
ENGR 202 – Electrical Fundamentals II

SECTION 1: SINUSOIDAL 
STEADY-STATE ANALYSIS
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Sinusoidal Signals

 Sinusoidal signals are of particular interest in the field of 
electrical engineering

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙 = 𝑉𝑉𝑝𝑝 cos(2𝜋𝜋 ⋅ 𝑓𝑓 ⋅ 𝑡𝑡 + 𝜙𝜙)

 Sinusoidal signals defined by three parameters:
 Amplitude: 𝑉𝑉𝑝𝑝
 Frequency: 𝜔𝜔 or 𝑓𝑓
 Phase: 𝜙𝜙
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Amplitude

 Amplitude of a 
sinusoid is its peak
voltage, 𝑉𝑉𝑝𝑝

 Peak-to-peak voltage, 
𝑉𝑉𝑝𝑝𝑝𝑝, is twice the 
amplitude
 𝑉𝑉𝑝𝑝𝑝𝑝 = 2𝑉𝑉𝑝𝑝
 𝑉𝑉𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 � sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙 = 𝑉𝑉𝑝𝑝 � sin 2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝜙𝜙

𝑉𝑉𝑝𝑝 = 170 𝑉𝑉

𝑉𝑉 𝑝𝑝
𝑝𝑝

=
34

0
𝑉𝑉
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Frequency

 Period (𝑇𝑇)
 Duration of one cycle

 Frequency (𝑓𝑓)
 Number of periods per second

𝑓𝑓 =
1
𝑇𝑇

 Ordinary frequency, 𝑓𝑓
 Units: hertz (Hz), sec-1, cycles/sec

 Angular frequency, 𝜔𝜔
 Units: rad/sec

𝜔𝜔 = 2𝜋𝜋𝜋𝜋,    𝑓𝑓 = 𝜔𝜔
2𝜋𝜋

𝑇𝑇 = 16 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Phase

 Phase
 Angular constant in signal expression, 𝜙𝜙

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙
 Requires a time reference

 Interested in relative, not 
absolute, phase

 Here,
 𝑣𝑣1 𝑡𝑡 leads 𝑣𝑣2 𝑡𝑡
 𝑣𝑣2 𝑡𝑡 lags 𝑣𝑣1 𝑡𝑡

 Units: radians
 Not technically correct, but OK 

to express in degrees, e.g.:

𝑣𝑣 𝑡𝑡 = 170 𝑉𝑉 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 + 34°
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Sinusoidal Steady-State Analysis

 Often interested in the response of linear systems to sinusoidal 
inputs
 Voltages and currents in electrical systems
 Forces, torques, velocities, etc. in mechanical systems

 For linear systems excited by a sinusoidal input
 Output is sinusoidal

 Same frequency
 In general, different amplitude
 In general, different phase

 We can simplify the analysis of linear systems by using phasor 
representation of sinusoids
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Phasors

 Phasor
 A complex number representing the amplitude and 

phase of a sinusoidal signal
 Frequency is not included
 Remains constant and is accounted for separately
 System characteristics (frequency-dependent) evaluated at 

the frequency of interest as first step in the analysis

 Phasors are complex numbers 
 Before applying phasors to the analysis of electrical 

circuits, we’ll first review the properties of complex 
numbers
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Complex Numbers

 A complex number can be represented as

𝑧𝑧 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗

 𝑥𝑥: real part (a real number)
 𝑦𝑦: imaginary part (a real number)
 𝑗𝑗 = −1 is the imaginary unit

 Complex numbers can be represented three ways:
 Cartesian form: 𝑧𝑧 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗
 Polar form: 𝑧𝑧 = 𝑟𝑟𝑟𝑟𝑟
 Exponential form: 𝑧𝑧 = 𝑟𝑟𝑒𝑒𝑗𝑗𝑗𝑗
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Complex Numbers as Vectors

 A complex number can be represented as a vector in the 
complex plane

 Complex plane
 Real axis – horizontal 
 Imaginary axis – vertical 

 A vector from the origin to 𝑧𝑧
 Real part, 𝑥𝑥
 Imaginary part, 𝑦𝑦

𝑧𝑧 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗

 Vector has a magnitude, 𝑟𝑟
 And an angle, 𝜃𝜃

𝑧𝑧 = 𝑟𝑟𝑟𝑟𝑟
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Cartesian Form ↔ Polar Form

 Cartesian form → Polar form
𝑧𝑧 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗 = 𝑟𝑟𝑟𝑟𝑟

𝑟𝑟 = 𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2

𝜃𝜃 = arg 𝑧𝑧 = ∠𝑧𝑧

𝜃𝜃 = tan−1
𝑦𝑦
𝑥𝑥

 Polar form → Cartesian form
𝑥𝑥 = 𝑟𝑟 cos 𝜃𝜃

𝑦𝑦 = 𝑟𝑟 sin 𝜃𝜃
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Complex Numbers – Addition/Subtraction

 Addition and subtraction of complex numbers
 Best done in Cartesian form
 Real parts add/subtract
 Imaginary parts add/subtract

 For example:
𝑧𝑧1 = 𝑥𝑥1 + 𝑗𝑗𝑦𝑦1
𝑧𝑧2 = 𝑥𝑥2 + 𝑗𝑗𝑦𝑦2
𝑧𝑧1 + 𝑧𝑧2 = 𝑥𝑥1 + 𝑥𝑥2 + 𝑗𝑗 𝑦𝑦1 + 𝑦𝑦2
𝑧𝑧1 − 𝑧𝑧2 = 𝑥𝑥1 − 𝑥𝑥2 + 𝑗𝑗 𝑦𝑦1 − 𝑦𝑦2
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Complex Numbers – Multiplication/Division

 Multiplication and division of complex numbers
 Best done in polar form
 Magnitudes multiply/divide
 Angles add/subtract

 For example:
𝑧𝑧1 = 𝑟𝑟1∠𝜃𝜃1
𝑧𝑧2 = 𝑟𝑟2∠𝜃𝜃2
𝑧𝑧1 ⋅ 𝑧𝑧2 = 𝑟𝑟1𝑟𝑟2∠ 𝜃𝜃1 + 𝜃𝜃2
𝑧𝑧1
𝑧𝑧2

=
𝑟𝑟1
𝑟𝑟2
∠ 𝜃𝜃1 − 𝜃𝜃2
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Complex Conjugate

 Conjugate of a complex 
number
 Number that results from 

negating the imaginary part

𝑧𝑧 = 𝑥𝑥 + 𝑗𝑗𝑗𝑗
𝑧𝑧∗ = 𝑥𝑥 − 𝑗𝑗𝑗𝑗

 Or, equivalently, from 
negating the angle

𝑧𝑧 = 𝑟𝑟𝑟𝑟𝑟

𝑧𝑧∗ = 𝑟𝑟𝑟 − 𝜃𝜃
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Complex Fractions

 Multiplying a number by its complex conjugate yields the 
squared magnitude of that number
 A real number

𝑧𝑧 ⋅ 𝑧𝑧∗ = 𝑥𝑥 + 𝑗𝑗𝑗𝑗 𝑥𝑥 − 𝑗𝑗𝑗𝑗 = 𝑥𝑥2 + 𝑦𝑦2

𝑧𝑧 ⋅ 𝑧𝑧∗ = 𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑟𝑟𝑟 − 𝜃𝜃 = 𝑟𝑟2∠𝜃𝜃 − 𝜃𝜃 = 𝑟𝑟2

 Rationalizing the denominator of a complex fraction:
 Multiply numerator and denominator by the complex conjugate 

of the denominator

𝑧𝑧 =
𝑥𝑥1 + 𝑗𝑗𝑦𝑦1
𝑥𝑥2 + 𝑗𝑗𝑦𝑦2

⋅
𝑥𝑥2 − 𝑗𝑗𝑦𝑦2
𝑥𝑥2 − 𝑗𝑗𝑦𝑦2

𝑧𝑧 =
𝑥𝑥1𝑥𝑥2 + 𝑦𝑦1𝑦𝑦2
𝑥𝑥22 + 𝑦𝑦22

+ 𝑗𝑗
𝑥𝑥2𝑦𝑦1 − 𝑥𝑥1𝑦𝑦2
𝑥𝑥22 + 𝑦𝑦22
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Complex Fractions

 Fractions or ratios are, of course, simply division
 Very common form, so worth emphasizing 

 Magnitude of a ratio of complex numbers

𝑧𝑧 =
𝑧𝑧1
𝑧𝑧2

→ 𝑧𝑧 =
𝑧𝑧1
𝑧𝑧2

 Angle of a ratio of complex numbers

𝑧𝑧 =
𝑧𝑧1
𝑧𝑧2

→ ∠𝑧𝑧 = ∠𝑧𝑧1 − ∠𝑧𝑧2

 Calculators and complex numbers
 Manipulation of complex numbers by hand is tedious and error-prone
 Your calculators can perform complex arithmetic
 They will operate in both Cartesian and polar form, and will convert between 

the two
 Learn to use them – correctly 
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Euler’s Identity

 Fundamental to phasor notation is Euler’s identity:

𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 = cos 𝜔𝜔𝜔𝜔 + 𝑗𝑗 sin 𝜔𝜔𝜔𝜔

where 𝑗𝑗 is the imaginary unit, and 𝜔𝜔 is angular frequency
 It follows that

cos 𝜔𝜔𝜔𝜔 = 𝑅𝑅𝑅𝑅 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

sin 𝜔𝜔𝜔𝜔 = 𝐼𝐼𝐼𝐼 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

and

cos 𝜔𝜔𝜔𝜔 =
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

2

sin 𝜔𝜔𝜔𝜔 =
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 − 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

2𝑗𝑗
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Phasors

 Consider a sinusoidal voltage
𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙

 Using Euler’s identity, we can represent this as

𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑅𝑅 𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗 𝜔𝜔𝜔𝜔+𝜙𝜙 = 𝑅𝑅𝑅𝑅 𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

where
 𝑉𝑉𝑝𝑝 represents magnitude
 𝑒𝑒𝑗𝑗𝑗𝑗 represents phase
 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 represents a sinusoid of frequency 𝜔𝜔

 Grouping the first two terms together, we have

𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑅𝑅 𝐕𝐕𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

where 𝐕𝐕 is the phasor representation of 𝑣𝑣 𝑡𝑡
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Phasors

𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑅𝑅 𝐕𝐕𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

 The phasor representation of 𝑣𝑣 𝑡𝑡

𝐕𝐕 = 𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗

 A representation of magnitude and phase only
 Time-harmonic portion (𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗) has been dropped

 Phasors greatly simplify sinusoidal steady-state analysis
 Messy trigonometric functions are eliminated
 Differentiation and integration transformed to algebraic operations

Time-domain 
representation:

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙

Phasor-domain 
representation:

𝐕𝐕 = 𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑉𝑉𝑝𝑝∠𝜙𝜙
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Voltage & Current in the Phasor Domain

 We will use phasors to simplify analysis of electrical circuits
 Need an understanding of electrical component behavior in the phasor domain
 Relationships between voltage phasors and current phasors for Rs, Ls, and Cs

 Resistor
 Voltage across a resistor given by

𝑣𝑣 𝑡𝑡 = 𝑖𝑖 𝑡𝑡 𝑅𝑅

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙

 Converting to phasor form

𝐕𝐕 = 𝐼𝐼𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗 𝑅𝑅

𝐕𝐕 = 𝐈𝐈𝑅𝑅 𝐈𝐈 =
𝐕𝐕
R

 Ohm’s law in phasor form
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V-I Relationships in the Phasor Domain

 Capacitor
 Current through the capacitor given by

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙

𝑖𝑖 𝑡𝑡 = −𝜔𝜔𝜔𝜔𝑉𝑉𝑝𝑝 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙

 Applying a trig identity:

− sin 𝐴𝐴 = cos 𝐴𝐴 + 90°
gives

𝑖𝑖 𝑡𝑡 = 𝜔𝜔𝜔𝜔𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙 + 90°

 Converting to phasor form

𝐈𝐈 = 𝜔𝜔𝜔𝜔𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗 𝜙𝜙+90° = 𝜔𝜔𝜔𝜔𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑗
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V-I Relationships - Capacitor

 Current phasor

𝐈𝐈 = 𝜔𝜔𝜔𝜔𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗 𝜙𝜙+90° = 𝜔𝜔𝜔𝜔𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑗

 Voltage phasor is

𝐕𝐕 = 𝑉𝑉𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗

so
𝐈𝐈 = 𝜔𝜔𝜔𝜔𝐕𝐕𝑒𝑒𝑗𝑗𝑗𝑗𝑗

 Recognizing that 𝑒𝑒𝑗𝑗𝑗𝑗𝑗 = 𝑗𝑗, we have

𝐈𝐈 = 𝑗𝑗𝑗𝑗𝑗𝑗𝐕𝐕 𝐕𝐕 =
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝐈𝐈
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V-I Relationships - Inductor

 Inductor
 Voltage across an inductor given by

𝑣𝑣 𝑡𝑡 = 𝐿𝐿
𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

𝑣𝑣 𝑡𝑡 = 𝐿𝐿
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙

𝑣𝑣 𝑡𝑡 = −𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙 = 𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙 + 90°

 Converting to phasor form

𝐕𝐕 = 𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝𝑒𝑒𝑗𝑗 𝜙𝜙+90° = 𝜔𝜔𝐿𝐿𝐼𝐼𝑝𝑝𝑒𝑒𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑗

 Again, recognizing that 𝑒𝑒𝑗𝑗𝑗𝑗𝑗 = 𝑗𝑗, gives

𝐕𝐕 = 𝑗𝑗𝑗𝑗𝐿𝐿𝐈𝐈 𝐈𝐈 =
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝐕𝐕
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Impedance

 For resistors, Ohm’s law gives the ratio of the voltage 
phasor to the current phasor as

𝐕𝐕
𝐈𝐈 = 𝑅𝑅

 𝑅𝑅 is, of course, resistance
 A special case of impedance

 Impedance, 𝑍𝑍

𝑍𝑍 =
𝐕𝐕
𝐈𝐈

 The ratio of the voltage phasor to the current phasor for a 
component or network

 Units: ohms (Ω)
 In general, complex-valued
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Impedance

 Resistor impedance:

𝑍𝑍 =
𝐕𝐕
𝐈𝐈

= 𝑅𝑅

 Capacitor impedance:

𝑍𝑍 =
𝐕𝐕
𝐈𝐈

=
1
𝑗𝑗𝑗𝑗𝑗𝑗

 Inductor impedance:

𝑍𝑍 =
𝐕𝐕
𝐈𝐈 = 𝑗𝑗𝑗𝑗𝑗𝑗

 In general, Ohm’s law can be applied to any component or network in the 
phasor domain

𝐕𝐕 = 𝐈𝐈𝑍𝑍 𝐈𝐈 =
𝐕𝐕
𝑍𝑍
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Capacitor Impedance

𝑍𝑍 =
1
𝑗𝑗𝑗𝑗𝑗𝑗

=
1
𝜔𝜔𝜔𝜔

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗

𝐕𝐕 = 𝐈𝐈𝑍𝑍 =
𝐈𝐈
𝜔𝜔𝜔𝜔

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗

𝐈𝐈 = 𝜔𝜔𝜔𝜔𝐕𝐕𝑒𝑒𝑗𝑗𝑗𝑗𝑗

 In the time domain, this translates to
𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙

𝑖𝑖 𝑡𝑡 = 𝑉𝑉𝑝𝑝𝜔𝜔𝜔𝜔 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙 + 90°

 Current through a capacitor leads the voltage across a 
capacitor by 90°
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Capacitor Impedance – Phasor Diagram

 Phasor diagram for a 
capacitor
 Voltage and current 

phasors drawn as 
vectors in the 
complex plane

 Current always leads 
voltage by 90°
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Capacitor Impedance – Time Domain

 Current leads 
voltage by 90°

Δ𝜙𝜙 = 90°
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Capacitor Impedance – Frequency Domain

Capacitor approaches 
an open circuit at DC

Capacitor approaches a 
short circuit at very high 
frequencies
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Inductor Impedance34
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Inductor Impedance

𝑍𝑍 = 𝑗𝑗𝑗𝑗𝐿𝐿 = 𝜔𝜔𝜔𝜔 𝑒𝑒𝑗𝑗𝑗𝑗𝑗

𝐕𝐕 = 𝐈𝐈𝑍𝑍 = 𝐈𝐈𝜔𝜔𝜔𝜔 𝑒𝑒𝑗𝑗𝑗𝑗𝑗

𝐈𝐈 =
𝐕𝐕
𝜔𝜔𝜔𝜔

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗

 In the time domain, this translates to
𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙

𝑖𝑖 𝑡𝑡 =
𝑉𝑉𝑝𝑝
𝜔𝜔𝜔𝜔

cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙 − 90°

 Current through an inductor lags the voltage across an 
inductor by 90°
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Inductor Impedance – Phasor Diagram

 Phasor diagram for 
an inductor
 Voltage and current 

phasors drawn as 
vectors in the 
complex plane

 Current always lags 
voltage by 90°
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Inductor Impedance – Time Domain

 Current lags 
voltage by 90°

Δ𝜙𝜙 = 90°
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Inductor Impedance – Frequency Domain

Inductor approaches a 
short circuit at DC

Inductor approaches an 
open circuit at very high 
frequencies
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Summary

Capacitor
 Impedance:

𝑍𝑍𝑐𝑐 =
1
𝑗𝑗𝑗𝑗𝑗𝑗

 V-I phase relationship:

Current leads voltage by 90°

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔

𝑖𝑖 𝑡𝑡 = 𝑉𝑉𝑝𝑝𝜔𝜔𝜔𝜔 cos 𝜔𝜔𝜔𝜔 + 90°

Inductor
 Impedance:

𝑍𝑍𝐿𝐿 = 𝑗𝑗𝑗𝑗𝑗𝑗

 V-I phase relationship:

Current lags voltage by 90°

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝜔𝜔

𝑖𝑖 𝑡𝑡 =
𝑉𝑉𝑝𝑝
𝜔𝜔𝐿𝐿

cos 𝜔𝜔𝜔𝜔 − 90°
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ELI the ICE Man

 Mnemonic for phase relation between current (I) 
and voltage (E) in inductors (L) and capacitors (C)

E L I the manI C E
Voltage 

leads current 
in an inductor

Current 
leads voltage 

in a capacitor
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Example Problems41
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Convert each of the following time-domain signals to phasor form.

𝑣𝑣 𝑡𝑡 = 6𝑉𝑉 ⋅ cos 2𝜋𝜋 ⋅ 8𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 𝑡𝑡 + 12°

𝑖𝑖 𝑡𝑡 = 200𝑚𝑚𝑚𝑚 ⋅ sin 100 ⋅ 𝑡𝑡 − 38°
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Convert the following circuit to the phasor domain.
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The following current is applied to the 
capacitor. 
𝑖𝑖 𝑡𝑡 = 100𝑚𝑚𝑚𝑚 ⋅ cos 2𝜋𝜋 ⋅ 50𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 𝑡𝑡

Find the voltage across the capacitor, 𝑣𝑣 𝑡𝑡 .
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The following voltage is applied to 
the inductor. 
𝑣𝑣 𝑡𝑡 = 4𝑉𝑉 ⋅ cos 2𝜋𝜋 ⋅ 800𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡

Find the current through the 
inductor, 𝑖𝑖 𝑡𝑡 .
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A test voltage is applied to the input of an electrical 
network.

𝑣𝑣 𝑡𝑡 = 1𝑉𝑉 ⋅ sin 2𝜋𝜋 ⋅ 5𝑘𝑘𝑘𝑘𝑧𝑧 ⋅ 𝑡𝑡
The input current is measured.

𝑖𝑖 𝑡𝑡 = 268𝑚𝑚𝑚𝑚 ⋅ sin 2𝜋𝜋 ⋅ 5𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 𝑡𝑡 − 46°
What is the circuit’s input impedance, 𝑍𝑍𝑖𝑖𝑖𝑖?
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Impedance of Arbitrary Networks49
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Impedance

 So far, we’ve looked at impedance of individual 
components
 Resistors

𝑍𝑍 = 𝑅𝑅
 Purely real

 Capacitors

𝑍𝑍 =
1
𝑗𝑗𝑗𝑗𝑗𝑗

 Purely imaginary, purely reactive

 Inductors
𝑍𝑍 = 𝑗𝑗𝑗𝑗𝑗𝑗

 Purely imaginary, purely reactive
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51

Impedance

 Also want to be able to characterize the impedance of 
electrical networks
 Multiple components
 Some resistive, some reactive

 In general, impedance is a complex value

𝑍𝑍 = 𝑅𝑅 + 𝑗𝑗𝑗𝑗
where

 𝑅𝑅 is resistance
 𝑋𝑋 is reactance

 So, in ENGR 201 we dealt with impedance all along
 Resistance is an impedance whose reactance (imaginary part) is 

zero
 A purely real impedance
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Reactance

 For capacitor and inductors, impedance is purely reactive
 Resistive part is zero

𝑍𝑍𝑐𝑐 = 𝑗𝑗𝑋𝑋𝑐𝑐 and     𝑍𝑍𝐿𝐿 = 𝑗𝑗𝑋𝑋𝐿𝐿

where 𝑋𝑋𝑐𝑐 is capacitive reactance

𝑋𝑋𝑐𝑐 = − 1
𝜔𝜔𝜔𝜔

and 𝑋𝑋𝐿𝐿 is inductive reactance

𝑋𝑋𝐿𝐿 = 𝜔𝜔𝜔𝜔

 Note that reactance is a real quantity
 It is the imaginary part of impedance

 Units of reactance: ohms (Ω)
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Admittance
 Admittance, 𝑌𝑌, is the inverse of impedance

𝑌𝑌 =
1
𝑍𝑍

= 𝐺𝐺 + 𝑗𝑗𝑗𝑗
where

𝐺𝐺 is conductance – the real part
𝐵𝐵 is susceptance – the imaginary part

𝑌𝑌 =
1

𝑅𝑅 + 𝑗𝑗𝑗𝑗
=

𝑅𝑅
𝑅𝑅2 + 𝑋𝑋2

+ 𝑗𝑗
−𝑋𝑋

𝑅𝑅2 + 𝑋𝑋2

 Conductance

𝐺𝐺 =
𝑅𝑅

𝑅𝑅2 + 𝑋𝑋2

 Note that 𝐺𝐺 ≠ 1/𝑅𝑅 unless 𝑋𝑋 = 0
 Susceptance

𝐵𝐵 =
−𝑋𝑋

𝑅𝑅2 + 𝑋𝑋2

 Units of 𝑌𝑌, 𝐺𝐺, and 𝐵𝐵: Siemens (S)
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Impedance of Arbitrary Networks

 In general, the impedance of arbitrary networks may be 
both resistive and reactive

𝑍𝑍 = 𝑅𝑅1 + 𝑗𝑗𝑋𝑋1

𝑍𝑍 = 𝑍𝑍 ∠𝜃𝜃
where

𝑍𝑍 = 𝑅𝑅12 + 𝑋𝑋12

and 

𝜃𝜃 = tan−1
𝑋𝑋1
𝑅𝑅1
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Impedances in Series

 Impedances in series add

𝑍𝑍𝑒𝑒𝑒𝑒 = 𝑍𝑍1 + 𝑍𝑍2

𝑍𝑍𝑒𝑒𝑒𝑒 = 𝑅𝑅1 + 𝑅𝑅2 + 𝑗𝑗 𝑋𝑋1 + 𝑋𝑋2
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Impedances in Parallel

 Admittances in parallel add

𝑌𝑌𝑒𝑒𝑒𝑒 = 𝑌𝑌1 + 𝑌𝑌2

𝑍𝑍𝑒𝑒𝑒𝑒 =
1
𝑌𝑌𝑒𝑒𝑒𝑒

=
1
𝑍𝑍1

+
1
𝑍𝑍2

−1

𝑍𝑍𝑒𝑒𝑒𝑒 =
𝑍𝑍1𝑍𝑍2
𝑍𝑍1 + 𝑍𝑍2
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Sinusoidal Steady-State Analysis57
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Sinusoidal Steady-State Analysis – Ex. 1

 Determine the current, 𝑖𝑖 𝑡𝑡
𝑣𝑣𝑠𝑠 𝑡𝑡 = 1 𝑉𝑉 cos 2𝜋𝜋 ⋅ 1 𝑀𝑀𝑀𝑀𝑀𝑀 ⋅ 𝑡𝑡

 First, convert the circuit to the 
phasor domain
 Express the source voltage as a phasor

𝐕𝐕𝐬𝐬 = 1 𝑉𝑉𝑉𝑉𝑉

 Evaluate impedances at 1 MHz

𝑅𝑅 = 10 Ω

𝑍𝑍𝑐𝑐 =
1
𝑗𝑗𝑗𝑗𝑗𝑗

= −
𝑗𝑗

2𝜋𝜋 ⋅ 1 𝑀𝑀𝑀𝑀𝑀𝑀 ⋅ 10 𝑛𝑛𝑛𝑛

𝑍𝑍𝑐𝑐 = −𝑗𝑗𝑗𝑗.9 Ω
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Sinusoidal Steady-State Analysis – Ex. 1

 The load impedance is
𝑍𝑍 = 𝑅𝑅 + 𝑗𝑗𝑋𝑋𝑐𝑐 = 10 − 𝑗𝑗𝑗𝑗.9 Ω

𝑍𝑍 = 18.8∠ − 57.8° Ω

 Apply Ohm’s law to calculate the 
current phasor

𝐈𝐈 =
𝐕𝐕
𝑍𝑍

=
1 𝑉𝑉𝑉𝑉𝑉

18.8∠ − 57.8° Ω

𝐈𝐈 = 53.2∠57.8° 𝑚𝑚𝑚𝑚

 Finally, convert to the time domain

𝑖𝑖 𝑡𝑡 = 53.2 𝑚𝑚𝑚𝑚 cos(2𝜋𝜋 ⋅ 1𝑀𝑀𝑀𝑀𝑀𝑀 ⋅ 𝑡𝑡 + 57.8°)
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𝑣𝑣𝑠𝑠 𝑡𝑡 = 170 𝑉𝑉 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡

60

Sinusoidal Steady-State Analysis – Ex. 2

 Determine: 
 The impedance, 𝑍𝑍𝑖𝑖𝑖𝑖, at 60 Hz
 Voltage across the load, 𝑣𝑣𝐿𝐿 𝑡𝑡
 Current delivered to the load, 𝑖𝑖𝐿𝐿 𝑡𝑡

 Consider the following circuit, modeling a source driving 
a load through a cable
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Sinusoidal Steady-State Analysis – Ex. 2

 First, convert to the phasor domain and evaluate impedances at 60 Hz 

 The line impedance is

𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑅𝑅1 + 𝑗𝑗𝑗𝑗𝐿𝐿1 = 0.5 + 𝑗𝑗𝑗.88 Ω

 The load impedance is

𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑅𝑅2 + 𝑗𝑗𝑗𝑗𝐿𝐿2 ||
1
𝑗𝑗𝑗𝑗𝑗𝑗 = 3 + 𝑗𝑗𝑗.65 Ω || − 𝑗𝑗𝑗𝑗𝑗 Ω

𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1

3 + 𝑗𝑗𝑗.65 Ω +
1

−𝑗𝑗𝑗𝑗𝑗 Ω

−1

= 3.13 + 𝑗𝑗𝑗.74 Ω
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Sinusoidal Steady-State Analysis – Ex. 2

 The impedance seen by the source is
𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑍𝑍𝑖𝑖𝑖𝑖 = 0.5 + 𝑗𝑗𝑗.88 Ω + 3.13 + 𝑗𝑗𝑗.74 Ω

𝑍𝑍𝑖𝑖𝑖𝑖 = 3.63 + 𝑗𝑗𝑗.62 Ω

 In polar form:
𝑍𝑍𝑖𝑖𝑖𝑖 = 8.44∠64.5° Ω

 The impedance driven by the source looks resistive and 
inductive
 Resistive: non-zero resistance, ∠𝑍𝑍𝑖𝑖𝑖𝑖 ≠ ±90°
 Inductive: positive reactance, positive angle
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Sinusoidal Steady-State Analysis – Ex. 2

𝐕𝐕𝐿𝐿 = 𝐕𝐕𝑆𝑆
𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐕𝐕𝐿𝐿 = 170∠0° 𝑉𝑉
3.13 + 𝑗𝑗𝑗.74 Ω
3.63 + 𝑗𝑗𝑗.62 Ω

𝐕𝐕𝐿𝐿 = 170∠0° 𝑉𝑉
6.54∠61.4° Ω
8.44∠64.5° Ω = 132∠ − 3.1° 𝑉𝑉

 Converting to time-domain form

𝑣𝑣𝐿𝐿 𝑡𝑡 = 132 𝑉𝑉 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 − 3.1°

 Apply voltage division to 
determine the voltage across 
the load
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Sinusoidal Steady-State Analysis – Ex. 2

𝐈𝐈𝐿𝐿 =
𝐕𝐕𝐿𝐿
𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐈𝐈𝐿𝐿 =
132∠ − 3.1° 𝑉𝑉
6.54∠61.4° Ω

𝐈𝐈𝐿𝐿 = 20.1∠ − 64.5° 𝐴𝐴

 In time-domain form:
𝑖𝑖𝐿𝐿 𝑡𝑡 = 20.1 𝐴𝐴 sin 2𝜋𝜋 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 − 64.5°

 Finally, calculate the 
current delivered to the 
load
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Example Problems65
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Determine the input impedance 
and an equivalent circuit model for 
the following network at 50 kHz.
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