SECTION 3: INVERSE
LAPLACE TRANSFORMS

- ENGR 203 — Electrical Fundamentals il



- Inverse Laplace Transform

K. Webb

We’ve just seen how time-domain functions can be
transformed to the Laplace domain. Next, we’ll look at
how we can solve differential equations in the Laplace
domain and transform back to the time domain.
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Laplace Transforms — Differential Equations
e

Consider the simple RLC circuit i g L

: : W N2
from the introductory section of
notes: vi(t) Ct) —C
The governing differential &
equation is

d%v, Rdvo 1 1
dt2 +Z at T Ic Vo (t) = LC vi(t)

Or, using dot notation

o () + = 0o (£) + = Vo(e) = 72 vi (£) (1
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Laplace Transforms — Differential Equations

-
We’ll now use Laplace transforms to i(t)

L
determine the step response of the system —— V) rrnYell)
1V step input o () vty 1.

oV, t<0

For the step response, we assume zero initial conditions
v,(0) =0 and v,(0) =0 (3)

Using the derivative property of the Laplace transform, (1) becomes

iVi(S)

S20y(5) — 576(0) — 56(0) + 7 5Vo(s) ~ 7 76(0) + 7= Vo(s) = 7

SV, (s) + Vo (5) + Vo (s) = =V;(s) (4)
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Laplace Transforms — Differential Equations
e

The input is a step, so (4) becomes ., R L
VAVA Y'Y
S2V,(s) +=sV,(s) + =V, (s) = —= (5) 1V L
0 L>"0 Lc 0 LCs vt (D) V) T°

Solving (5) for V,(s) v

V. (s) +R L1 1 11

IS+ 5+ 1) T ics
_ 1/LC
VO(S) B S(sz+%s+%) (6)

Equation (6) is the solution to the differential equation of (1),
given the step input and I.C's

O The system step response in the Laplace domain
o Next, we need to transform back to the time domain
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Laplace Transforms — Differential Equations
e

1/LC |
V S) = 6 M R L Vo
o( ) S(SZ+%S+L_1C) (6) —— A (t)
The form of (6) is typical of Laplace (0 Q@ 1Vl T¢
transforms when dealing with linear

systems

o A rational polynomial in s
o Here, the numerator is Ot"-order

Vo(s) =

A(s)
Roots of the numerator polynomial, B(s), are called the zeros of
the function

Roots of the denominator polynomial, A(s), are called the poles
of the function
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Inverse Laplace Transforms
-

1/LC |
V. (s) = 6 I R L v
o(s) S(SZ+%S+L—1C) (©) — A
i(t) () 1V- —
To get (6) back into the time domain, we (0 Q@ 1Vl ¢
need to perform an inverse Laplace

transform

o Anintegral inverse transform exists, but we don’t use it
o Instead, we use partial fraction expansion

Partial fraction expansion

o Idea is to express the Laplace transform solution, (6), as a sum of
Laplace transform terms that appear in the table
o Procedure depends on the type of roots of the denominator polynomial
Real and distinct
Repeated
Complex
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Inverse Laplace Transforms — Example 1

Consider the following system parameters i(t)

L v
R =250 B
L =10 'LI,H vi(t) (J) TV-u(t) —C
C =100 nF <

Laplace transform of the step response becomes

1E12
s(s2+4+2.5E6s+1E12)

Vo(s) = (7)

Factoring the denominator

1E12
s(s+500E3)(s+2E6)

Vo(s) = (8)

In this case, the denominator polynomial has three real, distinct
roots:

S1 = 0, Sy = _SOOEB, S3 = —2FE6
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Inverse Laplace Transforms — Example 1
e

Partial fraction expansion of (8) has the form 0, R L
W\
_ 1E12 _ T_l 1) 3
Vols) = s(s+500E3)(s+2E6) s t S+500E3 t S+2E6 9) v() (@) 1v-u® =C

o The numerator coefficients, 1y, 75, and 13, are called N
residues

Can already see the form of the time-domain function
o Sum of a constant and two decaying exponentials

To determine the residues, multiply both sides of (9) by the
denominator of the left-hand side

1E12 = r;(s + 500E3)(s + 2E6) + r,s(s + 2E6) + r3s(s + 500E3)

1E12 = 1ry5% 4+ 2.5E61ys + 1E121, + 1552 + 2E61,5 + 1352 + 500E37135
Collecting terms, we have

1E12 = s%(ry + 1, + 13) + s(2.5E61; + 2E67, + 500E373) + 1E121, (10)
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Inverse Laplace Transforms — Example 1
e

Equating coefficients of powers of s on both ()
sides of (10) gives a system of three equations SN AN
in three unknowns

52: 0=T'1+T'2+T'3
s': 0=2.5E6r +2E6r, + 500E3r; L

s%: 1E12 = 1E12n,

Solving for the residues gives

Tl = 1
r, = —1.333
ry = 0.333

The Laplace transform of the step response is

1.333 0.333

(11)
S+500E3 = s+2E6

Vo(s) = < —

Equation (11) can now be transformed back to the time domain using the
Laplace transform table
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Inverse Laplace Transforms — Example 1

The time-domain step response of the system is the sum of a constant
term and two decaying exponentials:

v,(t) = 1V — 1.333 Ve°00E3t 4 (0,333 Ve—2E6t (12)

Step Response

Step response plotted in

MATLAB

Characteristic of a signal | R=250

having only real poles > os L =10 uH
- C =100nF

o No overshoot/ringing 04}

Steady-state voltage agrees 02}

with intuition | |

time [psec]
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Inverse Laplace Transforms — Example 1

Go back to (7) and apply the initial value 0
theorem

1E12 vilt) &) 1V-u(t) —cC
0o (0) = lim s¥o(s) = im = e res + 1512) ~ ° "

Which is, in fact our assumed initial condition

Next, apply the final value theorem to the Laplace transform step
response, (7)

1E12
-0 (s%? + 2.5E6s + 1E12)

v, (0) = llm sV,(s) = 11

1E12
v"(oo) ~ 1E12 1V

This final value agrees with both intuition and our numerical analysis
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Inverse Laplace Transforms — Example 2

-
Reduce the resistance and re-calculate the

step response — Vel
R =200 v(t)(f 1V-u(t) —C
L =10 uH
C =100 nF 7

Laplace transform of the step response becomes
1E12

VO(S) - s(s24+2E6s+1E12) (13)
Factoring the denominator
Vo(s) = —— (14)

s(s+1E6)2

In this case, the denominator polynomial has three real roots, two

of which are identical
Sl - O, Sz - _1E6, 53 - _1E6
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Inverse Laplace Transforms — Example 2
e

Partial fraction expansion of (14) has the i s L
form

AN Y'Y

__1E12 1y - 5 vty @) 1v-u() +c
Vo(s) = s(s+1E6)2 s t e T (s+1E6)2 (15)

=

Again, find residues by multiplying both sides of (15) by the left-
hand side denominator

1E12 = r,(s + 1E6)? + r,5(s + 1E6) + 135
1E12 = 1ys% + 2E6rys + 1E121r; + 1,52 + 1E671,5 + 135

Collecting terms, we have

1E12 = s%(ry + 1,) + s(2E6ry + 1E61, + 13) + 1E121, (16)
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Inverse Laplace Transforms — Example 2
e

Equating coefficients of powers of s on both

sides of (16) gives a system of three equations S RO e
in three unknowns
s2: 0= T+ vty @) 1v-u() L e
st 0=2E6r, + 1E6r, + 1y 5

s% 1E12 = 1E12n,

Solving for the residues gives

T'1 - 1
rz - —1
ry = —1E6

The Laplace transform of the step response is

1 1 1E6
Vh(s) ==-— —
0 (s) s S+1E6 (s+1E6)2?

(17)

Equation (17) can now be transformed back to the time domain using the
Laplace transform table
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Inverse Laplace Transforms — Example 2
e

The time-domain step response of the system is the sum of a constant, a
decaying exponential, and a decaying exponential scaled by time:

v, (t) =1V — 1 Ve 1E6t _ 1E6gte‘156t (18)
Step Response
Step response plotted in MATLAB 11
Again, characteristic of a signal 08}
having only real poles R0
= 06 L =10 uH
o Similar to the last case e
> C =100nF
o A bit faster — slower pole at .
s = —500E3 was eliminated 0l
DD 2 4 3] 8 ‘1IIJ “II2 1'4 ‘1;3 1IB 20

time [usec]
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Inverse Laplace Transforms — Example 3
e

Reduce the resistance even further and go (1)

through the process once again — R Ao Vel®)
R = 10 Q vi(t) (I 1V-u(t) L c
L=10uH
C =100 nF v

Laplace transform of the step response becomes

1E12
Vo(s) = —

+1E6s+1E12)

(19)

The second-order term in the denominator now has complex roots, so we
won’t factor any further

The denominator polynomial still has a root at zero and now has two roots
which are a complex-conjugate pair

sy =0, s, = —500E3 + jB66E3, s3 = —500E3 — jJ866E3
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Inverse Laplace Transforms — Example 3
e

Want to cast the partial fraction terms into

. ) L,
forms that appear in the Laplace transform — R rron Vel
table

vi(t) &) 1V-u(t) e
Second-order terms should be of the form

ri(s+0)+7ri41w
(s+0)2+w?

(20)

This will transform into the sum of damped sine and cosine terms

L~y (s +9) + 7 v = r;e7% cos(wt) + 13,1 % sin(wt)
s+ 0)24+w? s+ o)2+w?| t+1

To get the second-order term in the denominator of (19) into the form of

(20), complete the square, to give the following partial fraction expansion

1E12 r1 . 15(s+500E3)+73(866E3)
Vo (s) = — ==+ 2 - 2 (21)
s(s2+1E6s+1E12) s ' (s+500E3)2+(866E3)
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Inverse Laplace Transforms — Example 3
e

Note that the o and w terms in (20) and i)

~5 R L v
(21) are the real and imaginary parts of M
the complex-conjugate denominator roots vy @) 1v-u® Lc
Sp3 = —0 * jw = —500E3 + j866E3 v

Multiplying both sides of (21) by the left-hand-side denominator,
equate coefficients and solve for residues as before:

T'l == 1
r, = —1
rs = —0.577

Laplace transform of the step response is

1 (s+500E3) 0.577(866E3
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Inverse Laplace Transforms — Example 3

The time-domain step response of the system is the sum of a constant and

two decaying sinusoids:

y(t) = 1V — 1Ve 253 cos(866E3t) — 0.577 Ve >0%3tsin(866E3t) | (23)
Step Response
Step response and 12 ——
individual components |
plotted in MATLAB
Characteristic of a signal s: R=100
having complex poles S, 08 L =10 uH
C =100 nF
o Sinusoidal terms result in 04T
overshoot and (possibly) _
ringing e
DD 2 .;, Elr EI*. 1Iu 1I2 1I4 1IE~ 1Ia 20

time [usec]
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Laplace-Domain Signals with Complex Poles
e

The Laplace transform of the step response in the last example had

complex poles

O A complex-conjugate pair: s = —0 * jw Am

Results in sine and cosine terms in ) T Hiw
the time domain ’

Ae % cos(wt) + Be 7t sin(wt)

Imaginary part of the roots, w ¢

o Frequency of oscillation of sinusoidal -0
components of the signal

Real part of the roots, o,

O Rate of decay of the sinusoidal X + -jw
components

Much more on this later
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n Natural & Driven Responses
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Natural and Forced Responses

In the previous section we used Laplace transforms
to determine the response of a circuit to a step
input, given zero initial conditions

o The driven response

Now, consider the response of the same system to
non-zero initial conditions only

o The natural response
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Natural Response
e

Same under-damped RLC circuit

. i(t)
Now the input stepsfrom 1 Vto 0OV — R Vel
att =0 foa 1O
w(t)@‘lV-‘lV-u(t) 100nF == C
v;(t) = 1V — 1V u(t)
Since v;(t = 0) = 0, the governing
equation becomes
By + =Ty + =1, = 0 (24)

Use the derivative property to Laplace transform (24)
o Allow for non-zero initial-conditions

52V, (5) = 515(0) = 1(0) + 7 5V5(8) = 706 (0) + 75 V() =0 (25)
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Natural Response

Solving (25) for V,(s) gives the Laplace transform of the
output due solely to initial conditions

O Laplace transform of the natural response

576(0)+0(0)+776(0)

Vo(s) = R__ 1 (26)

24 oy —
S +LS+LC

For the given input, fort < O:
ov;(t<0)=1V
oDi(t<0)=0A4
ov,(t<0)=1V

At t = 0, neither i(t) nor v, (t) can change instantaneously,
so the initial conditions are:

v,(0)=1V and v,(0)=0V/s
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Natural Response

Substituting component parameters and initial conditions
into (26)

s +1E6
+1E65+1E12)

Vols) = (27)

Remember, it’s the roots of the denominator polynomial
that dictate the form of the response

o Real roots — decaying exponentials
o Complex roots — decaying sinusoids

For the under-damped case, roots are complex
o Complete the square
o Partial fraction expansion has the form

S +1E6 r1(S+500E3)+1r,(866E3
V. (s) = _ 7y )+73(866E3)

(s2+1E6s+1E12)  (s+500E3)2+(866E3)2

(28)
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Natural Response
e

s +1E6 r1(s+500E3)+71,(866E3
(s2+1E6s+1E12) (s+500E3)2+(866E3)2

Multiply both sides of (28) by the denominator of
the left-hand side

s +1E6 = rys + 500E3r; + 866E3r,
Equating coefficients and solving for r; and 7, gives
rn=1 r =0.577

The Laplace transform of the natural response:

v (S) _ (s+500E3) 0.577(866E3)
0 ~ (s+500E3)2+(866E3)2 = (s+500E3)2+(866E3)2

(29)
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Natural Response
e
Inverse Laplace transform is the natural response

y(t) = 1 Ve 500E3t co5(866E3 - t) + 0.577 Ve >00E3t 5in(866E3 - t)  (30)

Natural Response

Under-damped

08r

response is the Vo0 =1V
sum of decaying = | V0 =ovis

sine and cosine - |

terms |

time [psec]
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Driven Response with Non-Zero I.C.s
R

Now, change the source to provide LU L
both non-zero input (for t = 0) and ;/(\)g 10uH

non-zero initial conditions:

vi(t) =—1V +2V - -u(t)

~

The Laplace transform of the output including both input and initial
conditions:

s?V,(s) — sv,(0) — 1,(0) +5SV (s) —Bv (0) +iV (s) = iV-(S)
(0] (0] (0] L (0] L (0] LC (0] LC l

Solving for V, (s) gives

5V6(0)+76(0) +16 (0)+7=V(5)
£
LC

Vo(s) = (31)

sZ4+2s+
L
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Driven Response with Non-Zero I.C.'s
-

Laplace transform of the response has two components

: R 1
_ 0@ 490 +70(0)  Fin(s)
Vo(s) = ( 2 R 1) ( S R, 1 (32)
S ZS+R S +ZS+E)
\ J \ J
| |
Natural response - initial conditions Driven response - input

Total response is a superposition of the initial condition
response and the driven response

Both have the same denominator polynomial

o Same roots, same type of response

Over-, under-, critically-damped

K. Webb ENGR 203



Driven Response with Non-Zero I.C.s

.
The input now is

-1V t<0

vi(t)=—1V+2V-u(t)={+1V (>0
Fort = 0, theinputis1V

o The same as a unit step, so it’s Laplace transform is simply

1
Vi(s) = S

o The fact that v;(t < 0) = —1 V is accounted for by the
initial conditions:

v,(0)=—1V and v,(0)=0V/s
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Driven Response with Non-Zero I.C.'s

Substituting in component and input values gives the
Laplace transform of the total response

1E12
—s —1E6+——  —s? —1E6s + 1E12

(s2 + 1E6s + 1E12)  s(s2 + 1E6s + 1E12)

Vo(s) =

Transform back to time domain via partial fraction
expansion

r r,(s + 500E3) r3(866E3)
Vo(s) =—+ +
s ' (s + 500E3)2 + (866E3)2 ' (s + 500E3)2 + (866E3)2

Solving for the residues gives

rn=1, rn =-2, r3 =—1.15
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Driven Response with Non-Zero I.C.'s
-

Total response:
v,(t) =1 — 2275003t ¢o5(866E3 - t) — 1.15e°00E3t 5in(866E3 - t)

Natural Response
1.5 T T T

Superposition of A - = e e

two components TN Contes Ry

o Natural response /PR —
due to initial = 7 _
conditions = o T T ]

o Driven response o) = & 0 cos(865E31) - 0 577 Ve
due to the input -

0 2 4 6 8 10 12 14 16 18 20
time [usec]
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