SECTION 1: SINUSOIDAL STEADY-STATE ANALYSIS

ENGR 202 - Electrical Fundamentals II

2 Sinusoids

Sinusoidal Signals

\square Sinusoidal signals are of particular interest in the field of electrical engineering

\square Sinusoidal signals defined by three parameters:

- Amplitude: V_{p}
- Frequency: ω or f
- Phase: ϕ

Amplitude

\square Amplitude of a sinusoid is its peak voltage, V_{p}
\square Peak-to-peak voltage, $V_{p p}$, is twice the amplitude

- $V_{p p}=2 V_{p}$
- $V_{p p}=V_{\max }-V_{\text {min }}$

$$
v(t)=V_{p} \cdot \sin (\omega t+\phi)=V_{p} \cdot \sin (2 \pi f t+\phi)
$$

Frequency

\square Period (T)

- Duration of one cycle
\square Frequency (f)
- Number of periods per second

$$
f=\frac{1}{T}
$$

\square Ordinary frequency, f

- Units: hertz (Hz), sec ${ }^{-1}$, cycles/sec
\square Angular frequency, ω
- Units: rad/sec

$$
\omega=2 \pi f, \quad f=\frac{\omega}{2 \pi}
$$

Phase

\square Phase

- Angular constant in signal expression, ϕ

$$
v(t)=V_{p} \sin (\omega t+\phi)
$$

\square Requires a time reference

- Interested in relative, not absolute, phase
\square Here,
- $v_{1}(t)$ leads $v_{2}(t)$
- $v_{2}(t)$ lags $v_{1}(t)$
\square Units: radians
- Not technically correct, but OK
 to express in degrees, e.g.:

$$
v(t)=170 V \sin \left(2 \pi \cdot 60 H z \cdot t+34^{\circ}\right)
$$

Sinusoidal Steady-State Analysis

\square Often interested in the response of linear systems to sinusoidal inputs

- Voltages and currents in electrical systems
- Forces, torques, velocities, etc. in mechanical systems
\square For linear systems excited by a sinusoidal input
- Output is sinusoidal
- Same frequency
- In general, different amplitude
- In general, different phase

\square We can simplify the analysis of linear systems by using phasor representation of sinusoids

Phasors

\square Phasor

- A complex number representing the amplitude and phase of a sinusoidal signal
\square Frequency is not included
- Remains constant and is accounted for separately
- System characteristics (frequency-dependent) evaluated at the frequency of interest as first step in the analysis
\square Phasors are complex numbers
- Before applying phasors to the analysis of electrical circuits, we'll first review the properties of complex numbers

- Complex Numbers

Complex Numbers

\square A complex number can be represented as

$$
z=x+j y
$$

- x : real part (a real number)

ㅁy: imaginary part (a real number)
$\square j=\sqrt{-1}$ is the imaginary unit
\square Complex numbers can be represented three ways:
\square Cartesian form: $z=x+j y$
\square Polar form: $z=r \angle \phi$
\square Exponential form: $z=r e^{j \phi}$

Complex Numbers as Vectors

\square A complex number can be represented as a vector in the complex plane
\square Complex plane

- Real axis - horizontal
- Imaginary axis - vertical
\square A vector from the origin to z
- Real part, x
- Imaginary part, y

$$
z=x+j y
$$

\square Vector has a magnitude, r

- And an angle, θ

$$
z=r \angle \theta
$$

Cartesian Form \leftrightarrow Polar Form

\square Cartesian form \rightarrow Polar form

$$
\begin{aligned}
& z=x+j y=r \angle \theta \\
& r=|z|=\sqrt{x^{2}+y^{2}} \\
& \theta=\arg (z)=\angle z \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

\square Polar form \rightarrow Cartesian form

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Complex Numbers - Addition/Subtraction

Addition and subtraction of complex numbers
\square Best done in Cartesian form

- Real parts add/subtract
- Imaginary parts add/subtract
\square For example:

$$
\begin{aligned}
& z_{1}=x_{1}+j y_{1} \\
& z_{2}=x_{2}+j y_{2} \\
& z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right) \\
& z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
\end{aligned}
$$

Complex Numbers - Multiplication/Division

\square Multiplication and division of complex numbers

- Best done in polar form
\square Magnitudes multiply/divide
- Angles add/subtract
\square For example:

$$
\begin{aligned}
& z_{1}=r_{1} \angle \theta_{1} \\
& z_{2}=r_{2} \angle \theta_{2} \\
& z_{1} \cdot z_{2}=r_{1} r_{2} \angle\left(\theta_{1}+\theta_{2}\right) \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \angle\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

Complex Conjugate

\square Conjugate of a complex number

- Number that results from negating the imaginary part

$$
\begin{aligned}
& z=x+j y \\
& z^{*}=x-j y
\end{aligned}
$$

- Or, equivalently, from negating the angle

$$
\begin{aligned}
& z=r \angle \theta \\
& z^{*}=r \angle-\theta
\end{aligned}
$$

Complex Fractions

\square Multiplying a number by its complex conjugate yields the squared magnitude of that number

- A real number

$$
\begin{aligned}
& z \cdot z^{*}=(x+j y)(x-j y)=x^{2}+y^{2} \\
& z \cdot z^{*}=r \angle \theta \cdot r \angle-\theta=r^{2} \angle \theta-\theta=r^{2}
\end{aligned}
$$

\square Rationalizing the denominator of a complex fraction:

- Multiply numerator and denominator by the complex conjugate of the denominator

$$
\begin{aligned}
& z=\frac{x_{1}+j y_{1}}{x_{2}+j y_{2}} \cdot \frac{x_{2}-j y_{2}}{x_{2}-j y_{2}} \\
& z=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+j \frac{\left(x_{2} y_{1}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}
\end{aligned}
$$

Complex Fractions

\square Fractions or ratios are, of course, simply division

- Very common form, so worth emphasizing
\square Magnitude of a ratio of complex numbers

$$
z=\frac{z_{1}}{z_{2}} \quad \rightarrow \quad|z|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
$$

\square Angle of a ratio of complex numbers

$$
z=\frac{z_{1}}{Z_{2}} \quad \rightarrow \quad \angle Z=\angle Z_{1}-\angle Z_{2}
$$

\square Calculators and complex numbers

- Manipulation of complex numbers by hand is tedious and error-prone
- Your calculators can perform complex arithmetic
- They will operate in both Cartesian and polar form, and will convert between the two
- Learn to use them - correctly

Euler's Identity

\square Fundamental to phasor notation is Euler's identity:

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

where j is the imaginary unit, and ω is angular frequency
\square It follows that

$$
\begin{aligned}
& \cos (\omega t)=\operatorname{Re}\left\{e^{j \omega t}\right\} \\
& \sin (\omega t)=\operatorname{Im}\left\{e^{j \omega t}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \cos (\omega t)=\frac{e^{j \omega t}+e^{-j \omega t}}{2} \\
& \sin (\omega t)=\frac{e^{j \omega t}-e^{-j \omega t}}{2 j}
\end{aligned}
$$

Phasors

\square Consider a sinusoidal voltage

$$
v(t)=V_{p} \cos (\omega t+\phi)
$$

\square Using Euler's identity, we can represent this as

$$
v(t)=\operatorname{Re}\left\{V_{p} e^{j(\omega t+\phi)}\right\}=\operatorname{Re}\left\{V_{p} e^{j \phi} e^{j \omega t}\right\}
$$

where

- V_{p} represents magnitude
$-e^{j \phi}$ represents phase
- $e^{j \omega t}$ represents a sinusoid of frequency ω
\square Grouping the first two terms together, we have

$$
v(t)=\operatorname{Re}\left\{\mathbf{V} e^{j \omega t}\right\}
$$

where \mathbf{V} is the phasor representation of $v(t)$

Phasors

$$
v(t)=\operatorname{Re}\left\{\mathbf{V} e^{j \omega t}\right\}
$$

\square The phasor representation of $v(t)$

$$
\mathbf{V}=V_{p} e^{j \phi}
$$

- A representation of magnitude and phase only
- Time-harmonic portion ($e^{j \omega t}$) has been dropped

\square Phasors greatly simplify sinusoidal steady-state analysis
- Messy trigonometric functions are eliminated
- Differentiation and integration transformed to algebraic operations

Voltage \& Current in the Phasor Domain

\square We will use phasors to simplify analysis of electrical circuits

- Need an understanding of electrical component behavior in the phasor domain
- Relationships between voltage phasors and current phasors for Rs, Ls, and Cs
\square Resistor
- Voltage across a resistor given by

$$
\begin{aligned}
& v(t)=i(t) R \\
& i(t)=I_{p} \cos (\omega t+\phi)
\end{aligned}
$$

- Converting to phasor form

$$
\mathbf{V}=\left(I_{p} e^{j \phi}\right) R
$$

- Ohm's law in phasor form

V-I Relationships in the Phasor Domain

\square Capacitor

- Current through the capacitor given by

$$
\begin{aligned}
i(t) & =C \frac{d v}{d t} \\
i(t) & =C \frac{d}{d t}\left[V_{p} \cos (\omega t+\phi)\right] \\
i(t) & =-\omega C V_{p} \sin (\omega t+\phi)
\end{aligned}
$$

- Applying a trig identity:

$$
-\sin (A)=\cos \left(A+90^{\circ}\right)
$$

gives

$$
i(t)=\omega C V_{p} \cos \left(\omega t+\phi+90^{\circ}\right)
$$

- Converting to phasor form

$$
\mathbf{I}=\omega C V_{p} e^{j\left(\phi+90^{\circ}\right)}=\omega C V_{p} e^{j \phi} e^{j 90^{\circ}}
$$

V-I Relationships - Capacitor

\square Current phasor

$$
\mathbf{I}=\omega C V_{p} e^{j\left(\phi+90^{\circ}\right)}=\omega C V_{p} e^{j \phi} e^{j 90^{\circ}}
$$

\square Voltage phasor is

$$
\mathbf{V}=V_{p} e^{j \phi}
$$

SO

$$
\mathbf{I}=\omega C \mathbf{V} e^{j 90^{\circ}}
$$

\square Recognizing that $e^{j 90^{\circ}}=j$, we have

V-I Relationships - Inductor

\square Inductor

- Voltage across an inductor given by

$$
\begin{aligned}
& v(t)=L \frac{d i}{d t} \\
& v(t)=L \frac{d}{d t}\left[I_{p} \cos (\omega t+\phi)\right] \\
& v(t)=-\omega L I_{p} \sin (\omega t+\phi)=\omega L I_{p} \cos \left(\omega t+\phi+90^{\circ}\right)
\end{aligned}
$$

- Converting to phasor form

$$
\mathbf{V}=\omega L I_{p} e^{j\left(\phi+90^{\circ}\right)}=\omega L I_{p} e^{j \phi} e^{j 90^{\circ}}
$$

- Again, recognizing that $e^{j 90^{\circ}}=j$, gives

$$
\mathbf{V}=j \omega L \mathbf{I}
$$

$$
\mathbf{I}=\frac{1}{j \omega L} \mathbf{V}
$$

${ }^{26}$ Impedance

Impedance

\square For resistors, Ohm's law gives the ratio of the voltage phasor to the current phasor as

$$
\frac{\mathbf{V}}{\mathbf{I}}=R
$$

- R is, of course, resistance
- A special case of impedance
\square Impedance, Z

$$
Z=\frac{\mathbf{V}}{\mathbf{I}}
$$

- The ratio of the voltage phasor to the current phasor for a component or network
- Units: ohms (Ω)
- In general, complex-valued

Impedance

\square Resistor impedance:

$$
Z=\frac{\mathbf{V}}{\mathbf{I}}=R
$$

\square Capacitor impedance:

$$
Z=\frac{\mathbf{V}}{\mathbf{I}}=\frac{1}{j \omega C}
$$

\square Inductor impedance:

$$
Z=\frac{\mathbf{V}}{\mathbf{I}}=j \omega L
$$

\square In general, Ohm's law can be applied to any component or network in the phasor domain

$$
\mathbf{V}=\mathbf{I} Z \quad \mathbf{I}=\frac{\mathbf{V}}{Z}
$$

29
 Capacitor Impedance

Capacitor Impedance

$$
\begin{aligned}
& Z=\frac{1}{j \omega C}=\frac{1}{\omega C} e^{-j 90^{\circ}} \\
& \mathbf{V}=\mathbf{I} Z=\frac{\mathbf{I}}{\omega C} e^{-j 90^{\circ}} \\
& \mathbf{I}=\omega C \mathbf{V} e^{j 90^{\circ}}
\end{aligned}
$$

\square In the time domain, this translates to

$$
\begin{aligned}
& v(t)=V_{p} \cos (\omega t+\phi) \\
& i(t)=V_{p} \omega C \cos \left(\omega t+\phi+90^{\circ}\right)
\end{aligned}
$$

\square Current through a capacitor leads the voltage across a capacitor by 90°

Capacitor Impedance - Phasor Diagram

\square Phasor diagram for a capacitor

- Voltage and current phasors drawn as
vectors in the complex plane
- Current always leads voltage by 90°

Capacitor Impedance - Time Domain

\square Current leads voltage by 90°

Capacitor Current and Voltage, $\omega=1 \mathrm{rad} / \mathrm{sec}, \mathrm{C}=1 \mathrm{~F}$

Capacitor Impedance - Frequency Domain

34
 Inductor Impedance

Inductor Impedance

$$
\begin{aligned}
& Z=j \omega L=\omega L e^{j 90^{\circ}} \\
& \mathbf{V}=\mathbf{I} Z=\mathbf{I} \omega L e^{j 90^{\circ}} \\
& \mathbf{I}=\frac{\mathbf{V}}{\omega L} e^{-j 90^{\circ}}
\end{aligned}
$$

\square In the time domain, this translates to

$$
\begin{aligned}
& v(t)=V_{p} \cos (\omega t+\phi) \\
& i(t)=\frac{V_{p}}{\omega L} \cos \left(\omega t+\phi-90^{\circ}\right)
\end{aligned}
$$

\square Current through an inductor lags the voltage across an inductor by 90°

Inductor Impedance - Phasor Diagram

\square Phasor diagram for an inductor
\square Voltage and current phasors drawn as

vectors in the complex plane

- Current always lags voltage by 90°

Inductor Impedance - Time Domain

\square Current lags voltage by 90°

Inductor Impedance - Frequency Domain

Summary

Capacitor

- Impedance:

$$
Z_{c}=\frac{1}{j \omega C}
$$

\square V-I phase relationship:
Current leads voltage by 90°
$v(t)=V_{p} \cos (\omega t)$
$i(t)=V_{p} \omega C \cos \left(\omega t+90^{\circ}\right)$

Inductor

- Impedance:

$$
Z_{L}=j \omega L
$$

- V-I phase relationship:

Current lags voltage by 90°

$$
\begin{aligned}
& v(t)=V_{p} \cos (\omega t) \\
& i(t)=\frac{V_{p}}{\omega L} \cos \left(\omega t-90^{\circ}\right)
\end{aligned}
$$

ELI the ICE Man

\square Mnemonic for phase relation between current (I) and voltage (E) in inductors (L) and capacitors (C)

41
 Example Problems

Convert each of the following time-domain signals to phasor form.

$$
\begin{aligned}
& v(t)=6 \mathrm{~V} \cdot \cos \left(2 \pi \cdot 8 \mathrm{kHz} \cdot t+12^{\circ}\right) \\
& i(t)=200 \mathrm{~mA} \cdot \sin \left(100 \cdot t-38^{\circ}\right)
\end{aligned}
$$

Convert the following circuit to the phasor domain.

The following current is applied to the capacitor.

$$
i(t)=100 \mathrm{~mA} \cdot \cos (2 \pi \cdot 50 \mathrm{kHz} \cdot t)
$$

Find the voltage across the capacitor, $v(t)$.

The following voltage is applied to the inductor.

$$
v(t)=4 V \cdot \cos (2 \pi \cdot 800 \mathrm{~Hz} \cdot t)
$$

Find the current through the inductor, $i(t)$.

A test voltage is applied to the input of an electrical network.

$$
v(t)=1 \mathrm{~V} \cdot \sin (2 \pi \cdot 5 \mathrm{kHz} \cdot t)
$$

The input current is measured.

$$
i(t)=268 m A \cdot \sin \left(2 \pi \cdot 5 k H z \cdot t-46^{\circ}\right)
$$

What is the circuit's input impedance, $Z_{\text {in }}$?

49

Impedance of Arbitrary Networks

Impedance

\square So far, we've looked at impedance of individual components

- Resistors

$$
Z=R
$$

- Purely real
- Capacitors

$$
Z=\frac{1}{j \omega C}
$$

- Purely imaginary, purely reactive
- Inductors

$$
Z=j \omega L
$$

- Purely imaginary, purely reactive

Impedance

\square Also want to be able to characterize the impedance of electrical networks

- Multiple components
- Some resistive, some reactive
\square In general, impedance is a complex value

$$
Z=R+j X
$$

where
$\square R$ is resistance

- X is reactance
\square So, in ENGR 201 we dealt with impedance all along
\square Resistance is an impedance whose reactance (imaginary part) is zero
- A purely real impedance

Reactance

\square For capacitor and inductors, impedance is purely reactive

- Resistive part is zero

$$
Z_{c}=j X_{c} \quad \text { and } \quad Z_{L}=j X_{L}
$$

where X_{c} is capacitive reactance

$$
X_{c}=-\frac{1}{\omega C}
$$

and X_{L} is inductive reactance

$$
X_{L}=\omega L
$$

- Note that reactance is a real quantity
- It is the imaginary part of impedance
- Units of reactance: ohms (Ω)

Admittance

\square Admittance, Y, is the inverse of impedance

$$
Y=\frac{1}{Z}=G+j B
$$

where
G is conductance - the real part
B is susceptance - the imaginary part

$$
Y=\frac{1}{R+j X}=\left(\frac{R}{R^{2}+X^{2}}\right)+j\left(\frac{-X}{R^{2}+X^{2}}\right)
$$

- Conductance

$$
G=\frac{R}{R^{2}+X^{2}}
$$

- Note that $G \neq 1 / R$ unless $X=0$
\square Susceptance

$$
B=\frac{-X}{R^{2}+X^{2}}
$$

\square Units of Y, G, and B : Siemens (S)

Impedance of Arbitrary Networks

\square In general, the impedance of arbitrary networks may be both resistive and reactive

Impedances in Series

\square Impedances in series add

$$
\begin{aligned}
& Z_{e q}=Z_{1}+Z_{2} \\
& Z_{e q}=\left(R_{1}+R_{2}\right)+j\left(X_{1}+X_{2}\right)
\end{aligned}
$$

Impedances in Parallel

\square Admittances in parallel add

$$
\begin{aligned}
& Y_{e q}=Y_{1}+Y_{2} \\
& Z_{e q}=\frac{1}{Y_{e q}}=\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right)^{-1} \\
& Z_{e q}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
\end{aligned}
$$

57

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis - Ex. 1

\square Determine the current, $i(t)$

$$
v_{S}(t)=1 V \cos (2 \pi \cdot 1 M H z \cdot t)
$$

\square First, convert the circuit to the phasor domain

- Express the source voltage as a phasor

$$
\mathbf{V}_{\mathbf{s}}=1 V \angle 0^{\circ}
$$

- Evaluate impedances at 1 MHz

$$
\begin{aligned}
& R=10 \Omega \\
& Z_{c}=\frac{1}{j \omega C}=-\frac{j}{2 \pi \cdot 1 \mathrm{MHz} \cdot 10 \mathrm{nF}} \\
& Z_{c}=-j 15.9 \Omega
\end{aligned}
$$

Sinusoidal Steady-State Analysis - Ex. 1

\square The load impedance is

$$
\begin{aligned}
& Z=R+j X_{c}=(10-j 15.9) \Omega \\
& Z=18.8 \angle-57.8^{\circ} \Omega
\end{aligned}
$$

\square Apply Ohm's law to calculate the current phasor

$$
\begin{aligned}
& \mathbf{I}=\frac{\mathbf{V}}{Z}=\frac{1 V \angle 0^{\circ}}{18.8 \angle-57.8^{\circ} \Omega} \\
& \mathbf{I}=53.2 \angle 57.8^{\circ} \mathrm{mA}
\end{aligned}
$$

\square Finally, convert to the time domain

$$
i(t)=53.2 m A \cos \left(2 \pi \cdot 1 M H z \cdot t+57.8^{\circ}\right)
$$

Sinusoidal Steady-State Analysis - Ex. 2

\square Consider the following circuit, modeling a source driving a load through a cable

\square Determine:

- The impedance, $Z_{i n}$, at 60 Hz
\square Voltage across the load, $v_{L}(t)$
\square Current delivered to the load, $i_{L}(t)$

Sinusoidal Steady-State Analysis - Ex. 2

\square First, convert to the phasor domain and evaluate impedances at 60 Hz
\square The line impedance is

$$
Z_{\text {line }}=R_{1}+j \omega L_{1}=0.5+j 1.88 \Omega
$$

\square The load impedance is

$$
\begin{aligned}
& Z_{\text {load }}=\left(R_{2}+j \omega L_{2}\right)\left\|\frac{1}{j \omega C}=(3+j 5.65 \Omega)\right\|-j 265 \Omega \\
& Z_{\text {load }}=\left(\frac{1}{3+j 5.65 \Omega}+\frac{1}{-j 265 \Omega}\right)^{-1}=3.13+j 5.74 \Omega
\end{aligned}
$$

Sinusoidal Steady-State Analysis - Ex. 2

\square The impedance seen by the source is

$$
\begin{aligned}
Z_{\text {in }} & =Z_{\text {line }}+Z_{\text {load }} \\
Z_{\text {in }} & =(0.5+j 1.88 \Omega)+(3.13+j 5.74 \Omega) \\
Z_{\text {in }} & =3.63+j 7.62 \Omega
\end{aligned}
$$

\square In polar form:

$$
Z_{\text {in }}=8.44 \angle 64.5^{\circ} \Omega
$$

\square The impedance driven by the source looks resistive and inductive

- Resistive: non-zero resistance, $\angle Z_{\text {in }} \neq \pm 90^{\circ}$
\square Inductive: positive reactance, positive angle

Sinusoidal Steady-State Analysis - Ex. 2

\square Apply voltage division to determine the voltage across the load

$$
\begin{aligned}
& \mathbf{V}_{L}=\mathbf{V}_{S} \frac{Z_{\text {load }}}{Z_{\text {line }}+Z_{\text {load }}} \\
& \mathbf{V}_{L}=170 \angle 0^{\circ} V \frac{3.13+j 5.74 \Omega}{3.63+j 7.62 \Omega} \\
& \mathbf{V}_{L}=170 \angle 0^{\circ} V \frac{6.54 \angle 61.4^{\circ} \Omega}{8.44 \angle 64.5^{\circ} \Omega}=132 \angle-3.1^{\circ} \mathrm{V}
\end{aligned}
$$

\square Converting to time-domain form

$$
v_{L}(t)=132 V \sin \left(2 \pi \cdot 60 H z \cdot t-3.1^{\circ}\right)
$$

Sinusoidal Steady-State Analysis - Ex. 2

\square Finally, calculate the current delivered to the load

$$
\begin{aligned}
& \mathbf{I}_{L}=\frac{\mathbf{V}_{L}}{Z_{\text {load }}} \\
& \mathbf{I}_{L}=\frac{132 \angle-3.1^{\circ} \mathrm{V}}{6.54 \angle 61.4^{\circ} \Omega} \\
& \mathbf{I}_{L}=20.1 \angle-64.5^{\circ} \mathrm{A}
\end{aligned}
$$

\square In time-domain form:

$$
i_{L}(t)=20.1 A \sin \left(2 \pi \cdot 60 \mathrm{~Hz} \cdot t-64.5^{\circ}\right)
$$

65
 Example Problems

Determine the input impedance and an equivalent circuit model for the following network at 50 kHz .

