SECTION 3:
SECOND-ORDER FILTERS
Introduction
Second-Order Circuits

- **Order** of a circuit (or system of any kind)
 - Number of independent energy-storage elements
 - Order of the differential equation describing the system

- **Second-order circuits**
 - Two energy-storage elements
 - Described by second-order differential equations

- We will primarily be concerned with second-order RLC circuits
 - Circuits with a resistor, an inductor, and a capacitor
Second-Order Circuits

- In this and the following section of notes, we will look at second-order RLC circuits from two distinct perspectives:

 - **Section 3**
 - Second-order *filters*
 - *Frequency-domain* behavior

 - **Section 4**
 - Second-order *transient response*
 - *Time-domain* behavior
Second-Order Filters
Second-Order Filters

- **First-order filters**
 - Roll-off rate: \(20 \text{ dB/decade}\)
 - This roll-off rate determines **selectivity**
 - Spacing of pass band and stop band
 - Spacing of passed frequencies and stopped or filtered frequencies

- **Second-order filters**
 - Roll-off rate: \(40 \text{ dB/decade}\)

- In general:
 - Roll-off = \(N \cdot 20 \text{ dB/dec}\), where \(N\) is the filter order
Resonance

- **Resonance**
 - Tendency of a system to oscillate at certain frequencies – *resonant frequencies* – often with larger amplitude than any input
 - Phenomenon that occurs in all types of dynamic systems (mechanical, electrical, fluid, etc.)

- Examples of resonant mechanical systems:
 - Mass on a spring
 - Pendulum, playground swing
 - Tacoma Narrows Bridge
Electrical Resonance

- **Electrical resonance**
 - Cancellation of *reactances*, resulting in purely resistive network impedance
 - Occurs at *resonant frequencies*
 - Second- and higher-order circuits

- **Reactances cancel** – sum to zero ohms
 - Inductive reactance is positive
 - Capacitive reactance is negative

- Voltages/currents in the circuit may be much larger than source voltages/currents

- We’ll take a look at resonance in two classes of circuits:
 - *Series* resonant circuits
 - *Parallel* resonant circuits
Series Resonant Circuits
Series Resonant RLC Circuit

- Series RLC circuit
 - Second-order – one capacitor, one inductor
 - Circuit will exhibit resonance

Impedance of the network:

\[
Z_{in}(\omega) = R + \frac{1}{j\omega C} + j\omega L = R + j \left(\omega L - \frac{1}{\omega C} \right)
\]

At the resonant frequency, \(\omega_0\) or \(f_0\):

\[
X_L + X_C = 0 \rightarrow X_L = -X_C
\]

\[
\omega_0 L = \frac{1}{\omega_0 C} \rightarrow \omega_0^2 = \frac{1}{LC}
\]

so

\[
\omega_0 = \frac{1}{\sqrt{LC}} \quad \text{and} \quad f_0 = \frac{1}{2\pi\sqrt{LC}}
\]

and

\[
Z_{in}(\omega_0) = R
\]
Quality factor, \(Q_s \)

- Ratio of inductive reactance *at the resonant frequency* to resistance

\[
Q_s = \frac{\omega_0 L}{R} = \frac{2\pi f_0 L}{R}
\]

- At resonance, inductive and capacitive reactances (magnitudes) are equal, so

\[
Q_s = \frac{1}{\omega_0 RC} = \frac{1}{2\pi f_0 RC}
\]

- The ratio of voltage magnitude across the inductor or capacitor to the voltage across the whole RLC network *at resonance*

- A measure of the *sharpness* of the resonance
Series RLC Circuit – Z_{in} vs. Q_s

- At $f = f_0$
 - $|Z_{in}| = R$
 - $\angle Z_{in} = 0^\circ$

- Q determines sharpness of the resonance
 - Higher Q yields faster transition from capacitive, through resistive, to inductive regions

- To increase Q:
 - Increase L
 - Reduce R and/or C
Series RLC Circuit – Z_{in}

Understanding the impedance of a series resonant circuit

Capacitor impedance goes up as f goes down.

$\mathbf{f = f_0:}$
- $Z_{in} = R$
- Z_{in} is real
- $\angle Z_{in} = 0^\circ$

Inductor impedance goes up as f goes up.

$\mathbf{f \gg f_0:}$
- $\angle Z_{in} = +90^\circ$
- Z_{in} looks inductive

Capacitor impedance goes up as f goes down.

$\mathbf{f \ll f_0:}$
- $\angle Z_{in} = -90^\circ$
- Z_{in} looks capacitive
At ω_0, $Z_{in} = R$, so the current phasor is

$$I = \frac{V_s}{R} = \frac{V_s}{R} \angle 0^\circ$$

- **Capacitor voltage** at resonance:

$$V_C = \frac{I}{j\omega_0 C} = \frac{V_s \angle 0^\circ}{\omega_0 RC \angle 90^\circ} = \frac{V_s}{\omega_0 RC} \angle -90^\circ$$

- Recalling the expression for quality factor of a series resonant circuit, we have

$$V_C = Q_s \cdot V_s \angle -90^\circ$$

- The voltage across the capacitor is the source voltage multiplied by the quality factor and phase shifted by -90°
Series RLC Circuit – Voltages and Currents

- The **inductor voltage** at resonance:

\[V_L = I \cdot j\omega_0 = \frac{V_s \angle 0^\circ \cdot \omega_0 L \angle 90^\circ}{R} \]

\[V_L = \frac{V_s \cdot \omega_0 L \angle 90^\circ}{R} \]

- Again, substituting in the expression for quality factor gives

\[V_L = Q_s \cdot V_s \angle + 90^\circ \]

- The voltage across the inductor is the source voltage multiplied by the quality factor and phase shifted by +90°

- Capacitor and inductor voltage at resonance:
 - Equal magnitude
 - 180° out of phase – opposite sign – they cancel
Now assign component values

- The resonant frequency is
 \[\omega_0 = \frac{1}{\sqrt{LC}} = 100 \frac{krad}{sec} \]
- The quality factor is
 \[Q_s = \frac{\omega_0 L}{R} = \frac{100 \frac{krad}{sec} \cdot 1 mH}{10 \Omega} = 10 \]
- The current phasor at the resonant frequency is
 \[I = \frac{V_s}{R} = \frac{1 V \angle 0^\circ}{10 \Omega} = 100 \angle 0^\circ mA \]
The capacitor voltage at the resonant frequency is
\[V_C = \frac{I}{j\omega_0 C} = \frac{V_s}{\omega_0 RC} \angle -90^\circ = Q_s \cdot V_s \angle -90^\circ \]

\[V_C = 10 \cdot 1 \, V \angle -90^\circ \]

\[V_C = 10 \, V \angle -90^\circ \]

The inductor voltage at the resonant frequency:
\[V_L = I \cdot j\omega_0 L = \frac{V_s \cdot \omega_0 L \angle 90^\circ}{R} = Q_s \cdot V_s \angle +90^\circ \]

\[V_L = 10 \cdot 1 \, V \angle +90^\circ \]

\[V_L = 10 \, V \angle +90^\circ \]
Series RLC Circuit — Voltages and Currents

- $|V_S| = 1 \text{ V}$
- $\angle I = 0^\circ$
- $|V_C| = |V_L| = Q_s |V_S| = 10 \text{ V}$
- $|V_C|$ and $|V_L|$ are 180° out of phase
 - They cancel
 - KVL is satisfied
Parallel Resonant Circuits
Parallel Resonant RLC Circuit

- Parallel RLC circuit
 - Second-order – one capacitor, one inductor
 - Circuit will exhibit resonance

Impedance of the network:

\[Z_{in}(\omega) = \left[\frac{1}{R} + j\omega C + \frac{1}{j\omega L} \right]^{-1} = \left[\frac{1}{R} + j\left(\omega C - \frac{1}{\omega L}\right) \right]^{-1} \]

At the resonant frequency, \(\omega_0 \) or \(f_0 \):

\[B_C + B_L = 0 \rightarrow B_C = -B_L \]

\[\omega_0 C = \frac{1}{\omega_0 L} \rightarrow \omega_0^2 = \frac{1}{LC} \]

so

\[\omega_0 = \frac{1}{\sqrt{LC}} \quad \text{and} \quad f_0 = \frac{1}{2\pi\sqrt{LC}} \]

and

\[Z_{in}(\omega_0) = R \]
Parallel RLC Circuit – Quality Factor

- **Quality factor, \(Q_p \)**
 - Ratio of inductive susceptance *at the resonant frequency* to conductance

\[
Q_p = \frac{1/\omega_0 L}{1/R} = \frac{R}{\omega_0 L} = \frac{R}{2\pi f_0 L}
\]

- At resonance, inductive and capacitive susceptances (magnitudes) are equal, so

\[
Q_p = \omega_0 RC = 2\pi f_0 RC
\]

- The ratio of current magnitude through the inductor or capacitor to the current through the whole RLC network *at resonance*

- A measure of the *sharpness* of the resonance
Parallel RLC Circuit – Z_{in} vs. Q_p

- At $f = f_0$
 - $|Z_{in}| = R$
 - $\angle Z_{in} = 0^\circ$
- Q determines sharpness of the resonance
 - Higher Q yields faster transition from inductive, through resistive, to capacitive regions
- To increase Q:
 - Reduce L
 - Increase R and/or C
Parallel RLC Circuit – Z_{in}

Understanding the impedance of a series resonant circuit

$f = f_0$:
- $Z_{in} = R$
- Z_{in} is real

Inductor tends toward a short as $f \to 0$

$f < f_0$:
- $\angle Z_{in} = +90^\circ$
- Z_{in} looks inductive

$f = f_0$:
- Z_{in} is real
- $\angle Z_{in} = 0^\circ$

$f \gg f_0$:
- $\angle Z_{in} = -90^\circ$
- Z_{in} looks capacitive

Capacitor tends toward a short as $f \to \infty$
Parallel RLC Circuit — Voltages and Currents

- Sinusoidal current source, I_s
- At resonance, $Z_{in} = R$, so the voltage across the network is:
 $$V_o = I_s R = I_s \angle 0^\circ \cdot R$$

- Current through the **capacitor** at resonance:
 $$I_C = V_o \cdot j\omega_0 C = I_s R \cdot \omega_0 C \angle 90^\circ$$

- Recalling the expression for quality factor of the parallel resonant circuit, we have
 $$I_C = Q_p \cdot I_s \angle 90^\circ$$

- The current through the capacitor is the source current multiplied by the quality factor and phase shifted by 90°
The inductor current at resonance:

\[I_L = \frac{V_o}{j\omega_0 L} = \frac{I_s R}{\omega_0 L} \angle -90^\circ \]

Again, substituting in the expression for quality factor gives

\[I_L = Q_p \cdot I_s \angle -90^\circ \]

The current through the inductor is the source current multiplied by the quality factor and phase shifted by \(-90^\circ\).

Capacitor and inductor current at resonance:
- Equal magnitude
- \(180^\circ\) out of phase – opposite sign – they cancel
Now, assign component values

- The resonant frequency is
 \[\omega_0 = \frac{1}{\sqrt{LC}} = 1 \frac{Mrad}{sec} \]

- The quality factor is
 \[Q_p = \frac{R}{\omega_0 L} = \frac{100 \Omega}{1 \frac{Mrad}{sec} \cdot 1 \mu H} = 100 \]

- The phasor for the voltage across the network at the resonant frequency is
 \[V_o = I_s R = 100 mA \angle 0^\circ \cdot 100 \Omega = 10 \angle 0^\circ V \]
The capacitor current at the resonant frequency is

\[I_C = V_0 \cdot j \omega_0 C = I_s \cdot \omega_0 R C \angle 90^\circ \]

\[I_C = Q_p \cdot I_s \angle 90^\circ = 100 \cdot 100 \text{ mA} \angle 90^\circ \]

\[I_C = 10 \text{ A} \angle 90^\circ \]

The inductor current at the resonant frequency:

\[I_L = \frac{V_0}{j \omega_0 L} = \frac{I_s R}{\omega_0 L} \angle -90^\circ = Q_p \cdot I_s \angle -90^\circ \]

\[I_L = 100 \cdot 100 \text{ mA} \angle -90^\circ \]

\[I_L = 10 \text{ A} \angle -90^\circ \]
Parallel RLC Circuit – Voltages and Currents

- $|I_S| = 1 \text{ V}$
- $\angle V_o = 0^\circ$
- $|I_C| = |I_L| = Q_p |I_S| = 10 \text{ A}$
- $|I_C|$ and $|I_L|$ are 180° out of phase
- They cancel
- KCL is satisfied
Example Problems
Determine the voltage across the capacitor, V_o, at the resonant frequency.
Determine V_o, I, I_C, and I_L at the resonant frequency.
Determine R, such that $|V_o| = 100|V_s|$ at the resonant frequency.
Second-Order Filters
Derive the frequency response functions of second-order filters by treating the circuits as voltage dividers.

\[H(\omega) = \frac{Z_2(\omega)}{Z_1(\omega) + Z_2(\omega)} \]

Now, \(Z_1 \) and \(Z_2 \) can be either a single R, L, or C, or a series or parallel combination of any two components for \(Z_1 \) or \(Z_2 \):

- Series combination:

- Parallel combination:
Second-Order Band Pass Filter
One option for a second-order band pass filter:

- The frequency response function:

\[H(\omega) = \frac{Z_2}{Z_1 + Z_2} \]

where

\[Z_1 = R \quad \text{and} \quad Z_2 = \left[j\omega C + \frac{1}{j\omega L} \right]^{-1} = \frac{j\omega L}{1 + (j\omega)^2 LC} \]

so

\[H(\omega) = \frac{j\omega L}{1 + (j\omega)^2 LC} \]

\[= \frac{j\omega L}{R + \frac{j\omega L}{1 + (j\omega)^2 LC}} \]

\[= \frac{j\omega L}{(j\omega)^2 RLC + j\omega L + R} \]

\[H(\omega) = \frac{j\omega/RC}{(j\omega)^2 + j\omega/RC + 1/LC} \]
Second-Order Band Pass Filter

- Consider the filter’s behavior at three limiting cases for frequency

 - $f \to 0$:
 - $C \to$ open
 - $L \to$ short
 - v_o shorted to ground
 - Gain $\to 0$

 - $f = f_0$:
 - B_C, B_L cancel
 - $L||C \to$ open
 - $v_o = v_i$
 - Gain $\to 1$

 - $f \to \infty$:
 - $C \to$ short
 - $L \to$ open
 - v_o shorted to ground
 - Gain $\to 0$
A second option for a second-order band pass filter:

Now, the impedances are:

\[Z_1 = j \omega L + \frac{1}{j \omega C} = \frac{(j \omega)^2 LC + 1}{j \omega C} \]

\[Z_2 = R \]

The frequency response function:

\[
H(\omega) = \frac{R}{R + \frac{(j \omega)^2 LC + 1}{j \omega C}} = \frac{j \omega RC}{(j \omega)^2 LC + j \omega RC + 1}
\]

\[
H(\omega) = \frac{j \omega R/L}{(j \omega)^2 + j \omega R/L + 1/LC}
\]
Consider the filter’s behavior at three limiting cases for frequency:

- **$f \rightarrow 0$:**
 - $C \rightarrow \text{open}$
 - $L \rightarrow \text{short}$
 - Current $\rightarrow 0$
 - $v_o \rightarrow 0$
 - Gain $\rightarrow 0$

- **$f = f_0$:**
 - X_C, X_L cancel
 - $L, C \rightarrow \text{short}$
 - $v_o = v_i$
 - Gain $\rightarrow 1$

- **$f \rightarrow \infty$:**
 - $L \rightarrow \text{open}$
 - $C \rightarrow \text{short}$
 - Current $\rightarrow 0$
 - $v_o \rightarrow 0$
 - Gain $\rightarrow 0$
Each of the two BPF variations has the same resonant frequency:

\[f_0 = \frac{1}{2\pi \sqrt{LC}} \]

They have different frequency response functions and quality factors:

\[Q = \omega_0 RC = \frac{R}{\omega_0 L} \]
\[Q = \frac{1}{\omega_0 RC} = \frac{\omega_0 L}{R} \]

Each frequency response function can be expressed in terms of \(\omega_0 \) and \(Q \):

\[H(\omega) = \frac{j\omega/RC}{(j\omega)^2 + j\omega/RC + 1/LC} \]
\[H(\omega) = \frac{j\omega R/L}{(j\omega)^2 + j\omega R/L + 1/LC} \]
Second-Order Band Pass Filter

- Same frequency response for each band pass filter

- Q determines the sharpness of the resonance
 - Higher Q provides higher selectivity
 - Narrower pass band
 - Steeper transition to the stop bands
Bandwidth of a low pass filter is the 3 dB frequency

A band pass filter has two 3 dB frequencies

Bandwidth is the difference between the two 3 dB frequencies

\[BW = f_U - f_L \]

Bandwidth is inversely proportional to Q

\[BW = \frac{f_0}{Q} \]

\[BW = f_U - f_L = \frac{f_0}{Q} = 200 \text{ kHz} \]
Need a band pass filter to isolate a broadcast TV channel
- Carrier frequency: 180MHz
- Bandwidth of the filter: 6MHz
- Thévenin equivalent resistance of signal source: 75Ω

Use a parallel LC network
- A *tank circuit*
2nd-Order BP Filter – Example

- Center frequency of the filter is:

 \[f_0 = \frac{1}{2\pi \sqrt{LC}} = 180 \text{ MHz} \]

- Specified bandwidth dictates the required \(Q \) value

 \[Q = \frac{f_0}{BW} = \frac{180 \text{ MHz}}{6 \text{ MHz}} = 30 \]

- Calculate the required inductance (and/or capacitance) using the values of \(R_s \), \(Q \), and \(f_0 \):

 \[L = \frac{R_s}{\omega_0 Q} = \frac{75 \Omega}{2\pi \cdot 180 \text{ MHz} \cdot 30} = 2.2 \text{ nH} \]

- Use the center frequency to determine the required capacitance

 \[C = \frac{1}{L\omega_0^2} = \frac{1}{2.2 \text{ nH}(2\pi \cdot 180 \text{ MHz})^2} = 355 \text{ pF} \]
2nd-Order BP Filter – Example
Second-Order Band Stop Filter
One option for a second-order **band stop**, or **notch**, filter:

- The frequency response function:

\[H(\omega) = \frac{Z_2}{Z_1 + Z_2} \]

where

\[Z_1 = R \quad \text{and} \quad Z_2 = j\omega L + \frac{1}{j\omega C} = \frac{(j\omega)^2 LC + 1}{j\omega C} \]

so

\[H(\omega) = \frac{(j\omega)^2 LC + 1}{j\omega C} = \frac{(j\omega)^2 LC + 1}{(j\omega)^2 LC + j\omega RC + 1} \]

\[H(\omega) = \frac{(j\omega)^2 + 1/LC}{(j\omega)^2 + j\omega R/L + 1/LC} \]
Consider the filter’s behavior at three limiting cases for frequency:

- **$f \to 0$:**
 - $C \to$ open
 - $L \to$ short
 - Current $\to 0$
 - $v_o \to v_i$
 - Gain $\to 1$

- **$f = f_0$:**
 - X_C, X_L cancel
 - $L, C \to$ short
 - v_o shorted to ground
 - Gain $\to 0$

- **$f \to \infty$:**
 - $C \to$ short
 - $L \to$ open
 - Current $\to 0$
 - $v_o \to v_i$
 - Gain $\to 1$
Second-order band stop filter

- Resonant (center) frequency:
 \[f_0 = \frac{1}{2\pi\sqrt{LC}} \]

- Quality factor:
 \[Q = \frac{1}{\omega_0 RC} = \frac{\omega_0 L}{R} \]

- Frequency response function:
 \[H(\omega) = \frac{(j\omega)^2 + 1/LC}{(j\omega)^2 + j\omega R/L + 1/LC} \]

- General form, in terms of \(\omega_0 \) and \(Q \):
 \[H(\omega) = \frac{(j\omega)^2 + \omega_0^2}{(j\omega)^2 + \frac{\omega_0^2}{Q} j\omega + \omega_0^2} \]
Second-Order Band Stop Filter

- All second-order notch filters provide same response as a function of Q and ω_0
- Q determines the sharpness of the response
- **Higher Q** provides higher selectivity
 - Narrower stop band
 - Steeper transition to the pass bands
Like the band pass filter, the **band stop filter** has two 3 dB frequencies

- **Bandwidth** is the difference between the two 3 dB frequencies

 \[BW = f_U - f_L \]

- Bandwidth is inversely proportional to Q

 \[BW = \frac{f_0}{Q} \]

\[
BW = f_U - f_L = \frac{f_0}{Q} = 500 \text{ kHz}
\]
Consider the following scenario:

- Measuring transient pressure fluctuations inside an enclosed chamber
- Pressure transducer monitored by a data acquisition system
- Measured signal is small – all frequency content lies in the 1KHz – 15KHz range
- Also interested in the average (DC) pressure value
 - AC coupling (HP filter) is not an option
 - Need to keep DC as well as 1KHz – 15KHz
- Measurements are extremely noisy
 - Signal is completely buried in 60Hz power line noise
- Design a notch filter to reject any 60Hz power line noise
Filter design considerations

- Center frequency: 60 Hz
- Attenuate signal of interest as little as possible
 - Set upper 3 dB frequency one decade below the lower end of the signal range (1 kHz)
- Sensor output resistance: 100 Ω
- DAQ system input resistance: 1 MΩ
2nd-Order Notch Filter – Example

- Upper 3 dB frequency is one decade below 1 kHz
 \[f_U = 100 \text{ Hz} \]

- Simplify by assuming that the 3 dB frequencies are evenly spaced about \(f_0 \)
 \[BW = 2(f_U - f_0) = 80 \text{ Hz} \]

- Required Q is then
 \[Q = \frac{f_0}{BW} = \frac{60 \text{ Hz}}{80 \text{ Hz}} = 0.75 \]

- Sensor output resistance can serve as the filter resistor

- DAQ input resistance of 1 M\(\Omega\) is large enough to be neglected
2nd-Order Notch Filter – Example

- Determine L and C values to satisfy f_0 and Q requirements
 - The required inductance:
 \[
 L = \frac{Q \cdot R}{\omega_0} = \frac{0.75 \cdot 100 \ \Omega}{2\pi \cdot 60 \ Hz} = 198 \ mH
 \]
 - Calculate C to place the center frequency at 60 Hz
 \[
 C = \frac{1}{\omega_0^2 L} = \frac{1}{(2\pi \cdot 60 \ Hz)^2 \cdot 198 \ mH} = 35.5 \ \mu F
 \]

- A couple things worth noting:
 - Some iteration selecting standard-value components would be required
 - Accuracy and stability of sensor output resistance would need to be verified
2nd-Order Notch Filter – Example

2nd-Order Bandstop Filter with $f_0 = 60$Hz, $Q = 0.75$

Magnitude

Phase

Pressure Sensor

Notch Filter

198mH
33.5μF

V_o
To
Data
Acq.
Second-order low pass filter:

The frequency response function:

\[H(\omega) = \frac{Z_2}{Z_1 + Z_2} \]

where

\[Z_1 = R + j\omega L \quad \text{and} \quad Z_2 = \frac{1}{j\omega C} \]

so

\[H(\omega) = \frac{\frac{1}{j\omega C}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{1}{(j\omega)^2 LC + j\omega RC + 1} \]

\[H(\omega) = \frac{1/LC}{(j\omega)^2 + j\omega R/L + 1/LC} \]
2nd-Order LPF – General-Form Frequency Response

- **Second-order low pass filter**
 - Resonant frequency:

 \[f_0 = \frac{1}{2\pi\sqrt{LC}} \]

 - Quality factor:

 \[Q = \frac{1}{\omega_0 RC} = \frac{\omega_0 L}{R} \]

 - Frequency response function:

 \[H(\omega) = \frac{1/LC}{(j\omega)^2 + j\omega R/L + 1/LC} \]

 - General form, in terms of \(\omega_0 \) and \(Q \):

 \[H(\omega) = \frac{\omega_0^2}{(j\omega)^2 + \omega_0^2/Q j\omega + \omega_0^2} \]
Consider the filter’s behavior at three limiting cases for frequency:

- **$f \to 0$:**
 - $L \to$ short
 - $C \to$ open
 - Current $\to 0$
 - $v_o \to v_i$
 - Gain $\to 1$

- **$f = f_0$:**
 - Behavior at resonance is a bit trickier here

- **$f \to \infty$:**
 - $L \to$ open
 - $C \to$ short
 - v_o shorted to ground
 - Gain $\to 0$
Input impedance at resonance: $Z_{in}(\omega_0) = R$

The series LC section is essentially a short
- But, neither the inductor nor the capacitor, individually, are shorts
- And, output is taken across the capacitor
 - Recall that at resonance, capacitor and inductor voltages can exceed the input voltage

$Z_{in} = R$, so

\[I = \frac{V_i}{R} \]

Output voltage phasor is:

\[V_o = \frac{I}{j\omega_0 C} \]

\[V_o = \frac{V_i}{\omega_0 RC} \angle -90^\circ \]

which may be larger than V_i
Second-Order Low Pass Filter

- Second-order roll-off rate: \[40 \frac{dB}{dec} \]

- \(Q \) determines:
 - Amount of peaking
 - Rate of phase transition

- No peaking at all for \(Q \leq \frac{1}{\sqrt{2}} = 0.707 \)

- Phase at \(\omega_0 \): \(-90^\circ\)
2nd-Order Low Pass Filter – 3dB Bandwidth

- 3 dB bandwidth is a function of Q
 - Increases with Q
- Peaking occurs for $Q > 0.707$
- For $Q = 0.707$
 - \textit{Maximally-flat response}
 - \textit{Butterworth response}
 - The 3 dB frequency is equal to the resonant frequency
 \[f_c = f_0 \]
Second-Order High Pass Filter
Second-Order High Pass Filter

- Second-order high pass filter:
 - The frequency response function:

\[
H(\omega) = \frac{Z_2}{Z_1 + Z_2}
\]

where

\[
Z_1 = R + \frac{1}{j\omega C}
\]

and

\[
Z_2 = j\omega L
\]

so

\[
H(\omega) = \frac{j\omega L}{R + \frac{1}{j\omega C} + j\omega L} = \frac{(j\omega)^2 LC}{(j\omega)^2 LC + j\omega RC + 1}
\]

\[
H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + j\omega R/L + 1/LC}
\]
2nd-Order HPF – General-Form Frequency Response

- **Second-order high pass filter**
 - Resonant frequency:
 \[f_0 = \frac{1}{2\pi \sqrt{LC}} \]
 - Quality factor:
 \[Q = \frac{1}{\omega_0 RC} = \frac{\omega_0 L}{R} \]
 - Frequency response function:
 \[H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + j\omega R/L + 1/LC} \]
 - General form, in terms of \(\omega_0 \) and \(Q \):
 \[H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + \frac{\omega_0^2}{Q} j\omega + \omega_0^2} \]
Consider the filter’s behavior at three limiting cases for frequency

- \(f \to 0 \):
 - \(L \to \) short
 - \(C \to \) open
 - \(v_o \) shorted to ground
 - Gain \(\to 0 \)

- \(f = f_0 \):
 - Behavior at resonance is, once again, a bit more complicated

- \(f \to \infty \):
 - \(L \to \) open
 - \(C \to \) short
 - Current \(\to 0 \)
 - \(v_o \) \(\to v_i \)
 - Gain \(\to 1 \)
Second-Order HPF at Resonance

- Input impedance at resonance: \(Z_{in}(\omega_0) = R \)
- The series LC section is essentially a short
 - But, neither the inductor nor the capacitor, individually, are shorts
 - And, output is taken across the inductor
 - Recall that at resonance, capacitor and inductor voltages can exceed the input voltage

\[Z_{in} = R, \text{ so } I = \frac{V_i}{R} \]

Output voltage phasor is:
\[V_o = I \cdot j\omega_0 L \]
\[V_o = \frac{V_i}{R} \omega_0 L \angle 90^\circ \]
which may be larger than \(V_i \)
Second-Order High Pass Filter

- Second-order roll-off rate:
 \[40 \frac{dB}{dec} \]

- \(Q \) determines:
 - Amount of peaking
 - Rate of phase transition

- No peaking at all for
 \[Q \leq \frac{1}{\sqrt{2}} = 0.707 \]

- Phase at \(\omega_0 \): \(+90^\circ\)
2nd-Order High Pass Filter – 3dB Bandwidth

- Corner frequency is a function of Q
 - Decreases with increasing Q
- Peaking occurs for $Q > 0.707$
- For $Q = 0.707$
 - Maximally-flat response
 - Butterworth response
 - The 3 dB frequency is equal to the resonant frequency
 $$f_c = f_0$$
Damping Ratio - ζ

- We’ve been using **quality factor** to describe second-order filter response
 - A measure of the sharpness of the resonance
 - For band pass/stop filters, Q tells us about **bandwidth**
 - For low/high pass filters, Q tells us about **peaking**

- Another way to describe the same characteristic: **damping ratio**, ζ
 - Damping ratio is inversely proportional to Q:
 \[
 \zeta = \frac{1}{2Q}
 \]
 - A measure of the amount of **damping** in a circuit/system
 - Higher ζ implies a less resonant system
 - Less peaking
 - Wider bandwidth for band pass/stop filters
2nd-Order Low Pass Response vs. ζ

- As ζ goes down,
 - Less damping
 - More peaking
- No peaking at all for $\zeta \geq 0.707$
- For $\zeta = 0.707$
 - \textit{Maximally-flat response}
 - \textit{Butterworth response}
 - The 3 dB frequency is equal to the resonant frequency $f_c = f_0$
General-Form Freq. Response Functions in Terms of ζ

Low pass in terms of Q:

$$H(\omega) = \frac{\omega_0^2}{(j\omega)^2 + \frac{\omega_0}{Q} j\omega + \omega_0^2}$$

Low pass in terms of ζ:

$$H(\omega) = \frac{\omega_0^2}{(j\omega)^2 + 2\zeta \omega_0 j\omega + \omega_0^2}$$

High pass in terms of Q:

$$H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + \frac{\omega_0}{Q} j\omega + \omega_0^2}$$

High pass in terms of ζ:

$$H(\omega) = \frac{(j\omega)^2}{(j\omega)^2 + 2\zeta \omega_0 j\omega + \omega_0^2}$$
Audio Filter Demo
Analog Discovery Instrument

- 2-chan. Scope
 - 14-bit, 100MSa/s
 - 5MHz bandwidth
- 2-chan. function generator
 - 14-bit, 100MSa/s
 - 5MHz bandwidth
- 2-chan. spectrum analyzer
- Network analyzer
- Voltmeter
- ±5V power supplies
- 16-chan. logic analyzer
- 16-chan. digital pattern generator
- USB connectivity
Analog Discovery – Audio Demo

- Demo board plugs in to Analog Discovery module
- Summation of multiple tones
- Optional filtering of audio signal
- 3.5 mm audio output jack
Example Problems
The higher-frequency signal is unwanted noise. Design a second-order Butterworth LPF to attenuate the higher-frequency component by 40 dB.

What is the SNR at the output of the filter?