SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALS

ENGR 202 – Electrical Fundamentals II

Balanced Three-Phase Networks

- 3
- We are accustomed to *single-phase* power in our homes and offices

A single *line* voltage referenced to a *neutral*

- Electrical power is generated, transmitted, and largely consumed (by industrial customers) as three-phase power
 - Three individual line voltages and (possibly) a neutral
 Line voltages all differ in phase by ±120°

Δ- and Y-Connected Networks

- 4
- Two possible three-phase configurations
 Applies to both *sources* and *loads*

Y-connected network has a neutral node
 Δ-connected network has no neutral

Line-to-Neutral Voltages

- 5
- In the Y network, voltages V_{an} , V_{bn} , and V_{cn} are *line-to-neutral voltages*
- □ A three-phase source is *balanced* if
 - Line-to-neutral voltages have equal magnitudes
 - Line-to-neutral voltage are each 120° out of phase with one another

- A three-phase network is balanced if
 - Sources are balanced
 - The impedances connected to each phase are equal

Line-to-Neutral Voltages

The line-to-neutral voltages are

$$V_{an} = V_{LN} \angle 0^{\circ}$$
$$V_{bn} = V_{LN} \angle -120^{\circ}$$
$$V_{cn} = V_{LN} \angle -240^{\circ} = V_{LN} \angle +120^{\circ}$$

This is a *positive-sequence* or *abc-sequence* source

D V_{an} leads V_{bn} , which leads V_{cn}

Can also have a *negative-* or *acb-sequence* source

D V_{an} leads V_{cn} , which leads V_{bn}

We'll always assume *positive*-sequence sources

Line-to-Line Voltages

7

- The voltages between the three phases are *line-to-line voltages*
- Apply KVL to relate line-to-line voltages to line-toneutral voltages

$$V_{ab} - V_{an} + V_{bn} = 0$$
$$V_{ab} = V_{an} - V_{bn}$$

We know that

$$V_{an} = V_{LN} \angle 0^{\circ}$$

and

$$\boldsymbol{V_{bn}} = \boldsymbol{V_{LN}} \boldsymbol{\angle} - 120^{\circ}$$

SO

$$V_{ab} = V_{LN} \angle 0^{\circ} - V_{LN} \angle - 120^{\circ} = V_{LN} (1 \angle 0^{\circ} - 1 \angle - 120^{\circ})$$
$$V_{ab} = V_{LN} \left[1 - \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right) \right] = V_{LN} \left[\frac{3}{2} + j\frac{\sqrt{3}}{2} \right]$$
$$V_{ab} = \sqrt{3}V_{LN} \angle 30^{\circ}$$

Line-to-Line Voltages

8

 \Box Again applying KVL, we can find V_{bc}

$$V_{bc} = V_{bn} - V_{cn}$$

$$V_{bc} = V_{LN} \angle -120^{\circ} - V_{LN} \angle 120^{\circ}$$

$$V_{bc} = V_{LN} \left[\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right) - \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right) \right]$$

$$V_{bc} = V_{LN} \left(-j\sqrt{3} \right)$$

$$V_{bc} = \sqrt{3}V_{LN} \angle -90^{\circ}$$

□ Similarly,

$$V_{ca} = \sqrt{3} V_{LN} \angle 150^{\circ}$$

Line-to-Line Voltages

- 9
- □ The line-to-line voltages, with V_{an} as the reference:

$$V_{ab} = \sqrt{3}V_{LN} \angle 30^{\circ}$$
$$V_{bc} = \sqrt{3}V_{LN} \angle -90^{\circ}$$
$$V_{ca} = \sqrt{3}V_{LN} \angle 150^{\circ}$$

 $\hfill\square$ Line-to-line voltages are $\sqrt{3}$ times the line-to-neutral voltage

□ Can also express in terms of individual line-to-neutral voltages:

$$V_{ab} = \sqrt{3}V_{an} \angle 30^{\circ}$$
$$V_{bc} = \sqrt{3}V_{bn} \angle 30^{\circ}$$
$$V_{ca} = \sqrt{3}V_{cn} \angle 30^{\circ}$$

Line Currents in Balanced 3ϕ Networks

- 10
- We can use the line-toneutral voltages to determine the line currents
 - Y-connected source and load
 - Balanced load all impedances are equal: Z_Y

$$I_{a} = \frac{V_{AN}}{Z_{Y}} = \frac{V_{LN} \angle 0^{\circ}}{Z_{Y}}$$
$$I_{b} = \frac{V_{BN}}{Z_{Y}} = \frac{V_{LN} \angle -120^{\circ}}{Z_{Y}}$$
$$I_{c} = \frac{V_{CN}}{Z_{Y}} = \frac{V_{LN} \angle +120^{\circ}}{Z_{Y}}$$

 Line currents are balanced as long as the source and load are balanced

Neutral Current in Balanced 3ϕ Networks

11

 Apply KCL to determine the neutral current

$$I_n = I_a + I_b + I_c$$

$$I_n = \frac{V_{LN}}{Z_Y} \left[1 \angle 0^\circ + 1 \angle -120^\circ + 1 \angle 120^\circ \right]$$
$$I_n = \frac{V_{LN}}{Z_Y} \left[1 + \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right) + \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right) \right]$$
$$I_n = 0$$

 The neutral conductor carries no current in a balanced three-phase network

¹² Delta- & Wye-Connected Networks

Three-Phase Network Configurations

- 13
- As for sources, three-phase loads can also be connected in two different configurations

- \Box The Y load has a neutral connection, but the Δ load does not
- Currents in a Y-connected load are the line currents we just determined
- □ Next, we'll look at currents in a Δ -connected load

K. Webb

Balanced Δ -Connected Loads

- 14
- We can use line-to-line voltages to determine the currents in Δconnected loads

$$I_{AB} = \frac{V_{AB}}{Z_{\Delta}} = \frac{\sqrt{3}V_{AN} \angle 30^{\circ}}{Z_{\Delta}} = \frac{\sqrt{3}V_{LN} \angle 30^{\circ}}{Z_{\Delta}}$$
$$I_{BC} = \frac{V_{BC}}{Z_{\Delta}} = \frac{\sqrt{3}V_{BN} \angle 30^{\circ}}{Z_{\Delta}} = \frac{\sqrt{3}V_{LN} \angle -90^{\circ}}{Z_{\Delta}}$$
$$I_{CA} = \frac{V_{CA}}{Z_{\Delta}} = \frac{\sqrt{3}V_{CN} \angle 30^{\circ}}{Z_{\Delta}} = \frac{\sqrt{3}V_{LN} \angle 150^{\circ}}{Z_{\Delta}}$$

Balanced Δ -Connected Loads

 Applying KCL, we can determine the line currents

$$I_a = I_{AB} - I_{CA}$$
$$I_a = \frac{\sqrt{3}V_{LN}}{Z_{\Delta}} [1 \angle 30^\circ - 1 \angle 150^\circ]$$

$$I_{a} = \frac{\sqrt{3}V_{LN}}{Z_{\Delta}} \left[\left(\frac{\sqrt{3}}{2} + j\frac{1}{2} \right) - \left(-\frac{\sqrt{3}}{2} + j\frac{1}{2} \right) \right] = \frac{\sqrt{3}V_{LN}}{Z_{\Delta}} \left[\sqrt{3} \right] = \frac{3V_{LN}}{Z_{\Delta}}$$

□ The other line currents can be found similarly:

$$I_{a} = \frac{3V_{LN} \angle 0^{\circ}}{Z_{\Delta}} = \sqrt{3}I_{AB} \angle -30^{\circ}$$
$$I_{b} = \frac{3V_{LN} \angle -120^{\circ}}{Z_{\Delta}} = \sqrt{3}I_{BC} \angle -30^{\circ}$$
$$I_{c} = \frac{3V_{LN} \angle 120^{\circ}}{Z_{\Delta}} = \sqrt{3}I_{CA} \angle -30^{\circ}$$

$\Delta - Y$ Conversion

- 16
- Analysis is often simpler when dealing with Yconnected loads
 - Would like a way to convert Δ loads to Y loads (and vice versa)

□ For a Y load and a Δ load to be equivalent, they must result in equal line currents

 $\Delta - Y$ Conversion

17

□ Line currents for a *Y*-connected load:

$$I_{a} = \frac{V_{LN} \angle 0^{\circ}}{Z_{Y}}$$
$$I_{b} = \frac{V_{LN} \angle -120^{\circ}}{Z_{Y}}$$
$$I_{c} = \frac{V_{LN} \angle 120^{\circ}}{Z_{Y}}$$

 \Box For a Δ -connected load:

$$I_{a} = \frac{3V_{LN} \angle 0^{\circ}}{Z_{\Delta}}$$
$$I_{b} = \frac{3V_{LN} \angle -120^{\circ}}{Z_{\Delta}}$$
$$I_{c} = \frac{3V_{LN} \angle 120^{\circ}}{Z_{\Delta}}$$

$\Delta - Y$ Conversion

- 18
- Equating any of the three line currents, we can determine the impedance relationship

Line-to-Neutral Schematics

- 19
- For balanced networks, we can simplify our analysis by considering only a single phase
 - A per-phase analysis
 - Other phases are simply shifted by $\pm 120^{\circ}$
- □ For example, a balanced *Y*-*Y* circuit:

One-Line Diagrams

Power systems are often depicted using one-line diagrams or single-line diagrams

Not a schematic – not all wiring is shown

For example:

Power in Balanced 3ϕ Networks

Instantaneous Power

 We'll first determine the instantaneous power supplied by the source

Neglecting line impedance, this is also the power absorbed by the load

 \Box The phase *a* line-to-neutral voltage is

$$v_{an}(t) = \sqrt{2}V_{LN}\cos(\omega t + \delta)$$

 \Box The phase *a* current is

$$i_a(t) = \sqrt{2}I_L\cos(\omega t + \beta)$$

where β depends on the load impedance

Instantaneous Power

- 29
- The instantaneous power delivered out of phase a of the source is
 - $p_{a}(t) = v_{an}(t)i_{a}(t)$ $p_{a}(t) = 2V_{LN}I_{L}\cos(\omega t + \delta)\cos(\omega t + \beta)$ $p_{a}(t) = V_{LN}I_{L}\cos(\delta \beta) + V_{LN}I_{L}\cos(2\omega t + \delta + \beta)$
- The b and c phases are shifted by ±120°
 Power from each of these phases is

$$p_b(t) = V_{LN}I_L\cos(\delta - \beta) + V_{LN}I_L\cos(2\omega t + \delta + \beta - 240^\circ)$$
$$p_c(t) = V_{LN}I_L\cos(\delta - \beta) + V_{LN}I_L\cos(2\omega t + \delta + \beta + 240^\circ)$$

Instantaneous Power

The total power delivered by the source is the sum of the power from each phase

$$p_{3\phi}(t) = p_a(t) + p_b(t) + p_c(t)$$

$$p_{3\phi}(t) = 3V_{LN}I_L\cos(\delta - \beta)$$

$$+V_{LN}I_L[\cos(2\omega t + \delta + \beta) + \cos(2\omega t + \delta + \beta - 240^\circ) + \cos(2\omega t + \delta + \beta + 240^\circ)]$$

Everything in the square brackets cancels, leaving

$$p_{3\phi}(t) = 3V_{LN}I_L\cos(\delta - \beta) = P_{3\phi}$$

Power in a balanced 3ϕ **network is constant**

In terms of line-to-line voltages, the power is

$$P_{3\phi} = \sqrt{3} V_{LL} I_L \cos(\delta - \beta)$$

Complex Power

□ The *complex power* delivered by phase *a* is

$$S_{a} = V_{an}I_{a}^{*} = V_{LN} \angle \delta(I_{L} \angle \beta)^{*}$$

$$S_{a} = V_{LN}I_{L} \angle (\delta - \beta)$$

$$S_{a} = V_{LN}I_{L} \cos(\delta - \beta) + jV_{LN}I_{L} \sin(\delta - \beta)$$

□ For phase *b*, complex power is

$$S_{b} = V_{bn}I_{b}^{*} = V_{LN} \angle (\delta - 120^{\circ}) (I_{L} \angle (\beta - 120^{\circ}))^{*}$$
$$S_{b} = V_{LN}I_{L} \angle (\delta - \beta)$$
$$S_{b} = V_{LN}I_{L} \cos(\delta - \beta) + jV_{LN}I_{L} \sin(\delta - \beta)$$

 \Box This is equal to S_a and also to phase S_c

Complex Power

The total complex power is

$$S_{3\phi} = S_a + S_b + S_c$$

$$S_{3\phi} = 3V_{LN}I_L Z(\delta - \beta)$$
$$S_{3\phi} = 3V_{LN}I_L \cos(\delta - \beta) + j3V_{LN}I_L \sin(\delta - \beta)$$

The *apparent power* is the magnitude of the complex power

$$S_{3\phi} = 3V_{LN}I_L$$

Complex power can be expressed in terms of the real and reactive power

$$S_{3\phi} = P_{3\phi} + jQ_{3\phi}$$

The real power, as we've already seen is

$$P_{3\phi} = 3V_{LN}I_L\cos(\delta - \beta)$$

The *reactive power* is

$$Q_{3\phi} = 3V_{LN}I_L\sin(\delta - \beta)$$

Advantages of Three-Phase Power

- Advantages of three-phase power:
 - For a given amount of power, half the amount of wire required compared to single-phase
 - No return current on neutral conductor

Constant real power

- Constant motor torque
- Less noise and vibration of machinery

Three-Phase Power – Example

- Determine
 - Load voltage, V_{AB}
 - Power triangle for the load
 - Power factor at the load
- We'll do a per-phase analysis, so first convert the Δ load to a Y load

$$Z_Y = \frac{Z_\Delta}{3} = 1 + j0.5 \ \Omega$$

Three-Phase Power – Example

36

□ The per-phase circuit:

□ The line current is

$$I_{L} = \frac{V_{an}}{Z_{L} + Z_{Y}} = \frac{120\angle 0^{\circ} V}{1.1 + j1 \Omega} = \frac{120\angle 0^{\circ} V}{1.45\angle 42.3^{\circ} \Omega}$$
$$I_{L} = 80.7\angle - 42.3^{\circ} A$$

□ The line-to-neutral voltage at the load is

$$V_{AN} = I_L Z_Y = (80.7 \angle -42.3^{\circ} A)(1+j0.5 \Omega)$$
$$V_{AN} = (80.7 \angle -42.3^{\circ} A)(1.12 \angle 26.6^{\circ} \Omega)$$
$$V_{AN} = 90.25 \angle -15.71^{\circ} V$$

Three-Phase Power – Example

Calculate the line-to-line voltage from the line-to-neutral voltage

$$V_{AB} = \sqrt{3}V_{AN} \angle 30^{\circ}$$
$$V_{AB} = 156 \angle 14.3^{\circ} V$$

 Alternatively, we could calculate line-to-line voltage from the two line-to-neutral voltages.

■ The line-to-neutral voltage at phase *B* is

 $V_{BN} = 90.25 \angle -135.71^{\circ} V$

So the line-to-line voltage is given by

$$V_{AB} = V_{AN} - V_{BN} = 156 \angle 14.3^{\circ} V$$

Three-Phase Power – Example

38

The complex power absorbed by the load is

$$S_{3\phi} = 3S_A = 3V_{AN}I_L^*$$

$$S_{3\phi} = 3(90.25\angle - 15.71^\circ V)(80.7\angle - 42.3^\circ A)^*$$

$$S_{3\phi} = 21.85 \angle 26.6^\circ kVA$$

$$S_{3\phi} = 19.53 + j9.78 kVA$$

□ The apparent power:

$$S_{3\phi} = 21.85 \ kVA$$

□ Real power:

$$P = 19.53 \ kW$$

□ Reactive power:

$$Q = 9.78 \, kvar$$

Three-Phase Power – Example

39

The power triangle at the load:

The power factor at the load is

$$p.f. = \cos(26.6^\circ) = \frac{P}{S} = \frac{19.53 \ kW}{21.85 \ kVA}$$
$$p.f. = 0.89 \ lagging$$

Determine complex power: From the source To the load To the line $V_{an} + a$ V

b

30 + j15 Ω

В

Line-to-line voltage at the load is maintained at 4.16 kV.

What is the voltage at the source? How much complex power is delivered by the source?

Line-to-line voltage at the load is maintained at 4.16 kV. Determine:

- Power factor at load
- Power triangle at load
- Loss in Lines

Add power factor correction to improve p.f. to 0.98, lagging.

Determine:

- Power triangle at load
- Loss in Lines

