SECTION 6: FREQUENCY
RESPONSE ANALYSIS
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Frequency Response

Apply a sinusoidal input to a linear circuit
o Output is sinusoidal

o Same frequency

o In general, different amplitude and phase

vi(t) = A-cos(wt+6 ' Vo(t) = B-cos(wt+
(t) ( ) Ll.nea-r (t) (wt+d )
V,=AZ0 Circuit V,=B4d

Input/output relationship given by circuit’s gain and
phase responses

K. Webb ENGR 203



Frequency Response
e

vi(t) = A-cos(wt+06 i Vo(t) = B-cos(wt+
(t) ( ) Ll.nea.r (t) (wt+d )
V.=Az0 Circuit V,=BZzod

Gain: ratio of output amplitude to input amplitude

V,| B
Gain = — = —
Vil A

Phase: phase shift from input to output
Phase = 2V, —42V; = ¢ — 0

Gain and phase relationships given by the circuit’s frequency
response function, G (jw)

Gain = |G(jw)|
Phase = 2G(jw)
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Frequency Response
e

In ENGR 202, we saw how to derive a circuit’s frequency response
function in the phasor domain

For example: R
S :
V ‘wL
VO =G(jw) = J
t jwL + R +]a)C
‘w)?2LC
G(w) = — V) ,
(Jw)?LC + RCjw + 1
. )2
)
G(w) = U ) T

2
(Jw)* + ](U +LC
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Frequency Response

G (jw) is the frequency response function
o Ratio of output phasor to input phasor

G(w) =£

Vi
A complex-valued function of frequency

o |G(jw)| at each w is the gain at that frequency
Ratio of output amplitude to input amplitude

IV,
\'A

|G(w)| =

O £G(jw) at each w is the phase at that frequency
Phase shift between input and output sinusoids

£G(jw) = 2V, — LV;

K. Webb
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Frequency Response

Consider the same circuit transformed to R Cs
the Laplace domain VT :
The transfer function is ‘1 3 ‘i
Ls s? ) )
Gls) = 1~ , R 1
Ls + Rs + § sS4 + ZS + E
Note the similarity to the frequency response function:
s? . (jw)?
G(s) = > R, 1 G(jw) =— 5 R, | 1
Se+rS+rz Jw)*+Tjw+7s

The frequency response function is the transfer function with s
replaced by jw

G(jw) = G(s)
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Plotting the Frequency Response Function
1

G (jw) is a complex-valued function of frequency
o Has both magnitude and phase
o Plot gain and phase separately

Frequency response plots formatted as Bode plots

o Two sets of axes: gain on top, phase below
o Identical, logarithmic frequency axes

O Gain axis is logarithmic — either explicitly or as units of
decibels (dB)

o Phase axis is linear with units of degrees
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Interpreting Bode Plots
R

Bode plots tell you the gain and phase shift at all frequencies:
choose a frequency, read gain and phase values from the plot

For a 10KHz
sinusoidal
input, the

gainis0dB (1)

and the phase
shift is 0°.
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Bode Plot
= Do SN B L AN
g o i
§ Ay For a 10MHz
E - sinusoidal
50 input, the
" gain is -32dB
’ + S | - the phase
£ 50 shift is -176°.
o -100
£ 450
-200 Loiuii CLiin
10° 10 10°
Frequency [Hz]
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Response of 15t- and 2"4-Order Factors
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Transfer Function Factors
e

We've already seen that a transfer function denominator can be factored into first-
and second-order terms

Num(s)

G(s) =
(s = p1)(s —pz) - (52 + 2{ w15 + w5,1)(52 + 20w 25 + wg,z)

The same is true of the numerator

(5= 2z)(s = 2) - (5% + 2{qw0,08 + w§ 4 ) (5% + 20ow0 ps + WG ) -

G(s) =
(s = p1)(s —pz) - (52 + 2{ w15 + w5,1)(52 + 20w 25 + wcz),z)

Can think of the transfer function as a product of the individual factors
For example, consider the following system

(s —2z)
(s — P1)(52 + 2{ wo 1S + w(z),l)

G(s) =

Can rewrite as

1 1
(s —p1) (s2+ 20 wpqs + w3;)

G(s) = (s — z1)
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Transfer Function Factors
S —

1 1
(s =p1) (s%+20wo1s+ wi;)

G(s) = (s—2z)

Think of this as three cascaded transfer functions

1 1

Gi1(s) =(s—2z1), G(s) = —py) G3(s) = (s2+201w0 15+ w2 ,)
U(s) Y;(s) Y, (s) Y(s)
> Gy (s) > Gy (s) —"| G3(s) >
or
U(s) s — 2 Yi(s) | 1 Y,(s) _ 1 Y(s)_
N 1 (s —py) - (s2 + 2Qwo 15 + w3 ;) -
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Transfer Function Factors
e

Overall transfer function — and therefore, frequency
response — is the product of individual first- and
second-order factors

Instructive, therefore, to understand the responses
of the individual factors

O First- and second-order poles and zeros

U(jw) Y (jw) _

6, Gw) Y, (jw) Ry Y(jw)

G3(jw) ——>

Gy (jw)
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First-Order Factors
e

First-order factors
o Single, real poles or zeros

In the Laplace domain:

G(s) =s, G(S)=§, G(s)=s+a, G(s)=—

s+a

In the frequency domain

o
o

Imaginary
o

e
@
T

. . . 1 . . . 1
= = — = w) =
Gljw) =jw, GJw) =+ Glo)=jota G(jw)= -
Pole/zero plots:
G(jo} = jo ‘ fﬁw) = 111'63‘ Glio) = 1ljo + a) G(jo) = (jo +a}
1 1 1
05 05 0.5
fal E‘ el
& X * 5 0 — S o -
E E E
- — .05 05
1 E 1
—1‘.5 -1 -0‘5 0 05 2 1.5 1 05 0 0.5 0 a 0
Real Real Real Real
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First-Order Factors — Zero at the Origin
-

A differentiator 40 e >
G(s)=s _® -
(s) . -
g ~
C(jw) = jw R R R
Gain: 40 1 o R 2
10 10 10 10 10
G(jw)| = |jo| = w
180
Phase: 1
£G(jw) = +90°, Vw g "
* 45
. .
107 10 10° 10 10

Frequency [rad/sec]
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First-Order Factors — Pole at the Origin
e

An integrator w0 . Slo) =1l
\\\

1 20 s
G(s) =— g ~

S ; 0 N

5 ~
1 20 N
'] —_ \\\

G (](1)) jw » . . . . L N\

107 10" 10° 10" 10°
Gain:
GGw)| = |—| = - 0
0 = |—| = — ]
j(l) w0 . 45
? -90
Phase: &
135}

. .1
LG(jw) =24 —j—=-90° Vw -
(I ) ] w ! 107 10" 10° 10’ 10°
Frequency [rad/sec]
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First-Order Factors — Single, Real Zero

Single, real zeroat s = —a
G(jw) =jw+a
Gain: Phase:
1G(jw)| = w? + a? 2G(jw) = tan™1 (%)

forw <a forw < a

G(jw)| = a £G(jw) ~ 2a = 0°
forw > a forw > a

IG(w)| = w £G(jw) =~ Ljw = 90°
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First-Order Factors — Single, Real Zero
-

Corner frequency: “ Glio) = G + 2) e
v =a ) s
o |G(w)|=aV2=1414-a o2 /
Z /
o 1G(wc)lap = (@)qp + 3dB Bror i
0 7
a LG(I.O)C) = +45° 10” 10" 0 10’ 10°
For w > w,, gain increases at:
o 20dB/dec % W
o 6dB/oct . //
From ~0.1w, to ~10w,, phase 3" /
increases at a rate of: = 4
_~
o ~45°/dec 0 —
o Rough approximation T TS

Normalized Frequency [w/a]
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First-Order Factors — Single, Real Pole
-

Single, real pole at s = —a
G(iw) =
(o) jw +a
Gain: Phase:
1 . (W
‘)| = yae = —tan~ ! (—
6(je)] = =y (jw) = —tan™! (=)
forw < a forw < a
1 LG(jw) ~ £~ = 0°
|G(jw)| ~ (jw) = a
forw > a forw >> a
1 £G(jw) = ¢ ! 90°
. o W) L—=—
|G(ICU)| ~ o Jjw
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First-Order Factors — Single, Real Pole
-

Corner frequency: , Olo) = Vo )

\
\\\

we = a N
. 1 1 1or N
a |G(](1)C)| = WE = 0.707 ‘;

-20

IG(w)l-a [dB]

1

o |G(iwc)|dB = (_)dB — 3dB 30 \\

a

. _ o -40 - . . ; .
= LG(I(‘)C) = —45 107 10" 10° 10’ 10

For w > w,, gain decreases at: |
o —20dB/dec —_
o —6dB/oct \\\

A
o

Phase [deg]

From ~0.1w. to ~10w,, phase
decreases at a rate of: \g

o ~—45°/dec -90
0o Rough approximation 10” 10" 10° 10’ 10°

Normalized Frequency [o/a]
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Second-Order Factors

Complex-conjugate zeros
G(s) = 5% + 2{wys + wh
Second-Order Zero Locations
S1 = -0+jWy
G- A i
"
8 ______
z sin(6) =¢ ..
£ 0 y|
£ -0
o b o
51 = -0-jWy
0
Real

Complex-conjugate poles

Imaginary

o

1

s2 4+ 2{wys + w§

G(s) =

Second-Order Pole Locations

S1 = -0+jWy
x‘ - +jWy
. Wo
0.
sin(@) =7 .
-0
X jws
51 = -0-jWwy
0
Real

g = (wy, wd=w0\/1_(2
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2"d-Order Factors — Complex-Conjugate Zeros
-0V

Complex-conjugate zerosat s = —0 * jwy,
G(w) = (jw)? + 2{we(jw) + wé

Gain: Phase:
forw K wy forw K wy
1G(w)| ~ wi 2G(jw) = Lws = 0°
forw = wy forw = wy
1G(jw)| = 2¢w 2G(jw) = £j2¢wé = +90°
forw > wy forw > wy
1G(w)| = w? 2G(jw) = £ — w? = +180°
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2"d-Order Factors — Complex-Conjugate Zeros
-0V

Response may dip below o Bl) = Gol” + 2l +

low-freq. value near w, o
B0 |

o Peaking increases as { ol | S

decreases oo

Gain increases at +40dB/ 52

dec or +12dB /oct for 0

a) >> (’UO 2 1 “I{) 1 2
10 10 10 10 10

Corner frequency depends
on damping ratio, ¢ ol
O w, increases as ¢ decreases

At w = w,, £6(Jw) = 90°

Phase transition abruptness
depends on ¢

135

Phase [deg]
s

B
n

=

102 107! 10° 10’ 10?
Normalized Frequency [;uf;.:u]
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2"d-Order Factors — Complex-Conjugate Poles
-

Complex-conjugate polesat s = —0 + jwy
6(jw) = -
YT () + 2 wo(o) + o}
Gain: Phase:
for w < w, for w <K wy
1 1
G(j r— LG(jw) = £—=0°
GGl ~ () ~ £
forw = w, forw = w,
1
IG(w)| = LG(jw) = £- = —90°
2§ w§ j2§w§
for w > w, for w > w,
o1 | 1 o
IG(]a))IzE AG(/a))zL—E=—180
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2"d-Order Factors — Complex-Conjugate Poles
-

Response may peak above Gl = VG’ + 2wge) * o]
low-freq. value near w,

O Peaking increases as ¢
decreases

Gain decreases at —40dB/
dec or —12dB /oct for oo

w > Wq 80

102 107! 10° 10" 102

(=02
=051
(=07
(=09

=

=20

A0 r

|Gtjuw)|-w’  [dB]

Corner frequency depends
on damping ratio, ( '

O w, increases as ¢ decreases

45

Atw = w,, £G(Jw) = —90° 7 .|

Phase transition abruptness
depends on ¢

[deq]

Fhase

-180

1072 10" 10° 10 102
Normalized Frequency [;.,-I;un]
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Imaginary

Pole Location and Peaking

.
Peaking is dependent on { — pole locations

o No peaking at all for { = 1/\/7 = 0.707
o { = 0.707 — maximally-flat or Butterworth response

Pole Locations vs. Damping Ratio -- wy = 1 Peaking vs. Damping Ratio
. . 10 : N
® (=02 e £=02
1 ® (=04 )( . / \ —_—(=05
5 ]
z (= g; X // £=0.707
=0 —p e
X . — £=09
X ' 3 —\\
R R
2 \\
3 AN
k=)
0 -10
£ Q
O
_15 L
05 x
x -20
a4l X X | -25
L L L -30 H H H H
2 15 1 05 0 0.5 10" 10° 10’
Real Normalized Frequency [o/o ]
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Frequency Response Components - Example

-
Consider the following system

20(s + 20)
(s+1)(s+100)

G(s) =

The system’s frequency response function is

20(jw + 20)
(o + 1 (jw + 100)

G(jw) =

As we’ve seen we can consider this a product of individual frequency
response factors

1
(jw+1) (w+ 100)

G(jw) = 20 - (jw + 20) -

Overall response is the composite of the individual responses
o Product of individual gain responses —sum in dB
o Sum of individual phase responses
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Imaginary

-20

-40

-60

Frequency Response Components - Example
-~

Gain response

Pole/Zero Plot

60

40

20

A 74

-120
Real

K. Webb

-100 -80 -60 -40 -20

20

Gain [dB]

-60
10

60

40

G, (jo) = 20

1
G, (o) = (o + 20)
G,o) = (o + 1)
G, (o) = 1/(o + 100)

20

10'
® [rad/sec]
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Imaginary

Frequency Response Components - Example

h 100 —————rrrr——
Phase response [ 6,00 =20
P L — G, (o) = (o + 20) et ]
......... G,(0) = 1o + 1) el
Pole/Zero Plot 60t G (o) = 1/ + 100) &
60 ’
40
40
20 o7
D L7
[ o
E - .‘-
ok T e
o5 O
2 \\
Py “ 20
0 )( \J )( \
)
-40
20 R\ N\
60 R\ yd \\
‘\.\ ’,/ \
40 AN
-80 Tornaa R ~a
-60 -100
120 -100 -80 60 40 20 0 20 10" 10° 10’ 10° 10°
Real o [rad/sec]
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Plot Construction

K. Webb ENGR 203



Bode Plot Construction

We've just seen that a system’s transfer function
can be factored into first- and second-order terms

O Each factor contributes a component to the overall gain
and phase responses

Now, we’ll look at a technique for manually
sketching a system’s Bode plot

O In practice, you’ll almost always plot with a computer
o But, learning to do it by hand provides valuable insight

We'll look at how to approximate Bode plots for
each of the different factors
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Bode Form of the Transfer function

.
Consider the general transfer function form:

(s — Zl)(s — ZZ) (52 + Z(awo,as + w(z),a)

G =K
(s) (s = p)(s—p2) (52 + 2¢1wp 15 + w3,1)

We first want to put this into Bode form:
S s s? 2,
(o) @y + ) (o aee 1) -

2
(S +1)<S +1)--- S 254
Wc1 We2 Wy,  @oa1

Putting G (s) into Bode form requires putting each of
the first- and second-order factors into Bode form
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First-Order Factors in Bode Form
-

First-order transfer function factors include:

G(s)=s", G(s)=s+o0, G(s)=—

S+o

For the first factor, G(s) = s™, n is a positive or negative integer
o Already in Bode form

For the second two, divide through by o, giving

1
a(i+1)
o

Here, 0 = w,, the corner frequency associated with that zero or pole, so

G(s)=0(§+1) and G(s) =

1

wc(wic+1)

G(s)=a)c(wic+1) and G(s) =

K. Webb ENGR 203



Second-Order Factors in Bode Form

-0V
Second-order transfer function factors include:

G(s) =s?2+2{wgs + w3 and G(s) = :

s24+2wos+ w3
Again, normalize the s° coefficient, giving
2 27 1/wd
G(s) = w2 [S—+—5+1] and G(s) = 0
Olw§ " wo :—2(2)+3)—is+1

Putting each factor into its Bode form involves factoring out any DC
gain component

Lump all of DC gains together into a single gain constant, K,

(ws’ca+1)(wsb+1)...(w522 +az)gils+1>...
G(S) - KO c 9.0 ’

(wsclﬂ)(wscz+1)...<%+%s+1>---
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Bode Plot Construction

-
Transfer function in Bode form

(L+1)<L+1) S +2a g1
Wca Wcp “)Oa wo,a

(L+1)(i+1) S S+ 241 )-
Wc1 Wc2 w01 ®o,1

G(s) = K,

Product of a constant DC gain factor,K,, and first-
and second-order factors

Plot the frequency response of each factor
individually, then combine graphically

o Overall response is the product of individual factors
Product of gain responses —sum on a dB scale
Sum of phase responses
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Bode Plot Construction
e

Bode plot construction procedure:
1. Put the transfer function into Bode form

2. Draw a straight-line asymptotic approximation for the gain
and phase response of each individual factor

3. Graphically add all individual response components and
sketch the result

Note that we are really plotting the frequency response
function, G (jw)
o We use the transfer function, G (s), to simplify notation

Next, we'll look at the straight-line asymptotic
approximations for the Bode plots for each of the
transfer function factors
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Bode Plot — Constant Gain Factor
I

Bode Plot Components -- Constant Gain Factor

G(S) — KO Kys
Constant gain <
|G(s)| = K, | |
107 10" 10° 10’ 10°
o [rad/sec]
Constant Phase
90
£G(s) =0° s
I
= -45
-90 2 .-1 ‘ 0 . 1 e
10 10 10 10 10
® [rad/sec]
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Bode Plot — Poles/Zeros at the Origin
-

G (S) —_ Sn 100 Bodel Gain Compolnent -‘- PoIes/Zer(I)sl alt‘tltllfe Origin
— ) = -2
n > 0: 50 \\\ ne
. ~ — ) = ]
L. _ \‘~.. \ ’_—---
O n zeros at the origin g "'\::=E __—
£ — — -~
n < O . 8 — ’_———-'/ \\~:..:~\.---
’ 50 ~
. . ~
o n poles at the origin N
. 40?0'2 o 10 10 T
G ain: Normalized Frequency [co/coc]
= Stra |ght || ne . Bode Phase Compf)ne‘nt ‘-- Poles/Zeros a‘t the Origin
dB dB
o Slope=n:-20—=n-6— 45 -
dec oct n= f
$ of n=-
oO0dBatw =1 L 45 n-t
£ 90
Phase: 135
_ o -180 . . ‘
LG(S) =n-90 107 10" 10° 10' 107
Normalized Frequency [oa/oac]
ENGR 203
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Bode Plot — First-Order Zero
-

Single real ZerO at S — _wc 40 B‘ode PIotClompont‘ants --I'=irst-0rde‘rZ]ero |
" 30 ///’
Gain: s |6 =(—+1 yd
= 20 W, /
o 0dB for w < w, < yd
© 10
dB dB :
Oo+20—=+6—"forw > w, &
dec oct 0 -
O Straight-line asymptotes 10° 10" 10° 10 10°
intersect at (w,, 0dB)
Phase: of ' ' 1. 0. n
e
o 0°forw < 0.1 w, 3
45
o 45° for w = w, £ P
o "..c/
o 90° for w = 10 - w, &
0 T ¢

o +45°/dec through w, T o 107

Normalized Frequency [03/030]
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Bode Plot — First-Order Pole
-

Bode Gain Component -- First-Order Pole

Single real pole at s = —w,
0 essaLezi *,

Gain: o N

3, X

. 1 N
o 0dB forw < w, 00 | G(s) =

S —+1

dB dB w
o—-20—=—-6—forw>w, : \
dec oct \
. . _40 H
O Straight-line asymptotes 107 10° 10° 10 10°
intersect at (w,, 0dB)
Bode Phase Component -- First-Order Pole
Phase: 0 L
0..".\

o 0°forw < 0.1 - w, 3 RN

o 45
o —45°for w = w, g \
o —90°forw > 10 - w, e

-90 b
o —45°/dec through w, e R e o o
Normalized Frequency [w/a]
ENGR 203
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Bode Plot — Second-Order Zero
-

Com P lex-co nj u gate Zeros: Bode Gain Component -- Second-Order Zeros

80
—_ . _{,f{l.?
S12 = —0 X jwg o} =68
. _ e (= 0.9
Gain: g .l
= s 2¢
o 0dB forw < wy g G(s) = —5 +—(s) + 1
20 Wy Wo

dB dB
+40— =+12— for w > w,
dec oct
o Straight-line asymptotes intersect . .
at ((‘)Oi OdB) 102 107! 100 10' 102

Normalized Frequency [wh.,-n]

= (-dependent peaking around (1)0 Bode Phase Component -- Second-Order Zeros
180 o3 ' ' :
Phase: —— (=05

o 0° for w <0.1- w gm__i:g:;
o 90° for w = w, g 7
o 180° for w = 10 - w, S s
o +90°/dec through w, 0

1072 107! 10? 10! 102
Mormalized Frequency [;ufwn]
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Bode Plot — Second-Order Pole
-

Com plex-CO njugate pOIES: Bode Gain Component -- Second-Order Poles
51,2 = —0 i]a)d 0 —i:gi |
—= 0.7
Gain: g2 ——
o 0dB for w < wy 5
dB dB
402 = 122 for w > w, ool
dec oct
o Straight-line asymptotes intersect O8I N 55351 N I S5 NS S IS 0 55311 N N S R,
at ((1)0, OdB) 1072 10°" 10° 10' 102
O (-dependent peaking around (1)0 Bode Phase Component -- Second-Order Poles
) : . .
Phase:
_ 45}
o 0° for w < 0.1 wg g
o —90° for w = w, g
o —180° forw = 10 - w, * st
o —90°/dec through w, g0l

102 107! 10? 10" 102
Mormalized Frequency [-u,-f-u,lo]
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Bode Plot Construction — Example
R

Consider a system with the following transfer function

10(s + 20)
s(s + 400)

G(s) =

Put it into Bode form

1020 (55+1)  0.5(55+1)
G(s) = S - S
s-400(z55+1) s (g55+1)
Represent as a product of factors
S 1 1
G(s)=05-(=—=+1)-—-
E R ==
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Bode Plot Construction — Example
-

Bode Gain Plot — Asymptotic Approximation

60 ™ T T
- —'G,I[S}: 0.5
- _Gz[s}=s.l'2{]+1
= =03G_(5)=1s
40 3¢
- _G4[5}- W{s/400 + 1) -
G(s) — Approx. -

Gis) - Actual .

[dB]

5ain

107! 10? 107 102 10° 10%
w [rad/sec]
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Bode Plot Construction — Example
-

Bode Phase Plot -- Asymptotic Approximation

1"}":' T T T T T T III T T T T T 7T II T T T T T II T T T T T II T T T T T T T T
L —G,I[S}:ﬂ.ﬁ .ﬂ'_ ———————————————
80 ||= = =G,(s)=s20+1 . |
)
- —G3[5}= 1s Ja
B0 |-|= = =G, (s)= 1/(s/400 + 1) L 4
-
Gis) — Approx. -
G(s) - Actual P
40 # —
"
-~
’
-
— Z'D — L 7
B ~
E. rd
r
m D f— — — —— — — — — — — — — — — — — — — — — — — — uu: ——————————————————————
[55] -
b it
o -
20+ -~ ]
oy
40 -
60 -
_E,.D — 1
100 L R R S R R S (A T S S
107! 10° 10! 102 102 104

w [rad/sec]
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