
ENGR 203 – Electrical Fundamentals III

SECTION 1: INTRODUCTION
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Introduction

 In ENGR 202, we learned how to analyze circuits like this 
one in several ways:
 Sinusoidal steady-state (phasor) analysis
 Frequency-response analysis
 Step-response analysis

 In ENGR 203, we will learn some new mathematical tools 
that we can apply to these same types of analyses

 First, we will briefly review each of the above analysis 
techniques



K. Webb ENGR 203

Review of Circuit Analysis Tools4



K. Webb ENGR 203

5

Sinusoidal Steady-State Analysis

 For a sinusoidal input of a certain frequency, phasor 
analysis allows us to determine output quantities 
 Also sinusoidal, at the same frequency

 First, convert the circuit to the phasor domain:
𝐕𝐕𝑖𝑖 = 1∠0° 𝑉𝑉

𝑍𝑍𝐿𝐿 = 𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑗𝑗 ⋅ 2𝜋𝜋 ⋅ 100 𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 10 𝜇𝜇𝑘𝑘 = 𝑗𝑗𝑗.28 Ω

𝑍𝑍𝐶𝐶 =
1
𝑗𝑗𝑗𝑗𝑗𝑗 = −j

1
2𝜋𝜋 ⋅ 100 𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 100 nF = −j15.9 Ω
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Sinusoidal Steady-State Analysis

 With the circuit in the phasor domain, we can apply any of the usual 
circuit analysis tools
 Here, we can treat the circuit as a voltage divider

𝐕𝐕𝑜𝑜 = 𝐕𝐕𝑖𝑖
−𝑗𝑗1𝑗.9Ω

10 + 𝑗𝑗 𝑗.28 − 15.9 Ω
= 1∠0° 𝑉𝑉

−𝑗𝑗1𝑗.9 Ω
10 − j9.𝑗2 Ω

𝐕𝐕𝑜𝑜 = 1.1𝑗∠ − 4𝑗.1° 𝑉𝑉

 Finally, transform back to the time domain

𝑣𝑣𝑜𝑜 𝑡𝑡 = 1.15 𝑉𝑉 ⋅ cos 2𝜋𝜋 ⋅ 100 𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 𝑡𝑡 − 4𝑗.1°
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Frequency Response Analysis

 Phasor analysis gets us the steady-state response of the 
circuit to a sinusoidal input at one specific frequency
 The output will be at the same frequency but, in general, 

different amplitude and phase

 We also saw how to determine the circuit’s frequency 
response function and generate its Bode plot
 Response to sinusoidal input of varying frequency
 Gain – ratio of output amplitude to input amplitude
 Phase – phase shift from input to output

𝑘𝑘 𝑗𝑗𝑗𝑗 =
𝐕𝐕𝑜𝑜
𝐕𝐕𝑖𝑖

→ 𝑘𝑘 𝑗𝑗𝑗𝑗 , ∠𝑘𝑘 𝑗𝑗𝑗𝑗
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Frequency Response Analysis

 Express impedances as functions of frequency
 Treat the circuit as a voltage divider

𝑘𝑘 𝑗𝑗𝑗𝑗 =
𝐕𝐕𝑜𝑜
𝐕𝐕𝑖𝑖

=

1
𝑗𝑗𝑗𝑗𝑗𝑗

𝑅𝑅 + 𝑗𝑗𝑗𝑗𝑗𝑗 + 1
𝑗𝑗𝑗𝑗𝑗𝑗

=
1

𝑗𝑗𝑗𝑗 2𝑗𝑗𝑗𝑗 + 𝑗𝑗𝑗𝑗𝑅𝑅𝑗𝑗 + 1

 The resulting frequency response function is

𝑘𝑘 𝑗𝑗𝑗𝑗 =
1
𝑗𝑗𝑗𝑗

𝑗𝑗𝑗𝑗 2 + 𝑅𝑅
𝑗𝑗 𝑗𝑗𝑗𝑗 + 1

𝑗𝑗𝑗𝑗
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Frequency Response Analysis

𝑘𝑘 𝑗𝑗𝑗𝑗 =
1
𝑗𝑗𝑗𝑗

𝑗𝑗𝑗𝑗 2 + 𝑅𝑅
𝑗𝑗 𝑗𝑗𝑗𝑗 + 1

𝑗𝑗𝑗𝑗

 This type of analysis is 
particularly useful for 
filters
 Frequency-varying gain
 Pass some frequencies, 

attenuate others
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Step Response Analysis

 Finally, in ENGR 202, we learned how to determine 
the circuit’s step response

 The first step was to derive the governing 
differential equation

 Applying KVL around the loop yields

𝑣𝑣𝑖𝑖 𝑡𝑡 − 𝑖𝑖 𝑡𝑡 𝑅𝑅 − 𝑗𝑗
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡
− 𝑣𝑣𝑜𝑜 𝑡𝑡 = 0
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Step Response Analysis

 After eliminating 𝑖𝑖 𝑡𝑡 and rearranging, we have the governing equation for 
the circuit

𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2 +

𝑅𝑅
𝑗𝑗
𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡 +

1
𝑗𝑗𝑗𝑗 𝑣𝑣𝑜𝑜 𝑡𝑡 =

1
𝑗𝑗𝑗𝑗 𝑣𝑣𝑖𝑖 𝑡𝑡

 A second-order, linear, non-homogeneous, ordinary differential equation
 Non-homogeneous, so we solve it in two parts

1) Find the complementary solution to the homogeneous equation
2) Find the particular solution for the step input

 General solution is the sum of the two individual solutions:

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 + 𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡
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Step Response Analysis

 For the complementary solution, we assume a solution of the form

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑒𝑒𝑠𝑠𝑠𝑠

where 𝑠𝑠 is an unknown complex value

 Substituting this into the homogeneous equation allows us to 
generate the characteristic equation

𝑠𝑠2 +
𝑅𝑅
𝑗𝑗
𝑠𝑠 +

1
𝑗𝑗𝑗𝑗

= 0

which we can also write as

𝑠𝑠2 + 2𝜁𝜁𝑗𝑗0𝑠𝑠 + 𝑗𝑗02 = 0
where 

𝜁𝜁 is the damping ratio
𝑗𝑗0 is the natural frequency
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Step Response Analysis

 The damping ratio, and the roots of the characteristic equation, 
determine the form of the complementary solution
 Roots are called the circuit poles

 𝜁𝜁 > 1 – over-damped
 Two real, distinct poles, 𝑠𝑠1 and 𝑠𝑠2

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑠𝑠 + 𝐾𝐾2𝑒𝑒𝑠𝑠2𝑠𝑠

 𝜁𝜁 = 1 – critically-damped
 Two real, identical poles, 𝑠𝑠1 = 𝑠𝑠2

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒𝑠𝑠1𝑠𝑠 + 𝐾𝐾2𝑡𝑡𝑒𝑒𝑠𝑠1𝑠𝑠

 𝜁𝜁 < 1 – Under-damped
 Complex-conjugate pair of poles, 𝑠𝑠1,2 = −𝛼𝛼 ± 𝑗𝑗𝑗𝑗𝑑𝑑

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−𝛼𝛼𝑠𝑠 cos 𝑗𝑗𝑑𝑑𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝛼𝛼𝑠𝑠 sin 𝑗𝑗𝑑𝑑𝑡𝑡



K. Webb ENGR 203

14

Step Response Analysis

 The second piece of the general solution is the particular solution
 For a step input, this is simply the steady-state output

𝑣𝑣𝑜𝑜𝑜𝑜 𝑡𝑡 = 𝑣𝑣𝑜𝑜 𝑡𝑡 → ∞ = 1 𝑉𝑉

 For our circuit, the characteristic equation is

𝑠𝑠2 +
𝑅𝑅
𝑗𝑗 𝑠𝑠 +

1
𝑗𝑗𝑗𝑗 = 𝑠𝑠2 + 1𝐸𝐸𝑗𝑠𝑠 + 1𝐸𝐸12 = 𝑠𝑠2 + 2𝜁𝜁𝑗𝑗0𝑠𝑠 + 𝑗𝑗0

2 = 0

 From which we find
𝑗𝑗0 = 1𝐸𝐸𝑗 ⁄𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠𝑒𝑒𝑠𝑠
𝛼𝛼 = 𝑗00𝐸𝐸𝐸 ⁄𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠𝑒𝑒𝑠𝑠
𝜁𝜁 = 0.5
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Step Response Analysis

 𝜁𝜁 = 0.5, so the circuit is under-damped
 Complementary solution is a sum of damped sinusoids
 General solution has the following form 

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−𝛼𝛼𝑠𝑠 cos 𝑗𝑗𝑑𝑑𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝛼𝛼𝑠𝑠 sin 𝑗𝑗𝑑𝑑𝑡𝑡 + 𝑣𝑣𝑜𝑜 𝑡𝑡 → ∞

 The damped natural frequency is

𝑗𝑗𝑑𝑑 = 𝑗𝑗0 1 − 𝜁𝜁2 = 8𝑗𝑗𝐸𝐸𝐸 ⁄𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠𝑒𝑒𝑠𝑠

 General solution is

𝑣𝑣𝑜𝑜 𝑡𝑡 = 𝐾𝐾1𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 cos 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡 + 𝐾𝐾2𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 sin 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡 + 1 𝑉𝑉
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Step Response Analysis

 The last step in determining the step response is to determine the 
unknown coefficients, 𝐾𝐾1 and 𝐾𝐾2
 Apply the initial conditions:

𝑣𝑣𝑜𝑜 0 = 0 and  �̇�𝑣𝑜𝑜 0 = 0

 The circuit’s response to a 1 V step is

𝑣𝑣𝑜𝑜 𝑡𝑡 = −1𝑉𝑉 𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 cos 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡 − 0.𝑗8𝑉𝑉 𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 sin 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡 + 1𝑉𝑉
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ENGR 203 Preview

 In this course, we will learn a new mathematical tool 
that will simplify and unify our circuit analyses
 The Laplace transform

 We will use the Laplace transform to:
1) Solve a circuit’s governing ODE to determine its transient 

response to any type of input
2) Determine a circuit’s time-domain response to any input 

without needing to derive the governing ODE
3) Determine a circuit’s frequency response and Bode plot

 We will now step through a preview of the application 
of Laplace transforms to various circuit analyses
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Solving the Governing ODE with Laplace 
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Solving the Differential Equation

 First, we will see how we will use Laplace transforms to solve a circuit’s governing 
ODE to determine its response to any type of input

 The governing ODE for our example circuit is

𝑑𝑑2𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡2

+
𝑅𝑅
𝑗𝑗
𝑑𝑑𝑣𝑣𝑜𝑜
𝑑𝑑𝑡𝑡

+
1
𝑗𝑗𝑗𝑗

𝑣𝑣𝑜𝑜 𝑡𝑡 =
1
𝑗𝑗𝑗𝑗

𝑣𝑣𝑖𝑖 𝑡𝑡

 Our first step will be to apply the Laplace transform to the governing equation

𝑠𝑠2𝑉𝑉𝑜𝑜 𝑠𝑠 − 𝑠𝑠𝑣𝑣𝑜𝑜 0 − �̇�𝑣𝑜𝑜 0 +
𝑅𝑅
𝑗𝑗
𝑠𝑠𝑉𝑉𝑜𝑜 𝑠𝑠 − 𝑣𝑣𝑜𝑜 0 +

1
𝑗𝑗𝑗𝑗

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1
𝑗𝑗𝑗𝑗

𝑉𝑉𝑖𝑖 𝑠𝑠

 Assuming the same unit step input, and zero initial conditions, this simplifies to

𝑠𝑠2𝑉𝑉𝑜𝑜 𝑠𝑠 +
𝑅𝑅
𝑗𝑗
𝑠𝑠𝑉𝑉𝑜𝑜 𝑠𝑠 +

1
𝑗𝑗𝑗𝑗

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1
𝑗𝑗𝑗𝑗

1
𝑠𝑠
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Solving the Differential Equation

𝑠𝑠2𝑉𝑉𝑜𝑜 𝑠𝑠 +
𝑅𝑅
𝑗𝑗 𝑠𝑠𝑉𝑉𝑜𝑜 𝑠𝑠 +

1
𝑗𝑗𝑗𝑗 𝑉𝑉𝑜𝑜 𝑠𝑠 =

1
𝑗𝑗𝑗𝑗

1
𝑠𝑠

 Our differential equation has transformed to an algebraic 
equation
 Solve algebraically for the Laplace transform of the output, 𝑉𝑉𝑜𝑜 𝑠𝑠

𝑉𝑉𝑜𝑜 𝑠𝑠 𝑠𝑠2 +
𝑅𝑅
𝑗𝑗 𝑠𝑠 +

1
𝑗𝑗𝑗𝑗 =

1
𝑗𝑗𝑗𝑗

1
𝑠𝑠

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1
𝑗𝑗𝑗𝑗

𝑠𝑠 𝑠𝑠2 + 𝑅𝑅
𝑗𝑗 𝑠𝑠 + 1

𝑗𝑗𝑗𝑗

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1𝐸𝐸12

𝑠𝑠 𝑠𝑠2 + 1𝐸𝐸𝑗𝑠𝑠 + 1𝐸𝐸12
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Solving the Differential Equation

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1𝐸𝐸12

𝑠𝑠 𝑠𝑠2 + 1𝐸𝐸𝑗𝑠𝑠 + 1𝐸𝐸12

 This is the Laplace transform of the thing we are looking 
for, the output voltage, 𝑣𝑣𝑜𝑜 𝑡𝑡

𝑉𝑉𝑜𝑜 𝑠𝑠 = ℒ 𝑣𝑣𝑜𝑜 𝑡𝑡

 To get 𝑣𝑣𝑜𝑜 𝑡𝑡 , we inverse Laplace transform 𝑉𝑉𝑜𝑜 𝑠𝑠

𝑣𝑣𝑜𝑜 𝑡𝑡 = ℒ−1 𝑉𝑉𝑜𝑜 𝑠𝑠

 To inverse transform, we will make use of partial 
fraction expansion
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Solving the Differential Equation

 The partial fraction expansion looks like

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1𝐸𝐸12

𝑠𝑠 𝑠𝑠2 + 1𝐸𝐸𝑗𝑠𝑠 + 1𝐸𝐸12
=
𝑟𝑟1
𝑠𝑠

+
𝑟𝑟2 𝑠𝑠 + 𝑗00𝐸𝐸𝐸 + 𝑟𝑟𝐸8𝑗𝑗𝐸𝐸𝐸
𝑠𝑠 + 𝑗00𝐸𝐸𝐸 + 8𝑗𝑗𝐸𝐸𝐸 2

 Solve for the unknown residues, 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟𝐸, giving the output voltage in 
the Laplace domain

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1
𝑠𝑠 −

𝑠𝑠 + 𝑗00𝐸𝐸𝐸
𝑠𝑠 + 𝑗00𝐸𝐸𝐸 + 8𝑗𝑗𝐸𝐸𝐸 2 − 0.58

8𝑗𝑗𝐸𝐸𝐸
𝑠𝑠 + 𝑗00𝐸𝐸𝐸 + 8𝑗𝑗𝐸𝐸𝐸 2

 This is now a sum of Laplace domain functions whose inverse transforms 
are known
 Inverse transform by inspection

𝑣𝑣𝑜𝑜 𝑡𝑡 = ℒ−1 𝑉𝑉𝑜𝑜 𝑠𝑠

𝑣𝑣𝑜𝑜 𝑡𝑡 = 1𝑉𝑉 − 1𝑉𝑉𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 cos 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡 − 0.𝑗8𝑉𝑉𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 sin 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡
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Solving the Differential Equation

𝑣𝑣𝑜𝑜 𝑡𝑡 = 1𝑉𝑉 − 1𝑉𝑉𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 cos 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡 − 0.𝑗8𝑉𝑉𝑒𝑒−500𝐸𝐸𝐸𝑠𝑠 sin 8𝑗𝑗𝐸𝐸𝐸𝑡𝑡
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Laplace Domain Circuit Analysis

 Previous analysis required derivation of the governing 
differential equation

 Can often skip that step
 Transform the circuit to the Laplace domain
 Apply usual circuit analysis tools

 Similar to transforming to the phasor domain

Time Domain: Laplace Domain:



K. Webb ENGR 203

27

Laplace Domain Circuit Analysis

 With the circuit in the Laplace domain, we can apply any of the usual 
circuit analysis tools
 Here, we are looking for 𝑉𝑉𝑜𝑜 𝑠𝑠 , so treat it as a voltage divider

𝑉𝑉𝑜𝑜 𝑠𝑠 = 𝑉𝑉𝑖𝑖 𝑠𝑠
1
𝑗𝑗𝑠𝑠

𝑅𝑅 + 𝑗𝑗𝑠𝑠 + 1
𝑗𝑗𝑠𝑠

= 𝑉𝑉𝑖𝑖 𝑠𝑠
1

𝑗𝑗𝑗𝑗𝑠𝑠2 + 𝑅𝑅𝑗𝑗𝑠𝑠 + 1

𝑉𝑉𝑜𝑜 𝑠𝑠 = 𝑉𝑉𝑖𝑖 𝑠𝑠
1
𝑗𝑗𝑗𝑗

𝑠𝑠2 + 𝑅𝑅
𝑗𝑗 𝑠𝑠 + 1

𝑗𝑗𝑗𝑗
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Laplace Domain Circuit Analysis

 For the given component values and a step input the 
output in the Laplace domain is

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1
𝑠𝑠

1𝐸𝐸12
𝑠𝑠2 + 1𝐸𝐸𝑗𝑠𝑠 + 1𝐸𝐸12

 The same result arrived at by transforming the 
governing ODE
 Solve the same way: inverse Laplace transform via partial 

fraction expansion

𝑣𝑣𝑜𝑜 𝑡𝑡 = ℒ−1 𝑉𝑉𝑜𝑜 𝑠𝑠

 Note that this did not involve derivation of the 
differential equation in the time domain
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Laplace Domain Frequency-Response 
Analysis
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Frequency Response via Laplace Transform

 Finally, we will see how we can apply Laplace transforms to 
determine a circuit’s frequency response and Bode plot

 First, convert the circuit to the Laplace domain

 As before, apply the usual circuit analysis techniques to 
determine the output

𝑉𝑉𝑜𝑜 𝑠𝑠 = 𝑉𝑉𝑖𝑖 𝑠𝑠
1
𝑗𝑗𝑗𝑗

𝑠𝑠2 + 𝑅𝑅
𝑗𝑗 𝑠𝑠 + 1

𝑗𝑗𝑗𝑗
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Frequency Response via Laplace Transform

𝑉𝑉𝑜𝑜 𝑠𝑠 = 𝑉𝑉𝑖𝑖 𝑠𝑠
1
𝑗𝑗𝑗𝑗

𝑠𝑠2 + 𝑅𝑅
𝑗𝑗 𝑠𝑠 + 1

𝑗𝑗𝑗𝑗

 From here, we get the circuit’s transfer function

𝑘𝑘 𝑠𝑠 =
𝑉𝑉𝑜𝑜 𝑠𝑠
𝑉𝑉𝑖𝑖 𝑠𝑠

=
1
𝑗𝑗𝑗𝑗

𝑠𝑠2 + 𝑅𝑅
𝑗𝑗 𝑠𝑠 + 1

𝑗𝑗𝑗𝑗

 From the transfer function, we get the frequency response function 
by substituting in 𝑗𝑗𝑗𝑗 for 𝑠𝑠

𝑘𝑘 𝑠𝑠
𝑠𝑠→𝑗𝑗𝑗𝑗

𝑘𝑘 𝑗𝑗𝑗𝑗 =
1
𝑗𝑗𝑗𝑗

𝑗𝑗𝑗𝑗 2 + 𝑅𝑅
𝑗𝑗 𝑗𝑗𝑗𝑗 + 1

𝑗𝑗𝑗𝑗
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Frequency Response Analysis

𝑘𝑘 𝑗𝑗𝑗𝑗 =
1
𝑗𝑗𝑗𝑗

𝑗𝑗𝑗𝑗 2 + 𝑅𝑅
𝑗𝑗 𝑗𝑗𝑗𝑗 + 1

𝑗𝑗𝑗𝑗

 We will learn to generate 
Bode plot from the 
frequency response 
function or transfer 
function
 Hand-sketching a straight-

line approximation
 Plotting in numerical tools 

like MATLAB or Python
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Fourier Analysis

 We will learn other mathematical tools to enable 
further circuit analysis
 Fourier series
 Fourier transform

 In ENGR 202 we introduced the frequency spectrum
 Frequency content of a signal 
 How will a signal be affected by a circuit with a particular 

frequency response?

 Fourier series/transform allow us to mathematically 
determine frequency spectra
 Spectrum of input, along with circuit’s frequency response, 

allow us to determine spectrum of output



K. Webb ENGR 203

Input signal

Input signal 
Fourier series

Input signal 
approximation

Circuit frequency 
response
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Fourier Analysis

Output signal 
Fourier series

Output signal 
approximation
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