-hand side is no longer a 
conductance matrix
 Second-row elements are 

dimensionless
 Mix of KCL and KVL equations

 Solve using your method of choice
 Here, solved using MATLAB

𝑉𝑉1 = 9.2 𝑉𝑉

𝑉𝑉2 = 4.2 𝑉𝑉
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Supernode – Example 

 Step 5: Use Ohm’s law and 
branch currents to determine 
node voltages 

𝐼𝐼1 =
10 𝑉𝑉 − 9.2 𝑉𝑉

2 Ω =
0.8 𝑉𝑉
2 Ω = 0.4 𝐴𝐴

𝐼𝐼2 =
9.2 𝑉𝑉
8 Ω = 1.15 𝐴𝐴

𝐼𝐼3 =
10 𝑉𝑉 − 4.2 𝑉𝑉

4 Ω
=

5.8 𝑉𝑉
4 Ω

= 1.45 𝐴𝐴

𝐼𝐼4 =
4.2 𝑉𝑉
6 Ω

= 0.7 𝐴𝐴

𝐼𝐼1 = 0.4 𝐴𝐴

𝐼𝐼2 = 1.15 𝐴𝐴

𝐼𝐼3 = 1.45 𝐴𝐴

𝐼𝐼4 = 0.7 𝐴𝐴
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Apply nodal analysis to 
determine Vo in the 
following circuit.

24
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Apply nodal analysis 
to determine V1 and 
V2.

25
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Apply nodal analysis 
to determine Vo.

27
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Apply nodal analysis 
to determine V1, V2, 
and V3.

28
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Apply nodal analysis 
to determine V1, V2, 
and V3.

30
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Mesh Analysis

 Mesh analysis
 Systematic application of KVL
 Generate a system of equations
Mesh currents are the unknown variables
 Number of equations equals number of unknown mesh 

currents
 Solve equations to determine mesh currents
 Determine branch currents as linear combinations of 

mesh currents
 Apply Ohm’s law to determine node voltages
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Meshes

 What is a mesh?
 A mesh is a loop that does not contain any other loops

 Loop 1 and Loop 2 are meshes, Loop 3 is not
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Mesh Currents

 What is a mesh current?
 Fictitious circulating current in a mesh
 Components of the branch currents

 Branch currents are linear combinations of mesh currents, e.g.:

𝑖𝑖1 = 𝐼𝐼1
𝑖𝑖3 = 𝐼𝐼1 − 𝐼𝐼2
𝑖𝑖4 = 𝐼𝐼2

 Conventions:
 Denote mesh currents with 

uppercase 𝐼𝐼
 Denote branch currents with 

lowercase 𝑖𝑖
 Mesh current direction is 

clockwise



K. Webb ENGR 201

36

Mesh Analysis – step-by-step procedure

1) Identify and label all:
 Mesh currents, 𝐼𝐼𝑛𝑛
 Branch currents, 𝑖𝑖𝑛𝑛
 Unknown node voltages

2) Apply KVL around each mesh
 Follow CW direction of the mesh current
 Use Ohm’s law to express voltage drops in terms of mesh currents

3) Solve the resulting simultaneous system of equations using 
Gaussian elimination, calculator, MATLAB, etc.

4) Determine branch currents from the mesh currents

5) Use Ohm’s Law and branch currents to determine node 
voltages
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Mesh Analysis – Example

 Use mesh analysis to 
determine all 
 Node voltages 
 Branch currents

 Step 1: Identify and label all 
mesh currents, branch 
currents, and unknown node 
voltages
 Two unknown mesh currents
 Three distinct branch currents
 Two unknown node voltages
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Mesh Analysis – Example

 Step 2: Apply KVL  around each 
mesh
 KVL around mesh 1:

5 𝑉𝑉 − 𝐼𝐼1 ⋅ 500 Ω − 𝐼𝐼1 ⋅ 1 𝑘𝑘Ω + 𝐼𝐼2 ⋅ 1 𝑘𝑘Ω = 0

 Note that there are two components to the voltage across 
the 1 𝑘𝑘Ω resistor
 A drop due to 𝐼𝐼1
 A rise due to 𝐼𝐼2

 KVL around mesh 2:
−𝐼𝐼2 ⋅ 1 𝑘𝑘Ω + 𝐼𝐼1 ⋅ 1 𝑘𝑘Ω − 𝐼𝐼2 ⋅ 200 Ω − 𝐼𝐼2 ⋅ 400 Ω = 0

 Again, note the two voltage components across the 1 𝑘𝑘Ω
resistor
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Mesh Analysis – Example

 Step 3: Solve the resulting system of mesh 
equations
 Cleaning up the two equations:

𝐼𝐼1 ⋅ 1.5 𝑘𝑘Ω − 𝐼𝐼2 ⋅ 1 𝑘𝑘Ω = 5 𝑉𝑉

−𝐼𝐼1 ⋅ 1 𝑘𝑘Ω + 𝐼𝐼2 ⋅ 1.6 𝑘𝑘Ω = 0

 Organizing the system of two equations into matrix 
form:

1.5 𝑘𝑘Ω −1 𝑘𝑘Ω
−1 𝑘𝑘Ω 1.6 𝑘𝑘Ω

𝐼𝐼1
𝐼𝐼2

= 5 𝑉𝑉
0

𝐑𝐑 𝐈𝐈 = 𝐕𝐕

 Solving in MATLAB yields:

𝐼𝐼1 = 5.71 𝑚𝑚𝑚𝑚

𝐼𝐼2 = 3.57 𝑚𝑚𝑚𝑚

 Mesh currents, not branch currents
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Mesh Analysis – Example

 Step 4: Determine branch 
currents from mesh currents
 Branch current, 𝑖𝑖1, is the same as 

mesh current, 𝐼𝐼1
𝑖𝑖1 = 𝐼𝐼1 = 5.71 𝑚𝑚𝑚𝑚

 Branch current, 𝑖𝑖2, is a combination of the two opposing 
mesh currents
 In the same direction as 𝐼𝐼1
 In the opposite direction of 𝐼𝐼2

𝑖𝑖2 = 𝐼𝐼1 − 𝐼𝐼2 = 5.71 𝑚𝑚𝑚𝑚 − 3.57 𝑚𝑚𝑚𝑚 = 2.14 𝑚𝑚𝑚𝑚

 Branch current, 𝑖𝑖3, is the same as mesh current, 𝐼𝐼2
𝑖𝑖3 = 𝐼𝐼2 = 3.57 𝑚𝑚𝑚𝑚
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Mesh Analysis – Example

𝑖𝑖1 = 5.71 𝑚𝑚𝑚𝑚

𝑖𝑖2 = 2.14 𝑚𝑚𝑚𝑚

𝑖𝑖3 = 3.57 𝑚𝑚𝑚𝑚

 Step 5: Use Ohm’s law and branch 
currents to determine node voltages

𝑉𝑉1 = 2.14 𝑚𝑚𝑚𝑚 ⋅ 1 𝑘𝑘Ω = 2.14 𝑉𝑉

𝑉𝑉2 = 3.57 𝑚𝑚𝑚𝑚 ⋅ 400 Ω = 1.43 𝑉𝑉

 Note that these results agree with 
those obtained through nodal analysis

𝑉𝑉1 = 2.14 𝑉𝑉

𝑉𝑉2 = 1.43 𝑉𝑉
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Mesh Analysis – Current Sources

 Sometimes, we may want to perform mesh analysis on a circuit 
containing current sources

 Two possible scenarios:

 Current source is part of only 
one mesh

 Current source is part of two 
meshes

 Here, 𝐼𝐼1 = 2 𝐴𝐴
 Only one unknown mesh 

current, 𝐼𝐼2
 Only one mesh equation

 Mesh analysis proceeds as 
usual

 Can’t apply KVL around 
either mesh 
 Don’t know the voltage drop 

across the current source
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Supermesh

 Current source shared by two meshes poses a problem
 Need to apply KVL around each mesh, but don’t know the 

voltage across the current source

 Solution:
 Form a supermesh around the periphery of the two meshes 

that share the current source
 Apply KVL around the supermesh
 One equation for the two unknown mesh currents

 Apply KCL to a node on the branch common to the two 
meshes in the supermesh
 This provides the second required equation for the two unknown 

mesh currents
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Supermesh – Example 

 Meshes 1 and 2 are combined 
to form a supermesh

 Circuit has two unknown 
mesh currents, 𝐼𝐼1 and 𝐼𝐼2
 System of two equations is 

required

 KVL will be applied around the supermesh
 Only one equation will result

 Additional required equation obtained by applying KCL to a 
node on the branch common to both meshes

 If multiple supermeshes intersect, they should be joined 
into a single supermesh
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Mesh Analysis with Supermeshes – Step-by-Step

1) Identify and label all:
 Mesh currents, 𝐼𝐼𝑛𝑛
 Branch currents, 𝑖𝑖𝑛𝑛
 Unknown node voltages

2) Generate a system of equations
a) Apply KVL around each supermesh and each mesh that is not part of a 

supermesh
b) Apply KCL at a node on each branch common to two meshes in each 

supermesh

3) Solve the resulting simultaneous system of equations using Gaussian 
elimination, calculator, MATLAB, etc.

4) Determine branch currents from the mesh currents

5) Use Ohm’s Law and branch currents to determine node voltages
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Supermesh – Example 

 Step 1: Identify and label all 
mesh currents, branch currents, 
and unknown node voltages
 Any supermeshes are identified 

and labeled in this step

 Step 2a: Apply KVL around each mesh and each supermesh
 Only one supermesh, and no other meshes

−𝐼𝐼1 ⋅ 2 Ω − 𝐼𝐼1 ⋅ 8 Ω − 𝐼𝐼2 ⋅ 6Ω − 𝐼𝐼2 ⋅ 12 Ω = 0

 Step 2b: Apply KCL at a node on the branch common to the two 
meshes in the supermesh

𝐼𝐼1 − 𝐼𝐼2 + 2𝐴𝐴 = 0

 These are the two equations needed to solve for the two unknown 
mesh currents, 𝐼𝐼1 and 𝐼𝐼2
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Supermesh – Example 

 Step 3: Solve the resulting 
system of equations
 Rearranging the equations:

𝐼𝐼1 ⋅ 10 Ω + 𝐼𝐼2 ⋅ 18 Ω = 0

−𝐼𝐼1 + 𝐼𝐼2 = 2 𝐴𝐴
 In matrix form, the system of equations is

10 Ω 18 Ω
−1 1

𝐼𝐼1
𝐼𝐼2

= 0
2 𝐴𝐴

 Note that, similar to the supernode analysis, the two equations now 
have  different units 

 Solving in MATLAB yields

𝐼𝐼1 = −1.29 𝐴𝐴

𝐼𝐼2 = 0.714 𝐴𝐴
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Supermesh – Example 

 Step 4: Determine branch currents 
from the mesh currents
 Very simple in this example

𝑖𝑖1 = 𝐼𝐼1 = −1.29 𝐴𝐴

𝑖𝑖2 = 𝐼𝐼2 = 0.714 𝐴𝐴

 Step 5: Use Ohm’s law and branch currents to determine node voltages 

𝑉𝑉1 = −𝑖𝑖1 ⋅ 2 Ω = 1.29 𝐴𝐴 ⋅ 2 Ω = 2.57 𝑉𝑉

𝑉𝑉2 = 𝑖𝑖2 ⋅ 18 Ω = 0.714 𝐴𝐴 ⋅ 18 Ω = 12.86 𝑉𝑉

𝑉𝑉3 = 𝑖𝑖2 ⋅ 12 Ω = 0.714 A ⋅ 12 Ω = 8.57 V

 Results of the mesh analysis:

𝑖𝑖1 = −1.29 𝐴𝐴

𝑖𝑖2 = 0.714 𝐴𝐴

𝑉𝑉1 = 2.57 𝑉𝑉

𝑉𝑉2 = 12.86 𝑉𝑉

𝑉𝑉3 = 8.57 𝑉𝑉
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Apply mesh analysis to 
determine V1, V2, i1, i2, and 
i3 in the following circuit.

51
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Apply mesh analysis to 
determine the power 
supplied/absorbed by each of 
the sources in the following 
circuit.

54
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Apply mesh analysis 
to determine Vx.

56
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Linearity & Superposition58
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Systems

 System
 Some entity – component, group of components – with inputs and 

outputs
 Electrical component
 Electrical circuit
 Motor, engine, robot, aircraft, etc. …

 Can think of the system as a mathematical function that operates 
on the input to provide the output

𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

 A resistor is a system with voltage as the input and current as the 
output (or vice versa)

𝑖𝑖 =
1
𝑅𝑅
𝑣𝑣
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Linear Systems

 Linear system
 A system whose constitutive relationship is linear
 Function relating input to output is an equation for a line

 An ideal resistor is an example of a linear system
 Voltage in, current out:

𝑖𝑖 =
1
𝑅𝑅
⋅ 𝑣𝑣

 A line with slope 1/𝑅𝑅

 Current in, voltage out:

𝑣𝑣 = 𝑅𝑅 ⋅ 𝑖𝑖

 A line with slope 𝑅𝑅
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Superposition

 Linear systems obey the principle of superposition
 Two components to the superposition principle:

 Additivity

𝑓𝑓 𝑥𝑥1 + 𝑥𝑥2 = 𝑓𝑓 𝑥𝑥1 + 𝑓𝑓 𝑥𝑥2

 Homogeneity

𝑓𝑓 𝛼𝛼 ⋅ 𝑥𝑥 = 𝛼𝛼 ⋅ 𝑓𝑓(𝑥𝑥)
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Superposition

 Consider an 4 Ω resistor

𝑖𝑖 =
𝑣𝑣
𝑅𝑅

 𝑣𝑣1 = 2 𝑉𝑉

𝑖𝑖1 =
2 𝑉𝑉
4 Ω

= 0.5 𝐴𝐴

 𝑣𝑣2 = 6 𝑉𝑉

𝑖𝑖2 =
3 ⋅ 2 𝑉𝑉

4 Ω
= 3 ⋅ 0.5 𝐴𝐴 = 1.5 𝐴𝐴

 𝑣𝑣3 = 8 𝑉𝑉

𝑖𝑖3 =
2 𝑉𝑉 + 6 𝑉𝑉

4 Ω
= 0.5 𝐴𝐴 + 1.5 𝐴𝐴 = 2 𝐴𝐴



K. Webb ENGR 201

63

Superposition – Electrical Circuits

 Superposition applied to electrical circuits
 Tool for analyzing networks with multiple sources

 For example:
 Output, 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜, is some linear 

combination of the inputs:

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎1𝑉𝑉𝑠𝑠 + 𝑎𝑎2𝐼𝐼𝑠𝑠

 𝑎𝑎1 and 𝑎𝑎2 are constants
 If we know them, we know 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

 To determine 𝑎𝑎1
 Set 𝐼𝐼𝑠𝑠 = 0
 Analyze the circuit to determine 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

 To determine 𝑎𝑎2
 Set 𝑉𝑉𝑠𝑠 = 0
 Analyze the circuit to determine 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
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Superposition

 Circuit analysis using superposition:
 Set all independent sources to zero, except for one
 Determine the output component due to that source 
 Repeat for all independent sources
 Sum all output components to find the total output

 Setting sources to zero:
 Voltage sources become short circuits (𝑣𝑣 = 0)
 Current sources become open circuits (𝑖𝑖 = 0)

The output of a multiple-input system is the sum of the 
outputs due to each independent source acting individually
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Superposition - Example

 Apply superposition to determine 
the output voltage, 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

 First, set the current source to zero
 Replace it with an open circuit
 Analyze the circuit to determine the 

output components due to the 
voltage source acting alone:

�𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑠𝑠
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Superposition - Example

 A simple voltage-divider circuit

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
= 𝑉𝑉𝑠𝑠

𝑅𝑅3
𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
= 5 𝑉𝑉

2 𝑘𝑘Ω
6 𝑘𝑘Ω

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
= 1.67 𝑉𝑉

 Next, set the voltage source to zero
 Replace it with a short circuit
 Analyze the circuit to determine the output 

components due to the current source acting 
alone:

�𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝐼𝐼𝑠𝑠
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Superposition - Example

 First, determine the current, 𝐼𝐼3, 
flowing through 𝑅𝑅3

𝐼𝐼3 = 𝐼𝐼𝑠𝑠
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3

𝐼𝐼3 = 10 𝑚𝑚𝑚𝑚
1 𝑘𝑘Ω
6 𝑘𝑘Ω

𝐼𝐼3 = 1.67 𝑚𝑚𝑚𝑚

 Applying Ohm’s law to 𝑅𝑅3 gives the output voltage due to the 
current source

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝐼𝐼𝑠𝑠
= 𝐼𝐼3𝑅𝑅3 = 1.67 𝑚𝑚𝑚𝑚 ⋅ 2 𝑘𝑘Ω

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝐼𝐼𝑠𝑠
= 3.33 𝑉𝑉

 In this case, we have a current-divider circuit
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Superposition - Example

 The total output due to both sources is 
the sum of the individual output 
components

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝑉𝑉𝑠𝑠
+ 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 �𝐼𝐼𝑠𝑠

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 1.67 𝑉𝑉 + 3.33 𝑉𝑉

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 5 𝑉𝑉

 Comments:
 Superposition applies to circuits with any number of sources and any 

mix of voltage and/or current sources
 Becomes a more useful tool as circuits get more complex
 Applies to all types of linear systems – not just electrical
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Apply superposition to 
determine Vo in the 
following circuit.
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Apply superposition 
to determine Vo in the 
following circuit.

73
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Apply superposition to 
determine Vo in the 
following circuit.

75



K. Webb ENGR 20176



K. Webb ENGR 20177



K. Webb ENGR 201

Thévenin & Norton Equivalents78



K. Webb ENGR 201

79

Thévenin Equivalent Circuits

 The resistor is the Thévenin 
equivalent resistance, 𝑅𝑅𝑡𝑡𝑡

 The voltage source is the 
open-circuit voltage, 𝑉𝑉𝑜𝑜𝑜𝑜

 Thévenin’s theorem:

Any two-terminal linear network of resistors and 
sources can be represented as single resistor in series 
with a single independent voltage source

Léon Charles Thévenin, 1857 – 1926
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Thévenin Equivalent Circuits

 Simplifies the analysis of complex networks
 Quickly determine current, voltage, or power to any 

load connected to the network terminals

Complex network Thévenin equivalent network
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Open-Circuit Voltage - 𝑉𝑉𝑜𝑜𝑜𝑜
 Open-circuit voltage, 𝑉𝑉𝑜𝑜𝑜𝑜

 The terminal voltage with no load attached

 Determine 𝑉𝑉𝑜𝑜𝑜𝑜 by using most convenient method  
 Ohm’s Law 
 Kirchhoff’s Laws 
 Voltage or current divider
 Nodal or mesh analysis
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Thévenin Resistance - 𝑅𝑅𝑡𝑡𝑡

 Thévenin equivalent resistance, 𝑅𝑅𝑡𝑡𝑡
 Resistance seen between the two terminals with all 

independent sources set to zero
 Voltage sources → short circuits
 Current sources → open circuits
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Thévenin Equivalent – Example

 For a 100 Ω load connected to the following network, 
determine:
 Load current, 𝐼𝐼𝐿𝐿
 Load voltage, 𝑉𝑉𝐿𝐿

 Transform to a Thévenin equivalent circuit, then 
connect a 100 Ω load
 IL and VL are then easily determined using Ohm’s Law
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Thévenin Equivalent – Example

 Analyze the circuit using any convenient technique
 Nodal analysis would be a reasonable choice
 Two independent sources – we’ll use superposition

 First, find 𝑉𝑉𝑜𝑜𝑜𝑜 due to 𝑉𝑉𝑠𝑠
 𝑅𝑅1 is in parallel with a voltage 

source, so it can be neglected
 No current flows through 𝑅𝑅5

so it can be neglected
 Circuit reduces to a simple 

voltage divider 

𝑉𝑉𝑜𝑜𝑐𝑐 �𝑉𝑉𝑠𝑠
= 10 𝑉𝑉 ⋅

500 Ω
1000 Ω

= 5 𝑉𝑉
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Thévenin Equivalent – Example

 Next, find 𝑉𝑉𝑜𝑜𝑜𝑜 due to 𝐼𝐼𝑠𝑠
 𝑅𝑅1 gets shorted, so it can be 

neglected
 No current flows through 𝑅𝑅5 so 

it can be neglected

 Circuit reduces to a simple current divider
 Find 𝐼𝐼3 to determine the terminal voltage

𝐼𝐼3 = 10 𝑚𝑚𝑚𝑚
200 Ω

1000 Ω
= 2 𝑚𝑚𝑚𝑚

 Terminal voltage is negative due to current direction

𝑉𝑉𝑜𝑜𝑜𝑜 �
𝐼𝐼𝑠𝑠

= −𝐼𝐼3𝑅𝑅4 = −2 𝑚𝑚𝑚𝑚 ⋅ 500 Ω = −1 𝑉𝑉

 Open-circuit voltage is the sum of the individual components

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜 �
𝑉𝑉𝑠𝑠

+ 𝑉𝑉𝑜𝑜𝑜𝑜 �
𝐼𝐼𝑠𝑠

= 5 𝑉𝑉 − 1 𝑉𝑉 = 4 𝑉𝑉
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Thévenin Equivalent – Example

 Next, determine the Thévenin equivalent resistance, 𝑅𝑅𝑡𝑡𝑡
 Set independent sources to zero 

 𝑉𝑉𝑠𝑠 → short circuit (𝑉𝑉 = 0)
 𝐼𝐼𝑠𝑠 → open circuit (𝐼𝐼 = 0)

 Determine equivalent resistance between the terminals

 𝑅𝑅1 is shorted
 In parallel with a short circuit

 Combine other series and parallel 
resistors 

𝑅𝑅𝑡𝑡𝑡 = 𝑅𝑅5 + 𝑅𝑅4|| 𝑅𝑅2 + 𝑅𝑅3
𝑅𝑅𝑡𝑡𝑡 = 50 Ω + 500 Ω|| 200 Ω + 300 Ω

𝑅𝑅𝑡𝑡𝑡 = 300 Ω
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Thévenin Equivalent – Example

 The Thévenin equivalent circuit with a 
100 Ω load connected:

 Voltage division gives the load voltage

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝑜𝑜𝑜𝑜
𝑅𝑅𝐿𝐿

𝑅𝑅𝑡𝑡𝑡 + 𝑅𝑅𝐿𝐿
= 4 𝑉𝑉

100 Ω
400 Ω

𝑉𝑉𝐿𝐿 = 1 𝑉𝑉

 Ohm’s law gives the load current

𝐼𝐼𝐿𝐿 =
𝑉𝑉𝐿𝐿
𝑅𝑅𝐿𝐿

=
1 𝑉𝑉

100 Ω

𝐼𝐼𝐿𝐿 = 10 𝑚𝑚𝑚𝑚
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Norton Equivalent Circuits

 The resistor is the Thévenin 
equivalent resistance, 𝑅𝑅𝑡𝑡𝑡

 The current source is the 
short-circuit current, 𝐼𝐼𝑠𝑠𝑠𝑠

 Norton’s theorem:

Any two-terminal linear network of resistors and 
sources can be represented as single resistor in parallel 
with a single independent current source

Edward Lawry Norton, 1898 – 1983
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Norton Equivalent Circuits

 An extension of Thévenin’s Theorem
 Motivated by the development of vacuum tubes 

 More appropriately modeled with current sources
 Same is true of the successors to tubes: transistors

Complex network Norton equivalent network
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Short-Circuit Current- 𝐼𝐼𝑠𝑠𝑠𝑠
 Short-circuit current, 𝐼𝐼𝑠𝑠𝑠𝑠

 The current that flows between the short-circuited terminals

 Determine 𝐼𝐼𝑠𝑠𝑐𝑐 by using most convenient method  
 Ohm’s Law 
 Kirchhoff’s Laws 
 Voltage or current divider
 Nodal or mesh analysis
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Thévenin Resistance - 𝑅𝑅𝑡𝑡𝑡

 Thévenin equivalent resistance, 𝑅𝑅𝑡𝑡𝑡, 
 The same for a Norton equivalent circuit as for a Thévenin 

equivalent circuit
 The resistance seen between the two terminals with all 

independent sources set to zero
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Thévenin and Norton Equivalents

 Easily convert between Thévenin and Norton equivalent 
circuits

Thévenin Norton

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝐼𝐼𝑠𝑠𝑠𝑠 ⋅ 𝑅𝑅𝑡𝑡𝑡 𝐼𝐼𝑠𝑠𝑠𝑠 =
𝑉𝑉𝑜𝑜𝑜𝑜
𝑅𝑅𝑡𝑡𝑡
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Determine both the Thévenin 
and Norton equivalents for the 
following circuit.
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Determine the Thévenin 
equivalent for the 
following circuit.
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