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Second-Order Circuits

 In this and the previous section of notes, we 
consider second-order RLC circuits from two distinct 
perspectives:
 Frequency-domain
 Second-order, RLC filters

 Time-domain
 Second-order, RLC step response
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Transient Response of Second-
Order Circuits
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Second-Order Transient Response

 In ENGR 201 we looked at the transient response of 
first-order RC and RL circuits
 Applied KVL 
 Governing differential equation

 Solved the ODE 
 Expression for the step response

 For second-order circuits, process is the same:
 Apply KVL
 Second-order ODE

 Solve the ODE
 Second-order step response
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Step Response of RLC Circuit

 Determine the response of the following RLC circuit
 Source is a voltage step: 𝑣𝑣𝑠𝑠 𝑡𝑡 = 1𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡
 Output is the voltage across the capacitor

 Apply KVL around the loop

𝑣𝑣𝑠𝑠 𝑡𝑡 − 𝑖𝑖 𝑡𝑡 𝑅𝑅 − 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑣𝑣𝑜𝑜 𝑡𝑡 = 0

 Want an ODE in terms of 𝑣𝑣𝑜𝑜 𝑡𝑡
 Need to eliminate 𝑖𝑖 𝑡𝑡
 Can express 𝑖𝑖 𝑡𝑡 in terms of the output voltage:

𝑖𝑖 𝑡𝑡 = 𝐶𝐶 𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑

so,    𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶 𝑑𝑑2𝑣𝑣0
𝑑𝑑𝑡𝑡2
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Step Response of RLC Circuit

 Substituting in the expression for current, the 
KVL equation becomes

𝑣𝑣𝑠𝑠 𝑡𝑡 − 𝐶𝐶
𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑

𝑅𝑅 − 𝐿𝐿𝐿𝐿
𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2 − 𝑣𝑣𝑜𝑜 𝑡𝑡 = 0

 Rearranging gives the governing second-order ODE:

𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2 +

𝑅𝑅
𝐿𝐿
𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑 +

1
𝐿𝐿𝐿𝐿 𝑣𝑣𝑜𝑜 𝑡𝑡 =

1
𝐿𝐿𝐿𝐿 𝑣𝑣𝑠𝑠 𝑡𝑡

 A second-order, linear, non-homogeneous, ordinary differential equation
 Non-homogeneous, so solve in two parts

1) Find the complementary solution to the homogeneous equation
2) Find the particular solution for the step input

 General solution will be the sum of the two individual solutions:

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 + 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡
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Complementary Solution – 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡
 The homogeneous equation is obtained by setting the forcing 

function (input) to zero

𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2

+
𝑅𝑅
𝐿𝐿
𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑

+
1
𝐿𝐿𝐿𝐿

𝑣𝑣𝑜𝑜 𝑡𝑡 = 0

 For an ODE of this form, we assume a solution of the form

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑒𝑒𝑠𝑠𝑠𝑠

 Where 𝑠𝑠 is an unknown complex value. Then

𝑑𝑑𝑣𝑣𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑

= 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 and    𝑑𝑑
2𝑣𝑣𝑜𝑜𝑜𝑜
𝑑𝑑𝑡𝑡2

= 𝑠𝑠2𝑒𝑒𝑠𝑠𝑠𝑠

 Substituting back into the homogeneous ODE yields the 
characteristic equation

𝑠𝑠2 +
𝑅𝑅
𝐿𝐿
𝑠𝑠 +

1
𝐿𝐿𝐿𝐿

= 0
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Complementary Solution – 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡

𝑠𝑠2 +
𝑅𝑅
𝐿𝐿
𝑠𝑠 +

1
𝐿𝐿𝐿𝐿

= 0

 The characteristic equation can be rewritten as

𝑠𝑠2 + 2𝛼𝛼𝛼𝛼 + 𝜔𝜔𝑜𝑜2 = 0
or         

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑜𝑜𝑠𝑠 + 𝜔𝜔𝑜𝑜2 = 0

 The roots of the characteristic equation (also called poles) tell us about the:
 Form of the complementary solution
 Nature of the response  

 These roots (or poles) are

𝑠𝑠1 = −𝛼𝛼 + 𝛼𝛼2 − 𝜔𝜔02 , 𝑠𝑠2 = −𝛼𝛼 − 𝛼𝛼2 − 𝜔𝜔02

where
𝛼𝛼 = 𝑅𝑅

2𝐿𝐿
and    𝜔𝜔0 = 1

𝐿𝐿𝐿𝐿



K. Webb ENGR 202

11

Complementary Solution – 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡

 We’ve said we can write the characteristic equation as
𝑠𝑠2 + 2𝛼𝛼𝑠𝑠 + 𝜔𝜔0

2 = 0
or

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔0𝑠𝑠 + 𝜔𝜔0
2 = 0

 𝑇𝑇he damping ratio, 𝜁𝜁,  can be defined as

𝜁𝜁 =
𝛼𝛼
𝜔𝜔0

 A few key points:
 𝜔𝜔0 is the resonant frequency
 𝜁𝜁 characterizes the nature (sharpness) of the resonance
 Both are related to the roots of the characteristic equation
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Complementary Solution – 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡
 Complementary solution has the same form as that of a first-order 

circuit: 
𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑒𝑒𝑠𝑠𝑠𝑠

 𝑠𝑠 is the roots of the characteristic equation
 Now two values – identical or distinct
 May be complex

 Form of the solution depends on the values of 𝑠𝑠
 Can be characterized in terms of the value of 𝜁𝜁:

 𝜻𝜻 > 𝟏𝟏 – over-damped case:  
𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝐾𝐾2𝑒𝑒𝑠𝑠2𝑡𝑡

 𝜻𝜻 = 𝟏𝟏 – critically-damped case:
𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝐾𝐾2𝑡𝑡𝑒𝑒𝑠𝑠1𝑡𝑡

 𝜻𝜻 < 𝟏𝟏 – under-damped case: 
𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−𝛼𝛼𝑡𝑡 cos 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝛼𝛼𝛼𝛼 sin 𝜔𝜔𝑑𝑑𝑡𝑡
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Over-Damped RLC Circuit – 𝜁𝜁 > 1
 Roots of the characteristic equation are

𝑠𝑠1 = −𝛼𝛼 + 𝛼𝛼2 − 𝜔𝜔02 , 𝑠𝑠2 = −𝛼𝛼 − 𝛼𝛼2 − 𝜔𝜔02

 These are related to the damping ratio as 

𝜁𝜁 =
𝛼𝛼
𝜔𝜔0

 If 𝜁𝜁 > 1, then 
 𝛼𝛼 > 𝜔𝜔0
 𝛼𝛼2 − 𝜔𝜔0

2 > 0 – i.e., the discriminant is positive
 𝑠𝑠1 and 𝑠𝑠2 are real and distinct

 Complimentary solution has the following form

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝐾𝐾2𝑒𝑒𝑠𝑠2𝑡𝑡

 Recall that 𝜁𝜁 > 1 (actually, 𝜁𝜁 ≥ 0.707) corresponded to no peaking in the 
frequency domain
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Critically-Damped RLC Circuit – 𝜁𝜁 = 1

𝑠𝑠1 = −𝛼𝛼 + 𝛼𝛼2 − 𝜔𝜔02 , 𝑠𝑠1 = −𝛼𝛼 + 𝛼𝛼2 − 𝜔𝜔02

 If 𝜁𝜁 = 1, then 
 𝛼𝛼 = 𝜔𝜔0
 𝛼𝛼2 − 𝜔𝜔02 = 0 – i.e., the discriminant is zero
 𝑠𝑠1 and 𝑠𝑠2 are real and identical

 Complimentary solution has the following form

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝐾𝐾2𝑡𝑡𝑒𝑒𝑠𝑠1𝑡𝑡

 This is the lowest value of 𝜁𝜁 for which the step response is 
monotonic
 Constantly increasing
 No overshoot 
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Under-Damped RLC Circuit – 𝜁𝜁 < 1
 If 𝜁𝜁 < 1, then 

 𝛼𝛼 < 𝜔𝜔0
 𝛼𝛼2 − 𝜔𝜔02 < 0 – i.e., the discriminant is negative
 𝑠𝑠1 and 𝑠𝑠2 are a complex conjugate pair

 Complimentary solution has the following form

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−𝛼𝛼𝛼𝛼 cos 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝛼𝛼𝛼𝛼 sin 𝜔𝜔𝑑𝑑𝑡𝑡

 𝜔𝜔𝑑𝑑 is the damped natural frequency

𝜔𝜔𝑑𝑑 = 𝜔𝜔02 − 𝛼𝛼2 = 𝜔𝜔0 1 − 𝜁𝜁2

 Response now contains damped sinusoidal components
 Will exhibit overshoot
 Possible ringing
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Damping Cases – Geometric Interpretation

 Roots of characteristic equation (system poles) are, in general, complex
 Can plot them in the complex plane 
 Pole locations tell us a lot about the nature of the response

 Speed – risetime, settling time
 Overshoot, ringing

ζ < 1 – underdampedζ = 1 – critically-dampedζ > 1 – overdamped
Case 1: Case 2: Case 3:
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Under-Damped Case – 𝛼𝛼, 𝜁𝜁, and 𝜔𝜔0

 Under-damped case – 𝜁𝜁 < 1
 Roots are a complex-conjugate pair

𝑠𝑠1,2 = −𝛼𝛼 ± 𝑗𝑗𝜔𝜔𝑑𝑑

 𝛼𝛼 is the real part
 𝜔𝜔𝑑𝑑 is the imaginary part
 The magnitude of the root is

𝜔𝜔0 = 𝛼𝛼2 + 𝜔𝜔𝑑𝑑2

 Angle between imaginary axis and 
vector to the poles is related to 
damping

𝜁𝜁 =
𝛼𝛼
𝜔𝜔0

= sin 𝜃𝜃
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Particular solution – 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡

 General solution for the RLC step response is the sum of 
the complementary and particular solutions

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 + 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡

 We now have the complementary solution with two 
unknown constants, 𝐾𝐾1 and 𝐾𝐾2
 Constants to be determined later through application of 

initial conditions
 Next, determine the particular solution, 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡

 For a circuit driven by a step input, this is simply the circuit’s 
steady-state response

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜 𝑡𝑡 → ∞
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Particular solution – 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡

 Particular solution is the circuit’s steady-state response
 Inductor → short
 Capacitor → open

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜 𝑡𝑡 → ∞ = 𝑣𝑣𝑠𝑠 𝑡𝑡 > 0

 For a unit step input, the particular solution is
𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 1 𝑉𝑉
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Example Problems21
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Derive the governing 
differential equation for the 
following circuit.
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Determine:
 Damping ratio
 Damping case
 Characteristic equation
 Poles 
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Determine:
 Initial conditions
 Particular solution

For
𝑣𝑣𝑠𝑠 𝑡𝑡 = −1𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡 + 2𝑉𝑉
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Derive the governing 
differential equation for the 
following circuit.
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Over-Damped Circuit Response32
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RLC Step Response – Example 1

 Determine 𝑣𝑣𝑜𝑜 𝑡𝑡
 Input is a unit voltage step

𝑣𝑣𝑠𝑠 𝑡𝑡 = 1𝑉𝑉 ⋅ 𝑢𝑢 𝑡𝑡

 First, apply KVL

𝑣𝑣𝑠𝑠 𝑡𝑡 − 𝑖𝑖 𝑡𝑡 𝑅𝑅 − 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 − 𝑣𝑣𝑜𝑜 𝑡𝑡 = 0

 Eliminate 𝑖𝑖 𝑡𝑡 using the i-v relationship for the capacitor

𝑖𝑖 𝑡𝑡 = 𝐶𝐶 𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑

and      𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶 𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2

 This gives the second-order ODE in terms of 𝑣𝑣𝑜𝑜 𝑡𝑡 , which can then be 
rearranged to standard form

𝑣𝑣𝑠𝑠 𝑡𝑡 − 𝑅𝑅𝑅𝑅 𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑

− 𝐿𝐿𝐿𝐿 𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2

− 𝑣𝑣𝑜𝑜 𝑡𝑡 = 0 → 𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2

+ 𝑅𝑅
𝐿𝐿
𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑

+ 1
𝐿𝐿𝐿𝐿
𝑣𝑣𝑜𝑜 𝑡𝑡 = 1

𝐿𝐿𝐿𝐿
𝑣𝑣𝑠𝑠 𝑡𝑡
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RLC Step Response – Example 1

 Find the complementary solution, 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡
 The homogeneous equation

𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2 +

𝑅𝑅
𝐿𝐿
𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑑𝑑

+
1
𝐿𝐿𝐿𝐿

𝑣𝑣𝑜𝑜 𝑡𝑡 = 0

 The characteristic equation

𝑠𝑠2 +
𝑅𝑅
𝐿𝐿 𝑠𝑠 +

1
𝐿𝐿𝐿𝐿 = 0

 This can be rewritten as
𝑠𝑠2 + 2𝛼𝛼𝛼𝛼 + 𝜔𝜔0

2 = 0
where

𝛼𝛼 =
𝑅𝑅
2𝐿𝐿 =

40 Ω
2 ⋅ 10 𝜇𝜇𝜇𝜇 = 2 × 106

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

and 

𝜔𝜔0 =
1
𝐿𝐿𝐿𝐿

=
1

10 𝜇𝜇𝜇𝜇 ⋅ 100 𝑛𝑛𝑛𝑛
= 1 × 106

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠
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RLC Step Response – Example 1

 The damping ratio is

𝜁𝜁 =
𝛼𝛼
𝜔𝜔0

=
2 × 106

1 × 106
= 2

 𝜁𝜁 > 1, so the circuit is over-damped
 Solution is of the form

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝐾𝐾2𝑒𝑒𝑠𝑠2𝑡𝑡

 𝑠𝑠1 and 𝑠𝑠2 are the roots of the characteristic equation

𝑠𝑠1 = −𝛼𝛼 + 𝛼𝛼2 − 𝜔𝜔02 = −268 × 103
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠2 = −𝛼𝛼 − 𝛼𝛼2 − 𝜔𝜔02 = −3.73 × 106
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

 The complementary solution is 
𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−268×103𝑡𝑡 + 𝐾𝐾2𝑒𝑒−3.73×106𝑡𝑡
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RLC Step Response – Example 1

 The particular solution is the circuit’s 
steady-state solution

 Steady-state equivalent circuit:
 Capacitor → open
 Inductor → short 

 So, the particular solution is

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 1 𝑉𝑉

 The general solution:

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 + 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−268×103𝑡𝑡 + 𝐾𝐾2𝑒𝑒−3.73×106𝑡𝑡 + 1 𝑉𝑉

 Next, we’ll apply initial conditions to determine the unknown 
coefficients, 𝐾𝐾1 and 𝐾𝐾2
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 Initial Conditions:
 For 𝑡𝑡 < 0
 𝑣𝑣𝑠𝑠 𝑡𝑡 < 0 = 0
 𝑖𝑖 𝑡𝑡 < 0 = 0
 𝑣𝑣𝑜𝑜 𝑡𝑡 < 0 = 0

 At 𝑡𝑡 = 0
 𝑣𝑣𝑠𝑠 0 = 1 𝑉𝑉
 Capacitor voltage cannot change instantaneously

 𝑣𝑣𝑜𝑜 0 = 𝑣𝑣𝑜𝑜 𝑡𝑡 < 0 = 0 𝑉𝑉

 Inductor current cannot change instantaneously
 𝑖𝑖 0 = 𝑖𝑖 𝑡𝑡 < 0 = 0 𝐴𝐴

 And, current is related to the output voltage, so
 �𝑑𝑑𝑣𝑣𝑜𝑜

𝑑𝑑𝑑𝑑 𝑡𝑡=0
= 𝑣̇𝑣𝑜𝑜 0 = 0
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 The two initial conditions are:
𝑣𝑣𝑜𝑜 0 = 0 (1)

𝑣̇𝑣𝑜𝑜 0 = 0 (2)

 Use the initial conditions to determine 𝐾𝐾1 and 𝐾𝐾2
 Applying the first initial condition

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝐾𝐾2𝑒𝑒𝑠𝑠2𝑡𝑡 + 1 𝑉𝑉

𝑣𝑣𝑜𝑜 0 = 𝐾𝐾1 + 𝐾𝐾2 + 1 𝑉𝑉 = 0

𝐾𝐾2 = −𝐾𝐾1 − 1 𝑉𝑉 (3)

 Applying the second initial condition
𝑣̇𝑣𝑜𝑜 𝑡𝑡 = 𝑠𝑠1𝐾𝐾1𝑒𝑒𝑠𝑠1𝑡𝑡 + 𝑠𝑠2𝐾𝐾2𝑒𝑒𝑠𝑠2𝑡𝑡

𝑣̇𝑣𝑜𝑜 0 = 𝑠𝑠1𝐾𝐾1 + 𝑠𝑠2𝐾𝐾2 = 0 (4)
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 Substituting (3) into (4)
𝑠𝑠1𝐾𝐾1 − 𝑠𝑠2 𝐾𝐾1 + 1 𝑉𝑉 = 0

𝐾𝐾1 𝑠𝑠1 − 𝑠𝑠2 = 𝑠𝑠2 ⋅ 1 𝑉𝑉

𝐾𝐾1 =
𝑠𝑠2

𝑠𝑠1 − 𝑠𝑠2
⋅ 1 𝑉𝑉 = −1.08 𝑉𝑉

 Substituting the value of 𝐾𝐾1 back into (3) 
𝐾𝐾2 = −𝐾𝐾1 − 1 𝑉𝑉 = 0.08 𝑉𝑉

 The step response for this over-damped RLC circuit is
𝑣𝑣𝑜𝑜 𝑡𝑡 = −1.08 𝑉𝑉 ⋅ 𝑒𝑒𝑠𝑠1𝑡𝑡 + 0.08 𝑉𝑉 ⋅ 𝑒𝑒𝑠𝑠2𝑡𝑡 + 1 𝑉𝑉

𝑣𝑣𝑜𝑜 𝑡𝑡 = −1.08 𝑉𝑉 ⋅ 𝑒𝑒−268×103𝑡𝑡 + 0.08 𝑉𝑉 ⋅ 𝑒𝑒−3.73×106𝑡𝑡 + 1 𝑉𝑉
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 Similar to first-order 
response
 Sum of two decaying 

exponentials 
 Monotonic increase 

to final value
 Initial slope differs 

from first-order 
response
 Increases after 𝑡𝑡 = 0

𝑣𝑣𝑜𝑜 𝑡𝑡 = −1.08 𝑉𝑉 ⋅ 𝑒𝑒−268×103𝑡𝑡 + 0.08 𝑉𝑉 ⋅ 𝑒𝑒−3.73×106𝑡𝑡 + 1 𝑉𝑉
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 Now consider the same circuit with 
decreased resistance

 To determine the form of the response, first 
determine the damping ratio, 𝜁𝜁

𝜁𝜁 =
𝛼𝛼
𝜔𝜔0

where

𝛼𝛼 =
𝑅𝑅
2𝐿𝐿 =

20 Ω
2 ⋅ 10 𝜇𝜇𝜇𝜇 = 1 × 106

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

and

𝜔𝜔0 =
1
𝐿𝐿𝐿𝐿

=
1

10 𝜇𝜇𝜇𝜇 ⋅ 100 𝑛𝑛𝑛𝑛
= 1 × 106

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

 The damping ratio is 𝜁𝜁 = 1, and the circuit is critically-damped
 The complementary solution will be of the following form:

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1,2𝑡𝑡 + 𝐾𝐾2𝑡𝑡𝑒𝑒𝑠𝑠1,2𝑡𝑡
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 The critically-damped circuit will have two real, identical poles

𝑠𝑠1,2 = −𝛼𝛼 = −1 × 106
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

 The complementary solution is

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−1×106𝑡𝑡 + 𝐾𝐾2𝑡𝑡𝑒𝑒−1×106𝑡𝑡

 The particular solution is still given by the steady-state response, 
and has not changed

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜 𝑡𝑡 → ∞ = 𝑣𝑣𝑠𝑠 𝑡𝑡 > 0 = 1 𝑉𝑉

 The general solution is the sum of the complementary and 
particular solutions

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−1×106𝑡𝑡 + 𝐾𝐾2𝑡𝑡𝑒𝑒−1×106𝑡𝑡 + 1 𝑉𝑉
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𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−1×106𝑡𝑡 + 𝐾𝐾2𝑡𝑡𝑒𝑒−1×106𝑡𝑡 + 1 𝑉𝑉

 Next, determine the unknown coefficients by applying initial conditions
 Following the same reasoning as in the previous example, initial conditions are 

the same
𝑣𝑣𝑜𝑜 0 = 0 and     𝑣̇𝑣𝑜𝑜 0 = 0

 Applying the first initial condition
𝑣𝑣𝑜𝑜 0 = 𝐾𝐾1 + 1 𝑉𝑉 = 0 → 𝐾𝐾1 = −1 𝑉𝑉

 Applying the second initial condition
𝑣̇𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑠𝑠1,2𝑒𝑒𝑠𝑠1,2𝑡𝑡 + 𝐾𝐾2 𝑡𝑡𝑠𝑠1,2𝑒𝑒𝑠𝑠1,2𝑡𝑡 + 𝑒𝑒𝑠𝑠1,2𝑡𝑡

𝑣̇𝑣𝑜𝑜 0 = 𝐾𝐾1𝑠𝑠1,2 + 𝐾𝐾2 = 0 → 𝐾𝐾2 = −𝑠𝑠1,2𝐾𝐾1 = −1 × 106 𝑉𝑉

 The step response of this critically-damped circuit:

𝑣𝑣𝑜𝑜 𝑡𝑡 = −𝑒𝑒−1×106𝑡𝑡 − 1 × 106𝑡𝑡𝑒𝑒−1×106𝑡𝑡 + 1 𝑉𝑉
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 Similar to over-damped 
response

 Faster risetime
 Dominant, slow pole 

replaced by higher-
frequency double pole

 Again, increasing initial 
slope differs from first-
order response

 Response never exceeds 
its final value

𝑣𝑣𝑜𝑜 𝑡𝑡 = −𝑒𝑒−1×106𝑡𝑡 − 1 × 106𝑡𝑡𝑒𝑒−1×106𝑡𝑡 + 1 𝑉𝑉
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 Again decrease the resistance
 First, determine the damping ratio, 𝜁𝜁

𝜁𝜁 =
𝛼𝛼
𝜔𝜔0

where, now

𝛼𝛼 =
𝑅𝑅
2𝐿𝐿

=
10 Ω

2 ⋅ 10 𝜇𝜇𝜇𝜇
= 500 × 103

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

and

𝜔𝜔0 =
1
𝐿𝐿𝐿𝐿

=
1

10 𝜇𝜇𝜇𝜇 ⋅ 100 𝑛𝑛𝑛𝑛
= 1 × 106

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

 The damping ratio is 𝜁𝜁 = 0.5, and the circuit is under-damped
 The complementary solution will be of the following form:

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−𝛼𝛼𝛼𝛼 cos 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝛼𝛼𝛼𝛼 sin 𝜔𝜔𝑑𝑑𝑡𝑡
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𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−𝛼𝛼𝛼𝛼 cos 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝛼𝛼𝛼𝛼 sin 𝜔𝜔𝑑𝑑𝑡𝑡

 The damped natural frequency is

𝜔𝜔𝑑𝑑 = 𝜔𝜔0 1 − 𝜁𝜁2 = 𝜔𝜔02 − 𝛼𝛼2 = 866 × 103
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

 The complementary solution is

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−500×103𝑡𝑡 cos 866 × 103𝑡𝑡 + 𝐾𝐾2𝑒𝑒−500×103𝑡𝑡 sin 866 × 103𝑡𝑡

 Once again, the particular solution is

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜 𝑡𝑡 → ∞ = 𝑣𝑣𝑠𝑠 𝑡𝑡 > 0 = 1 𝑉𝑉

 The general solution is the sum of the complementary and particular 
solutions

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−500×103𝑡𝑡 cos 866 × 103𝑡𝑡 + 𝐾𝐾2𝑒𝑒−500×103𝑡𝑡 sin 866 × 103𝑡𝑡 + 1 𝑉𝑉
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𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−𝛼𝛼𝛼𝛼 cos 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝛼𝛼𝛼𝛼 sin 𝜔𝜔𝑑𝑑𝑡𝑡 + 1 𝑉𝑉

 Next, determine the unknown coefficients by applying initial conditions
𝑣𝑣𝑜𝑜 0 = 0 and     𝑣̇𝑣𝑜𝑜 0 = 0

 Applying the first initial condition

𝑣𝑣𝑜𝑜 0 = 𝐾𝐾1 + 1 𝑉𝑉 = 0
𝐾𝐾1 = −1 𝑉𝑉

 Applying the second initial condition

𝑣̇𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1 −𝜔𝜔𝑑𝑑𝑒𝑒−𝛼𝛼𝛼𝛼 sin 𝜔𝜔𝑑𝑑𝑡𝑡 − 𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼 cos 𝜔𝜔𝑑𝑑𝑡𝑡

+𝐾𝐾2 𝜔𝜔𝑑𝑑𝑒𝑒−𝛼𝛼𝛼𝛼 cos 𝜔𝜔𝑑𝑑𝑡𝑡 − 𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼 sin 𝜔𝜔𝑑𝑑𝑡𝑡

𝑣̇𝑣𝑜𝑜 0 = −𝐾𝐾1𝛼𝛼 + 𝐾𝐾2𝜔𝜔𝑑𝑑 = 0

𝐾𝐾2 = 𝐾𝐾1
𝛼𝛼
𝜔𝜔𝑑𝑑

= −
500 × 103

866 × 103 = −0.58
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 The step response for this under-damped RLC 
circuit is

𝑣𝑣𝑜𝑜 𝑡𝑡 = −𝑒𝑒−500×103𝑡𝑡 cos 866 × 103𝑡𝑡

−0.58𝑒𝑒−500×103𝑡𝑡 sin 866 × 103𝑡𝑡 + 1 𝑉𝑉

 Damped oscillatory components
 Overshoot
 Possible ringing

 Exponential damping
 Oscillatory components decay to zero
 Rate of decay determined by 𝛼𝛼, real part of poles
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 Overshoot
 Response exceeds its 

final value

 Ringing
 Response oscillate 

about its final value
 Not much ringing in 

this example

 Damping ratio
 Overshoot and ringing 

are inversely 
proportional to 𝜁𝜁
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 Risetime
 The time it takes a 

response to 
transition between 
two set levels

 Typically 10% and 
90% of full swing

 Occasionally 20% 
and 80%

 Very rough 
approximation:

𝑡𝑡𝑟𝑟 ≈
1.8
𝜔𝜔0

90%

10%

tr ≈ 1.64 μsec
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 Overshoot
 Response’s excursion 

beyond its final value
 Expressed as a 

percentage of the full-
scale swing

 Inversely proportional 
to damping ratio

%OS ≈ 16%

ζ %OS

0.45 20

0.5 16

0.6 10

0.7 5

𝜁𝜁 = −
ln(𝑂𝑂𝑂𝑂)

𝜋𝜋2 + ln2 𝑂𝑂𝑂𝑂

%𝑂𝑂𝑂𝑂 = 𝑒𝑒
− 𝜁𝜁𝜁𝜁

1−𝜁𝜁2 ⋅ 100%
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 Settling time
 The time it takes a 

response to settle (finally) 
to within some percentage 
of the final value

 Typically ±1%, ±2%, or 
± 5%

 Inversely proportional to 
the real part of the 
circuit’s poles (roots of the 
characteristic equation)

 For ±1% settling time:

𝑡𝑡𝑠𝑠 ≈
4.6
𝛼𝛼 =

4.6
𝜁𝜁𝜔𝜔0

+1%

-1%

𝑡𝑡𝑠𝑠 = 8.8 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
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Determine:
 R and L, such that 

 𝑂𝑂. 𝑆𝑆. = 10%
 𝑡𝑡𝑠𝑠 ≈ 2𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 (±1%)

 System poles
 𝑣𝑣𝑜𝑜 𝑡𝑡 for 𝑡𝑡 ≥ 0
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Determine the minimum 
resistance for 0% 
overshoot.
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