SECTION 2: LAPLACE
TRANSFORMS

- ENGR 203 — Electrical Fundamentals Ill



- Introduction — Transforms

This section of notes contains an introduction
to Laplace transforms. This may mostly be a

review of material covered in your differential
equations course.
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Transforms
e
What is a transform?

o A mapping of a mathematical function from one domain to
another

O A change in perspective not a change of the function

Why use transforms?
o Some mathematical problems are difficult to solve in their
natural domain
Transform to and solve in a new domain, where the problem is
simplified
Transform back to the original domain

o Trade off the extra effort of transforming/inverse-
transforming for simplification of the solution procedure
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Transform Example — Slide Rules
-
Slide rules make use of a logarithmic transform
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Multiplication/division of large numbers is difficult
o Transform the numbers to the logarithmic domain

o Add/subtract (easy) in the log domain to multiply/divide
(difficult) in the linear domain

o Apply the inverse transform to get back to the original
domain

Extra effort is required, but the problem is simplified
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- Laplace Transforms
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Laplace Transforms

An integral transform mapping functions from the time
domain to the Laplace domain or s-domain

g(®) & G(s)
o Time-domain functions are functions of time, t
g(t)
o Laplace-domain functions are functions of s
G(s)
O s is a complex variable
S=0+jw
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Laplace Transforms — Motivation

We'll use Laplace transforms to solve differential
equations

o Differential equations in the time domain
difficult to solve

o Apply the Laplace transform
Transform to the s-domain

o Differential equations become algebraic equations
easy to solve

o Transform the s-domain solution back to the time domain

Transforming back and forth requires extra effort, but
the solution is greatly simplified
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Laplace Transform
-

Laplace Transform:

Lg®} = G(s) = [ g®e~tdt |

Unilateral or one-sided transform
o Lower limit of integrationist = 0

o Assumed that the time domain function is zero for all
negative time, i.e.

g(t) =0, t <0
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- Laplace Transform Properties

In the following section of notes, we’ll derive a
few important properties of the Laplace
transform.
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Laplace Transform — Linearity
e

Say we have two time-domain functions:

g1(t) and g(t)
Applying the transform definition, (1)

£egu(® + 8920} = [ (€10 + Bga()e"dt
0
= fooagl(t)e_“dt + fooﬁgz(t)e_“dt
0 0

= af gl(t)e_Stdt+,8f g (t)e Stdt
0 0

=a-L{gi(®)}+ P - L{g,(t)}

L{iag,(t) + Bg,(t)} = aG,(s) + BG,(s) (2)

The Laplace transform is a linear operation

K. Webb ENGR 203



Laplace Transform of a Derivative

Of particular interest, given that we want to use Laplace
transform to solve differential equations

00

L{G(D)} = f G(Destde

0
Use integration by parts to evaluate

[udv =uv — [ vdu

st and dv = g(t)dt

du = —se Stdt and v = g(t)
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Laplace Transform of a Derivative
R

(0.0]

L@} =e=tg@| - | g@(=seds

0

(0.0]

—0—g(0)+s f g(Destdt = —g(0) + sL{g(D))
0

The Laplace transform of the derivative of a
function is the Laplace transform of that function
multiplied by s minus the initial value of that
function

L{g(t)} = sG(s) — g(0) 3)
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Higher-Order Derivatives

The Laplace transform of a second derivative is

L{G()} = s°G(s) — sg(0) — g(0)

(4)

In general, the Laplace transform of the nt" derivative

of a function is given by

£{g™) = s"G(s) — s""1g(0) — s""2G(0) — -+ — g™=1(0)
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Laplace Transform of an Integral
R

The Laplace Transform of a definite integral of a
function is given by

lf; g@dr} =< G(s) ©

Differentiation in the time domain corresponds to
multiplication by s in the Laplace domain

Integration in the time domain corresponds to
division by s in the Laplace domain
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Laplace Transforms of Common
Functions

Next, we’ll derive the Laplace transform of
some common mathematical functions
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Unit Step Function

A useful and common way of characterizing a linear
system is with its step response

o The system’s response (output) to a unit step input
The unit step function or Heaviside step function:

0, t <O
1, t=0

u(t) = {

N

1 ---

\\ .

K. Webb ENGR 203



Unit Step Function — Laplace Transform

e
Using the definition of the Laplace transform

(0.0] (0.0]

u(t)e‘“dtzj e Stdt
0

rlu(@) = |

0

The Laplace transform of the unit step

Llu®) = "

Note that the unilateral Laplace transform assumes that
the signal being transformed is zero fort < 0

o Equivalent to multiplying any signal by a unit step
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Unit Ramp Function

The unit ramp function is a useful input signal for

evaluating how well a system tracks a constantly-
Increasing input

The unit ramp function:

(0, t<0 Nl
g(t)_{t, t >0
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Unit Ramp Function — Laplace Transform
o

Could easily evaluate the transform integral
O Requires integration by parts

Alternatively, recognize the relationship between
the unit ramp and the unit step

o Unit ramp is the integral of the unit step
Apply the integration property, (6)

t 1 1
L{t} — L{j U(T)d’l,'} =§§
0

L{t} = Siz 8)
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Exponential — Laplace Transform
-

git)y=e

Exponentials are common components of the
responses of dynamic systems

(00) (00)

e~ ato=st ¢ =j e—(s+a)tdt
0

 =0-(-+52)
=0—|—
0 S+a

L{e~ 4} = — (9)

Ss+a

rfemy = |

0

e—(s+a)t

Ss+a
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Sinusoidal functions

Another class of commonly occurring signals, when
dealing with dynamic systems, is sinusoidal signals —
both sin(wt) and cos(wt)

g(t) = sin(wt)
Recall Euler’s formula
e/®t = cos(wt) + j sin(wt)
From which it follows that
pJ0t _ p—jot

2J
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Sinusoidal functions

1 r*, . :
L{Sin(wt)} = Zj (e]wt — e—]a)t)e—stdt
0

= i r (e_(s_jw)t — e—(S+ja))t)dt
2j J,

= i r e~ (s—jolt gp _ i e~ (sHjwlt 44
2] JO 2] Jo

1 (e—(s—ja))t) oo 1 (e—(s+jw)t) oo
T2 —(G—jw) , 2 —(s+jw) ,

1 1 1 1 1 2w
- — 0+ e 0+ ; =
s+ jw| 2js?+ w?

L{sin(wt)} = — (10)

s2+4w?
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Sinusoidal functions

It can similarly be shown that

S

11
s%+w? )

L{cos(wt)} =

Note that for neither sin(wt) nor cos(wt) is the
function equal to zero for t < 0 as the Laplace

transform assumes
Really, what we’ve derived is

L{u(t) - sin(wt)} and  L{u(t) - cos(wt)}
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n More Properties and Theorems
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Multiplication by an Exponential, e =%t

We've seen that L£{e~%} = ﬁ

What if another function is multiplied by the
decaying exponential term?

00) 00)

g(t)e *eStdt =j g(t)e Gratge
0

L{g(Deat} = j

0

This is just the Laplace transform of g(t) with s
replaced by (s + a)

L{g(t)e *} = G(s + a) (12)
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Decaying Sinusoids
-
The Laplace transform of a sinusoid is

L{sin(wt)} = T2

And, multiplication by an decaying exponential,
e~ results in a substitution of (s + a) for s, so

w
(s + a)* + w*

L{e % sin(wt)} =

and
s+ a

L{e % cos(wt)} = 1Al Fo?
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Time Shifting

T sl(t)

Consider a time-domain
funCtion’ g(t) /\/W/

0

To Laplace transform g(t) ,

V

N g(t)-u(t)
we’ve assumed g(t) = 0 for ;
t < 0, or equivalently /\/\/\/
multiplied by u(t)

0

To shift g(t) by an amount,
a, in time, we must also

multiply by a shifted step W
function, u(t — a) | nt

0

t
AN
7

T s(t-a)-u(t-a)
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Time Shifting — Laplace Transform

-
The transform of the shifted function is given by

L{g(t—a) u(t—a)}= Joog(t —a)e Stdt

Performing a change of variables, let

T=(t—a) and dt =dt

The transform becomes

(0¢] (0¢]

g(r)e st+a)qr = f
0

0.0)

g(t)e e Stdr = e‘asf g(t)e™Stdr
0

L@ - u(@)} = f

0

A shift by a in the time domain corresponds to multiplication by e %5 in the
Laplace domain

L{gt—a) - ult—a)} = e “G(s) (13)
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Multiplication by time, t
.
The Laplace transform of a function multiplied by time:

d
Lit-f(O)} = ——F(s) (14)
Consider a unit ramp function:

d (1
L6} = L{t - u(t)} = _E<‘) _1

S

Or a parabola:
ey =cft th=-2(5) ==

In general
|

L{tM} =

Sm+1

K. Webb ENGR 203



Initial and Final Value Theorems
X
Initial Value Theorem

o Can determine the initial value of a time-domain signal or
function from its Laplace transform

g(0) = lim sG(s) 1)

Final Value Theorem

o Can determine the steady-state value of a time-domain
signal or function from its Laplace transform

g(o) = E_r)% sG(s) (16)
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Convolution
X

Convolution of two functions or signals is given by
t

9(0) * x(t) = j 9(Dx(t - D)dr

0

Result is a function of time

o x(7) is flipped in time and shifted by t

o Multiply the flipped/shifted signal and the other signal

O Integrate the result from7 =0...¢t

May seem like an odd, arbitrary function now, but we’ll later
see why it is very important

Convolution in the time domain corresponds to multiplication
in the Laplace domain

L{g(t) xx(@)} = G(s)X(s) (17)
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Impulse Function
e

Another common way to describe a dynamic system
is with its impulse response

o System output in response to an impulse function input
Impulse function defined by

6(t) =0, t+0 5(t) T
A

j_o;&(t)dt =1

o An infinitely tall, infinitely
narrow pulse

> t
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Impulse Function — Laplace Transform
-

To derive L{6(t)}, consider the following function g(t) T
1 1
—, 0<t<t o
g(t) =1t °

0, t<Qort>t,

Can think of g(t) as the sum of two step functions:

1 1 to
g(t) =au(t) —au(t—to) 0

The transform of the first term is

1 1
“{a”@} = o5

Using the time-shifting property, the second term transforms to

—toS
L{—;u@—wﬁ}z—ﬁ

0 toS
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Impulse Function — Laplace Transform

-0V
In the limit,as t, = 0, g(t) — 6(t), so

£{6(®)} = Jim L{g(®)}

1 — e~ toS
Lo} = tloiglo toS
0
Apply I'Hopital’s rule
d
—— (1 — e~ t0%) ~tos

. dt ( . se”to S
L{6()} = tthO 0 g = th£n>0 . — E

° F(toS) °

0

The Laplace transform of an impulse function is one

L)} =1 (18)
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Common Laplace Transforms

5(t) at sin(wt)

(s + a)2 + w?
1 s+a
u(t) . e~ cos(wt) Gt atw?
1
t 5z g(t) sG(s) — g(0)
g ik i(® $2G(s) - 59(0) — §(0)
a 1 t 1
et — jo ()t ~6(s)
1
te"at G1a)? e % g(t) G(s+a)
sin(wt) > -T—)wz gt—a) -u(t—a) e~ G(s)
S d
cos(wt) T t-g(t) —gG(S)
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Example — Piecewise Function Laplace Transform

Determine the Laplace transform of a piecewise function:

2.5

0.5
0 0.5 1 1.5 2 2.5 3 3.5 4

time [sec]

A summation of functions with known transforms:
o Ramp
o Pulse —sum of positive and negative steps

Transform is the sum of the individual, known transforms
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Example — Piecewise Function Laplace Transform

Treat the piecewise function as a sum of individual
functions

fO=rO+LO = S

f 1 (t) 0 -:::.Is 1 1.I5 2 z.ls 3 3?5 4

o Time-shifted, gated ramp 11T ]
f2(t) ok - m o - L? I N S
o Time-shifted pulse oo e
Sum of staggered positive S
and negative steps | | :

time [sec]
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Example — Piecewise Function Laplace Transform

f1(t): time-shifted, gated ramp : =

Ramp w/ slope of 2: 2f gt - ut2)| |
r(t) =2-t !

Time-shifted ramp: 0
) =2-(t—1) R .

Gating function

o Unity-amplitude pulse: 1T 1T 1 T | —w
g®) =u(t—1) —u(t —2) 2| -

Gate the shifted ramp: | /

1) = () - g(©) :

=

fl(t) =2 (t _ 1) ) [u(t _ 1) — U,(t — 2)] o 05 1 15 2 25 3 a5 4

time [sec]
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Example — Piecewise Function Laplace Transform

-
f>(t): time-shifted pulse e

2 |= = =-2.u(t3)

o Sum of staggered positive and
negative steps

Positive step delayed by 2 sec:
So(t) =2 -u(t—2)

Negative step delayed by 3 sec:
s3() =—=2-u(t—3)

Time-shifted pulse

f2(t) = s,(t) + s3(t) D
) =2 -u(t—2)—2-u(t—3) -

o 0.5 1 1.5 2 2.5 3 3.5 4
time [sec]
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Example — Piecewise Function Laplace Transform
-

Sum the two individual time-domain functions
f@) =) + f2(0)
fW=2-t—-1) - [u@t—-1D)—-ut—-2)]+2-u(t—2)—2-u(t—3)
f@=2[t—-1) u(t—-1)]
—2[t - u(t — 2)]
+4[u(t — 2)]
—2[u(t — 3)]

Transform the individual terms in f(t)
F(s) = L2[t - 1) -ut - D]}
+L{=2[t - u(t —2)]}
+L{+4[u(t — 2)]}
+L{—-2[u(t — 3)]}
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Example — Piecewise Function Laplace Transform
-
First term is a time-shifted ramp function

2e™3
LI -1 ult - D} =5

The next term is a time-shifted step function
multiplied by time

d [e ?S
L{—Z[t-u(t—Z)]}=2dsl . ]
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Example — Piecewise Function Laplace Transform
-
The last two terms are time-shifted step functions

4_6—25 Ze—BS

L4 -u(t—2)—2-u(t—-3)} = . .

The piecewise function in the Laplace domain:

2e”S e %S 2e7%| 4e% 2e738
F(s) =——2 [ —+ ] + —
S S S S S
2e75  2e7?%S  2e73
F(s)=—7F————
S S S
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