
ENGR 201 – Electrical Fundamentals I

SECTION 4: 
OPERATIONAL AMPLIFIERS
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Amplification

 Amplification
 Multiplication of electrical signals 
 Voltage or current
 Scaling factor: gain

 Performed by amplifiers
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Amplification – Why?

 Often want to increase the amplitude of small 
electrical signals
 Sensor outputs, e.g.: 
 Strain gauges
 Pressure sensors
 Flow meters
 Temperature sensors
 Photo-detectors, etc.

 Wireless communication signals
 Audio signals

 Larger signals are easier to measure
 Utilize the full dynamic range of the measurement system 
 Higher accuracy
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Amplification – Why?

 Amplifiers are also useful for impedance conversion
 Make a high-resistance source look like a low resistance
 Make a low-resistance load look like a high resistance 
 Buffering a high- resistance source from a low-

resistance load

 A single amplifier circuit can provide amplification 
and impedance conversion
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Amplifier Characteristics

 Key amplifier characteristics:
 Gain
May be designed for voltage, current, or power gain

 Input resistance
 Output resistance
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Amplifier Characteristics - Gain

 Voltage gain
 Ratio of output to input voltage

𝐴𝐴𝑉𝑉 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

 Current gain
 Ratio of output to input current

𝐴𝐴𝑖𝑖 =
𝑖𝑖𝑜𝑜
𝑖𝑖𝑖𝑖

 Power gain
 Ratio of output to input power

𝐺𝐺 =
𝑃𝑃𝑜𝑜
𝑃𝑃𝑖𝑖
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Amplifier Characteristics – Input Resistance

 Input resistance, 𝑅𝑅𝑖𝑖
 Equivalent resistance seen looking into the amplifier

 Amplifier loads the source
 Source appears to be connected to a resistance of 𝑅𝑅𝑖𝑖
 Possible voltage division between source resistance 

and input resistance
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Amplifier Characteristics – Output Resistance

 Output resistance, 𝑅𝑅𝑜𝑜
 Thévenin equivalent resistance of the amplifier output

 From the perspective of the load, amplifier output 
is the source
 Modeled as Thévenin equivalent circuit, with 

resistance, 𝑅𝑅𝑜𝑜
 Possible voltage division between 𝑅𝑅𝑜𝑜 and the load
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Amplifier Characteristics – Cascaded Amplifiers

 Input to the second amplifier is the output from the first

𝑣𝑣𝑜𝑜𝑜 𝑡𝑡 = 𝐴𝐴𝑣𝑣𝑣 ⋅ 𝑣𝑣𝑖𝑖 𝑡𝑡

 Output of the second amplifier is the output of the cascade

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐴𝐴𝑣𝑣𝑣 ⋅ 𝑣𝑣𝑜𝑜𝑜 𝑡𝑡 = 𝐴𝐴𝑣𝑣𝑣 ⋅ 𝐴𝐴𝑣𝑣𝑣 ⋅ 𝑣𝑣𝑖𝑖 𝑡𝑡

 Overall gain is the product of the individual gains

𝐴𝐴𝑣𝑣 = 𝐴𝐴𝑣𝑣𝑣 ⋅ 𝐴𝐴𝑣𝑣𝑣

 Consider two amplifiers connected in cascade
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Amplifier – Equivalent Circuit

 Amplifier equivalent circuit:

 𝑅𝑅𝑖𝑖: input resistance
 𝑅𝑅𝑜𝑜: output resistance
 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣: open-circuit voltage gain

 Note that, in general, due to loading:

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑣𝑣𝐴𝐴
𝑣𝑣𝑖𝑖
≠ 𝐴𝐴𝑣𝑣 =

𝑣𝑣𝑜𝑜
𝑣𝑣𝑠𝑠
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Operational Amplifiers - Opamps

 How do we get the amplification we need?
 Different requirements for different applications

 High gain/low gain – Inverting/non-inverting gain
 Accuracy
 Adjustability 

 Building amplifiers out of transistors is difficult, inconvenient
 Chip makers could make unique integrated circuits (ICs) for 

all possible applications
 Impractical, not economical

 Instead: operational amplifiers (opamps)
 General-purpose amplifier ICs
 Gain set by a few external components
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Operational Amplifiers - Opamps

 High-gain amplifiers built from many transistors, 
resistors, and capacitors

 Integrated circuits (ICs)
 All components fabricated on a single semiconductor (e.g. 

Si) chip
 Gain set by a few external resistors

www.chiplook.com
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Ideal Opamps

 Schematic symbol:

outputnon-inverting input

inverting input

 Equivalent circuit:
 Differential input, 𝑣𝑣𝑖𝑖𝑖𝑖

 Difference between the two 
input voltages

𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣+ − 𝑣𝑣−

 Common-mode input, 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑣𝑣+ + 𝑣𝑣−

2

 Open-loop voltage gain, 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣
 Gain of the opamp without 

feedback
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Ideal Opamp Characteristics

 Ideal opamp characteristics:

1) Infinite input resistances – at 𝑣𝑣+ and 𝑣𝑣−
 No current flows into either input terminal

2) Infinite open-loop gain
 Any differential input will result in an infinite output

3) Zero output resistance
 Immune to the effect of loading
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Infinite Gain

 Ideal opamps have infinite gain
 How do we get a gain of 2 or 9 or -3?

Negative feedback

 By enclosing the opamp in a feedback loop we can 
create an amplifier with useable gain

 Before applying feedback to opamp circuits, we’ll 
first introduce the concept of feedback
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Feedback

 Feedback
 A process in which a portion of the output of some system is 

fed back to the input of that system

 Positive feedback
 The addition of a portion of the output to the input
 Generally has a destabilizing effect

 Negative feedback
 The subtraction of portion of the output from the input
 Generally has a stabilizing effect
 All opamp amplifiers we will encounter in this course 

employ negative feedback
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Feedback

 Feedback is everywhere:
 HVAC
 Cruise control
 Robotics
 Amplifiers

 Toilets
 Ovens
 Autonomous vehicles
 Etc.

 A very important concept in many engineering 
fields, particularly controls and electronics
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Signal Flow Diagrams

 Signal flow diagrams
 Block diagrams 
 Show the flow of signals – energy, information, etc. – through a system
 Used for all types of engineering systems: electrical, mechanical, etc.

 Amplifier, with open-loop gain 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣, enclosed in a feedback loop:

Summing junction
Amplifier

Indicates 
negative 
feedback

Feedback network  
with a gain of 𝛽𝛽

 Amplifier is in a closed-loop 
configuration

 Feedback gain 𝛽𝛽, determines 
how much output is fed back

 Difference between input and 
feedback is amplifier input

 𝛽𝛽 determines overall gain
 Closed-loop gain
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Closed-Loop Gain

 Open-loop gain
 Gain of amplifier without feedback

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖𝑖𝑖

 Closed-loop gain
 Gain of the closed-loop amplifier

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

 Calculating the closed-loop gain:

𝑣𝑣𝑜𝑜 = 𝑣𝑣𝑖𝑖𝑖𝑖 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖 − 𝛽𝛽𝑣𝑣𝑜𝑜 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣𝑜𝑜 + 𝛽𝛽 ⋅ 𝑣𝑣𝑜𝑜 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣𝑜𝑜 1 + 𝛽𝛽 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑖𝑖 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

=
𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣

1 + 𝛽𝛽 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣
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Closed-Loop Gain

 E.g., an ideal opamp

lim
𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣→∞

𝐴𝐴𝑣𝑣𝑐𝑐𝑙𝑙 = lim
𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣→∞

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣
1 + 𝛽𝛽 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣

lim
𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣→∞

𝐴𝐴𝑣𝑣𝑐𝑐𝑙𝑙 = lim
𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣→∞

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣
𝛽𝛽 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣

=
1
𝛽𝛽

 Feedback gain, alone, determines the closed-loop gain
 For example, to get a gain of four, feed back one quarter of the 

output signal

𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

=
𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣

1 + 𝛽𝛽 ⋅ 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣

 Consider the case of infinite 
open-loop gain
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Summing Point Constraint

 For 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = ∞, the differential input is

𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝛽𝛽𝑣𝑣𝑜𝑜 = 𝑣𝑣𝑖𝑖 − 𝛽𝛽
1
𝛽𝛽 𝑣𝑣𝑖𝑖

𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖 = 0

 A very important result, the summing-point constraint:

The input to an infinite-gain amplifier, enclosed in a negative 
feedback loop, is zero!

 Any non-zero input would yield infinite output

 Along with the properties of ideal opamps, the summing-
point constraint will be essential for analyzing opamp 
circuits
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Opamps as Feedback Systems

 Any amplifier enclosed in a negative feedback loop:
 Output scaled by 𝛽𝛽 and fed back
 Feedback signal subtracted from 

the input at a summing junction
 If 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = ∞, then 𝑣𝑣𝑖𝑖𝑖𝑖 = 0

 Ideal opamp enclosed in a negative feedback loop:
 Output scaled by 𝛽𝛽 and fed back
 Differential input is a built-in 

summing junction 
 𝑣𝑣𝑖𝑖𝑖𝑖 = 0, so 𝑣𝑣+ = 𝑣𝑣−
 A virtual short between input 

terminals
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An amplifier with a gain of 4 is used to amplify the output of a sensor.
The amplifier has an input resistance of 1 kΩ and an output resistance
of 100 Ω. The sensor has an open-circuit voltage of 1 V, and an output
resistance of 50 Ω. The amplifier drives a 5 kΩ load. What is the
amplifier’s output voltage?
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An amplifier is enclosed in a negative feedback loop with a feedback gain of 0.5.
Determine the closed-loop gain for an amplifier with an open-loop gain of:

a) 10
b) 100E3
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A 1 V input is applied to an opamp enclosed in a negative feedback loop with a
feedback gain of 0.2. Determine the differential input voltage for an opamp with an
open-loop gain of:

a) 10
b) 100E3
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Opamp Amplifiers34
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Analysis of Ideal Opamp Circuits

 Key properties for analysis of opamp circuits:

1) Infinite input resistance – no input current

2) Virtual short between inverting and non-inverting 
input terminals (as long as there is negative feedback)

3) Infinite open-loop gain

 If there is negative feedback, 1 and 2 are sufficient
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Opamp Amplifiers

 Two basic opamp amplifier configurations:

Non-inverting amplifier: Inverting amplifier:
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Non-Inverting Amplifier37
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Non-Inverting Amplifier – Gain 

 Non-inverting amplifier gain:

 Negative feedback, so the 
summing-point constraint 
applies

𝑣𝑣− = 𝑣𝑣+ = 𝑣𝑣𝑖𝑖

 Zero opamp input current, so KCL at the inverting terminal gives:

𝑖𝑖1 = 𝑖𝑖2

𝑣𝑣𝑜𝑜 − 𝑣𝑣−

𝑅𝑅2
=
𝑣𝑣−

𝑅𝑅1

 Applying the summing-point constraint
𝑣𝑣𝑜𝑜 − 𝑣𝑣𝑖𝑖
𝑅𝑅2

=
𝑣𝑣𝑖𝑖
𝑅𝑅1
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Non-Inverting Amplifier – Gain 
𝑣𝑣𝑜𝑜 − 𝑣𝑣𝑖𝑖
𝑅𝑅2

=
𝑣𝑣𝑖𝑖
𝑅𝑅1

 Solving for the amplifier output

𝑣𝑣𝑜𝑜 = 𝑣𝑣𝑖𝑖
1
𝑅𝑅1

+
1
𝑅𝑅2

𝑅𝑅2

 Dividing both sides by 𝑣𝑣𝑖𝑖 gives the non-inverting amplifier gain:

𝐴𝐴𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

=
𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1

 Note that this is the inverse of the feedback path gain

𝐴𝐴𝑣𝑣 =
1
𝛽𝛽

=
1
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2
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Non-Inverting Amplifier – Gain 

𝐴𝐴𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

=
𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1

 Gain determined entirely by the relative value of two external 
resistors
 Any gain value is possible
 Resistor tolerance sets amplifier gain tolerance

 Gain is positive (non-inverting)
 As input goes up, output goes up

 Gain can never be less than one
 Unity gain for 𝑅𝑅2 = 0 Ω



K. Webb ENGR 201

41

Non-Inverting Amplifier – 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑜𝑜

 Output resistance, 𝑅𝑅𝑜𝑜:
 Output is the output from an ideal opamp

𝑅𝑅𝑜𝑜 = 0 Ω

 Input resistance, 𝑅𝑅𝑖𝑖:
 Input connected directly to 

input terminal of ideal 
opamp

𝑅𝑅𝑖𝑖 = ∞
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Inverting Amplifier42
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Inverting Amplifier – Gain 

 Inverting amplifier gain:

 Negative feedback, so the 
summing-point constraint applies

𝑣𝑣− = 𝑣𝑣+ = 0

 Zero opamp input current, so KCL at the inverting terminal gives:

𝑖𝑖1 = 𝑖𝑖2
𝑣𝑣𝑖𝑖
𝑅𝑅1

=
−𝑣𝑣𝑜𝑜
𝑅𝑅2

 Gain of the inverting amplifier:

𝐴𝐴𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

= −
𝑅𝑅2
𝑅𝑅1
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Inverting Amplifier – Gain 

𝐴𝐴𝑣𝑣 =
𝑣𝑣𝑜𝑜
𝑣𝑣𝑖𝑖

= −
𝑅𝑅2
𝑅𝑅1

 Again, gain determined entirely by external resistor 
values

 Gain is negative (inverting)
 As input goes up, output goes down

 Gain can be any value
 𝐴𝐴𝑣𝑣 < 1 for 𝑅𝑅1 > 𝑅𝑅2
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Inverting Amplifier – 𝑅𝑅𝑖𝑖

 By definition, input resistance is

𝑅𝑅𝑖𝑖 =
𝑣𝑣𝑖𝑖
𝑖𝑖𝑖𝑖

= 𝑣𝑣𝑖𝑖
𝑅𝑅1
𝑉𝑉𝑖𝑖

𝑅𝑅𝑖𝑖 = 𝑅𝑅1

 Input is a resistance, 𝑅𝑅1, to (virtual) ground

 Input resistance, 𝑅𝑅𝑖𝑖:
 Inverting terminal is a virtual 

ground, so

𝑖𝑖𝑖𝑖 =
𝑣𝑣𝑖𝑖
𝑅𝑅1
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Inverting Amplifier – 𝑅𝑅𝑜𝑜

 Consider a non-ideal opamp 
with non-zero output 
resistance:
 𝑅𝑅3 is driven by a dependent 

source
 Determining 𝑅𝑅𝑜𝑜 is a bit trickier

 Output resistance, 𝑅𝑅𝑜𝑜:
 Output is the output of an 

ideal opamp, so

𝑅𝑅𝑜𝑜 = 0 Ω
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Inverting Amplifier – 𝑅𝑅𝑜𝑜
 To determine a terminal 

resistance in the presence 
of dependent sources:
 Set all independent sources 

to zero
 Here, ground the input, 𝑣𝑣𝑖𝑖

 Apply a test current, 𝑖𝑖𝑡𝑡, to 
the terminal of interest

 Analyze the circuit to determine the voltage at that 
terminal

 Resistance at that terminal is given by

𝑅𝑅𝑜𝑜 =
𝑣𝑣𝑜𝑜
𝑖𝑖𝑡𝑡
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Inverting Amplifier – 𝑅𝑅𝑜𝑜

 The output is zero, independent of 𝑖𝑖𝑡𝑡 (and independent of 𝑅𝑅3), so

𝑅𝑅𝑜𝑜 = 0 Ω

 Feedback around an infinite gain amplifier forces the 
closed-loop output resistance to zero, even if the output 
resistance of the amplifier itself is non-zero

 Still a virtual ground at the 
inverting terminal, so

𝑖𝑖1 = 𝑖𝑖2 =
𝑣𝑣𝑖𝑖
𝑅𝑅1

=
0 𝑉𝑉
𝑅𝑅1

= 0

𝑖𝑖2 = −
𝑣𝑣𝑜𝑜
𝑅𝑅1

= 0

𝑣𝑣𝑜𝑜 = 0



K. Webb ENGR 201

Example Problems49
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Determine the gain of the following circuits.

50
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Determine the output 
voltage, Vo.

51
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Determine the gain of the 
following circuit.

52
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Determine the output 
voltage, Vo.

54
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Determine the LED bias 
current, Io.

56
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Unity-Gain Buffer57
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Unity-Gain Buffer

 Start with a non-inverting amplifier, and let the feedback path gain 
go to unity

𝛽𝛽 → 1

 Inverting terminal is connected directly to the output
𝑣𝑣− = 𝑣𝑣𝑜𝑜

 Virtual short at the input terminals
𝑣𝑣− = 𝑣𝑣+ = 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑜𝑜

 Closed-loop gain is unity

𝐴𝐴𝑣𝑣 =
𝑣𝑣0
𝑣𝑣𝑖𝑖

= 1
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Unity-Gain Buffer – Buffering 

 What good is an amplifier with unity gain?
 Impedance conversion
 A buffer between a high-resistance source and a lower-resistance 

load 
 Eliminates loading effects

 Consider the following scenario: 
 Sensor with  𝑅𝑅𝑡𝑡𝑡 = 10 𝑘𝑘Ω drives a load of 𝑅𝑅𝐿𝐿 = 1 𝑘𝑘Ω

 Signal measured at the load is 
attenuated

𝑣𝑣𝐿𝐿 = 𝑣𝑣𝑠𝑠
𝑅𝑅𝐿𝐿

𝑅𝑅𝑠𝑠 + 𝑅𝑅𝐿𝐿
= 𝑣𝑣𝑠𝑠

1 𝑘𝑘Ω
11 𝑘𝑘Ω

𝑣𝑣𝐿𝐿 =
1

11𝑣𝑣𝑠𝑠
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Unity-Gain Buffer – Buffering 

 To prevent signal attenuation due to loading:
 Add a unity-gain buffer between the source and the load

 Buffer input is the load for the source
 𝑅𝑅𝑖𝑖 = ∞

 Buffer output is the source for the load 
 𝑅𝑅𝑜𝑜 = 0 Ω

 Now, full sensor signal 
appears across the 
load

𝑣𝑣𝐿𝐿 = 𝑣𝑣+ = 𝑣𝑣𝑠𝑠
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Summing Amplifier

 KCL at the inverting node:

𝑖𝑖𝐴𝐴 + 𝑖𝑖𝐵𝐵 + 𝑖𝑖𝐶𝐶 = 𝑖𝑖𝑓𝑓
𝑣𝑣𝐴𝐴
𝑅𝑅𝐴𝐴

+
𝑣𝑣𝐵𝐵
𝑅𝑅𝐵𝐵

+
𝑣𝑣𝐶𝐶
𝑅𝑅𝐶𝐶

= −
𝑣𝑣𝑜𝑜
𝑅𝑅𝐹𝐹

 Output is the (inverted) weighted sum of all of the inputs

𝑣𝑣𝑜𝑜 = −𝑅𝑅𝐹𝐹
𝑣𝑣𝐴𝐴
𝑅𝑅𝐴𝐴

+
𝑣𝑣𝐵𝐵
𝑅𝑅𝐵𝐵

+
𝑣𝑣𝐶𝐶
𝑅𝑅𝐶𝐶

 For the special case of 𝑅𝑅𝐴𝐴 = 𝑅𝑅𝐵𝐵 = 𝑅𝑅𝐶𝐶 = 𝑅𝑅𝑖𝑖:

𝑣𝑣𝑜𝑜 = −
𝑅𝑅𝐹𝐹
𝑅𝑅𝑖𝑖

𝑣𝑣𝐴𝐴 + 𝑣𝑣𝐵𝐵 + 𝑣𝑣𝐶𝐶
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Difference Amplifier

 This looks a bit like a combination of 
a non-inverting and an inverting 
amplifier

 Analyze by applying superposition
 First, set 𝑣𝑣2 = 0

 A non-inverting amplifier with a 
voltage divider at the input

𝑣𝑣𝑜𝑜 �𝑣𝑣1
= 𝑣𝑣+

𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1

𝑣𝑣+ = 𝑣𝑣1
𝑅𝑅4

𝑅𝑅3 + 𝑅𝑅4

𝑣𝑣𝑜𝑜 �𝑣𝑣1
= 𝑣𝑣1

𝑅𝑅4
𝑅𝑅3 + 𝑅𝑅4

𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1
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Difference Amplifier

 Next, set 𝑣𝑣1 = 0
 No current through 𝑅𝑅3 and 𝑅𝑅4

𝑣𝑣+ = 0 𝑉𝑉

 An inverting amplifier

𝑣𝑣𝑜𝑜 �
𝑣𝑣2

= −𝑣𝑣2
𝑅𝑅2
𝑅𝑅1

 Summing the contributions from each output:

𝑣𝑣𝑜𝑜 = 𝑣𝑣𝑜𝑜 �
𝑣𝑣1

+ 𝑣𝑣𝑜𝑜 �
𝑣𝑣2

𝑣𝑣𝑜𝑜 = 𝑣𝑣1
𝑅𝑅4

𝑅𝑅3 + 𝑅𝑅4
𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1

− 𝑣𝑣2
𝑅𝑅2
𝑅𝑅1
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Difference Amplifier

 Restricting resistor values:
 𝑅𝑅3 = 𝑅𝑅1 and 𝑅𝑅4 = 𝑅𝑅2

𝑣𝑣𝑜𝑜 = 𝑣𝑣1
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1

− 𝑣𝑣2
𝑅𝑅2
𝑅𝑅1

𝑣𝑣𝑜𝑜 = 𝑣𝑣1
𝑅𝑅2
𝑅𝑅1

− 𝑣𝑣2
𝑅𝑅2
𝑅𝑅1

𝑣𝑣𝑜𝑜 =
𝑅𝑅2
𝑅𝑅1

𝑣𝑣1 − 𝑣𝑣2

 Inverting and non-inverting amplifiers are special cases of the 
difference amplifier
 Inverting amplifier: 𝑣𝑣1 is grounded
 Non-inverting amplifier: 𝑣𝑣2 is grounded
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Determine the output 
voltage, Vo.

67
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Determine the output voltage, Vo.

68
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Design an opamp circuit to perform the following 
mathematical operation:

𝑉𝑉𝑜𝑜 = 3𝑉𝑉1 − 5𝑉𝑉2

70
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Design an opamp circuit to perform the following 
mathematical operation:

𝑉𝑉𝑜𝑜 = 5𝑉𝑉1 − 3𝑉𝑉2

72
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Open-Loop Opamp Behavior

 So far, we’ve looked at opamp amplifier circuits
 Closed-loop configuration
 Negative feedback
 Output remains within the opamp’s linear output range

 We’ll now consider using an opamp open-loop –
without feedback – or with positive feedback
 For ideal opamp, 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 = ∞
 For any non-zero input, 𝑣𝑣𝑜𝑜 → ±∞
 But, 𝑣𝑣𝑜𝑜 limits, or saturates, somewhere near the supply 

voltages, 𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚
 In practice, the output of an open-loop opamp is always 

saturated at ±𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚
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Comparators

 Open-loop opamp’s output determined by relative 
values of the two inputs, differential input

𝒗𝒗+,𝒗𝒗− Vid Vo

𝒗𝒗+ > 𝒗𝒗−

𝒗𝒗+ < 𝒗𝒗−

 An open-loop opamp acts as a comparator
 Compares the two input voltages
 Sets the output based on which input is higher
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Comparators

Comparator Inputs

Comparator Output
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Comparators – Applications 

 Simple comparator application: thermostat
 Inverting input connected to a temperature sensor
 Non-inverting input connected to a variable reference voltage determined by 

the temperature setpoint
 If 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
 Output is high
 Heat turns on

 If 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
 Output is low
 Heat is off

 Another example application: motion-sensing light
 One input from a motion sensor – variable analog voltage
 Other input is a threshold voltage set by sensitivity setting

 Want light to turn on for people and cars, not birds or insects
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Comparators and Noise

 Consider the following 
comparator circuit:
 Inverting input driven by 

sinusoidal voltage
 Non-inverting input is 

threshold voltage – connected 
to ground (0 𝑉𝑉)

 Output switches cleanly at each input threshold crossing
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Comparators and Noise

 Now, the sinusoidal input is 
corrupted by noise
 Multiple input threshold 

crossings each time 𝑣𝑣𝑠𝑠 𝑡𝑡 goes 
through 0 𝑉𝑉

 Multiple, unwanted, output 
transitions

 Would like to be able to reject this noise at the input:
 Schmitt trigger
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Hysteresis – Schmitt Trigger

 Schmitt trigger employs hysteresis
 Characteristics of the circuit are 

dependent on its previous state
 Looks like a non-inverting amplifier, 

but it is not
 Positive feedback

 A comparator with a threshold 
voltage that depends on the output 

𝑣𝑣+ = 𝑣𝑣𝑜𝑜
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
= 𝛽𝛽𝑣𝑣𝑜𝑜

 Threshold voltage switches between two values as the output 
switches between ±𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣+ = ±𝛽𝛽𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚
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Schmitt Trigger – Hysteresis voltage 

 Consider the case where the input is low
𝑣𝑣𝑖𝑖 < 𝑣𝑣+

 Output will be high
𝑣𝑣𝑜𝑜 = +𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

 The input then increases and exceeds 
the threshold voltage

𝑣𝑣𝑖𝑖 > 𝑣𝑣+

 The output will then switch low
𝑣𝑣𝑜𝑜 → −𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

 The threshold voltage will switch low
𝑣𝑣+ → −𝛽𝛽𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

 Threshold voltage switches away from the rising input
 Similar thing is true for falling input
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Schmitt Trigger – Hysteresis voltage 

 Output, and threshold voltage, 
always switches away from the 
input signal at the first threshold 
crossing

 Hysteresis voltage:
 Magnitude of the threshold voltage 

change

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 2𝛽𝛽𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

 Hysteresis voltage set for the amount of noise that is 
present
 Threshold must switch far enough away from the noisy input that 

it will not be crossed multiple times by noise alone
 𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 set greater than peak-to-peak noise on the input signal
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Comparators and Noise – Hysteresis 

 Feedback gain, 𝛽𝛽, set to provide 
adequate hysteresis to reject 
the input noise
 Noisy input crosses threshold
 Threshold voltage switches away 

from the input by the hysteresis 
voltage

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 > 𝑉𝑉𝑛𝑛,𝑝𝑝𝑝𝑝
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Hysteresis Voltage

 Hysteresis voltage 
 Full peak-to-peak 

swing of the 
threshold voltage

 Twice the magnitude 
of the feedback 
signal

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 2𝛽𝛽𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 400 𝑚𝑚𝑚𝑚
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Hysteresis Voltage

 Can also measure 𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 by performing a bidirectional DC 
sweep of the input
 Low-to-high, then high-to-low

 Output traces a 
different path 
depending on 
direction of 𝑣𝑣𝑖𝑖𝑖𝑖
 Vertical lines indicate 

threshold voltages

 𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 given by 
difference between 
upper and lower 
thresholds

V
in increasing

V in
de

cr
ea

sin
g

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 400 𝑚𝑚𝑚𝑚
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Adjustable Hysteresis

 If noise level is not known ahead of time
 Use a potentiometer to get adjustable hysteresis

 𝑅𝑅2 adjustable from 0 Ω to 𝑅𝑅2,𝑚𝑚𝑚𝑚𝑚𝑚
 Hysteresis varies as 𝑅𝑅2 varies

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 2
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

 Max hysteresis at 𝑅𝑅2 = 𝑅𝑅2,𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 = 2
𝑅𝑅2,𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅1 + 𝑅𝑅2,𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚

 Minimum hysteresis for 𝑅𝑅2 = 0 Ω

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 = 2
0 Ω

𝑅𝑅1 + 0 Ω
𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 = 0 𝑉𝑉



K. Webb ENGR 201

90

Schmitt Trigger – Example 

 Consider the following scenario:
 Test engine instrumented and running on a dynamometer
 Want an engine temperature warning light (LED)
 RTD (resistive temperature detector or resistive thermal device) installed 

to measure coolant temperature.
 RTD is biased such that a 0 𝑉𝑉 output corresponds to 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
 Noise: 𝑉𝑉𝑛𝑛,𝑝𝑝𝑝𝑝 ≈ 100 𝑚𝑚𝑚𝑚
 Opamp available for use as a comparator:

 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ±5 𝑉𝑉

 𝑉𝑉𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 = ± 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 500 𝑚𝑚𝑚𝑚

 𝐼𝐼𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 = ±10 𝑚𝑚𝑚𝑚

 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 = 9 𝑚𝑚𝑚𝑚
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Schmitt Trigger – Example 

 When 𝑇𝑇 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
 RTD output exceeds 0 𝑉𝑉
 Schmitt trigger output goes low: 𝑣𝑣𝑜𝑜 → −4.5 𝑉𝑉
 LED turns on: 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 = 9 𝑚𝑚𝑚𝑚
 Opamp output sinks LED current and feedback network current
 Feedback network current must not exceed 1 𝑚𝑚𝑚𝑚

 Determine 𝑅𝑅1 and 
𝑅𝑅2 to:
 Set required 

hysteresis voltage
 Limit feedback path 

current



K. Webb ENGR 201

92

Schmitt Trigger – Example 

 Required hysteresis is at least the peak-to-peak noise voltage, 
𝑉𝑉𝑛𝑛,𝑝𝑝𝑝𝑝 ≈ 100 𝑚𝑚𝑚𝑚
 Design for 𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 150 𝑚𝑚𝑚𝑚
 The opamp saturates at ±4.5 𝑉𝑉, so 

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 2 ⋅ 4.5 𝑉𝑉
𝑅𝑅2

𝑅𝑅1 + 𝑅𝑅2
= 150 𝑚𝑚𝑚𝑚

𝑅𝑅2
𝑅𝑅1 + 𝑅𝑅2

=
150 𝑚𝑚𝑚𝑚

9 𝑉𝑉
= 16.67 × 10−3

 This specifies the ratio between the feedback resistors

𝑅𝑅2 = 16.95 × 10−3 ⋅ 𝑅𝑅1

 Absolute values will be selected to limit feedback path current



K. Webb ENGR 201

93

Schmitt Trigger – Example 

 When the LED is on, the feedback path current flowing into the opamp 
output is

𝐼𝐼𝑓𝑓 =
4.5 𝑉𝑉
𝑅𝑅1 + 𝑅𝑅2

< 1 𝑚𝑚𝑚𝑚

 So, the total feedback path resistance is 

𝑅𝑅1 + 𝑅𝑅2 > 4.5 𝑘𝑘Ω

 Select a standard value for the larger resistor

𝑅𝑅1 = 5.1 𝑘𝑘Ω

 Calculate 𝑅𝑅2 using the previously derived ratio

𝑅𝑅2 = 16.95 × 10−3 ⋅ 5.1 𝑘𝑘Ω = 86.4 Ω

 Select the next larger standard value: 𝑅𝑅2 = 91 Ω
 Larger, so as not to decrease 𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦
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Schmitt Trigger – Example 

 The resulting circuit:

 Verifying hysteresis:

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 9 𝑉𝑉
91 Ω

5.1 𝑘𝑘Ω + 91 Ω

𝑉𝑉ℎ𝑦𝑦𝑦𝑦𝑦𝑦 = 157 𝑚𝑚𝑚𝑚

 Feedback path current:

𝐼𝐼𝑓𝑓 =
4.5 𝑉𝑉

5191 Ω
= 867 𝜇𝜇𝜇𝜇
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