SECTION 2: FIRST-ORDER FILTERS

ENGR 202 – Electrical Fundamentals II

Filters

- We are all familiar with water and air filters
 - Basis for operation is size selectivity
 - Small particles (e.g. air or water molecules) are allowed to pass
 - Larger particles (e.g. dust, sediment) are not
 - Unwanted components are *filtered out* of the flow.
- Electrical filters are similar
 - Basis for operation is *frequency selectivity*
 - Signal components in certain frequency ranges are *filtered out*
 - Signal components at other frequencies are allowed to pass

Noise

- All real-world electrical signals are *noisy*
 - You've seen this in the lab
 - Zoom in closely on a low-amplitude sinusoid with the scope (even one supplied directly from the function generator) – it won't look like a perfectly clean sinusoid

Noise

- We will use the term *noise* to mean any electrical signal that interferes with or corrupts a signal we are trying to measure.
- Noise has many sources:
 - Measurement instruments themselves
 - **•** 60Hz power line interference
 - Electrical components resistors, transistors, etc.
 - Wireless LAN, fluorescent lights, computers, etc.
- We'd like to be able to remove, or filter out, this noise
 - Improve the accuracy of measurements
 - Often possible, if we know the *frequency characteristics* of the signal and the noise

Filtering Noise

We'll learn how to design filters to remove noise

■ First, we must introduce two important concepts:

Frequency-domain representation of electrical signals

- What is meant by "frequency characteristics" of an electrical signal?
- Frequency response of linear systems
 - How does a linear system (e.g. a filter) behave as a function of frequency?

7 Frequency Spectrum

Frequency Domain

We are accustomed to looking at electrical signals in the *time domain*

Amplitude plotted as *function of time*

- Can also be represented in the *frequency domain* Amplitude plotted as a *function of frequency*
 - **Frequency spectrum**
 - Describes the *frequency content* of a signal
 - Can think of signals as a sum of different frequency sinusoids
 - What frequencies (sinusoids) are present

Frequency Spectrum

Frequency spectrum

- An amplitude vs. frequency plot
- X-axis is frequency not time
- Y-axis is amplitude
- Amplitude units may be in *decibels* (dB)
- Shows the relative amount of energy at each frequency
- Time-domain plot and frequency spectrum are alternate representations of the same signal

Frequency Spectra – Examples

□ Single sinusoid: $v(t) = 1V \cos(2\pi \cdot 800Hz \cdot t)$

□ Sum of three sinusoids:

 $v(t) = 1V[\cos(2\pi \cdot 800Hz \cdot t) + \cos(2\pi \cdot 1200Hz \cdot t) + \cos(2\pi \cdot 2000Hz \cdot t)]$

Frequency Spectra – Examples

11

White noise:

Band-limited (colored) noise:

Frequency Spectra - Examples

12

- Consider the following scenario
 - Measuring a sensor output in the lab
 - Know the signal is roughly sinusoidal
 - Suspected frequency: ~1 kHz

- Measured signal corrupted by noise/interference
 - Difficult to identify the interfering signal from the time-domain plot

 Same signal in the frequency domain:

- Three interfering tonesAll near 100 kHz
- Can now design a filter to remove the noise:

Fourier Transform

Fourier transform

Transforms a time-domain representation to a frequency spectrum

$$V(\omega) = \int_{-\infty}^{\infty} v(t) \, e^{-j\omega t} dt$$

Inverse Fourier transform

Transforms from the frequency domain to the time domain

$$v(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(\omega) e^{j\omega t} d\omega$$

- A mathematical transform
 - Two different ways of looking at the same signal
 - A *change in perspective* not a change of the signal itself

Frequency Response Function

- 15
- Linear systems (electrical, mechanical, etc.) can be described by their *frequency responses*
- Frequency response
 - **Ratio of the system output phasor to the system input phasor**
 - In general, a complex function of frequency

$$H(\omega) = \frac{\mathbf{Y}}{\mathbf{X}} = \frac{\mathbf{Y}(\omega)}{\mathbf{X}(\omega)}$$

- Complex-valued has both magnitude and phase
 - Magnitude: ratio of output to input magnitudes
 - Gain of the system
 - Phase: difference in phase between output and input
 - Phase shift through the system

Frequency Response – Bode Plots

Frequency response

Description of system behavior as a function of frequency

Gain and **phase**

Represented graphically – formatted as a Bode plot

- Magnitude plot on top, phase plot below
- Logarithmic frequency axes
- Magnitude usually has units of decibels (dB)
- Phase has units of degrees

Bode Plots

Decibels - dB

- Frequency response gain most often expressed and plotted with units of *decibels* (dB)
 - A logarithmic scale
 - Provides detail of very large and very small values on the same plot
 - Commonly used for *ratios* of powers or amplitudes
- Conversion from a linear scale to dB:

$$|H(\omega)|_{dB} = 20 \cdot \log_{10}(|H(\omega)|)$$

Conversion from dB to a linear scale:

$$|H(\omega)| = 10^{\frac{|H(\omega)|_{dB}}{20}}$$

Decibels – dB

- 19
- Multiplying two gain values corresponds to adding their values in dB

E.g., the overall gain of cascaded systems

 $|H_1(\omega) \cdot H_2(\omega)|_{dB} = |H_1(\omega)|_{dB} + |H_2(\omega)|_{dB}$

Negative dB values corresponds to sub-unity gain
Positive dB values are gains greater than one

dB	Linear	dB	Linear
60	1000	6	2
40	100	-3	$1/\sqrt{2} = 0.707$
20	10	-6	0.5
0	1	-20	0.1

Value of Logarithmic Axes - dB

20

- Gain axis is linear in dB
 - A logarithmic scale
 - Allows for displaying detail at very large and very small levels on the same plot

Value of Logarithmic Axes - Frequency

- 21
- Frequency axis is logarithmic
 - Allows for displaying detail at very low and very high frequencies on the same plot

-100

-150

'n

Lower resonant frequency is unclear

3

5

Frequency

6

[Hz]

2

10

x 10⁵

8

9

Interpreting Bode Plots

Bode plots tell you the gain and phase shift at all frequencies: choose a frequency, read gain and phase values from the plot

Interpreting Bode Plots

23

A measured signal has the frequency spectrum shown here. Assuming the larger signal component has an amplitude of 500 mV, and that both signal components are in phase, write a timedomain expression for the measured signal.

Determine the frequency response function, $H(\omega)$, for the following circuit.

What are the circuit's gain and phase at 200 kHz?

²⁹ Types of Filters

Filters are classified by the ranges of frequencies they pass and those they filter out

Filter Operation

- Frequency spectrum describes frequency content of electrical signals
- Frequency response describes system (circuit) gain and phase at different frequencies
- Can design circuits (i.e. *filters*) to have high gain at desirable frequencies and low gain at undesirable frequencies
 - Want to filter out high frequencies?
 - Design a filter with low gain at high frequencies and high gain at low frequencies.
 - Want to filter out all signals between 1 MHz and 10 MHz?
 - Design a filter with low gain in this range and high gain everywhere else.

Types of Filters

- 31
- Filters are classified according to the ranges of frequencies they pass and those they filter out
 - Low pass filters: pass low frequencies, filter out high frequencies
 - High pass filters: pass high frequencies, filter out low frequencies
 - Band pass filters: pass only a range of frequencies, filter out everything else
 - Band stop (notch) filters: filter out only a certain range of frequencies, pass all others

Ideal Filters

Ideal filter gain characteristics:

D Unity gain in the pass band

- Range of frequencies to be passed
- **Zero gain** in the **stop band**
 - Range of frequencies to be filtered out

• Abrupt transition between pass band and stop band

- Signals with frequency components in the pass band pass through the filter unaltered
- Signals with frequency components in the stop band are completely filtered out – removed from the signal

Ideal Filters – Magnitude Response

- Note the use of a linear gain scale here
 - **D** Stop band gain of zero translates to $-\infty$ dB
- Ideal filters often referred to as *brick wall filters*

Real Filters – Magnitude Response

Magnitude response for a real low pass filter:

Pass band edge is freq. at which gain is down by 3 dB – the -3 dB frequency. This is the filter's **bandwidth**.

Roll-off rate between pass band and stop band depends on the type of filter – particularly, the **order** of the filter.

³⁵ First-Order Passive Filters

First-order – only one energy-storage element

Passive – contain only resistors and capacitors or inductors – no opamps or transistors

Filters as Voltage Dividers

$$v_o = v_s \frac{R_2}{R_1 + R_2}$$

Frequency response function:

$$H(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_s} = \frac{R_2}{R_1 + R_2}$$

- □ A real constant independent of frequency
 - Same gain at all frequencies
 - No phase shift at any frequency
- Now consider a circuit whose resistances have been replaced with impedances :

$$H(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_s} = \frac{Z_2}{Z_1 + Z_2}$$

 Frequency response is now a complex function of frequency

Gain and phase vary as a function of frequency

D Basis for the design of first-order filters
³⁷ RC Low Pass Filter

RC Low Pass Filter

□ Now, let Z_1 be resistive and Z_2 be capacitive

• Frequency response:

$$H(\omega) = \frac{V_o}{V_s} = \frac{Z_2}{Z_1 + Z_2} = \frac{1/j\omega C}{R + 1/j\omega C}$$
$$H(\omega) = \frac{1}{1 + j\omega RC}$$

- Recall from ENGR 201 that the transient response of this same circuit is characterized by its time constant, $\tau = RC$
- In the frequency domain, this is the corner frequency or break frequency

$$\omega_{c} = \frac{1}{\tau} = \frac{1}{RC}$$
 and $f_{c} = \frac{1}{2\pi RC}$

- The frequency at which gain is down by 3 dB
- The -3 dB frequency
- **•** Frequency at which the magnitude of R and C impedances are equal

RC Low Pass Filter

To gain insight into the behavior of this filter circuit, consider two limiting cases

■ As
$$f \rightarrow 0$$
,
■ Capacitor → open circuit
■ $i(t) \rightarrow 0$
■ $v_o \rightarrow v_s$

■ Gain \rightarrow unity

$$\Box \operatorname{As} f \to \infty$$

- Capacitor \rightarrow short circuit
- v_o shorted to ground
- Gain \rightarrow zero

 $v_o(t)$

RC Low Pass Filter – Bode Plot

RC Low Pass Filter – Magnitude Response

RC Low Pass Filter – Phase Response

RC Low Pass Filter – Magnitude Response

 Known slope can be used to relate gains at different frequencies

$$Slope\left[\frac{dB}{dec}\right] = \frac{|H(f_2)|_{dB} - |H(f_1)|_{dB}}{\log_{10}(f_2) - \log_{10}(f_1)}$$

□ For example:

$$-20\frac{dB}{dec} = \frac{|H(7MHz)| - |H(1MHz)|_{dB}}{\log_{10}(7MHz) - \log_{10}(1MHz)}$$
$$-20\frac{dB}{dec} = \frac{|H(7MHz)| - (-14dB)}{6.845 - 6}$$

|H(7MHz)| = -30.9dB

- 44
- Simple first-order RC low pass filters provide a quick and easy way to remove noise from electrical signals
- Consider for example a *dual-tone multi-frequency* (*DTMF*) signal
 - Touch-tone telephone signal (key 5 in this example)
 - Tone is the sum of two sinusoids (key 5 = 1336Hz and 770Hz)
 - Pressing the "5" key generates the DTMF signal
 - Noise on the DTMF signal makes decoding impossible
 - Filter noise to enabling decoding

- Key number 5 is pressed
 - DTMF signal generated
 - Sum of 770 Hz and 1336 Hz sinusoids

Decoder at the receiving end decodes the DTMF signal and determines that a 5 was pressed

Consider a more realistic scenario
 DTMF signal corrupted by a significant amount of noise

• The decoder is no longer able to determine that a 5 was pressed

46

The goal is to filter the received signal so that the decoder can accurately interpret the DTMF signal

- Designing the low pass filter
 - White noise
 - Flat frequency spectrum
 - Equal power at all frequencies
 - **DTMF** frequency range: 697 Hz 1633 Hz
 - Want to attenuate as much noise as possible
 - Want to attenuate DTMF signals as little as possible
 - RC LPF with corner frequency at 10 kHz will limit DTMF-band attenuation to < 0.2 dB</p>

47

RC LPF design

Need to select R and C to set the corner frequency

$$f_c = \frac{1}{2\pi RC} = 10 \ kHz$$

\square Say we have a 0.1 μ F capacitor available

Solve for R

$$R = \frac{1}{2\pi f_C C}$$

$$R = \frac{1}{2\pi \cdot 10 \ kHz \cdot 0.1\mu F} = 159 \ \Omega$$

$$R = 159 \ \Omega, \quad C = 0.1 \ \mu F$$

Bode plot of the resulting filter:

- □ Filter allows DTMF signal to pass mostly unaltered
- Noise below 10 kHz is mostly passed through
- Noise above 10 kHz is attenuated, but not removed
- Received signal is not noiseless, but clean enough to be decoded

50

51 Example Problems

Design a filter to pass the desired 500 Hz signal and to attenuate the unwanted 100 kHz by 40 dB.

What is the signal-to-noise ratio (SNR) at the output of the filter?

RC High Pass Filter

Now, swap the locations of the resistor and capacitor

Frequency response:

$$H(\omega) = \frac{V_o}{V_s} = \frac{Z_2}{Z_1 + Z_2} = \frac{R}{R + \frac{1}{j\omega C}}$$
$$H(\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

• Corner frequency is the same as for the low pass filter

$$\omega_c = \frac{1}{\tau} = \frac{1}{RC}$$
 and $f_c = \frac{1}{2\pi RC}$

- The frequency at which gain is down by 3 dB
- Frequency at which the capacitor impedance magnitude is equal to the resistor impedance magnitude
- **D** Now, gain is constant *above* f_c and rolls off *below* f_c

RC High Pass Filter

To gain insight into the behavior of this filter circuit, consider two limiting cases

■ As
$$f \to 0$$
,
■ Capacitor→ open circuit
■ $i(t) \to 0$
■ $v_o \to 0$
■ Gain → zero

$$\Box \operatorname{As} f \to \infty$$

- Capacitor \rightarrow short circuit
- v_o shorted to v_s
- Gain \rightarrow unity

RC High Pass Filter – Bode Plot

RC High Pass Filter – Magnitude Response

RC High Pass Filter – Phase Response

- 61
- High pass filters are useful for removing low-frequency content, including DC, from electrical signals.
- □ For example, consider the following scenario:
 - Instrumented a flow loop in the lab
 - Pumps, temperature sensors, pressure sensors, and flow meters
 - Flow meter output seems to be erroneous every ~1 msec
 - Suspected cause: coupled through the +12V power supply from one of the pumps
 - Want to measure the flow meter's +12V power supply with a channel on our data acquisition system (DAQ)
 - Dynamic range of DAQ input: ±5 V
 - Use a high-pass filter to remove the +12V DC component from the power supply voltage

- Want to a +12 V supply with a ± 5 V DAQ input
- □ High pass filter will remove the DC component of the supply voltage

- High pass filter used to remove DC signal components
- Couples only AC signal components to the DAQ input
 AC coupling
 - Similar to the AC coupling setting on the scopes in the lab

62

- High pass filter design
 - Want to remove DC
 - Low corner frequency
 - High RC time constant
 - Large R and C
 - Arbitrarily set $f_c = 10 Hz$
- DAQ system
 - **D**atasheet says $R_{in} = 10 M\Omega$
 - Let R_{in} be the filter resistance
- \Box Calculate C to get desired f_c

$$C = \frac{1}{2\pi f_c R} = \frac{1}{2\pi \cdot 10Hz \cdot 10M\Omega}$$
$$C = 15.9 \ nF$$

- Or anything in that neighborhood
- Not critical just want to block DC

RC high pass filter:

High pass filter Bode plot:

The +12V DC component of the power supply voltage is completely removed.

The noisy +12V power supply at the malfunctioning flow meter:

- DC value of signal is +12 V
- Outside <u>+</u>5 V DAQ input dynamic range

<u>High pass filter output – AC coupled power supply voltage:</u>

- DC value of signal is now 0 V
- Within ±5 V DAQ input range
- Glitches clearly measured with the DAQ

Oscilloscopes – AC Coupling

- Scope inputs allow you to select between DC and AC coupling
 - Usually under the *channel* menu
 - DC coupling: input signal is terminated in 1MΩ and connected directly to the preamp and ADC in the scope
 - AC coupling: input signal is switched through a capacitor that forms a high pass filter with the 1MΩ input resistor
 - $f_c \approx 3.5 Hz$ removes DC
 - Useful for looking at power supply ripple, etc.

Oscilloscopes – AC Coupling

High-impedance scope front-end:

67

First-order RL filters

- Can also use *inductors* to make *RL* low pass and high pass filters
- □ Capacitors are usually preferable for simple first-order filters
 - Smaller
 - Cheaper
 - Draw no DC current

Corner frequency: $f_c = \frac{R}{2\pi L}$

RL Low Pass Filter

RL low pass filter

Frequency response:

$$H(\omega) = \frac{V_o}{V_s} = \frac{Z_2}{Z_1 + Z_2} = \frac{R}{R + j\omega L}$$
$$H(\omega) = \frac{R}{R + j\omega L}$$

Corner frequency is one over the time constant

$$\omega_c = \frac{1}{\tau} = \frac{R}{L}$$
 and $f_c = \frac{R}{2\pi L}$

- The frequency at which gain is down by 3 dB
- Frequency at which the inductor impedance magnitude is equal to the resistor impedance magnitude
- Bode plot identical to that of the RC low pass filter
 - As it is for all first-order low pass systems

RL Low Pass Filter

Again consider the filter's behavior for two limiting cases

RL High Pass Filter

72

Now, swap the locations of the resistor and inductor

$$H(\omega) = \frac{V_o}{V_s} = \frac{Z_2}{Z_1 + Z_2} = \frac{j\omega L}{R + j\omega L}$$
$$H(\omega) = \frac{j\omega L}{R + j\omega L}$$

Corner frequency is the same as for the low pass filter

$$\omega_c = \frac{1}{\tau} = \frac{R}{L}$$
 and $f_c = \frac{R}{2\pi L}$

Bode plot is identical to that of the RC high pass filter
 Gain is constant *above* f_c and rolls off *below* f_c
RL High Pass Filter

Again, consider the two limiting frequency cases

■ As $f \rightarrow 0$, ■ Inductor \rightarrow short circuit ■ v_o shorted to ground

$$\Box \operatorname{As} f \to \infty$$

- Inductor → open circuit
- $i(t) \rightarrow 0$

$$\bullet v_o \to v_s$$

• Gain \rightarrow unity

74 Audio Filter Demo

Analog Discovery Instrument

- 2-chan. Scope
 - 14-bit, 100MSa/s
 - 5MHz bandwidth
- 2-chan. function generator
 - □ 14-bit, 100MSa/s
 - 5MHz bandwidth
- □ 2-chan. spectrum analyzer
- Network analyzer
- Voltmeter
- ±5V power supplies
- 16-chan. logic analyzer
- 16-chan. digital pattern generator
- USB connectivity

Analog Discovery – Audio Demo

- Demo board plugs in to Analog
 Discovery module
- Summation of multiple tones
- Optional filtering of audio signal
- 3.5 mm audio
 output jack

Analog Discovery – Audio Demo

77