SECTION 3: INVERSE LAPLACE TRANSFORMS

ENGR 203 - Electrical Fundamentals III

Inverse Laplace Transform

We've just seen how time-domain functions can be transformed to the Laplace domain. Next, we'll look at how we can solve differential equations in the Laplace domain and transform back to the time domain.

Laplace Transforms - Differential Equations

\square Consider the simple RLC circuit from the introductory section of notes:
\square The governing differential
 equation is

$$
\frac{d^{2} v_{O}}{d t^{2}}+\frac{R}{L} \frac{d v_{O}}{d t}+\frac{1}{L C} v_{o}(t)=\frac{1}{L C} v_{i}(t)
$$

\square Or, using dot notation

$$
\begin{equation*}
\ddot{v}_{o}(t)+\frac{R}{L} \dot{v}_{o}(t)+\frac{1}{L C} v_{o(t)}=\frac{1}{L C} v_{i}(t) \tag{1}
\end{equation*}
$$

Laplace Transforms - Differential Equations

\square We'll now use Laplace transforms to determine the step response of the system

- 1 V step input

$$
v_{i}(t)=1 V \cdot u(t)= \begin{cases}0 V, & t<0 \tag{2}\\ 1 V, & t \geq 0\end{cases}
$$

\square For the step response, we assume zero initial conditions

$$
\begin{equation*}
v_{o}(0)=0 \text { and } \dot{v}_{o}(0)=0 \tag{3}
\end{equation*}
$$

\square Using the derivative property of the Laplace transform, (1) becomes

$$
\begin{align*}
& s^{2} V_{o}(s)-s v_{o}(0)-\dot{v}_{o}(0)+\frac{R}{L} s V_{o}(s)-\frac{R}{L} v_{o}(0)+\frac{1}{L C} V_{o}(s)=\frac{1}{L C} V_{i}(s) \\
& s^{2} V_{o}(s)+\frac{R}{L} s V_{o}(s)+\frac{1}{L C} V_{o}(s)=\frac{1}{L C} V_{i}(s) \tag{4}
\end{align*}
$$

Laplace Transforms - Differential Equations

\square The input is a step, so (4) becomes

$$
\begin{equation*}
s^{2} V_{o}(s)+\frac{R}{L} s V_{o}(s)+\frac{1}{L C} V_{o}(s)=\frac{1}{L C} \frac{1}{s} \tag{5}
\end{equation*}
$$

\square Solving (5) for $V_{o}(s)$

$$
\begin{align*}
& V_{o}(s)\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)=\frac{1}{L C} \frac{1}{s} \\
& V_{o}(s)=\frac{1 / L C}{s\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)} \tag{6}
\end{align*}
$$

\square Equation (6) is the solution to the differential equation of (1), given the step input and I.C.'s

- The system step response in the Laplace domain
- Next, we need to transform back to the time domain

Laplace Transforms - Differential Equations

$$
\begin{equation*}
V_{O}(s)=\frac{1 / L C}{s\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)} \tag{6}
\end{equation*}
$$

\square The form of (6) is typical of Laplace transforms when dealing with linear systems

- A rational polynomial in s
- Here, the numerator is $0^{\text {th }}$-order

$$
V_{o}(s)=\frac{B(s)}{A(s)}
$$

\square Roots of the numerator polynomial, $B(s)$, are called the zeros of the function
\square Roots of the denominator polynomial, $A(s)$, are called the poles of the function

Inverse Laplace Transforms

$$
\begin{equation*}
V_{o}(s)=\frac{1 / L C}{s\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)} \tag{6}
\end{equation*}
$$

\square To get (6) back into the time domain, we need to perform an inverse Laplace
 transform

- An integral inverse transform exists, but we don't use it
- Instead, we use partial fraction expansion
\square Partial fraction expansion
- Idea is to express the Laplace transform solution, (6), as a sum of Laplace transform terms that appear in the table
- Procedure depends on the type of roots of the denominator polynomial
- Real and distinct
- Repeated
- Complex

Inverse Laplace Transforms - Example 1

\square Consider the following system parameters

$$
\begin{aligned}
& R=25 \Omega \\
& L=10 \mu H \\
& C=100 \mathrm{nF}
\end{aligned}
$$

\square Laplace transform of the step response becomes

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s\left(s^{2}+2.5 E 6 s+1 E 12\right)} \tag{7}
\end{equation*}
$$

\square Factoring the denominator

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s(s+500 E 3)(s+2 E 6)} \tag{8}
\end{equation*}
$$

\square In this case, the denominator polynomial has three real, distinct roots:

$$
s_{1}=0, \quad s_{2}=-500 E 3, \quad s_{3}=-2 E 6
$$

Inverse Laplace Transforms - Example 1

- Partial fraction expansion of (8) has the form

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s(s+500 E 3)(s+2 E 6)}=\frac{r_{1}}{s}+\frac{r_{2}}{s+500 E 3}+\frac{r_{3}}{s+2 E 6} \tag{9}
\end{equation*}
$$

- The numerator coefficients, r_{1}, r_{2}, and r_{3}, are called residues
\square Can already see the form of the time-domain function
- Sum of a constant and two decaying exponentials
\square To determine the residues, multiply both sides of (9) by the denominator of the left-hand side

$$
\begin{aligned}
& 1 E 12=r_{1}(s+500 E 3)(s+2 E 6)+r_{2} s(s+2 E 6)+r_{3} s(s+500 E 3) \\
& 1 E 12=r_{1} s^{2}+2.5 E 6 r_{1} s+1 E 12 r_{1}+r_{2} s^{2}+2 E 6 r_{2} s+r_{3} s^{2}+500 E 3 r_{3} s
\end{aligned}
$$

\square Collecting terms, we have

$$
\begin{equation*}
1 E 12=s^{2}\left(r_{1}+r_{2}+r_{3}\right)+s\left(2.5 E 6 r_{1}+2 E 6 r_{2}+500 E 3 r_{3}\right)+1 E 12 r_{1} \tag{10}
\end{equation*}
$$

Inverse Laplace Transforms - Example 1

\square Equating coefficients of powers of s on both sides of (10) gives a system of three equations in three unknowns

$$
\begin{array}{ll}
s^{2}: & 0=r_{1}+r_{2}+r_{3} \\
s^{1}: & 0=2.5 E 6 r_{1}+2 E 6 r_{2}+500 E 3 r_{3} \\
s^{0}: & 1 E 12=1 E 12 r_{1}
\end{array}
$$

\square Solving for the residues gives

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1.333 \\
& r_{3}=0.333
\end{aligned}
$$

\square The Laplace transform of the step response is

$$
\begin{equation*}
V_{o}(s)=\frac{1}{s}-\frac{1.333}{s+500 E 3}+\frac{0.333}{s+2 E 6} \tag{11}
\end{equation*}
$$

\square Equation (11) can now be transformed back to the time domain using the Laplace transform table

Inverse Laplace Transforms - Example 1

\square The time-domain step response of the system is the sum of a constant term and two decaying exponentials:

$$
\begin{equation*}
v_{o}(t)=1 V-1.333 V e^{-500 E 3 t}+0.333 V e^{-2 E 6 t} \tag{12}
\end{equation*}
$$

\square Step response plotted in MATLAB
\square Characteristic of a signal having only real poles

- No overshoot/ringing
\square Steady-state voltage agrees with intuition

Inverse Laplace Transforms - Example 1

\square Go back to (7) and apply the initial value theorem
$v_{o}(0)=\lim _{s \rightarrow \infty} s V_{o}(s)=\lim _{s \rightarrow \infty} \frac{1 E 12}{\left(s^{2}+2.5 E 6 s+1 E 12\right)}=0 \mathrm{~V}$

\square Which is, in fact our assumed initial condition
\square Next, apply the final value theorem to the Laplace transform step response, (7)

$$
\begin{aligned}
& v_{o}(\infty)=\lim _{s \rightarrow 0} s V_{o}(s)=\lim _{s \rightarrow 0} \frac{1 E 12}{\left(s^{2}+2.5 E 6 s+1 E 12\right)} \\
& v_{o}(\infty)=\frac{1 E 12}{1 E 12}=1 \mathrm{~V}
\end{aligned}
$$

\square This final value agrees with both intuition and our numerical analysis

Inverse Laplace Transforms - Example 2

\square Reduce the resistance and re-calculate the step response

$$
\begin{aligned}
& R=20 \Omega \\
& L=10 \mu H \\
& C=100 n F
\end{aligned}
$$

\square Laplace transform of the step response becomes

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s\left(s^{2}+2 E 6 s+1 E 12\right)} \tag{13}
\end{equation*}
$$

\square Factoring the denominator

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s(s+1 E 6)^{2}} \tag{14}
\end{equation*}
$$

\square In this case, the denominator polynomial has three real roots, two of which are identical

$$
s_{1}=0, \quad s_{2}=-1 E 6, \quad s_{3}=-1 E 6
$$

Inverse Laplace Transforms - Example 2

\square Partial fraction expansion of (14) has the form

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s(s+1 E 6)^{2}}=\frac{r_{1}}{s}+\frac{r_{2}}{s+1 E 6}+\frac{r_{3}}{(s+1 E 6)^{2}} \tag{15}
\end{equation*}
$$

\square Again, find residues by multiplying both sides of (15) by the lefthand side denominator

$$
\begin{aligned}
& 1 E 12=r_{1}(s+1 E 6)^{2}+r_{2} s(s+1 E 6)+r_{3} s \\
& 1 E 12=r_{1} s^{2}+2 E 6 r_{1} s+1 E 12 r_{1}+r_{2} s^{2}+1 E 6 r_{2} s+r_{3} s
\end{aligned}
$$

\square Collecting terms, we have

$$
\begin{equation*}
1 E 12=s^{2}\left(r_{1}+r_{2}\right)+s\left(2 E 6 r_{1}+1 E 6 r_{2}+r_{3}\right)+1 E 12 r_{1} \tag{16}
\end{equation*}
$$

Inverse Laplace Transforms - Example 2

\square Equating coefficients of powers of s on both sides of (16) gives a system of three equations in three unknowns

$$
\begin{array}{ll}
s^{2}: & 0=r_{1}+r_{2} \\
s^{1}: & 0=2 E 6 r_{1}+1 E 6 r_{2}+r_{3} \\
s^{0}: & 1 E 12=1 E 12 r_{1}
\end{array}
$$

\square Solving for the residues gives

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1 \\
& r_{3}=-1 E 6
\end{aligned}
$$

$\square \quad$ The Laplace transform of the step response is

$$
\begin{equation*}
V_{o}(s)=\frac{1}{s}-\frac{1}{s+1 E 6}-\frac{1 E 6}{(s+1 E 6)^{2}} \tag{17}
\end{equation*}
$$

\square Equation (17) can now be transformed back to the time domain using the Laplace transform table

Inverse Laplace Transforms - Example 2

\square The time-domain step response of the system is the sum of a constant, a decaying exponential, and a decaying exponential scaled by time:

$$
\begin{equation*}
v_{o}(t)=1 V-1 V e^{-1 E 6 t}-1 E 6 \frac{V}{s} t e^{-1 E 6 t} \tag{18}
\end{equation*}
$$

- Step response plotted in MATLAB
\square Again, characteristic of a signal having only real poles
- Similar to the last case
- A bit faster - slower pole at $s=-500 E 3$ was eliminated

Step Response

Inverse Laplace Transforms - Example 3

\square Reduce the resistance even further and go through the process once again

$$
\begin{aligned}
& R=10 \Omega \\
& L=10 \mu H \\
& C=100 n F
\end{aligned}
$$

\square Laplace transform of the step response becomes

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s\left(s^{2}+1 E 6 s+1 E 12\right)} \tag{19}
\end{equation*}
$$

\square The second-order term in the denominator now has complex roots, so we won't factor any further
\square The denominator polynomial still has a root at zero and now has two roots which are a complex-conjugate pair

$$
s_{1}=0, \quad s_{2}=-500 E 3+j 866 E 3, \quad s_{3}=-500 E 3-j 866 E 3
$$

Inverse Laplace Transforms - Example 3

\square Want to cast the partial fraction terms into forms that appear in the Laplace transform table
\square Second-order terms should be of the form

$$
\begin{equation*}
\frac{r_{i}(s+\sigma)+r_{i+1} \omega}{(s+\sigma)^{2}+\omega^{2}} \tag{20}
\end{equation*}
$$

\square This will transform into the sum of damped sine and cosine terms

$$
\mathcal{L}^{-1}\left\{r_{i} \frac{(s+\sigma)}{(s+\sigma)^{2}+\omega^{2}}+r_{i+1} \frac{\omega}{(s+\sigma)^{2}+\omega^{2}}\right\}=r_{i} e^{-\sigma t} \cos (\omega t)+r_{i+1} e^{-\sigma t} \sin (\omega t)
$$

\square To get the second-order term in the denominator of (19) into the form of (20), complete the square, to give the following partial fraction expansion

$$
\begin{equation*}
V_{o}(s)=\frac{1 E 12}{s\left(s^{2}+1 E 6 s+1 E 12\right)}=\frac{r_{1}}{s}+\frac{r_{2}(s+500 E 3)+r_{3}(866 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}} \tag{21}
\end{equation*}
$$

Inverse Laplace Transforms - Example 3

\square Note that the σ and ω terms in (20) and (21) are the real and imaginary parts of the complex-conjugate denominator roots

$$
s_{2,3}=-\sigma \pm j \omega=-500 E 3 \pm j 866 E 3
$$

\square Multiplying both sides of (21) by the left-hand-side denominator, equate coefficients and solve for residues as before:

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1 \\
& r_{3}=-0.577
\end{aligned}
$$

\square Laplace transform of the step response is

$$
\begin{equation*}
V_{o}(s)=\frac{1}{s}-\frac{(s+500 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}}-\frac{0.577(866 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}} \tag{22}
\end{equation*}
$$

Inverse Laplace Transforms - Example 3

\square The time-domain step response of the system is the sum of a constant and two decaying sinusoids:

$$
\begin{equation*}
y(t)=1 V-1 V e^{-500 E 3 t} \cos (866 E 3 t)-0.577 V e^{-500 E 3 t} \sin (866 E 3 t) \tag{23}
\end{equation*}
$$

\square Step response and individual components plotted in MATLAB
\square Characteristic of a signal having complex poles

- Sinusoidal terms result in overshoot and (possibly) ringing

Step Response

Laplace-Domain Signals with Complex Poles

\square The Laplace transform of the step response in the last example had complex poles

- A complex-conjugate pair: $s=-\sigma \pm j \omega$

\square Much more on this later

Natural \& Driven Responses

Natural and Forced Responses

\square In the previous section we used Laplace transforms to determine the response of a circuit to a step input, given zero initial conditions

- The driven response
\square Now, consider the response of the same system to non-zero initial conditions only
- The natural response

Natural Response

\square Same under-damped RLC circuit

- Now the input steps from 1 V to 0 V at $t=0$

$$
v_{i}(t)=1 V-1 V u(t)
$$

\square Since $v_{i}(t \geq 0)=0$, the governing equation becomes

$$
\begin{equation*}
\ddot{v}_{o}+\frac{R}{L} \dot{v}_{o}+\frac{1}{L C} v_{o}=0 \tag{24}
\end{equation*}
$$

\square Use the derivative property to Laplace transform (24)

- Allow for non-zero initial-conditions

$$
\begin{equation*}
s^{2} V_{o}(s)-s v_{o}(0)-\dot{v}_{o}(0)+\frac{R}{L} s V_{o}(s)-\frac{R}{L} v_{o}(0)+\frac{1}{L C} V_{o}(s)=0 \tag{25}
\end{equation*}
$$

Natural Response

\square Solving (25) for $V_{o}(s)$ gives the Laplace transform of the output due solely to initial conditions

- Laplace transform of the natural response

$$
\begin{equation*}
V_{o}(s)=\frac{s v_{o}(0)+\dot{v}_{o}(0)+\frac{R}{L} v_{o}(0)}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \tag{26}
\end{equation*}
$$

\square For the given input, for $t<0$:

- $v_{i}(t<0)=1 \mathrm{~V}$
- $i(t<0)=0 A$
- $v_{o}(t<0)=1 \mathrm{~V}$
\square At $t=0$, neither $i(t)$ nor $v_{o}(t)$ can change instantaneously, so the initial conditions are:

$$
v_{o}(0)=1 \mathrm{~V} \quad \text { and } \quad \dot{v}_{o}(0)=0 \mathrm{~V} / \mathrm{s}
$$

Natural Response

\square Substituting component parameters and initial conditions into (26)

$$
\begin{equation*}
V_{o}(s)=\frac{s+1 E 6}{\left(s^{2}+1 E 6 s+1 E 12\right)} \tag{27}
\end{equation*}
$$

\square Remember, it's the roots of the denominator polynomial that dictate the form of the response

- Real roots - decaying exponentials
- Complex roots - decaying sinusoids
\square For the under-damped case, roots are complex
- Complete the square
- Partial fraction expansion has the form

$$
\begin{equation*}
V_{o}(s)=\frac{s+1 E 6}{\left(s^{2}+1 E 6 s+1 E 12\right)}=\frac{r_{1}(s+500 E 3)+r_{2}(866 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}} \tag{28}
\end{equation*}
$$

Natural Response

$$
\begin{equation*}
V_{o}(s)=\frac{s+1 E 6}{\left(s^{2}+1 E 6 s+1 E 12\right)}=\frac{r_{1}(s+500 E 3)+r_{2}(866 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}} \tag{28}
\end{equation*}
$$

\square Multiply both sides of (28) by the denominator of the left-hand side

$$
s+1 E 6=r_{1} s+500 E 3 r_{1}+866 E 3 r_{2}
$$

\square Equating coefficients and solving for r_{1} and r_{2} gives

$$
r_{1}=1, r_{2}=0.577
$$

\square The Laplace transform of the natural response:

$$
\begin{equation*}
V_{o}(s)=\frac{(s+500 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}}+\frac{0.577(866 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}} \tag{29}
\end{equation*}
$$

Natural Response

\square Inverse Laplace transform is the natural response

$$
\begin{equation*}
y(t)=1 V e^{-500 E 3 t} \cos (866 E 3 \cdot t)+0.577 V e^{-500 E 3 t} \sin (866 E 3 \cdot t) \tag{30}
\end{equation*}
$$

\square Under-damped response is the sum of decaying sine and cosine terms

Driven Response with Non-Zero I.C.s

\square Now, change the source to provide both non-zero input (for $t \geq 0$) and non-zero initial conditions:

$$
v_{i}(t)=-1 V+2 V \cdot u(t)
$$

\square The Laplace transform of the output including both input and initial conditions:

$$
s^{2} V_{o}(s)-s v_{o}(0)-\dot{v}_{o}(0)+\frac{R}{L} s V_{o}(s)-\frac{R}{L} v_{o}(0)+\frac{1}{L C} V_{o}(s)=\frac{1}{L C} V_{i}(s)
$$

\square Solving for $V_{o}(s)$ gives

$$
\begin{equation*}
V_{o}(s)=\frac{s v_{o}(0)+\dot{v}_{o}(0)+\frac{R}{L} v_{o}(0)+\frac{1}{L C} V_{i}(s)}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \tag{3}
\end{equation*}
$$

Driven Response with Non-Zero I.C.'s

\square Laplace transform of the response has two components

$$
\begin{equation*}
V_{O}(s)=\underbrace{\frac{s v_{o}(0)+\dot{v}_{O}(0)+\frac{R}{L} v_{o}(0)}{\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)}}+\underbrace{\frac{\frac{1}{L C} F_{i n}(s)}{\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)}} \tag{32}
\end{equation*}
$$

Natural response - initial conditions
Driven response - input
\square Total response is a superposition of the initial condition response and the driven response
\square Both have the same denominator polynomial

- Same roots, same type of response
- Over-, under-, critically-damped

Driven Response with Non-Zero I.C.s

\square The input now is

$$
v_{i}(t)=-1 V+2 V \cdot u(t)= \begin{cases}-1 V & t<0 \\ +1 V & t \geq 0\end{cases}
$$

\square For $t \geq 0$, the input is $1 V$

- The same as a unit step, so it's Laplace transform is simply

$$
V_{i}(s)=\frac{1}{s}
$$

\square The fact that $v_{i}(t<0)=-1 V$ is accounted for by the initial conditions:

$$
v_{o}(0)=-1 \mathrm{~V} \text { and } \quad \dot{v}_{o}(0)=0 \mathrm{~V} / \mathrm{s}
$$

Driven Response with Non-Zero I.C.'s

\square Substituting in component and input values gives the Laplace transform of the total response

$$
V_{o}(s)=\frac{-s-1 E 6+\frac{1 E 12}{s}}{\left(s^{2}+1 E 6 s+1 E 12\right)}=\frac{-s^{2}-1 E 6 s+1 E 12}{s\left(s^{2}+1 E 6 s+1 E 12\right)}
$$

\square Transform back to time domain via partial fraction expansion

$$
V_{o}(s)=\frac{r_{1}}{s}+\frac{r_{2}(s+500 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}}+\frac{r_{3}(866 E 3)}{(s+500 E 3)^{2}+(866 E 3)^{2}}
$$

\square Solving for the residues gives

$$
r_{1}=1, \quad r_{2}=-2, \quad r_{3}=-1.15
$$

Driven Response with Non-Zero I.C.'s

\square Total response:

$$
v_{o}(t)=1-2 e^{-500 E 3 t} \cos (866 E 3 \cdot t)-1.15 e^{-500 E 3 t} \sin (866 E 3 \cdot t)
$$

\square Superposition of two components

- Natural response due to initial conditions
\square Driven response due to the input

