SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALS

ENGR 202 - Electrical Fundamentals II

Balanced Three-Phase Networks

\square We are accustomed to single-phase power in our homes and offices

- A single line voltage referenced to a neutral

\square Electrical power is generated, transmitted, and largely consumed (by industrial customers) as three-phase power
\square Three individual line voltages and (possibly) a neutral
\square Line voltages all differ in phase by $\pm 120^{\circ}$

Δ - and Y-Connected Networks

\square Two possible three-phase configurations

- Applies to both sources and loads

Y-Connected Source

Δ-Connected Source

\square Y-connected network has a neutral node
$\square \Delta$-connected network has no neutral

Line-to-Neutral Voltages

\square In the Y network, voltages $V_{a n}, V_{b n}$, and $V_{c n}$ are line-to-neutral voltages
\square A three-phase source is balanced if

- Line-to-neutral voltages have equal magnitudes
- Line-to-neutral voltage are each 120°
 out of phase with one another
\square A three-phase network is balanced if
- Sources are balanced
- The impedances connected to each phase are equal

Line-to-Neutral Voltages

\square The line-to-neutral voltages are

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a n}}=V_{L N} \angle 0^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}}=V_{L N} \angle-120^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}}=V_{L N} \angle-240^{\circ}=V_{L N} \angle+120^{\circ}
\end{aligned}
$$

\square This is a positive-sequence or abc-sequence source

- $\boldsymbol{V}_{\boldsymbol{a n}}$ leads $\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}}$, which leads $\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}}$
\square Can also have a negative- or acb-sequence source
- $\boldsymbol{V}_{\boldsymbol{a n}}$ leads $\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}}$, which leads $\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}}$
\square We'll always assume positive-sequence sources

Line-to-Line Voltages

\square The voltages between the three phases are line-toline voltages
\square Apply KVL to relate line-to-line voltages to line-toneutral voltages

$$
\begin{aligned}
& V_{a b}-V_{a n}+V_{b n}=0 \\
& V_{a b}=V_{a n}-V_{b n}
\end{aligned}
$$

\square We know that

$$
\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{n}}=V_{L N} \angle 0^{\circ}
$$

and

$$
V_{b n}=V_{L N} \angle-120^{\circ}
$$

so

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=V_{L N} \angle 0^{\circ}-V_{L N} \angle-120^{\circ}=V_{L N}\left(1 \angle 0^{\circ}-1 \angle-120^{\circ}\right) \\
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=V_{L N}\left[1-\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)\right]=V_{L N}\left[\frac{3}{2}+j \frac{\sqrt{3}}{2}\right] \\
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=\sqrt{3} V_{L N} \angle 30^{\circ}
\end{aligned}
$$

Line-to-Line Voltages

\square Again applying KVL, we can find $\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}$

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}}-\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=V_{L N} \angle-120^{\circ}-V_{L N} \angle 120^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=V_{L N}\left[\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)-\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)\right] \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=V_{L N}(-j \sqrt{3}) \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\sqrt{3} V_{L N} \angle-90^{\circ}
\end{aligned}
$$

\square Similarly,

$$
\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{a}}=\sqrt{3} V_{L N} \angle 150^{\circ}
$$

Line-to-Line Voltages

\square The line-to-line voltages, with $V_{a n}$ as the reference:

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=\sqrt{3} V_{L N} \angle 30^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\sqrt{3} V_{L N} \angle-90^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{c} \boldsymbol{a}}=\sqrt{3} V_{L N} \angle 150^{\circ}
\end{aligned}
$$

\square Line-to-line voltages are $\sqrt{3}$ times the line-toneutral voltage

\square Can also express in terms of individual line-to-neutral voltages:

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a} b}=\sqrt{3} \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{n}} \angle 30^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\sqrt{3} \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}} \angle 30^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{c} \boldsymbol{a}}=\sqrt{3} \boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}} \angle 30^{\circ}
\end{aligned}
$$

Line Currents in Balanced 3ϕ Networks

\square We can use the line-toneutral voltages to determine the line currents

- Y-connected source and load
- Balanced load - all impedances are equal: Z_{Y}

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{\boldsymbol{V}_{A N}}{Z_{Y}}=\frac{V_{L N} \angle 0^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{\boldsymbol{V}_{\boldsymbol{B N}}}{Z_{Y}}=\frac{V_{L N} \angle-120^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{\boldsymbol{V}_{\boldsymbol{C N}}}{Z_{Y}}=\frac{V_{L N} \angle+120^{\circ}}{Z_{Y}}
\end{aligned}
$$

\square Line currents are balanced as long as the source and load are balanced

Neutral Current in Balanced 3ϕ Networks

\square Apply KCL to determine the neutral current

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{n}}=\boldsymbol{I}_{\boldsymbol{a}}+\boldsymbol{I}_{\boldsymbol{b}}+\boldsymbol{I}_{\boldsymbol{c}} \\
& \boldsymbol{I}_{\boldsymbol{n}}=\frac{V_{L N}}{Z_{Y}}\left[1 \angle 0^{\circ}+1 \angle-120^{\circ}+1 \angle 120^{\circ}\right] \\
& \boldsymbol{I}_{\boldsymbol{n}}=\frac{V_{L N}}{Z_{Y}}\left[1+\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)+\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)\right] \\
& \boldsymbol{I}_{\boldsymbol{n}}=0
\end{aligned}
$$

\square The neutral conductor carries no current in a balanced three-phase network

12 Delta- \& Wye-Connected Networks

Three-Phase Network Configurations

\square As for sources, three-phase loads can also be connected in two different configurations

\square The Y load has a neutral connection, but the Δ load does not
\square Currents in a Y-connected load are the line currents we just determined
\square Next, we'll look at currents in a Δ-connected load

Balanced Δ-Connected Loads

\square We can use line-to-line voltages to determine the currents in Δ connected loads

$$
\begin{aligned}
& \boldsymbol{I}_{A B}=\frac{\boldsymbol{V}_{A B}}{Z_{\Delta}}=\frac{\sqrt{3} \boldsymbol{V}_{\boldsymbol{A N}} \angle 30^{\circ}}{Z_{\Delta}}=\frac{\sqrt{3} V_{L N} \angle 30^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{B C}}=\frac{\boldsymbol{V}_{\boldsymbol{B} \boldsymbol{C}}}{Z_{\Delta}}=\frac{\sqrt{3} \boldsymbol{V}_{\boldsymbol{B N}} \angle 30^{\circ}}{Z_{\Delta}}=\frac{\sqrt{3} V_{L N} \angle-90^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{C A}}=\frac{\boldsymbol{V}_{\boldsymbol{C A}}}{Z_{\Delta}}=\frac{\sqrt{3} \boldsymbol{V}_{\boldsymbol{}} \angle 30^{\circ}}{Z_{\Delta}}=\frac{\sqrt{3} V_{L N} \angle 150^{\circ}}{Z_{\Delta}}
\end{aligned}
$$

Balanced Δ-Connected Loads

\square Applying KCL, we can determine the line currents

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\boldsymbol{I}_{\boldsymbol{A B}}-\boldsymbol{I}_{\boldsymbol{C A}} \\
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{\sqrt{3} V_{L N}}{Z_{\Delta}}\left[1 \angle 30^{\circ}-1 \angle 150^{\circ}\right]
\end{aligned}
$$

$$
\boldsymbol{I}_{\boldsymbol{a}}=\frac{\sqrt{3} V_{L N}}{Z_{\Delta}}\left[\left(\frac{\sqrt{3}}{2}+j \frac{1}{2}\right)-\left(-\frac{\sqrt{3}}{2}+j \frac{1}{2}\right)\right]=\frac{\sqrt{3} V_{L N}}{Z_{\Delta}}[\sqrt{3}]=\frac{3 V_{L N}}{Z_{\Delta}}
$$

\square The other line currents can be found similarly:

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{3 V_{L N} \angle 0^{\circ}}{Z_{\Delta}}=\sqrt{3} \boldsymbol{I}_{\boldsymbol{A B}} \angle-30^{\circ} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{3 V_{L N} \angle-120^{\circ}}{Z_{\Delta}}=\sqrt{3} \boldsymbol{I}_{\boldsymbol{B C}} \angle-30^{\circ} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{3 V_{L N} \angle 120^{\circ}}{Z_{\Delta}}=\sqrt{3} \boldsymbol{I}_{C A} \angle-30^{\circ}
\end{aligned}
$$

$\Delta-Y$ Conversion

\square Analysis is often simpler when dealing with Y connected loads

- Would like a way to convert Δ loads to Y loads (and vice versa)

\square For a Y load and a Δ load to be equivalent, they must result in equal line currents

$\Delta-Y$ Conversion

\square Line currents for a Y-connected load:

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{V_{L N} \angle 0^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{V_{L N} \angle-120^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{V_{L N} \angle 120^{\circ}}{Z_{Y}}
\end{aligned}
$$

\square For a Δ-connected load:

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{3 V_{L N} \angle 0^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{3 V_{L N} \angle-120^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{3 V_{L N} \angle 120^{\circ}}{Z_{\Delta}}
\end{aligned}
$$

$\Delta-Y$ Conversion

\square Equating any of the three line currents, we can determine the impedance relationship

$$
\begin{aligned}
& \frac{V_{L N} \angle 0^{\circ}}{Z_{Y}}=\frac{3 V_{L N} \angle 0^{\circ}}{Z_{\Delta}} \\
& Z_{Y}=\frac{Z_{\Delta}}{3} \quad \text { and } Z \Delta=3 Z_{Y}
\end{aligned}
$$

Line-to-Neutral Schematics

\square For balanced networks, we can simplify our analysis by considering only a single phase

- A per-phase analysis
- Other phases are simply shifted by $\pm 120^{\circ}$
\square For example, a balanced $Y-Y$ circuit:

One-Line Diagrams

\square Power systems are often depicted using one-line diagrams or single-line diagrams

- Not a schematic - not all wiring is shown
\square For example:

Example Problems

Determine:

$\square I_{a}$

- \mathbf{V}_{AN}
- \mathbf{V}_{AB}

Determine:

- I_{a}
- \mathbf{V}_{AB}
- \mathbf{V}_{AN}
- $\mathbf{V}_{\text {BC }}$

Power in Balanced 3 ϕ Networks

Instantaneous Power

\square We'll first determine the instantaneous power supplied by the source

- Neglecting line impedance, this is also the power absorbed by the load
\square The phase a line-to-neutral voltage is

$$
v_{a n}(t)=\sqrt{2} V_{L N} \cos (\omega t+\delta)
$$

\square The phase a current is

$$
i_{a}(t)=\sqrt{2} I_{L} \cos (\omega t+\beta)
$$

where β depends on the load impedance

Instantaneous Power

\square The instantaneous power delivered out of phase a of the source is

$$
\begin{aligned}
& p_{a}(t)=v_{a n}(t) i_{a}(t) \\
& p_{a}(t)=2 V_{L N} I_{L} \cos (\omega t+\delta) \cos (\omega t+\beta) \\
& p_{a}(t)=V_{L N} I_{L} \cos (\delta-\beta)+V_{L N} I_{L} \cos (2 \omega t+\delta+\beta)
\end{aligned}
$$

\square The b and c phases are shifted by $\pm 120^{\circ}$

- Power from each of these phases is

$$
\begin{aligned}
& p_{b}(t)=V_{L N} I_{L} \cos (\delta-\beta)+V_{L N} I_{L} \cos \left(2 \omega t+\delta+\beta-240^{\circ}\right) \\
& p_{c}(t)=V_{L N} I_{L} \cos (\delta-\beta)+V_{L N} I_{L} \cos \left(2 \omega t+\delta+\beta+240^{\circ}\right)
\end{aligned}
$$

Instantaneous Power

\square The total power delivered by the source is the sum of the power from each phase

$$
\begin{aligned}
& p_{3 \phi}(t)=p_{a}(t)+p_{b}(t)+p_{c}(t) \\
& p_{3 \phi}(t)=3 V_{L N} I_{L} \cos (\delta-\beta) \\
& \quad+V_{L N} I_{L}[\cos (2 \omega t+\delta+\beta) \\
& \quad+\cos \left(2 \omega t+\delta+\beta-240^{\circ}\right) \\
& \left.\quad+\cos \left(2 \omega t+\delta+\beta+240^{\circ}\right)\right]
\end{aligned}
$$

\square Everything in the square brackets cancels, leaving

$$
p_{3 \phi}(t)=3 V_{L N} I_{L} \cos (\delta-\beta)=P_{3 \phi}
$$

\square Power in a balanced $3 \boldsymbol{\phi}$ network is constant
\square In terms of line-to-line voltages, the power is

$$
P_{3 \phi}=\sqrt{3} V_{L L} I_{L} \cos (\delta-\beta)
$$

Complex Power

\square The complex power delivered by phase a is

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{a}}=\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{a}}^{*}=V_{L N} \angle \delta\left(I_{L} \angle \beta\right)^{*} \\
& \boldsymbol{S}_{\boldsymbol{a}}=V_{L N} I_{L} \angle(\delta-\beta) \\
& \boldsymbol{S}_{\boldsymbol{a}}=V_{L N} I_{L} \cos (\delta-\beta)+j V_{L N} I_{L} \sin (\delta-\beta)
\end{aligned}
$$

\square For phase b, complex power is

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{b}}=\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{b}}^{*}=V_{L N} \angle\left(\delta-120^{\circ}\right)\left(I_{L} \angle\left(\beta-120^{\circ}\right)\right)^{*} \\
& \boldsymbol{S}_{\boldsymbol{b}}=V_{L N} I_{L} \angle(\delta-\beta) \\
& \boldsymbol{S}_{\boldsymbol{b}}=V_{L N} I_{L} \cos (\delta-\beta)+j V_{L N} I_{L} \sin (\delta-\beta)
\end{aligned}
$$

\square This is equal to $\boldsymbol{S}_{\boldsymbol{a}}$ and also to phase $\boldsymbol{S}_{\boldsymbol{c}}$

Complex Power

\square The total complex power is

$$
\begin{aligned}
& \boldsymbol{S}_{\mathbf{3 \boldsymbol { \phi }}}=\boldsymbol{S}_{\boldsymbol{a}}+\boldsymbol{S}_{\boldsymbol{b}}+\boldsymbol{S}_{\boldsymbol{c}} \\
& \boldsymbol{S}_{3 \boldsymbol{\phi}}=3 V_{L N} I_{L} \angle(\delta-\beta) \\
& \boldsymbol{S}_{\mathbf{3} \boldsymbol{\phi}}=3 V_{L N} I_{L} \cos (\delta-\beta)+j 3 V_{L N} I_{L} \sin (\delta-\beta)
\end{aligned}
$$

\square The apparent power is the magnitude of the complex power

$$
S_{3 \phi}=3 V_{L N} I_{L}
$$

Complex Power

\square Complex power can be expressed in terms of the real and reactive power

$$
\boldsymbol{S}_{3 \phi}=P_{3 \phi}+j Q_{3 \phi}
$$

\square The real power, as we've already seen is

$$
P_{3 \phi}=3 V_{L N} I_{L} \cos (\delta-\beta)
$$

\square The reactive power is

$$
Q_{3 \phi}=3 V_{L N} I_{L} \sin (\delta-\beta)
$$

Advantages of Three-Phase Power

\square Advantages of three-phase power:

- For a given amount of power, half the amount of wire required compared to single-phase
- No return current on neutral conductor
- Constant real power
- Constant motor torque
- Less noise and vibration of machinery

Three-Phase Power - Example

\square Determine
\square Load voltage, $\boldsymbol{V}_{\boldsymbol{A B}}$

- Power triangle for the load
- Power factor at the load
\square We'll do a per-phase analysis, so first convert the Δ load to a Y load

$$
Z_{Y}=\frac{Z_{\Delta}}{3}=1+j 0.5 \Omega
$$

Three-Phase Power - Example

\square The per-phase circuit:

\square The line current is

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{L}}=\frac{\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{n}}}{Z_{L}+Z_{Y}}=\frac{120 \angle 0^{\circ} \mathrm{V}}{1.1+j 1 \Omega}=\frac{120 \angle 0^{\circ} \mathrm{V}}{1.45 \angle 42.3^{\circ} \Omega} \\
& \boldsymbol{I}_{\boldsymbol{L}}=80.7 \angle-42.3^{\circ} \mathrm{A}
\end{aligned}
$$

\square The line-to-neutral voltage at the load is

$$
\begin{aligned}
& \boldsymbol{V}_{A N}=\boldsymbol{I}_{L} Z_{Y}=\left(80.7 \angle-42.3^{\circ} A\right)(1+j 0.5 \Omega) \\
& \boldsymbol{V}_{A N}=\left(80.7 \angle-42.3^{\circ} A\right)\left(1.12 \angle 26.6^{\circ} \Omega\right) \\
& \boldsymbol{V}_{A N}=90.25 \angle-15.71^{\circ} \mathrm{V}
\end{aligned}
$$

Three-Phase Power - Example

\square Calculate the line-to-line voltage from the line-to-neutral voltage

$$
\begin{aligned}
& V_{A B}=\sqrt{3} V_{A N} \angle 30^{\circ} \\
& V_{A B}=156 \angle 14.3^{\circ} V
\end{aligned}
$$

\square Alternatively, we could calculate line-to-line voltage from the two line-to-neutral voltages.

- The line-to-neutral voltage at phase B is

$$
V_{B N}=90.25 \angle-135.71^{\circ} V
$$

- So the line-to-line voltage is given by

$$
V_{A B}=V_{A N}-V_{B N}=156 \angle 14.3^{\circ} V
$$

Three-Phase Power - Example

\square The complex power absorbed by the load is

$$
\begin{aligned}
& \boldsymbol{S}_{3 \phi}=3 \boldsymbol{S}_{\boldsymbol{A}}=3 \boldsymbol{V}_{\boldsymbol{A N}} \boldsymbol{I}_{L}^{*} \\
& \boldsymbol{S}_{3 \phi}=3\left(90.25 \angle-15.71^{\circ} \mathrm{V}\right)\left(80.7 \angle-42.3^{\circ} \mathrm{A}\right)^{*} \\
& \boldsymbol{S}_{3 \phi}=21.85 \angle 26.6^{\circ} \mathrm{kVA} \\
& \boldsymbol{S}_{3 \phi}=19.53+j 9.78 \mathrm{kVA}
\end{aligned}
$$

\square The apparent power:

$$
S_{3 \phi}=21.85 \mathrm{kVA}
$$

\square Real power:

$$
P=19.53 \mathrm{~kW}
$$

\square Reactive power:

$$
Q=9.78 \mathrm{kvar}
$$

Three-Phase Power - Example

The power triangle at the load:

\square The power factor at the load is

$$
\text { p.f. }=\cos \left(26.6^{\circ}\right)=\frac{P}{S}=\frac{19.53 \mathrm{~kW}}{21.85 \mathrm{kVA}}
$$

$$
p . f .=0.89 \text { lagging }
$$

40
 Example Problems

Determine complex power:

- From the source
- To the load
- To the line

Line-to-line voltage at the load is maintained at 4.16 kV .

What is the voltage at the source? How much complex power is
 delivered by the source?

Line-to-line voltage at the load is maintained at 4.16 kV . Determine:
\square Power factor at load
\square Power triangle at load
\square Loss in Lines

Add power factor

 correction to improve p.f. to 0.98 , lagging. Determine:\square Power triangle at load
\square Loss in Lines

