
ENGR 201 – Electrical Fundamentals I

SECTION 5:
CAPACITANCE & INDUCTANCE
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Fluid Capacitor

 Modulus of elasticity, 𝜆𝜆
 Area, 𝐴𝐴

 Incompressible fluid
 External pumps set 

pressure or flow rate at 
each port

 Consider the following device:
 Two rigid hemispherical shells
 Separated by an impermeable 

elastic membrane

 Total volume inside shell is 
constant

 Volume on either side of the 
membrane may vary
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Fluid Capacitor – Equilibrium 

 Equal pressures
Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 = 0

 No fluid flow
𝑄𝑄1 = 𝑄𝑄2 = 0

 Membrane does not 
deform

 Equal volume on 
each side

𝑉𝑉1 = 𝑉𝑉2 =
𝑉𝑉
2
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Fluid Capacitor – 𝑃𝑃1 > 𝑃𝑃2
 Pressure differential

Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 > 0

 Membrane deforms

 Volume differential

Δ𝑉𝑉 = 𝑉𝑉1 − 𝑉𝑉2 > 0

 Transient flow as 
membrane stretches, 
but...

 No steady-state flow
 As 𝑡𝑡 → ∞

𝑄𝑄1 = 𝑄𝑄2 = 0
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Fluid Capacitor – 𝑃𝑃1 < 𝑃𝑃2
 Pressure differential

Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 < 0

 Volume differential

Δ𝑉𝑉 = 𝑉𝑉1 − 𝑉𝑉2 < 0

 Δ𝑉𝑉 proportional to:
 Pressure differential
 Physical properties, 𝜆𝜆, 𝐴𝐴

 Total volume remains constant

𝑉𝑉1 + 𝑉𝑉2 = 𝑉𝑉

 Again, no steady-state flow
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Fluid Capacitor – Constant Flow Rate

 Constant flow rate forced into port 1

𝑄𝑄1 ≠ 0

 Incompressible, so flows are equal and 
opposite

𝑄𝑄1 = 𝑄𝑄2

 Volume on each side 
proportional to time

𝑉𝑉1 =
𝑉𝑉
2 + 𝑄𝑄1 ⋅ 𝑡𝑡

𝑉𝑉2 =
𝑉𝑉
2 − 𝑄𝑄2 ⋅ 𝑡𝑡 =

𝑉𝑉
2 − 𝑄𝑄1 ⋅ 𝑡𝑡

 Volume differential proportional to time

Δ𝑉𝑉 = 𝑉𝑉1 − 𝑉𝑉2 = 2𝑄𝑄1 ⋅ 𝑡𝑡
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Fluid Capacitor – Capacitance

 Define a relationship between 
differential volume and pressure

 Capacitance

𝐶𝐶 =
Δ𝑉𝑉
Δ𝑃𝑃

 Intrinsic device 
property

 Determined by physical 
parameters:

 Membrane area, 𝐴𝐴

 Modulus of elasticity, 𝜆𝜆
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Fluid Capacitor – DC vs. AC

 In steady-state (DC), no fluid flows
𝑄𝑄1 = 𝑄𝑄2 = 0

 Consider sinusoidal Δ𝑃𝑃 (AC):
Δ𝑃𝑃 = 𝑃𝑃 sin 𝜔𝜔𝑡𝑡

 Resulting flow rate is 
proportional to:
 Rate of change of 

differential pressure
 Capacitance

𝑄𝑄1 = 𝑄𝑄2 = 𝐶𝐶
𝑑𝑑𝑃𝑃
𝑑𝑑𝑡𝑡 = 𝜔𝜔𝐶𝐶𝑃𝑃 cos 𝜔𝜔𝑡𝑡
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Fluid Capacitor – Time-Varying Δ𝑃𝑃

 Equal and opposite flow at both ports

𝑄𝑄1 = 𝑄𝑄2

 Not the same fluid flowing at both ports
 Fluid cannot permeate the membrane

 Fluid appears to flow through 
the device
 Due to the displacement of the 

membrane
 A displacement flow

 The faster Δ𝑃𝑃 changes, the higher the flow rate

𝑄𝑄 ∝ 𝜔𝜔

 The larger the capacitance, the higher the flow rate

𝑄𝑄 ∝ 𝐶𝐶
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Fluid Capacitor – Changing Δ𝑃𝑃

 A given Δ𝑃𝑃 corresponds to a particular membrane 
displacement

 Step change in 
displacement/pressure is 
impossible
 Would require an infinite 

flow rate

 Pressure across a fluid capacitor cannot 
change instantaneously

 Forces must balance

 Membrane cannot instantaneously 
jump from one displacement to 
another
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Fluid Capacitor – Energy Storage

 Stretched membrane stores energy
 Potential energy

 Energy released as 
membrane returns
 𝑃𝑃 and 𝑄𝑄 are supplied

 Stored energy proportional to:
 Δ𝑃𝑃
 Δ𝑉𝑉
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Electrical Capacitor

 In the electrical domain, our “working fluid” is 
positive electrical charge

 In either domain, we have a potential-driven flow

Fluid Domain Electrical Domain

Pressure – P Voltage – V

Volumetric flow rate – Q Current – I

Volume – V Charge – Q 
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Electrical Capacitor

 Parallel-plate capacitor
 Parallel metal plates
 Separated by an insulator

 Applied voltage creates 
charge differential
 Equal and opposite charge

𝑄𝑄1 = −𝑄𝑄2
 Zero net charge

 Equal current
𝐼𝐼1 = 𝐼𝐼2

 What flows in one side 
flows out the other  Schematic symbol:

 Units: Farads (F)
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Electrical Capacitor – Electric Field

 Charge differential results 
in an electric field, 𝑬𝑬,  in 
the dielectric
 Units: 𝑉𝑉/𝑚𝑚

 |𝑬𝑬| is inversely proportional 
to dielectric thickness, 𝑑𝑑

 Above some maximum 
electric field strength, 
dielectric will break down
 Conducts electrical current
 Maximum capacitor voltage 

rating
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Electrical Capacitor - Capacitance

 Capacitance
 Ratio of charge to 

voltage

𝐶𝐶 =
𝑄𝑄
𝑉𝑉

 Intrinsic device property 
 Proportional to physical 

parameters:
 Dielectric thickness, 𝑑𝑑
 Dielectric constant, 𝜀𝜀
 Area of electrodes, 𝐴𝐴
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Parallel-Plate Capacitor

 Capacitance

𝐶𝐶 =
𝜀𝜀𝐴𝐴
𝑑𝑑

 𝜀𝜀:  dielectric permittivity
 𝐴𝐴:  area of the plates
 𝑑𝑑: dielectric thickness

 Capacitance is maximized 
by using: 
 High-dielectric-constant 

materials
 Thin dielectric
 Large-surface-area plates
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Capacitors – Voltage and Current

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 Voltage across capacitor results from an accumulation 
of charge differential
 Capacitor integrates current

𝑑𝑑 𝑡𝑡 =
1
𝐶𝐶
∫ 𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡

 Current through a capacitor is 
proportional to
 Capacitance
 Rate of change of the voltage
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Voltage Change Across a Capacitor

 For a step change in voltage,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= ∞

 The corresponding current would be infinite

 Voltage across a capacitor cannot change 
instantaneously

 Current can change instantaneously, but voltage is the 
integral of current

lim
Δt→0

ΔV = lim
Δt→0

1
𝐶𝐶
�
𝑡𝑡0

𝑡𝑡0+Δ𝑡𝑡
𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0
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Capacitors – Open Circuits at DC

 Current through a capacitor is proportional to the 
time rate of change of the voltage across the 
capacitor

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 A DC voltage does not change with time, so
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 0 and    𝑖𝑖 𝑡𝑡 = 0

 A capacitor is an open circuit at DC
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Capacitors in Parallel

 Total charge on two parallel 
capacitors is

𝑄𝑄 = 𝑄𝑄1 + 𝑄𝑄2
𝑄𝑄 = 𝐶𝐶1𝑉𝑉 + 𝐶𝐶2𝑉𝑉
𝑄𝑄 = 𝐶𝐶1 + 𝐶𝐶2 𝑉𝑉

𝑄𝑄 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑉𝑉

 Capacitances in parallel add

𝐶𝐶𝑒𝑒𝑒𝑒 = 𝐶𝐶1 + 𝐶𝐶2



K. Webb ENGR 201

Capacitors in Series

 Total voltage across the series 
combination is

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2

𝑉𝑉 =
𝑄𝑄
𝐶𝐶1

+
𝑄𝑄
𝐶𝐶2

𝑉𝑉 = 𝑄𝑄
1
𝐶𝐶1

+
1
𝐶𝐶2

=
𝑄𝑄
𝐶𝐶𝑒𝑒𝑒𝑒

 The inverses of capacitors in series add

𝐶𝐶𝑒𝑒𝑒𝑒 =
1
𝐶𝐶1

+
1
𝐶𝐶2

−1

=
𝐶𝐶1𝐶𝐶2
𝐶𝐶1 + 𝐶𝐶2
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Constant Current Onto a Capacitor

 Capacitor voltage 
increases linearly for 
constant current

𝑑𝑑 𝑡𝑡 = 𝐼𝐼 𝑡𝑡−𝑡𝑡0
𝐶𝐶

,     𝑡𝑡 ≥ 𝑡𝑡0

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐼𝐼
𝐶𝐶
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Capacitor – Energy Storage

 Capacitors store 
electrical energy
 Energy stored in the 

electric field

 Stored energy is 
proportional to:
 Voltage
 Charge differential

𝐸𝐸 =
1
2
𝑄𝑄𝑉𝑉 =

1
2
𝐶𝐶𝑉𝑉2 =

1
2
𝑄𝑄2

𝐶𝐶

 Energy released as E-field 
collapses
 𝑉𝑉 and 𝐼𝐼 supplied
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Fluid Inductor

 Consider the following device:
 Lossless pipe
 Heavy paddle-wheel/turbine 
 Frictionless bearing
 Moment of inertia, 𝐼𝐼

 Incompressible 
fluid

𝑄𝑄1 = 𝑄𝑄2

 Paddle wheel 
rotates at same 
rate as the flow
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Fluid Inductor – Constant Flow Rate

 Constant flow rate
𝑄𝑄1 = 𝑄𝑄2 = 𝑄𝑄

 Constant paddle-wheel angular velocity
 Zero acceleration
 Zero net applied force

 Frictionless bearing
 No force required 

to maintain 
rotation

 Zero pressure 
differential
Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 = 0
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Fluid Inductor – Constant Δ𝑃𝑃

 Constant pressure differential
Δ𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃2 ≠ 0

 Constant applied torque
 Constant angular acceleration

 Flow rate increases linearly with time

𝑄𝑄1 𝑡𝑡 = 𝑄𝑄2 𝑡𝑡 =
Δ𝑃𝑃
𝐿𝐿
⋅ 𝑡𝑡 + 𝑄𝑄0

 𝐿𝐿 is inductance
 Intrinsic device 

property

𝐿𝐿 ∝ 𝐼𝐼
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Fluid Inductor – Changing Flow Rate

 Paddle wheel has inertia (inductance)
 Does not want to change angular velocity

 Changes in flow rate require:
 Paddle-wheel acceleration
 Torque 
 Pressure differential

 Pressure differential 
associated with 
changing flow rate:

Δ𝑃𝑃 = 𝐿𝐿
𝑑𝑑𝑄𝑄
𝑑𝑑𝑡𝑡
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Fluid Inductor – AC vs. DC

 Steady state (DC) flow
 No pressure differential

Δ𝑃𝑃 = 0
 Consider a sinusoidal (AC) 

flow rate:  

𝑄𝑄1 = 𝑄𝑄2 = 𝑄𝑄 sin 𝜔𝜔𝑡𝑡

 Sinusoidal acceleration
 Sinusoidal torque 
 Sinusoidal pressure differential:

Δ𝑃𝑃 = 𝐿𝐿
𝑑𝑑𝑄𝑄
𝑑𝑑𝑡𝑡

= 𝜔𝜔𝐿𝐿𝑄𝑄 cos 𝜔𝜔𝑡𝑡

 Δ𝑃𝑃 proportional to:
 Inductance 
 Frequency 
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Fluid Inductor – Changing Flow Rate

 Each flow rate has a corresponding angular velocity
 Changes in flow rate require changes in angular velocity

 Angular velocity cannot change instantaneously from one 
value to another:
 Must accelerate continuously through all intermediate values

 Flow rate through 
a fluid inductor 
cannot change 
instantaneously
 Would require:
 𝑑𝑑𝑄𝑄/𝑑𝑑𝑡𝑡 = ∞
 Δ𝑃𝑃 = ∞
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Electrical Inductors

 Inductance 
 Electrical property impeding 

changes in electrical current 

 Ampere’s law
 Electrical current induces a 

magnetic field surrounding the 
conductor in which it flows

 Electromagnetic induction
 As current changes, the 

changing magnetic field induces 
a voltage that opposes the 
changing current
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Inductors

 Inductors 
 Electrical components that 

store energy in a magnetic 
field

 Coils of wire
 Often wrapped around a 

magnetic core
 Magnetic fields from current 

in adjacent turns sum
 Inductance is proportional to 

the number of turns
 Schematic symbol:

 Units: henries (H)
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Inductors – Voltage and Current

𝑑𝑑 𝑡𝑡 = 𝐿𝐿
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

 Current through inductor builds gradually with applied 
voltage
 Inductor integrates voltage

𝑖𝑖 𝑡𝑡 =
1
𝐿𝐿
∫ 𝑑𝑑 𝑡𝑡 𝑑𝑑𝑡𝑡

 Voltage across an inductor is 
proportional to:
 Inductance
 Rate of change of the current
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Current Change Through an Inductor

 For a step change in current,
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

= ∞

 The corresponding voltage would be infinite

 Current through an inductor cannot change 
instantaneously

 Voltage can change instantaneously, but current is the 
integral of voltage

lim
Δt→0

Δi = lim
Δt→0

1
𝐿𝐿
�
𝑡𝑡0

𝑡𝑡0+Δ𝑡𝑡
𝑑𝑑 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0
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Inductors – Short Circuits at DC

 Voltage across an inductor is proportional to the 
time rate of change of the current through the 
inductor

𝑑𝑑 𝑡𝑡 = 𝐿𝐿
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

 A DC current does not change with time, so
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 0 and    𝑑𝑑 𝑡𝑡 = 0

 An inductor is a short circuit at DC
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Inductors in Series

 Total voltage across the series 
combination is

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2

𝑉𝑉 = 𝐿𝐿1
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

+ 𝐿𝐿2
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

𝑉𝑉 =
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

𝐿𝐿1 + 𝐿𝐿2 = 𝐿𝐿𝑒𝑒𝑒𝑒
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

 Inductances in series add

𝐿𝐿𝑒𝑒𝑒𝑒 = 𝐿𝐿1 + 𝐿𝐿2

39
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Inductors in Parallel
 Voltage across the two parallel inductors:

𝑑𝑑 = 𝐿𝐿1
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑡𝑡

= 𝐿𝐿2
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑡𝑡

so
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑡𝑡

=
𝑑𝑑
𝐿𝐿1

,
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑡𝑡

=
𝑑𝑑
𝐿𝐿2

 Voltage across the equivalent inductor:

𝑑𝑑 = 𝐿𝐿𝑒𝑒𝑒𝑒
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐿𝐿𝑒𝑒𝑒𝑒
𝑑𝑑𝑖𝑖1
𝑑𝑑𝑡𝑡

+
𝑑𝑑𝑖𝑖2
𝑑𝑑𝑡𝑡

𝑑𝑑 = 𝐿𝐿𝑒𝑒𝑒𝑒
𝑑𝑑
𝐿𝐿1

+
𝑑𝑑
𝐿𝐿2

 Inverses of inductors in parallel add

𝐿𝐿𝑒𝑒𝑒𝑒 =
1
𝐿𝐿1

+
1
𝐿𝐿2

−1

=
𝐿𝐿1𝐿𝐿2
𝐿𝐿1 + 𝐿𝐿2



K. Webb ENGR 201

41

Inductor – Energy Storage

 Inductors store magnetic energy
 Energy stored in the magnetic field

 Stored energy is proportional to:
 Current
 Inductance
 Magnetic flux:  𝜆𝜆 = 𝐿𝐿𝐼𝐼

𝐸𝐸 =
1
2
𝐿𝐿𝐼𝐼2

 Energy released as magnetic field collapses
 𝑉𝑉 and 𝐼𝐼 supplied
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A typical US home consumes about 1000 kWh/month. 
a) To what voltage would a 1 F capacitor need to be charged in order 

to store this amount of energy?
b) If the fully-charged voltage is limited to 200 V, how much 

capacitance would be required to store this amount of energy? 
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A 10 V, 1 kHz, sinusoidal voltage is applied across a 1 𝜇𝜇F 
capacitor. How much current flows through the 
capacitor?
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The following voltage is applied across a 1𝜇𝜇F capacitor. Sketch 
the current through the capacitor.
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A typical US home consumes about 1000 kWh/month. 
a) How much current would be required in order to store this 

amount of energy in a 1 H inductor ?
b) If the maximum current is limited to 200 A, how much inductance 

would be required to store this amount of energy? 
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If 10 VDC is applied across a 500 mH inductor, how long will it 
take the current to reach 10 A?
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RC Circuits52
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Step Response

 Step response
 Response of a dynamic system (not necessarily electrical) to 

a step function input
 Unit step function or Heaviside step function:

𝑢𝑢 𝑡𝑡 = �0, 𝑡𝑡 < 0
1, 𝑡𝑡 ≥ 0

 To characterize an electrical network, a voltage step can 
be applied as an input
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RC Circuit – Step Response

 Step response of this RC circuit is the output voltage in response to a 
step input: 𝑑𝑑𝑠𝑠 𝑡𝑡 = 1𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡

How does 𝑑𝑑𝑜𝑜 𝑡𝑡 get from 𝑑𝑑𝑜𝑜 0 = 0𝑉𝑉
to 𝑑𝑑𝑜𝑜 ∞ = 1 𝑉𝑉?

 For 𝑡𝑡 ≫ 0,
 𝑑𝑑𝑠𝑠 𝑡𝑡 → DC
 𝐶𝐶 → open circuit
 𝑑𝑑𝑜𝑜 𝑡𝑡 → 1 𝑉𝑉

 For 𝑡𝑡 < 0,
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 0 𝑉𝑉
 𝑑𝑑𝑜𝑜 𝑡𝑡 = 0 𝑉𝑉
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RC Circuit – Step Response

 To determine the step response, apply KVL 
around the circuit 

𝑑𝑑𝑠𝑠 𝑡𝑡 − 𝑖𝑖 𝑡𝑡 𝑅𝑅 − 𝑑𝑑𝑜𝑜 𝑡𝑡 = 0

 Current, 𝑖𝑖 𝑡𝑡 , is the capacitor current

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑡𝑡

 Substituting in for 𝑖𝑖 𝑡𝑡 and 𝑑𝑑𝑠𝑠 𝑡𝑡

1 𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡 − 𝑅𝑅𝐶𝐶
𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑡𝑡

− 𝑑𝑑𝑜𝑜 𝑡𝑡 = 0

 Rearranging
𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑡𝑡

+
1
𝑅𝑅𝐶𝐶

𝑑𝑑𝑜𝑜 𝑡𝑡 =
1 𝑉𝑉
𝑅𝑅𝐶𝐶

⋅ 𝑢𝑢 𝑡𝑡
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RC Circuit – Step Response

𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑡𝑡

+
1
𝑅𝑅𝐶𝐶

𝑑𝑑𝑜𝑜 𝑡𝑡 =
1 𝑉𝑉
𝑅𝑅𝐶𝐶

⋅ 𝑢𝑢 𝑡𝑡

 A first-order linear, ordinary, non-
homogeneous differential equation

 Solution for 𝑑𝑑𝑜𝑜 𝑡𝑡 is the sum of two 
solutions:
 Complementary solution
 Particular solution

 The complementary solution is the solution to the homogeneous 
equation
 Set the input (forcing function) to zero
 The circuit’s natural response

𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑡𝑡

+
1
𝑅𝑅𝐶𝐶

𝑑𝑑𝑜𝑜 𝑡𝑡 = 0
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RC Step Response – Homogeneous Solution

𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑡𝑡

+
1
𝑅𝑅𝐶𝐶

𝑑𝑑𝑜𝑜 𝑡𝑡 = 0

 For a first-order ODE of this form, we assume a 
solution of the form

𝑑𝑑𝑜𝑜𝑐𝑐 𝑡𝑡 = 𝐾𝐾0𝑠𝑠𝜆𝜆𝑡𝑡

then
𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑡𝑡 = 𝜆𝜆𝐾𝐾0𝑠𝑠𝜆𝜆𝑡𝑡

and

𝜆𝜆𝐾𝐾0𝑠𝑠𝜆𝜆𝑡𝑡 +
1
𝑅𝑅𝐶𝐶 𝐾𝐾0

𝑠𝑠𝜆𝜆𝑡𝑡 = 0

so 

𝜆𝜆 +
1

RC = 0 → 𝜆𝜆 = −
1
𝑅𝑅𝐶𝐶 = −

1
𝜏𝜏

and 

𝑑𝑑𝑜𝑜𝑐𝑐 𝑡𝑡 = 𝐾𝐾0𝑠𝑠
− 𝑡𝑡
𝑅𝑅𝐶𝐶 = 𝐾𝐾0𝑠𝑠

−𝑡𝑡𝜏𝜏
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RC Step Response – Homogeneous Solution

𝑑𝑑𝑜𝑜𝑐𝑐 𝑡𝑡 = 𝐾𝐾0𝑠𝑠
−𝑡𝑡𝜏𝜏

 The complementary solution

 𝜏𝜏 is the circuit time constant

𝜏𝜏 = 𝑅𝑅𝐶𝐶

𝐾𝐾0 is an unknown constant
 To be determined through 

application of initial conditions

 Next, find the particular 
solution, 𝑑𝑑𝑜𝑜𝑝𝑝 𝑡𝑡
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RC Step Response – Particular Solution

 In steady state:
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉 (DC)
 Capacitor → open circuit
 𝑖𝑖 𝑡𝑡 = 0
 𝑑𝑑0 𝑡𝑡 = 𝑑𝑑𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉

 The particular solution:

𝑑𝑑𝑜𝑜𝑝𝑝 𝑡𝑡 = 1 𝑉𝑉

 For a step input, the particular solution is the circuit’s 
steady-state response
 As 𝑡𝑡 → ∞
 Long after the input step
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RC Step Response

 Step response 
 Solution to the non-homogeneous equation
 Sum of the complementary and particular solutions

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝑑𝑑𝑜𝑜𝑐𝑐 𝑡𝑡 + 𝑑𝑑𝑜𝑜𝑝𝑝 𝑡𝑡

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝐾𝐾0𝑠𝑠
−𝑡𝑡𝜏𝜏 + 1 𝑉𝑉

 Next, determine 𝐾𝐾0 by applying an initial condition
 For 𝑡𝑡 < 0

 𝑑𝑑𝑠𝑠 𝑡𝑡 < 0 = 0 𝑉𝑉
 𝑑𝑑𝑜𝑜 𝑡𝑡 < 0 = 0 𝑉𝑉

 At 𝑡𝑡 = 0
 𝑑𝑑𝑠𝑠 0 = 1 𝑉𝑉
 Capacitor voltage cannot change instantaneously 
 𝑑𝑑𝑜𝑜 0 = 0 𝑉𝑉 – this is the initial condition
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RC Step Response

 Apply the initial condition

𝑑𝑑𝑜𝑜 0 = 𝐾𝐾0𝑠𝑠
−0𝜏𝜏 + 1 𝑉𝑉 = 0 𝑉𝑉

𝑑𝑑𝑜𝑜 0 = 𝐾𝐾0 + 1 𝑉𝑉 = 0 𝑉𝑉

𝐾𝐾0 = −1 𝑉𝑉

 The step response is

𝑑𝑑𝑜𝑜 𝑡𝑡 = −1 𝑉𝑉𝑠𝑠−
𝑡𝑡
𝜏𝜏 + 1 𝑉𝑉

Note that the time axis is normalized to the 
time constant, τ.
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Step Response – General Solution

𝑑𝑑𝑜𝑜 𝑡𝑡 = −1 𝑉𝑉𝑠𝑠−
𝑡𝑡
𝜏𝜏 + 1 𝑉𝑉

 This solution assumes an input that steps from 0 𝑉𝑉 to 1 𝑉𝑉 at 𝑡𝑡 = 0
 These are also the initial and final values of 𝑑𝑑𝑜𝑜

 Suppose the input steps between two arbitrary voltage levels:

𝑑𝑑𝑑𝑑 𝑡𝑡 = �
𝑉𝑉𝑑𝑑 𝑡𝑡 < 0
𝑉𝑉𝑓𝑓 𝑡𝑡 ≥ 0

 Now, the initial condition is 

𝑑𝑑𝑜𝑜 0 = 𝑉𝑉𝑑𝑑

 The particular solution is the steady-state value, which is now

𝑑𝑑𝑜𝑜𝑝𝑝 𝑡𝑡 = 𝑑𝑑𝑜𝑜 𝑡𝑡 → ∞ = 𝑉𝑉𝑓𝑓

 Solution to the non-homogeneous equation is

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝐾𝐾𝑜𝑜𝑠𝑠
−𝑡𝑡𝜏𝜏 + 𝑉𝑉𝑓𝑓
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Step Response – General Solution

 Apply the initial condition to determine 𝐾𝐾0

𝑑𝑑𝑜𝑜 0 = 𝐾𝐾𝑜𝑜𝑠𝑠
−0𝜏𝜏 + 𝑉𝑉𝑓𝑓 = 𝑉𝑉𝑑𝑑

𝐾𝐾0 = 𝑉𝑉𝑑𝑑 − 𝑉𝑉𝑓𝑓

 Substituting in for 𝐾𝐾0 gives the general voltage step 
response:

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑑𝑑 − 𝑉𝑉𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏
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Step Response – General Solution

 General RC circuit step response:

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑑𝑑 − 𝑉𝑉𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

 General step response for any first-order linear system with 
a finite steady-state value: 

𝑦𝑦 𝑡𝑡 = 𝑌𝑌𝑓𝑓 + 𝑌𝑌𝑑𝑑 − 𝑌𝑌𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

 Not necessarily an electrical system
 𝑦𝑦 𝑡𝑡 is any quantity of interest (voltage, current, temperature, 

pressure, displacement, etc.)
 𝑌𝑌𝑑𝑑 = 𝑦𝑦 0 is the initial condition
 𝑌𝑌𝑓𝑓 = 𝑦𝑦 𝑡𝑡 → ∞ is the steady-state value
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First-Order Step Response

 Initial slope is 
inversely 
proportional to 
time constant

 Response 
completes 63% of 
transition after 
one time constant

 Almost completely 
settled after 7𝜏𝜏
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RC Circuit Response – Example
 RC circuit driven with negative-going step

𝑑𝑑𝑠𝑠 𝑡𝑡 = �1 𝑉𝑉 𝑡𝑡 < 0
0 𝑉𝑉 𝑡𝑡 ≥ 0

 For 𝑡𝑡 < 0
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉
 𝑑𝑑𝑜𝑜 𝑡𝑡 = 1 𝑉𝑉

 At 𝑡𝑡 = 0
 𝑑𝑑𝑠𝑠 0 = 0 𝑉𝑉
 𝑑𝑑𝑜𝑜 𝑡𝑡 cannot change instantaneously
 𝑉𝑉𝑑𝑑 = 𝑑𝑑𝑜𝑜 0 = 1 𝑉𝑉

 As 𝑡𝑡 → ∞
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 0 𝑉𝑉 → DC
 Capacitor → open circuit
 𝑖𝑖 𝑡𝑡 → ∞ = 0 𝐴𝐴
 𝑑𝑑𝑜𝑜 𝑡𝑡 → ∞ = 0 𝑉𝑉
 𝑉𝑉𝑓𝑓 = 0 𝑉𝑉
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RC Circuit Response – Example

 Time constant 
𝜏𝜏 = 𝑅𝑅𝐶𝐶 = 1 𝑘𝑘Ω ⋅ 1 𝜇𝜇𝜇𝜇
𝜏𝜏 = 1 𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚

 Voltage step response

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑑𝑑 − 𝑉𝑉𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑑𝑑𝑜𝑜 𝑡𝑡 = 0 𝑉𝑉 + (1 𝑉𝑉 − 0 𝑉𝑉)𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑑𝑑𝑜𝑜 𝑡𝑡 = 1 𝑉𝑉 ⋅ 𝑠𝑠−
𝑡𝑡

1𝑚𝑚𝑠𝑠𝑒𝑒𝑚𝑚
Vo(t) reaches 63% of its final value 
after one time constant
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Current Step Response

 Now, consider the current through an RC circuit driven 
by a positive-going 0 𝑉𝑉… 1 𝑉𝑉 step
 At 𝑡𝑡 = 0:
 𝑑𝑑𝑠𝑠 0 = 1 𝑉𝑉
 𝑑𝑑𝑜𝑜 0 = 0 𝑉𝑉
 Voltage across resistor:  

𝑑𝑑𝑠𝑠 0 − 𝑑𝑑𝑜𝑜 0 = 1 𝑉𝑉

 Current through resistor:

𝐼𝐼𝑑𝑑 = 𝑖𝑖 0 =
𝑑𝑑𝑠𝑠 0 − 𝑑𝑑𝑜𝑜 0

𝑅𝑅

𝐼𝐼𝑑𝑑 =
1 𝑉𝑉
𝑅𝑅
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Current Step Response

 As 𝑡𝑡 → ∞:
 Capacitor → open circuit
 Current → 0

𝐼𝐼𝑓𝑓 = 0

 The current step 
response:

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑑𝑑 − 𝐼𝐼𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑖𝑖 𝑡𝑡 =
1 𝑉𝑉
𝑅𝑅
𝑠𝑠−

𝑡𝑡
𝜏𝜏

𝑖𝑖(𝑡𝑡) decays to 63% of 
its final value after 
one time constant

𝑖𝑖(𝑡𝑡) is zero for 𝑡𝑡 < 0. 
It jumps instantaneously to 
𝑖𝑖 0 = 1𝑉𝑉/𝑅𝑅 = 1 𝐴𝐴 (for unit 
step input and 𝑅𝑅 = 1Ω)
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Example Problems70
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Determine 𝑑𝑑𝑜𝑜 𝑡𝑡 for 𝑡𝑡 ≥ 0.
The input source is:

𝑑𝑑𝑠𝑠 𝑡𝑡 = 2 𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡 − 1 𝑉𝑉

71
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Determine 𝑑𝑑𝑜𝑜 𝑡𝑡 for 𝑡𝑡 ≥ 0.
The input source is:

𝑑𝑑𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡

73
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Determine 𝑑𝑑𝑜𝑜 𝑡𝑡 for 𝑡𝑡 ≥ 0.
The input source is:

𝑑𝑑𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡

75
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RL Circuits79
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RL Circuit – Step Response

 For the RL circuit, we’ll first look at the current step response

How does 𝑖𝑖 𝑡𝑡 get from 𝐼𝐼𝑑𝑑 to 𝐼𝐼𝑓𝑓?  For 𝑡𝑡 ≫ 0,
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉 → DC
 𝐿𝐿 → short circuit
 𝑖𝑖 𝑡𝑡 → 1 𝑉𝑉/𝑅𝑅 = 𝐼𝐼𝑓𝑓

 For 𝑡𝑡 < 0,
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 0 𝑉𝑉
 𝑖𝑖 𝑡𝑡 = 0 𝐴𝐴

 At 𝑡𝑡 = 0,
 Current cannot 

change 
instantaneously

 𝑖𝑖 0 = 0 𝑉𝑉 = 𝐼𝐼𝑑𝑑
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RL Circuit – Step Response

 To determine the step response, apply KVL 
around the circuit 

𝑑𝑑𝑠𝑠 𝑡𝑡 − 𝑖𝑖 𝑡𝑡 𝑅𝑅 − 𝐿𝐿
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

= 0

 Here, we have a differential equation for 𝑖𝑖 𝑡𝑡
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

+
𝑅𝑅
𝐿𝐿
𝑖𝑖 𝑡𝑡 =

1
𝐿𝐿
𝑑𝑑𝑠𝑠 𝑡𝑡

 This is in the exact same form as the voltage ODE for the RC circuit
 Same general solution applies

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑑𝑑 − 𝐼𝐼𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

 Where, now, the time constant is

𝜏𝜏 =
𝐿𝐿
𝑅𝑅
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RL Circuit – Step Response

 Current step response:

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑑𝑑 − 𝐼𝐼𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑖𝑖 𝑡𝑡 =
1 𝑉𝑉
𝑅𝑅

−
1 𝑉𝑉
𝑅𝑅
𝑠𝑠−

𝑡𝑡
𝜏𝜏

𝑖𝑖 𝑡𝑡 =
1 𝑉𝑉
𝑅𝑅

1 − 𝑠𝑠−
𝑡𝑡
𝜏𝜏

Note that the time axis is 
normalized to the time constant, τ.

for R = 1Ω
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RL Circuit – Step Response

 Now consider the voltage step response
 Determine initial and final values:

 For 𝑡𝑡 < 0
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 0 𝑉𝑉
 𝑖𝑖 𝑡𝑡 = 0 𝐴𝐴
 𝑑𝑑𝑜𝑜 𝑡𝑡 = 0 𝑉𝑉

 At 𝑡𝑡 = 0
 𝑑𝑑𝑠𝑠 0 = 1 𝑉𝑉
 Current through the inductor cannot change 

instantaneously, so 𝑖𝑖 0 = 0 𝐴𝐴
 No voltage drop across the resistor, so 𝑑𝑑𝑜𝑜 0 = 1 𝑉𝑉
 𝑉𝑉𝑑𝑑 = 1 𝑉𝑉

 As 𝑡𝑡 → ∞
 𝑑𝑑𝑠𝑠 𝑡𝑡 → DC 
 Inductor → short circuit, so 𝑑𝑑𝑜𝑜 𝑡𝑡 → ∞ = 0 𝑉𝑉
 𝑉𝑉𝑓𝑓 = 0 𝑉𝑉
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RL Circuit – Step Response

 Voltage step 
response:

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑑𝑑 − 𝑉𝑉𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑑𝑑𝑜𝑜 𝑡𝑡 = 0 𝑉𝑉 + 1 𝑉𝑉 − 0 𝑉𝑉 𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑑𝑑𝑜𝑜 𝑡𝑡 = 1 𝑉𝑉𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑑𝑑𝑠𝑠(𝑡𝑡) decays to 63% of its final 
value after one time constant

𝑑𝑑𝑜𝑜 0 = 1 𝑉𝑉
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RL Circuit Response – Example

 RL circuit driven with negative-going step

𝑑𝑑𝑠𝑠 𝑡𝑡 = �1 𝑉𝑉 𝑡𝑡 < 0
0.2 𝑉𝑉 𝑡𝑡 ≥ 0

 For 𝑡𝑡 < 0
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉 (DC)
 Inductor is a short circuit (DC)
 𝑑𝑑𝑜𝑜 𝑡𝑡 = 0 𝑉𝑉
 𝑖𝑖 𝑡𝑡 = 1 𝑉𝑉/1 𝑘𝑘Ω = 1 𝑚𝑚𝐴𝐴

 At 𝑡𝑡 = 0
 𝑑𝑑𝑠𝑠 0 = 0.2 𝑉𝑉
 𝑖𝑖 𝑡𝑡 cannot change instantaneously

 𝑖𝑖 0 = 1 𝑚𝑚𝐴𝐴
 𝑑𝑑𝑜𝑜 0 = 𝑑𝑑𝑠𝑠 0 − 1 𝑚𝑚𝐴𝐴 ⋅ 1 𝑘𝑘Ω = −0.8 𝑉𝑉
 𝑉𝑉𝑑𝑑 = −0.8 𝑉𝑉

 As 𝑡𝑡 → ∞
 𝑑𝑑𝑠𝑠 𝑡𝑡 = 0.2 𝑉𝑉 → DC
 Inductor → short circuit
 𝑑𝑑𝑜𝑜 𝑡𝑡 → ∞ = 0 𝑉𝑉
 𝑉𝑉𝑓𝑓 = 0 𝑉𝑉
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RL Circuit Response – Example
 Time constant 

𝜏𝜏 =
𝐿𝐿
𝑅𝑅

= 1
𝑚𝑚𝑚𝑚
1 𝑘𝑘Ω

𝜏𝜏 = 1 𝜇𝜇𝑠𝑠𝑠𝑠𝑚𝑚

 Voltage step response

𝑑𝑑𝑜𝑜 𝑡𝑡 = 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑑𝑑 − 𝑉𝑉𝑓𝑓 𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑑𝑑𝑜𝑜 𝑡𝑡 = 0 𝑉𝑉 + (−0.8 𝑉𝑉 − 0 𝑉𝑉)𝑠𝑠−
𝑡𝑡
𝜏𝜏

𝑑𝑑𝑜𝑜 𝑡𝑡 = −0.8 𝑉𝑉 ⋅ 𝑠𝑠−
𝑡𝑡

1 𝜇𝜇𝑠𝑠𝑒𝑒𝑚𝑚

Vo(t) reaches 63% of its final value 
after one time constant
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Determine 𝑑𝑑𝑜𝑜 𝑡𝑡 and 𝑖𝑖 𝑡𝑡 for 𝑡𝑡 ≥ 0.
The input source is:

𝑑𝑑𝑠𝑠 𝑡𝑡 = −2 𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡 + 4 𝑉𝑉

88
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Determine 𝑑𝑑𝑜𝑜 𝑡𝑡 and 𝑖𝑖(𝑡𝑡) for 
𝑡𝑡 ≥ 0.

91
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Determine 𝑑𝑑𝑜𝑜 𝑡𝑡
and 𝑖𝑖(𝑡𝑡) for 𝑡𝑡 ≥ 0.

93
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