
ENGR 202 – Electrical Fundamentals II

SECTION 1: SINUSOIDAL 
STEADY-STATE ANALYSIS
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Sinusoidal Signals

 Sinusoidal signals are of particular interest in the field of 
electrical engineering

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 = 𝑉𝑉𝑝𝑝 cos(2𝜋𝜋 ⋅ 𝑓𝑓 ⋅ 𝑡𝑡 + 𝜙𝜙)

 Sinusoidal signals defined by three parameters:
 Amplitude: 𝑉𝑉𝑝𝑝
 Frequency: 𝜔𝜔 or 𝑓𝑓
 Phase: 𝜙𝜙
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Amplitude

 Amplitude of a 
sinusoid is its peak
voltage, 𝑉𝑉𝑝𝑝

 Peak-to-peak voltage, 
𝑉𝑉𝑝𝑝𝑝𝑝, is twice the 
amplitude
 𝑉𝑉𝑝𝑝𝑝𝑝 = 2𝑉𝑉𝑝𝑝
 𝑉𝑉𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 � sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙 = 𝑉𝑉𝑝𝑝 � sin 2𝜋𝜋𝑓𝑓𝑡𝑡 + 𝜙𝜙

𝑉𝑉𝑝𝑝 = 170 𝑉𝑉

𝑉𝑉 𝑝𝑝
𝑝𝑝

=
34

0
𝑉𝑉
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Frequency

 Period (𝑇𝑇)
 Duration of one cycle

 Frequency (𝑓𝑓)
 Number of periods per second

𝑓𝑓 =
1
𝑇𝑇

 Ordinary frequency, 𝑓𝑓
 Units: hertz (Hz), sec-1, cycles/sec

 Angular frequency, 𝜔𝜔
 Units: rad/sec

𝜔𝜔 = 2𝜋𝜋𝑓𝑓,    𝑓𝑓 = 𝜔𝜔
2𝜋𝜋

𝑇𝑇 = 16 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Phase

 Phase
 Angular constant in signal expression, 𝜙𝜙

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙
 Requires a time reference

 Interested in relative, not 
absolute, phase

 Here,
 𝑣𝑣1 𝑡𝑡 leads 𝑣𝑣2 𝑡𝑡
 𝑣𝑣2 𝑡𝑡 lags 𝑣𝑣1 𝑡𝑡

 Units: radians
 Not technically correct, but OK 

to express in degrees, e.g.:

𝑣𝑣 𝑡𝑡 = 170 𝑉𝑉 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 + 34°
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Sinusoidal Steady-State Analysis

 Often interested in the response of linear systems to sinusoidal 
inputs
 Voltages and currents in electrical systems
 Forces, torques, velocities, etc. in mechanical systems

 For linear systems excited by a sinusoidal input
 Output is sinusoidal

 Same frequency
 In general, different amplitude
 In general, different phase

 We can simplify the analysis of linear systems by using phasor 
representation of sinusoids
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Phasors

 Phasor
 A complex number representing the amplitude and 

phase of a sinusoidal signal
 Frequency is not included
 Remains constant and is accounted for separately
 System characteristics (frequency-dependent) evaluated at 

the frequency of interest as first step in the analysis

 Phasors are complex numbers 
 Before applying phasors to the analysis of electrical 

circuits, we’ll first review the properties of complex 
numbers
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Complex Numbers

 A complex number can be represented as

𝐻𝐻 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗

 𝑥𝑥: real part (a real number)
 𝑗𝑗: imaginary part (a real number)
 𝑗𝑗 = −1 is the imaginary unit

 Complex numbers can be represented three ways:
 Cartesian form: 𝐻𝐻 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗
 Polar form: 𝐻𝐻 = 𝑟𝑟𝑟𝜙𝜙
 Exponential form: 𝐻𝐻 = 𝑟𝑟𝑚𝑚𝑗𝑗𝑗𝑗
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Complex Numbers as Vectors

 A complex number can be represented as a vector in the 
complex plane

 Complex plane
 Real axis – horizontal 
 Imaginary axis – vertical 

 A vector from the origin to 𝐻𝐻
 Real part, 𝑥𝑥
 Imaginary part, 𝑗𝑗

𝐻𝐻 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗

 Vector has a magnitude, 𝑟𝑟
 And an angle, 𝜃𝜃

𝐻𝐻 = 𝑟𝑟𝑟𝜃𝜃
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Cartesian Form ↔ Polar Form

 Cartesian form → Polar form
𝐻𝐻 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗 = 𝑟𝑟𝑟𝜃𝜃

𝑟𝑟 = 𝐻𝐻 = 𝑥𝑥2 + 𝑗𝑗2

𝜃𝜃 = arg 𝐻𝐻 = 𝑟𝐻𝐻

𝜃𝜃 = tan−1
𝑗𝑗
𝑥𝑥

 Polar form → Cartesian form
𝑥𝑥 = 𝑟𝑟 cos 𝜃𝜃

𝑗𝑗 = 𝑟𝑟 sin 𝜃𝜃
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Complex Numbers – Addition/Subtraction

 Addition and subtraction of complex numbers
 Best done in Cartesian form
 Real parts add/subtract
 Imaginary parts add/subtract

 For example:
𝐻𝐻1 = 𝑥𝑥1 + 𝑗𝑗𝑗𝑗1
𝐻𝐻2 = 𝑥𝑥2 + 𝑗𝑗𝑗𝑗2
𝐻𝐻1 + 𝐻𝐻2 = 𝑥𝑥1 + 𝑥𝑥2 + 𝑗𝑗 𝑗𝑗1 + 𝑗𝑗2
𝐻𝐻1 − 𝐻𝐻2 = 𝑥𝑥1 − 𝑥𝑥2 + 𝑗𝑗 𝑗𝑗1 − 𝑗𝑗2
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Complex Numbers – Multiplication/Division

 Multiplication and division of complex numbers
 Best done in polar form
 Magnitudes multiply/divide
 Angles add/subtract

 For example:
𝐻𝐻1 = 𝑟𝑟1𝑟𝜃𝜃1
𝐻𝐻2 = 𝑟𝑟2𝑟𝜃𝜃2
𝐻𝐻1 ⋅ 𝐻𝐻2 = 𝑟𝑟1𝑟𝑟2𝑟 𝜃𝜃1 + 𝜃𝜃2
𝐻𝐻1
𝐻𝐻2

=
𝑟𝑟1
𝑟𝑟2
𝑟 𝜃𝜃1 − 𝜃𝜃2
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Complex Conjugate

 Conjugate of a complex 
number
 Number that results from 

negating the imaginary part

𝐻𝐻 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗
𝐻𝐻∗ = 𝑥𝑥 − 𝑗𝑗𝑗𝑗

 Or, equivalently, from 
negating the angle

𝐻𝐻 = 𝑟𝑟𝑟𝜃𝜃

𝐻𝐻∗ = 𝑟𝑟𝑟 − 𝜃𝜃
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Complex Fractions

 Multiplying a number by its complex conjugate yields the 
squared magnitude of that number
 A real number

𝐻𝐻 ⋅ 𝐻𝐻∗ = 𝑥𝑥 + 𝑗𝑗𝑗𝑗 𝑥𝑥 − 𝑗𝑗𝑗𝑗 = 𝑥𝑥2 + 𝑗𝑗2

𝐻𝐻 ⋅ 𝐻𝐻∗ = 𝑟𝑟𝑟𝜃𝜃 ⋅ 𝑟𝑟𝑟 − 𝜃𝜃 = 𝑟𝑟2𝑟𝜃𝜃 − 𝜃𝜃 = 𝑟𝑟2

 Rationalizing the denominator of a complex fraction:
 Multiply numerator and denominator by the complex conjugate 

of the denominator

𝐻𝐻 =
𝑥𝑥1 + 𝑗𝑗𝑗𝑗1
𝑥𝑥2 + 𝑗𝑗𝑗𝑗2

⋅
𝑥𝑥2 − 𝑗𝑗𝑗𝑗2
𝑥𝑥2 − 𝑗𝑗𝑗𝑗2

𝐻𝐻 =
𝑥𝑥1𝑥𝑥2 + 𝑗𝑗1𝑗𝑗2
𝑥𝑥22 + 𝑗𝑗22

+ 𝑗𝑗
𝑥𝑥2𝑗𝑗1 − 𝑥𝑥1𝑗𝑗2
𝑥𝑥22 + 𝑗𝑗22



K. Webb ENGR 202

17

Complex Fractions

 Fractions or ratios are, of course, simply division
 Very common form, so worth emphasizing 

 Magnitude of a ratio of complex numbers

𝐻𝐻 =
𝐻𝐻1
𝐻𝐻2

→ 𝐻𝐻 =
𝐻𝐻1
𝐻𝐻2

 Angle of a ratio of complex numbers

𝐻𝐻 =
𝐻𝐻1
𝐻𝐻2

→ 𝑟𝐻𝐻 = 𝑟𝐻𝐻1 − 𝑟𝐻𝐻2

 Calculators and complex numbers
 Manipulation of complex numbers by hand is tedious and error-prone
 Your calculators can perform complex arithmetic
 They will operate in both Cartesian and polar form, and will convert between 

the two
 Learn to use them – correctly 
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Euler’s Identity

 Fundamental to phasor notation is Euler’s identity:

𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗 = cos 𝜔𝜔𝑡𝑡 + 𝑗𝑗 sin 𝜔𝜔𝑡𝑡

where 𝑗𝑗 is the imaginary unit, and 𝜔𝜔 is angular frequency
 It follows that

cos 𝜔𝜔𝑡𝑡 = 𝑅𝑅𝑚𝑚 𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗

sin 𝜔𝜔𝑡𝑡 = 𝐼𝐼𝑚𝑚 𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗

and

cos 𝜔𝜔𝑡𝑡 =
𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗 + 𝑚𝑚−𝑗𝑗𝜔𝜔𝑗𝑗

2

sin 𝜔𝜔𝑡𝑡 =
𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗 − 𝑚𝑚−𝑗𝑗𝜔𝜔𝑗𝑗

2𝑗𝑗
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Phasors

 Consider a sinusoidal voltage
𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

 Using Euler’s identity, we can represent this as

𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑚𝑚 𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗 𝜔𝜔𝑗𝑗+𝑗𝑗 = 𝑅𝑅𝑚𝑚 𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗

where
 𝑉𝑉𝑝𝑝 represents magnitude
 𝑚𝑚𝑗𝑗𝑗𝑗 represents phase
 𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗 represents a sinusoid of frequency 𝜔𝜔

 Grouping the first two terms together, we have

𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑚𝑚 𝐕𝐕𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗

where 𝐕𝐕 is the phasor representation of 𝑣𝑣 𝑡𝑡
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Phasors

𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑚𝑚 𝐕𝐕𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗

 The phasor representation of 𝑣𝑣 𝑡𝑡

𝐕𝐕 = 𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗

 A representation of magnitude and phase only
 Time-harmonic portion (𝑚𝑚𝑗𝑗𝜔𝜔𝑗𝑗) has been dropped

 Phasors greatly simplify sinusoidal steady-state analysis
 Messy trigonometric functions are eliminated
 Differentiation and integration transformed to algebraic operations

Time-domain 
representation:

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙

Phasor-domain 
representation:

𝐕𝐕 = 𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗 = 𝑉𝑉𝑝𝑝𝑟𝜙𝜙
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Voltage & Current in the Phasor Domain

 We will use phasors to simplify analysis of electrical circuits
 Need an understanding of electrical component behavior in the phasor domain
 Relationships between voltage phasors and current phasors for Rs, Ls, and Cs

 Resistor
 Voltage across a resistor given by

𝑣𝑣 𝑡𝑡 = 𝑖𝑖 𝑡𝑡 𝑅𝑅

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

 Converting to phasor form

𝐕𝐕 = 𝐼𝐼𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗 𝑅𝑅

𝐕𝐕 = 𝐈𝐈𝑅𝑅 𝐈𝐈 =
𝐕𝐕
R

 Ohm’s law in phasor form
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V-I Relationships in the Phasor Domain

 Capacitor
 Current through the capacitor given by

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑
𝑑𝑑𝑡𝑡 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

𝑖𝑖 𝑡𝑡 = −𝜔𝜔𝐶𝐶𝑉𝑉𝑝𝑝 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙

 Applying a trig identity:

− sin 𝐴𝐴 = cos 𝐴𝐴 + 90°
gives

𝑖𝑖 𝑡𝑡 = 𝜔𝜔𝐶𝐶𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 + 90°

 Converting to phasor form

𝐈𝐈 = 𝜔𝜔𝐶𝐶𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗 𝑗𝑗+90° = 𝜔𝜔𝐶𝐶𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗90°
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V-I Relationships - Capacitor

 Current phasor

𝐈𝐈 = 𝜔𝜔𝐶𝐶𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗 𝑗𝑗+90° = 𝜔𝜔𝐶𝐶𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗90°

 Voltage phasor is

𝐕𝐕 = 𝑉𝑉𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗

so
𝐈𝐈 = 𝜔𝜔𝐶𝐶𝐕𝐕𝑚𝑚𝑗𝑗90°

 Recognizing that 𝑚𝑚𝑗𝑗90° = 𝑗𝑗, we have

𝐈𝐈 = 𝑗𝑗𝜔𝜔𝐶𝐶𝐕𝐕 𝐕𝐕 =
1
𝑗𝑗𝜔𝜔𝐶𝐶

𝐈𝐈
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V-I Relationships - Inductor

 Inductor
 Voltage across an inductor given by

𝑣𝑣 𝑡𝑡 = 𝐿𝐿
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

𝑣𝑣 𝑡𝑡 = 𝐿𝐿
𝑑𝑑
𝑑𝑑𝑡𝑡

𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

𝑣𝑣 𝑡𝑡 = −𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙 = 𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 + 90°

 Converting to phasor form

𝐕𝐕 = 𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝𝑚𝑚𝑗𝑗 𝑗𝑗+90° = 𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝𝑚𝑚𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗90°

 Again, recognizing that 𝑚𝑚𝑗𝑗90° = 𝑗𝑗, gives

𝐕𝐕 = 𝑗𝑗𝜔𝜔𝐿𝐿𝐈𝐈 𝐈𝐈 =
1
𝑗𝑗𝜔𝜔𝐿𝐿

𝐕𝐕
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Impedance

 For resistors, Ohm’s law gives the ratio of the voltage 
phasor to the current phasor as

𝐕𝐕
𝐈𝐈 = 𝑅𝑅

 𝑅𝑅 is, of course, resistance
 A special case of impedance

 Impedance, 𝑍𝑍

𝑍𝑍 =
𝐕𝐕
𝐈𝐈

 The ratio of the voltage phasor to the current phasor for a 
component or network

 Units: ohms (Ω)
 In general, complex-valued
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Impedance

 Resistor impedance:

𝑍𝑍 =
𝐕𝐕
𝐈𝐈

= 𝑅𝑅

 Capacitor impedance:

𝑍𝑍 =
𝐕𝐕
𝐈𝐈

=
1
𝑗𝑗𝜔𝜔𝐶𝐶

 Inductor impedance:

𝑍𝑍 =
𝐕𝐕
𝐈𝐈 = 𝑗𝑗𝜔𝜔𝐿𝐿

 In general, Ohm’s law can be applied to any component or network in the 
phasor domain

𝐕𝐕 = 𝐈𝐈𝑍𝑍 𝐈𝐈 =
𝐕𝐕
𝑍𝑍
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Capacitor Impedance

𝑍𝑍 =
1
𝑗𝑗𝜔𝜔𝐶𝐶

=
1
𝜔𝜔𝐶𝐶

𝑚𝑚−𝑗𝑗90°

𝐕𝐕 = 𝐈𝐈𝑍𝑍 =
𝐈𝐈
𝜔𝜔𝐶𝐶

𝑚𝑚−𝑗𝑗90°

𝐈𝐈 = 𝜔𝜔𝐶𝐶𝐕𝐕𝑚𝑚𝑗𝑗90°

 In the time domain, this translates to
𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

𝑖𝑖 𝑡𝑡 = 𝑉𝑉𝑝𝑝𝜔𝜔𝐶𝐶 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 + 90°

 Current through a capacitor leads the voltage across a 
capacitor by 90°
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Capacitor Impedance – Phasor Diagram

 Phasor diagram for a 
capacitor
 Voltage and current 

phasors drawn as 
vectors in the 
complex plane

 Current always leads 
voltage by 90°
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Capacitor Impedance – Time Domain

 Current leads 
voltage by 90°

Δ𝜙𝜙 = 90°
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Capacitor Impedance – Frequency Domain

Capacitor approaches 
an open circuit at DC

Capacitor approaches a 
short circuit at very high 
frequencies
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Inductor Impedance34
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Inductor Impedance

𝑍𝑍 = 𝑗𝑗𝜔𝜔𝐿𝐿 = 𝜔𝜔𝐿𝐿 𝑚𝑚𝑗𝑗90°

𝐕𝐕 = 𝐈𝐈𝑍𝑍 = 𝐈𝐈𝜔𝜔𝐿𝐿 𝑚𝑚𝑗𝑗90°

𝐈𝐈 =
𝐕𝐕
𝜔𝜔𝐿𝐿

𝑚𝑚−𝑗𝑗90°

 In the time domain, this translates to
𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

𝑖𝑖 𝑡𝑡 =
𝑉𝑉𝑝𝑝
𝜔𝜔𝐿𝐿

cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 − 90°

 Current through an inductor lags the voltage across an 
inductor by 90°
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Inductor Impedance – Phasor Diagram

 Phasor diagram for 
an inductor
 Voltage and current 

phasors drawn as 
vectors in the 
complex plane

 Current always lags 
voltage by 90°
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Inductor Impedance – Time Domain

 Current lags 
voltage by 90°

Δ𝜙𝜙 = 90°
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Inductor Impedance – Frequency Domain

Inductor approaches a 
short circuit at DC

Inductor approaches an 
open circuit at very high 
frequencies
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Summary

Capacitor
 Impedance:

𝑍𝑍𝑐𝑐 =
1
𝑗𝑗𝜔𝜔𝐶𝐶

 V-I phase relationship:

Current leads voltage by 90°

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡

𝑖𝑖 𝑡𝑡 = 𝑉𝑉𝑝𝑝𝜔𝜔𝐶𝐶 cos 𝜔𝜔𝑡𝑡 + 90°

Inductor
 Impedance:

𝑍𝑍𝐿𝐿 = 𝑗𝑗𝜔𝜔𝐿𝐿

 V-I phase relationship:

Current lags voltage by 90°

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡

𝑖𝑖 𝑡𝑡 =
𝑉𝑉𝑝𝑝
𝜔𝜔𝐿𝐿

cos 𝜔𝜔𝑡𝑡 − 90°
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ELI the ICE Man

 Mnemonic for phase relation between current (I) 
and voltage (E) in inductors (L) and capacitors (C)

E L I the manI C E
Voltage 

leads current 
in an inductor

Current 
leads voltage 

in a capacitor
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Example Problems41
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Convert each of the following time-domain signals to phasor form.

𝑣𝑣 𝑡𝑡 = 6𝑉𝑉 ⋅ cos 2𝜋𝜋 ⋅ 8𝑘𝑘𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 + 12°

𝑖𝑖 𝑡𝑡 = 200𝑚𝑚𝐴𝐴 ⋅ sin 100 ⋅ 𝑡𝑡 − 38°
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Convert the following circuit to the phasor domain.
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The following current is applied to the 
capacitor. 
𝑖𝑖 𝑡𝑡 = 100𝑚𝑚𝐴𝐴 ⋅ cos 2𝜋𝜋 ⋅ 50𝑘𝑘𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡

Find the voltage across the capacitor, 𝑣𝑣 𝑡𝑡 .
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The following voltage is applied to 
the inductor. 
𝑣𝑣 𝑡𝑡 = 4𝑉𝑉 ⋅ cos 2𝜋𝜋 ⋅ 800𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡

Find the current through the 
inductor, 𝑖𝑖 𝑡𝑡 .
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A test voltage is applied to the input of an electrical 
network.

𝑣𝑣 𝑡𝑡 = 1𝑉𝑉 ⋅ sin 2𝜋𝜋 ⋅ 5𝑘𝑘𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡
The input current is measured.

𝑖𝑖 𝑡𝑡 = 268𝑚𝑚𝐴𝐴 ⋅ sin 2𝜋𝜋 ⋅ 5𝑘𝑘𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 − 46°
What is the circuit’s input impedance, 𝑍𝑍𝑚𝑚𝑚𝑚?
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Impedance of Arbitrary Networks49
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Impedance

 So far, we’ve looked at impedance of individual 
components
 Resistors

𝑍𝑍 = 𝑅𝑅
 Purely real

 Capacitors

𝑍𝑍 =
1
𝑗𝑗𝜔𝜔𝐶𝐶

 Purely imaginary, purely reactive

 Inductors
𝑍𝑍 = 𝑗𝑗𝜔𝜔𝐿𝐿

 Purely imaginary, purely reactive
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Impedance

 Also want to be able to characterize the impedance of 
electrical networks
 Multiple components
 Some resistive, some reactive

 In general, impedance is a complex value

𝑍𝑍 = 𝑅𝑅 + 𝑗𝑗𝑗𝑗
where

 𝑅𝑅 is resistance
 𝑗𝑗 is reactance

 So, in ENGR 201 we dealt with impedance all along
 Resistance is an impedance whose reactance (imaginary part) is 

zero
 A purely real impedance
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Reactance

 For capacitor and inductors, impedance is purely reactive
 Resistive part is zero

𝑍𝑍𝑐𝑐 = 𝑗𝑗𝑗𝑗𝑐𝑐 and     𝑍𝑍𝐿𝐿 = 𝑗𝑗𝑗𝑗𝐿𝐿

where 𝑗𝑗𝑐𝑐 is capacitive reactance

𝑗𝑗𝑐𝑐 = − 1
𝜔𝜔𝜔𝜔

and 𝑗𝑗𝐿𝐿 is inductive reactance

𝑗𝑗𝐿𝐿 = 𝜔𝜔𝐿𝐿

 Note that reactance is a real quantity
 It is the imaginary part of impedance

 Units of reactance: ohms (Ω)
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Admittance
 Admittance, 𝑌𝑌, is the inverse of impedance

𝑌𝑌 =
1
𝑍𝑍

= 𝐺𝐺 + 𝑗𝑗𝑗𝑗
where

𝐺𝐺 is conductance – the real part
𝑗𝑗 is susceptance – the imaginary part

𝑌𝑌 =
1

𝑅𝑅 + 𝑗𝑗𝑗𝑗
=

𝑅𝑅
𝑅𝑅2 + 𝑗𝑗2

+ 𝑗𝑗
−𝑗𝑗

𝑅𝑅2 + 𝑗𝑗2

 Conductance

𝐺𝐺 =
𝑅𝑅

𝑅𝑅2 + 𝑗𝑗2

 Note that 𝐺𝐺 ≠ 1/𝑅𝑅 unless 𝑗𝑗 = 0
 Susceptance

𝑗𝑗 =
−𝑗𝑗

𝑅𝑅2 + 𝑗𝑗2

 Units of 𝑌𝑌, 𝐺𝐺, and 𝑗𝑗: Siemens (S)
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Impedance of Arbitrary Networks

 In general, the impedance of arbitrary networks may be 
both resistive and reactive

𝑍𝑍 = 𝑅𝑅1 + 𝑗𝑗𝑗𝑗1

𝑍𝑍 = 𝑍𝑍 𝑟𝜃𝜃
where

𝑍𝑍 = 𝑅𝑅12 + 𝑗𝑗12

and 

𝜃𝜃 = tan−1
𝑗𝑗1
𝑅𝑅1
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Impedances in Series

 Impedances in series add

𝑍𝑍𝑒𝑒𝑒𝑒 = 𝑍𝑍1 + 𝑍𝑍2

𝑍𝑍𝑒𝑒𝑒𝑒 = 𝑅𝑅1 + 𝑅𝑅2 + 𝑗𝑗 𝑗𝑗1 + 𝑗𝑗2
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Impedances in Parallel

 Admittances in parallel add

𝑌𝑌𝑒𝑒𝑒𝑒 = 𝑌𝑌1 + 𝑌𝑌2

𝑍𝑍𝑒𝑒𝑒𝑒 =
1
𝑌𝑌𝑒𝑒𝑒𝑒

=
1
𝑍𝑍1

+
1
𝑍𝑍2

−1

𝑍𝑍𝑒𝑒𝑒𝑒 =
𝑍𝑍1𝑍𝑍2
𝑍𝑍1 + 𝑍𝑍2
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Sinusoidal Steady-State Analysis57
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Sinusoidal Steady-State Analysis – Ex. 1

 Determine the current, 𝑖𝑖 𝑡𝑡
𝑣𝑣𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉 cos 2𝜋𝜋 ⋅ 1 𝑀𝑀𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡

 First, convert the circuit to the 
phasor domain
 Express the source voltage as a phasor

𝐕𝐕𝐬𝐬 = 1 𝑉𝑉𝑟0°

 Evaluate impedances at 1 MHz

𝑅𝑅 = 10 Ω

𝑍𝑍𝑐𝑐 =
1
𝑗𝑗𝜔𝜔𝐶𝐶

= −
𝑗𝑗

2𝜋𝜋 ⋅ 1 𝑀𝑀𝐻𝐻𝐻𝐻 ⋅ 10 𝑛𝑛𝑛𝑛

𝑍𝑍𝑐𝑐 = −𝑗𝑗15.9 Ω



K. Webb ENGR 202

59

Sinusoidal Steady-State Analysis – Ex. 1

 The load impedance is
𝑍𝑍 = 𝑅𝑅 + 𝑗𝑗𝑗𝑗𝑐𝑐 = 10 − 𝑗𝑗15.9 Ω

𝑍𝑍 = 18.8𝑟 − 57.8° Ω

 Apply Ohm’s law to calculate the 
current phasor

𝐈𝐈 =
𝐕𝐕
𝑍𝑍

=
1 𝑉𝑉𝑟0°

18.8𝑟 − 57.8° Ω

𝐈𝐈 = 53.2𝑟57.8° 𝑚𝑚𝐴𝐴

 Finally, convert to the time domain

𝑖𝑖 𝑡𝑡 = 53.2 𝑚𝑚𝐴𝐴 cos(2𝜋𝜋 ⋅ 1𝑀𝑀𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 + 57.8°)
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𝑣𝑣𝑠𝑠 𝑡𝑡 = 170 𝑉𝑉 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡

60

Sinusoidal Steady-State Analysis – Ex. 2

 Determine: 
 The impedance, 𝑍𝑍𝑚𝑚𝑚𝑚, at 60 Hz
 Voltage across the load, 𝑣𝑣𝐿𝐿 𝑡𝑡
 Current delivered to the load, 𝑖𝑖𝐿𝐿 𝑡𝑡

 Consider the following circuit, modeling a source driving 
a load through a cable
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Sinusoidal Steady-State Analysis – Ex. 2

 First, convert to the phasor domain and evaluate impedances at 60 Hz 

 The line impedance is

𝑍𝑍𝑙𝑙𝑚𝑚𝑚𝑚𝑒𝑒 = 𝑅𝑅1 + 𝑗𝑗𝜔𝜔𝐿𝐿1 = 0.5 + 𝑗𝑗1.88 Ω

 The load impedance is

𝑍𝑍𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 = 𝑅𝑅2 + 𝑗𝑗𝜔𝜔𝐿𝐿2 ||
1
𝑗𝑗𝜔𝜔𝐶𝐶 = 3 + 𝑗𝑗5.65 Ω || − 𝑗𝑗265 Ω

𝑍𝑍𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 =
1

3 + 𝑗𝑗5.65 Ω +
1

−𝑗𝑗265 Ω

−1

= 3.13 + 𝑗𝑗5.74 Ω
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Sinusoidal Steady-State Analysis – Ex. 2

 The impedance seen by the source is
𝑍𝑍𝑚𝑚𝑚𝑚 = 𝑍𝑍𝑙𝑙𝑚𝑚𝑚𝑚𝑒𝑒 + 𝑍𝑍𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙
𝑍𝑍𝑚𝑚𝑚𝑚 = 0.5 + 𝑗𝑗1.88 Ω + 3.13 + 𝑗𝑗5.74 Ω

𝑍𝑍𝑚𝑚𝑚𝑚 = 3.63 + 𝑗𝑗7.62 Ω

 In polar form:
𝑍𝑍𝑚𝑚𝑚𝑚 = 8.44𝑟64.5° Ω

 The impedance driven by the source looks resistive and 
inductive
 Resistive: non-zero resistance, 𝑟𝑍𝑍𝑚𝑚𝑚𝑚 ≠ ±90°
 Inductive: positive reactance, positive angle
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Sinusoidal Steady-State Analysis – Ex. 2

𝐕𝐕𝐿𝐿 = 𝐕𝐕𝑆𝑆
𝑍𝑍𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙

𝑍𝑍𝑙𝑙𝑚𝑚𝑚𝑚𝑒𝑒 + 𝑍𝑍𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙

𝐕𝐕𝐿𝐿 = 170𝑟0° 𝑉𝑉
3.13 + 𝑗𝑗5.74 Ω
3.63 + 𝑗𝑗7.62 Ω

𝐕𝐕𝐿𝐿 = 170𝑟0° 𝑉𝑉
6.54𝑟61.4° Ω
8.44𝑟64.5° Ω = 132𝑟 − 3.1° 𝑉𝑉

 Converting to time-domain form

𝑣𝑣𝐿𝐿 𝑡𝑡 = 132 𝑉𝑉 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 − 3.1°

 Apply voltage division to 
determine the voltage across 
the load
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Sinusoidal Steady-State Analysis – Ex. 2

𝐈𝐈𝐿𝐿 =
𝐕𝐕𝐿𝐿
𝑍𝑍𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙

𝐈𝐈𝐿𝐿 =
132𝑟 − 3.1° 𝑉𝑉
6.54𝑟61.4° Ω

𝐈𝐈𝐿𝐿 = 20.1𝑟 − 64.5° 𝐴𝐴

 In time-domain form:
𝑖𝑖𝐿𝐿 𝑡𝑡 = 20.1 𝐴𝐴 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 − 64.5°

 Finally, calculate the 
current delivered to the 
load
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Example Problems65
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Determine the input impedance 
and an equivalent circuit model for 
the following network at 50 kHz.
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