SECTION 4: SECOND-ORDER
TRANSIENT RESPONSE
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Second-Order Circuits
-

In this and the previous section of notes, we
consider second-order RLC circuits from two distinct
perspectives:

o Frequency-domain
Second-order, RLC filters

o Time-domain

Second-order, RLC step response
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Transient Response of Second-

Order Circuits
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Second-Order Transient Response

-0V
In ENGR 201 we looked at the transient response of
first-order RC and RL circuits

o Applied KVL
Governing differential equation

o Solved the ODE
Expression for the step response

For second-order circuits, process is the same:
o Apply KVL
Second-order ODE

o Solve the ODE
Second-order step response
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Step Response of RLC Circuit

Determine the response of the following RLC circuit
o Source is a voltage step: v.(t) = 1V - u(t)
o Output is the voltage across the capacitor

R % o Apply KVL around the loop

vi(t) () T v.(t) —i(t)R — L% —v,(t) =0

=

Want an ODE in terms of v, (t)
O Need to eliminate i(t)
o Can express i(t) in terms of the output voltage:

. dv, di d?v,
i(t)=C— so, —=0C
( ) dt Todt dt?
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Step Response of RLC Circuit
-

R () Substituting in the expression for current, the
A .
0 KVL equation becomes
vs(®) () C dv 42
vs(t) = C dto R—LC dtz" —v,(t) =0

=

Rearranging gives the governing second-order ODE:

d*v, Rdv, 1
+——+—
dt2 L dt LC

1
vo(t) = E vg(t)

A second-order, linear, non-homogeneous, ordinary differential equation

Non-homogeneous, so solve in two parts
1) Find the complementary solution to the homogeneous equation
2) Find the particular solution for the step input

General solution will be the sum of the two individual solutions:

Vo () = v,c(8) + Vop (t)
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- Complementary Solution
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Complementary Solution — v,.(t)
S —

The homogeneous equation is obtained by setting the forcing
function (input) to zero

d?v, LR R dvo 1
dt? L dt

- Vo (t)=0

For an ODE of this form, we assume a solution of the form
voc(t) = et
o Where s is an unknown complex value. Then

dvoc St dzvoc 2
—— =se and —— ==
dt dt?

eSt

Substituting back into the homogeneous ODE yields the
characteristic equation

S SO S
st st e=
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Complementary Solution — v,.(t)

2 Rop Lo
ST T

The characteristic equation can be rewritten as

s?+2as + w2 =0
or
s%+ 2{wys + wZ =0

The roots of the characteristic equation (also called poles) tell us about the:
o Form of the complementary solution
o Nature of the response

These roots (or poles) are

Sl=—a+/a2—w2, s; = —a— |a? — w§

R
a=— and wy =
2L

where

5-
(@)
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Complementary Solution — v,.(t)
S —

We've said we can write the characteristic equation as

s?+2as+w5=0

or
s?+ 2{wes + wg =0

The damping ratio, {, can be defined as
o«
P
A few key points:
O wy is the resonant frequency
0 { characterizes the nature (sharpness) of the resonance

o Both are related to the roots of the characteristic equation
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Complementary Solution — v,.(t)
S —

Complementary solution has the same form as that of a first-order
circuit:

Voc(t) = e Nt
—
O s is the roots of the characteristic equation W@ © cL
Now two values —identical or distinct
May be complex &

Form of the solution depends on the values of s
o Can be characterized in terms of the value of (:

¢ > 1 — over-damped case:

V,0(t) = Kye51t + K,eS2t
{ = 1 —critically-damped case:

Voo (t) = Kje51t + K tes1t
{ < 1 —under-damped case:

Ve (t) = Kje % cos(wyt) + K,e % sin(wyt)
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Over-Damped RLC Circuit—¢ > 1

Roots of the characteristic equation are

_ /2_ /2_
=—a+ |a?—w}, a? — w}

O These are related to the damping ratio as
a

FT o
If{ > 1, then
o a> wg
o a?— wj > 0-i.e., the discriminant is positive
O s; and s, are real and distinct
Complimentary solution has the following form

Ve (t) = K e51t + K,eS52t

Recall that { > 1 (actually, { = 0.707) corresponded to no peaking in the
frequency domain
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Critically-Damped RLC Circuit—¢ =1
-

Sl=—a+Ja2—w§, 51=—a+\/a2—a)(2,
If { =1, then
O a= wy

o a? — wj = 0—i.e., the discriminant is zero
O s; and s, are real and identical

Complimentary solution has the following form

V. (t) = K e51t + K tes1t

This is the lowest value of { for which the step response is
monotonic

o Constantly increasing
o No overshoot
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Under-Damped RLC Circuit—¢ < 1

If { < 1, then

Ooa< Wy
o a? — w5 < 0-i.e., the discriminant is negative
O s, and s, are a complex conjugate pair

Complimentary solution has the following form
Ve (t) = Kie % cos(wyt) + Kye ™% sin(wgt)

O wg, is the damped natural frequency

wd=,/ 5 —a? = wpy1— 72

Response now contains damped sinusoidal components
o Will exhibit overshoot
o Possible ringing
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Damping Cases — Geometric Interpretation
1

Roots of characteristic equation (system poles) are, in general, complex
o Can plot them in the complex plane
o Pole locations tell us a lot about the nature of the response

Speed —risetime, settling time

Overshoot, ringing

Case 1: Case 2: Case 3:

(> 1-overdamped { =1 -critically-damped (< 1-underdamped

Im Im Im
Sg
X

St Sz Re 51, 52 Re Re
& x x ’ & x ’ & ’

51
X
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Under-Damped Case — «, ¢, and wy

Under-damped case—{ < 1
Roots are a complex-conjugate pair

x“"‘“‘“"" S12 = —a t jwg

O «ais the real part
. 0 O wg, is the imaginary part
{: o The magnitude of the root is

T

e

wy = /a2+a)§

o Angle between imaginary axis and
vector to the poles is related to
damping

51 X o

(= (U_o = sin(0)
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- Particular Solution
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Particular solution — v, ()

General solution for the RLC step response is the sum of
the complementary and particular solutions

Vo (1) = Ve (t) + Vop (t)

We now have the complementary solution with two
unknown constants, K; and K,

o Constants to be determined later through application of
initial conditions

Next, determine the particular solution, v, (t)

o For a circuit driven by a step input, this is simply the circuit’s
steady-state response

Vop(£) = 0, (t > o0)
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Particular solution — v, (t)
S —

iﬁ vﬂ[ti-

Particular solution is the circuit’s steady-state response

S

o Inductor — short
o Capacitor — open

vop(t) = 1,(t > o) = v,(t > 0)
For a unit step input, the particular solution is

Vop(t) =1V
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Example Problems
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Derive the governing — ﬁ o(t)
differential equation for the it

following circuit.
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Determine:

o Damping ratio

o Damping case

o Characteristic equation
o Poles

vs(t) @

100 Q 220 uH (t)
AN Y Y%
15 nF ==

AV
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Determine:
o Initial conditions
o Particular solution
For
ve(t) = —1V - u(t) + 2V

100 Q

Vo(t)

Vs(t) @

100 pH

— 100 nF
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Derive the governing X Vet

. . . —_—
dlffere.ntlal.eqt.Jatlon for the 0 & L % oL
following circuit.
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Damped Circuit Response
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RLC Step Response — Example 1
e

Determine v, (t) 400 10uH )
] - WA Y Y
Input is a unit voltage step 0
ve(t) = 1V - u(t) vo(®) () 1Vu() 100nF ==

First, apply KVL

(OR - 12 =0
vs(t) — HOR — L= vp(t) =

Eliminate i(t) using the i-v relationship for the capacitor

dvo di d?v,
i(t)=C— and —=0C
( ) dt dt?

This gives the second-order ODE in terms of v, (t), which can then be
rearranged to standard form

2
t)=0 — LYo Rdvo,

dvo
vs(t) —RC— 2 dt? L dt

L 0p(0) = Zus(0)
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RLC Step Response — Example 1

Find the complementary solution, v,.(t)
The homogeneous equation

d*v, Rdv, 1
dt? +L dt +LCv0(t)

The characteristic equation
2 Rop Lo
> T Ie T

o This can be rewritten as

s?+2as+w5=0

where
B R B 40 () _2x106rad
“ToL T2 10uH sec
and
1 1 6rad
(1)0 =1X10_

~VLC /10 uH - 100 nF sec
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RLC Step Response — Example 1

The damping ratio is
a 2x10°
(= o0 T Ix106
o ¢ > 1, so the circuit is over-damped
Solution is of the form
V. (t) = K e51t + K,eS2t

s1 and s, are the roots of the characteristic equation

rad
s1=—a+ /az — wi = —268 X 103 —

sec

rad
Sy = —a— /az — wi = —3.73 X 106 —

sec

The complementary solution is

— 3 _ 6
voc(t) — Kle 268x10°t + Kze 3.73X10°t
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RLC Step Response — Example 1
R

The particular solution is the circuit’s
steady-state solution

Steady-state equivalent circuit: ﬁf Vo(t)

o Capacitor = open |

o Inductor — short — 1

So, the particular solution is |
Vop(£) = 1V 7

The general solution:
Vo (1) = Vpc(t) + Vop (t)
v, (t) = Kle—268><103t + Kze—3.73x106t +1V

Next, we’ll apply initial conditions to determine the unknown
coefficients, K; and K,
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RLC Step Response — Example 1

-
Initial Conditions:

400 10pH
o Fort <0 by: 0
_ it)
vs(t <0) =0 vo(t) () V-u(t) 100nF ==
i(t<0)=0
v,(t<0)=0 L
oAtt=0
v, (0)=1V

Capacitor voltage cannot change instantaneously
v,(0)=v,(t<0)=0V

Inductor current cannot change instantaneously
i(0)=i(t<0)=04
And, current is related to the output voltage, so

dv, o _
dt r=0 - UO(O) =0
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RLC Step Response — Example 1

The two initial conditions are: N
_ i
Vo (0)=0 (1) va(®) () Veu(t) 100nF ==
v,(0) =0 (2)

Use the initial conditions to determine K; and K,
o Applying the first initial condition

v, (t) = K;e51t + K,eS2t + 1V
v, (0) =K, + Ky, +1V = 0

K,=—-K —1V (3)
o Applying the second initial condition
vo(t) - SlKleslt + Sszeszt

V,(0) = s;K; + 5,K, =0 (4)
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RLC Step Response — Example 1
R

Substituting (3) into (4) 09 1w
N
51K1 — 52 (K1 +1 V) =0 vs,(t)@ IV-u(t) 100nF =
Ki(s1—s3) =s,-1V 2
S2
K, = -1V =-1.08V
S1— 52

Substituting the value of K; back into (3)

The step response for this over-damped RLC circuit is
v,(t) = —1.08V - 51t + 0.08V - e52t + 1V

v, (t) = —1.08V - 7268X10° | 08 |V . =373%10°C 4 1|
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RLC Step Response — Example 1
R

v, (t) = —1.08 V - =268%10°t 4 0 gg | . ¢=3.73X10°t 4 1|

Step Response of Overdamped RLC Circuit
T T T T

5 ; 5 ; ; Similar to first-order
A S T o § § response

5 5 ; | 5 o Sum of two decaying
DB- .............. ................. ................ ................ _ exponentials

o Monotonic increase
to final value

oAb f ................. ................ ................ ................ . Inltial Slope differs

—+—  from first-order
02k F ............................................... - response
D i ; ; i . O Increases aftert = 0
2 5 10 15 20 25

time [psec]
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Critically-Damped Circuit Response
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RLC Step Response — Example 2

Now consider the same circuit with

200 10pH Vo(t)
Wt — decreased resistance
i(t) . ,
_ 1 To determine the form of the response, first
(0 ) 1Vl 100nF == determine the damping ratio, {
<~ . a
¢ = o
where
R 200 _1X106rad
T T2 10uH sec
and
1 1 6rad
wo = = =1x106—
VLC /10 uH - 100 nF sec

The damping ratio is { = 1, and the circuit is critically-damped
0o The complementary solution will be of the following form:

Vo (t) = Kjes12t + K teS12t

K. Webb
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RLC Step Response — Example 2

-
The critically-damped circuit will have two real, identical poles

6rad
512=—0(=—1X10—
’ Ssec

The complementary solution is
Voo (£) = Kle—1><106t + Kzte—1><106t

The particular solution is still given by the steady-state response,
and has not changed

Vop(t) = Vp(t > ) =v(t>0) =1V

The general solution is the sum of the complementary and
particular solutions

v, () = K e 1X10°t | K 1e=1X10° | 1 |
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RLC Step Response — Example 2
R

0, () = K e 1X10°t 4 K te=1X10° 4 1|
Next, determine the unknown coefficients by applying initial conditions

o Following the same reasoning as in the previous example, initial conditions are
the same

v,(0) =0 and v,(0)=0

Applying the first initial condition
vO(O)=K1+1V:O - K]_:—].V

Applying the second initial condition

Uo(t) = Ki5122" + Kp(tsy pe%12" + es12t)

UO(O) = K1$1,2 + KZ =0 - KZ = _51,2K1 =—-1X 106 4

The step response of this critically-damped circuit:

v, (t) = —e™1X10°C — 1 x 105te~1X10°t 4+ 1V
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RLC Step Response — Example 2

v, (t) = —e~1X10°t _ 1 % 106te~1%10°t 4 1|

Step Response of Critically-Damped RLC Circuit
T T T T T T T

Similar to over-damped
response

Faster risetime
DRV o Dominant, slow pole

S SO NN N VRS RS SN SN L replaced by higher-

| A . frequency double pole

7 T e P Again’ increasing initial
I R UL U WU WL U VO W O slope differs from first-

| order response

R N A Response never exceeds

time [psec]

its final value

K. Webb ENGR 202



Damped Circuit Response
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RLC Step Response — Example 3
e

100 1001y 1) Again decrease the resistance
A A ) . . .
0 First, determine the damping ratio,
vo(t) () V-u(t) 100nF — o
! s
where, now
R 100 _500X103rad
T T2 10uH sec
and
1 1 1 % 106 rad
40 = = — -
" VLC /10 uH - 100 nF sec

The damping ratio is { = 0.5, and the circuit is under-damped
o The complementary solution will be of the following form:

Voo (t) = Kie % cos(wyt) + Kre ™% sin(wgyt)

K. Webb ENGR 202



RLC Step Response — Example 3

Ve (t) = Kie % cos(wyt) + K,e %t sin(wgt)

The damped natural frequency is

rad
Wy = w1 -2 = /wg — a2 =866 x 103 —

sec

The complementary solution is
Vo (t) = K e7500%10°t ¢45(866 x 103t) + K,e~500%10°t 5in (866 x 103t)
Once again, the particular solution is
Vop(t) = v,(t > ) =v,(t>0) =1V

The general solution is the sum of the complementary and particular
solutions

v, (t) = K, e~ 500%10%t 45(866 X 103t) + K,e 500%10%t in(866 x 103t) + 1V
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RLC Step Response — Example 3
e

v, (t) = Kie % cos(wgyt) + K,e %t sin(wgt) + 1V
Next, determine the unknown coefficients by applying initial conditions
v,(0) =0 and 7,(0)=0
Applying the first initial condition
v,(0) =K, +1V =0
K,=-1V
Applying the second initial condition
v, (t) = K [—wgze % sin(wyt) — ae % cos(wyt)]
+Ky[wge™ % cos(wyt) — ae™ % sin(wgyt)]
7,(0) = =Ky + Kywy = 0

a 500 x 103
KZ - Kl_ -

- = —0.58
wg 866 x 103
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RLC Step Response — Example 3

The step response for this under-damped RLC
circuit is

v, (t) = —e~500%10°t 45(866 x 103t)

—0.58e~500%10%t gin(866 x 103t) + 1V

o Damped oscillatory components
Overshoot
Possible ringing

O Exponential damping
Oscillatory components decay to zero
Rate of decay determined by «, real part of poles
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RLC Step Response — Example 3
e

Overshoot

Step Response of Underdamped RLC Circuit
T T T T T

e I G O Response exceeds its
VR0 N final value

Ringing
o Response oscillate
about its final value

SR RS SOSTN SSN SON SS S

v

I o Not much ringing in
S e S R R this example

o2 fo 4 0 Damping ratio

. o Overshoot and ringing
are inversely
proportional to ¢

time  [psec]
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H Step Response Characteristics
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Step Response — Risetime

.
Risetime

o The time it takes a

Step Response of Underdamped RLC Circuit
T T T T T

response to 12 _.i ........ i .......... ............................................................... ]
transition between YA

b N
two set levels o0 oo

o Typically 10% and 084
90% of full swing o

}D DE IR

o Occasionally 20% _ b
and 80% aali o

o Very rough

rz164usec __________ __________ ......... ;

. . T T O P =
approximation: O T 1 S S S S
2! ill 3] g 10 12 'Ilfl 16

1.8 o

L
r W

time [psec]
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Step Response — Overshoot

-
Overshoot

Step Response of Underdamped RLC Circuit
T T T T T

O Response’s excursion _Stop Resporse of Underdampod RLC Gruit_
beyond its final value i I ------ -

O Expressed as a
percentage of the full- - | [ = %05=16%
scale swing

o Inversely proportional T %0S = e V1T - 100%
to damping ratio Y O A0 . e S Y SIS

A o)

0.45 20 V2 +In2(0S)

0.5 16 . i i i | i i i
a 2 4 b d 10 12 14 16

0.6 10 time [usec]

0.7 5

K. Webb ENGR 202



Step Response — Settling Time

-
Settling time

Step Response of Underdamped RLC Circuit
1 1 I ] 1

N

10ak ........... ........... ..........

o The time it takes a »
response to settle (finally)
to within some percentage ooy
of the final value ] B S

o Typically +1%, +2%, or e 1y
i 5% 102k ......... ......... ..........

o Inversely proportional to = [____] i A Cliigl T
the real part of the 1R M o ........... AN i 1 : '
circuit’s poles (roots of the Y I IS S
characteristic equation) I

ng_ ......... t5=8.8usec\! ....... .......... .........
o For +19% settling time: Y73 WO SN S S SO SO SO S

09 . i . i | . i
4.6 4.6 0 7 f B 8 W 12 14 1
=~ = time [psec]

t
> a Cwy
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- Example Problems
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Determine:
o RandlL, such that
0.5.=10%
ty = 2usec (£1%)
o System poles
o v,(t)fort >0

Vs(t)

ﬁ\/‘ non Volt)
1V-u(t) C —=10nF
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Determine the minimum R 10y )
resistance for 0%
overshoot.

vs(t) () 1V-u(t) C ==10nF
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