
ENGR 203 – Electrical Fundamentals III

SECTION 7: ACTIVE FILTERS
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Introduction

 In ENGR 202 we studied different types of first- and 
second-order passive filters
 Passive, because they contain only passive components: 
 Resistors, capacitors, and inductors

 Can also construct filters using opamps
 Active filters
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Introduction

 Active filters have advantages over passive filters:
 Can build high-Q filters without inductors
 Low output impedance
 Easily adjustable: 𝑓𝑓𝑐𝑐, 𝑄𝑄
 Can provide gain ( > 0 dB )

 Before getting into the design of active filters, we 
will look at two fundamental filter building blocks:
 Opamp integrators
 Opamp differentiators 
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Integrators and Differentiators

 Opamp circuits can perform many different 
mathematical operations 
 Operational amplifiers

 Multiplication
 Inverting and non-inverting amplifiers

 Addition and subtraction
 Summing and difference amplifiers

 Can also perform integration and differentiation
 Feedback controllers
 Building block of active filters
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Opamp Integrator – Time Domain

𝑖𝑖 𝑡𝑡 =
𝑣𝑣𝑖𝑖 𝑡𝑡
𝑅𝑅

 Capacitor integrates input current to give output voltage

𝑣𝑣𝑜𝑜 𝑡𝑡 = −
1
𝐶𝐶 �0

𝑡𝑡
𝑖𝑖 𝜏𝜏 𝑑𝑑𝜏𝜏 𝑣𝑣𝑜𝑜 𝑡𝑡 = −

1
𝑅𝑅𝐶𝐶�0

𝑡𝑡
𝑣𝑣𝑖𝑖 𝜏𝜏 𝑑𝑑𝜏𝜏

 Output is the (scaled and inverted) integral of the input

 Analyze the opamp integrator 
in the time domain

 Virtual ground at inverting 
input, so
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Opamp Integrator – Laplace Domain

𝐼𝐼 𝑠𝑠 =
𝑉𝑉𝑖𝑖 𝑠𝑠
𝑅𝑅

 Output voltage:

𝑉𝑉𝑜𝑜 𝑠𝑠 = −𝐼𝐼 𝑠𝑠
1
𝐶𝐶𝑠𝑠

= −
𝑉𝑉𝑖𝑖 𝑠𝑠
𝑅𝑅𝐶𝐶𝑠𝑠

= −
1
𝑠𝑠
⋅
𝑉𝑉𝑖𝑖 𝑠𝑠
𝑅𝑅𝐶𝐶

 Recall that multiplication by 1/𝑠𝑠 in the Laplace domain 
corresponds to integration in the time domain

 Analyze the opamp integrator 
in the Laplace domain

 Again, a virtual ground at 
inverting input, so
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Opamp Integrator – Frequency Response

 Transfer function:

𝐺𝐺 𝑠𝑠 = −
1
𝑅𝑅𝐶𝐶𝑠𝑠

 Single pole at 𝑠𝑠 = 0
 Gain: constant slope of 

-20 dB/dec
 Infinite DC gain

 Phase: -90° from 
integrator pole  + 180°
from inversion yields 
constant +90°
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Ideal Integrator - Problem

 Laplace domain step response of the ideal integrator

𝑉𝑉𝑜𝑜 𝑠𝑠 =
1
𝑠𝑠
⋅ 𝐺𝐺 𝑠𝑠 = −

1
𝑅𝑅𝐶𝐶

⋅
1
𝑠𝑠2

 Inverse transforming to the time domain

𝑣𝑣𝑜𝑜 𝑡𝑡 = −
1
𝑅𝑅𝐶𝐶

⋅ 𝑡𝑡

 Output increases linearly with time
 Opamp will quickly saturate in response any DC input component

 Infinite DC gain

 Not a practical circuit
 Inputs will always have some non-zero offset
 Real (non-ideal) opamps have non-zero offset voltages and input bias 

currents
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Practical Opamp Integrator

 Now there is a feedback path for DC signals
 DC gain limited to 𝑅𝑅𝑓𝑓/𝑅𝑅

 Behaves as an inverting opamp at low frequencies
 Still behaves as an integrator at high frequencies
 A practical or lossy integrator circuit

 Problem with ideal 
integrator is infinite DC gain
 No DC feedback 
 Open-loop at DC

 Add a feedback resistor in 
parallel with the capacitor
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Opamp Integrator – Frequency Response

 Transfer function:

𝐺𝐺 𝑠𝑠 = −

𝑅𝑅𝑓𝑓
𝐶𝐶𝑠𝑠

𝑅𝑅𝑓𝑓 + 1
𝐶𝐶𝑠𝑠

𝑅𝑅
= −

𝑅𝑅𝑓𝑓
𝑅𝑅

1
𝑅𝑅𝑓𝑓𝐶𝐶𝑠𝑠 + 1

 Pole (corner frequency) set by the 
feedback network:

𝜔𝜔𝑐𝑐 =
1
𝑅𝑅𝑓𝑓𝐶𝐶

 For 𝜔𝜔 ≫ 𝜔𝜔𝑐𝑐, still behaves like an 
integrator
 Gain: rolls off at -20 dB/dec

 Phase: ~90°

IntegratorAmplifier
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Opamp Differentiator – Time Domain

𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑡𝑡

 Ohm’s law gives the output voltage

𝑣𝑣𝑜𝑜 𝑡𝑡 = −𝑅𝑅𝑖𝑖 𝑡𝑡 = −𝑅𝑅𝐶𝐶
𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑡𝑡

 Output is the (scaled and inverted) derivative of the input

 Analyze the opamp 
differentiator in the time 
domain

 Virtual ground at inverting 
input, so
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Opamp Differentiator – Laplace Domain

𝐼𝐼 𝑠𝑠 = 𝐶𝐶𝑠𝑠 ⋅ 𝑉𝑉𝑖𝑖 𝑠𝑠

 Output voltage:

𝑉𝑉𝑜𝑜 𝑠𝑠 = −𝑅𝑅𝐼𝐼 𝑠𝑠 = −𝑅𝑅𝐶𝐶𝑠𝑠𝑉𝑉𝑖𝑖 𝑠𝑠 = −𝑠𝑠 ⋅ 𝑅𝑅𝐶𝐶𝑉𝑉𝑖𝑖 𝑠𝑠

 Recall that multiplication by 𝑠𝑠 in the Laplace domain 
corresponds to differentiation in the time domain

 Analyze the differentiator in 
the Laplace domain

 Again, a virtual ground at 
inverting input, so
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Opamp Differentiator – Frequency Response

 Transfer function:
𝐺𝐺 𝑠𝑠 = −𝑅𝑅𝐶𝐶𝑠𝑠

 Single zero at 𝑠𝑠 = 0
 Gain: constant slope of 

+20 dB/dec
 Very large high-frequency 

gain

 Phase: +90° from zero at 
the origin  + 180° from 
inversion yields constant 
+270° = -90°
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Ideal Differentiator - Problem

 Gain continues to 
increase with 
frequency

 High-frequency gain is 
very large

 Any input signal will 
include some noise

 Better to limit the gain 
above some upper 
frequency 
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Practical Opamp Differentiator

 High-frequency gain limited to 𝑅𝑅𝑓𝑓/𝑅𝑅

 Still behaves as a differentiator at low frequencies
 Behaves as an inverting opamp at high frequencies
 A practical or lossy differentiator circuit

 Problem with ideal 
differentiator:
 Low input impedance at high 

frequency
 Excessive high-frequency 

input current

 Add a resistor in series with 
the input capacitor
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Practical Opamp Differentiator

 Transfer function:

𝐺𝐺 𝑠𝑠 = −
𝑅𝑅𝑓𝑓

𝑅𝑅 + 1
𝐶𝐶𝑠𝑠

= −
𝑅𝑅𝑓𝑓𝐶𝐶𝑠𝑠

𝑅𝑅𝐶𝐶𝑠𝑠 + 1

 Pole (corner frequency) set 
by the input network:

𝜔𝜔𝑐𝑐 =
1
𝑅𝑅𝐶𝐶

 For 𝜔𝜔 ≪ 𝜔𝜔𝑐𝑐, still behaves 
like a differentiator
 Gain: increases at +20 dB/dec
 Phase: ~-90°

Differentiator

Amplifier
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First-Order Active Filters

 Practical integrator and differentiator circuits
 Additional resistors fix problems with ideal circuits
 First-order low pass and high pass filters 



K. Webb ENGR 203

21

First-Order Low Pass Filter

 Transfer function

𝐺𝐺 𝑠𝑠 = −
𝑅𝑅𝑓𝑓
𝑅𝑅

1
𝑅𝑅𝑓𝑓𝐶𝐶𝑠𝑠 + 1

𝐺𝐺 𝑠𝑠 = −
𝑅𝑅𝑓𝑓
𝑅𝑅

1
𝑅𝑅𝑓𝑓𝐶𝐶

𝑠𝑠 + 1
𝑅𝑅𝑓𝑓𝐶𝐶

 Corner frequency

𝑓𝑓𝑐𝑐 =
1

2𝜋𝜋𝑅𝑅𝑓𝑓𝐶𝐶

 Pass-band gain

𝐴𝐴𝑣𝑣 = −
𝑅𝑅𝑓𝑓
𝑅𝑅
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First-Order High Pass Filter

 Transfer function

𝐺𝐺 𝑠𝑠 = −
𝑅𝑅𝑓𝑓𝐶𝐶𝑠𝑠

𝑅𝑅𝐶𝐶𝑠𝑠 + 1

𝐺𝐺 𝑠𝑠 = −
𝑅𝑅𝑓𝑓
𝑅𝑅

𝑠𝑠

𝑠𝑠 + 1
𝑅𝑅𝐶𝐶

 Corner frequency

𝑓𝑓𝑐𝑐 =
1

2𝜋𝜋𝑅𝑅𝐶𝐶

 Pass-band gain

𝐴𝐴𝑣𝑣 = −
𝑅𝑅𝑓𝑓
𝑅𝑅
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Higher-Order Active Filters

 Higher order active filters can be constructed by:
 Cascading first-order active filters
 Using second-order active filter stages 
 Cascading second- and first-order stages

 Create higher order band pass/stop filters similarly:
 Cascade first-order high/low pass filters
 Use and/or cascade second-order band pass/stop 

stages

 Many different second-order active filter topologies
 We’ll look at the Sallen-Key circuit
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Sallen-Key Filter – Generalized Form

 Sallen-Key filter topology 
 Low pass and high pass filters
 Band-pass, and notch filters with slight modifications

 We’ll look first at the filter in its most generalized 
form, then consider the specific low pass and high 
pass filter forms 

 Type of filter depends on the location of 
components – resistors and capacitors
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Sallen-Key Filter – Generalized Form

 Transfer function
 Nodal analysis
 KCL at V+ and Vf

 Virtual short  at opamp inputs
 After a lot of ugly algebra:

𝐺𝐺 𝑠𝑠 =
1

𝛽𝛽 𝑍𝑍1𝑍𝑍2𝑍𝑍3𝑍𝑍4
+ 𝛽𝛽 𝑍𝑍2𝑍𝑍4

+ 𝛽𝛽 𝑍𝑍1𝑍𝑍4
+ 𝛽𝛽 − 1 𝑍𝑍1

𝑍𝑍3
+ 𝛽𝛽

where 𝛽𝛽 is the feedback path gain

𝛽𝛽 =
𝑅𝑅𝑓𝑓1

𝑅𝑅𝑓𝑓1 + 𝑅𝑅𝑓𝑓2
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Sallen-Key Second-Order Low Pass Filter

 Transfer function

𝐺𝐺 𝑠𝑠 =
1

𝛽𝛽𝑅𝑅1𝑅𝑅2𝐶𝐶1𝐶𝐶2𝑠𝑠2 + 𝛽𝛽𝑅𝑅2𝐶𝐶2𝑠𝑠 + 𝛽𝛽𝑅𝑅1𝐶𝐶2𝑠𝑠 + 𝛽𝛽 − 1 𝑅𝑅1𝐶𝐶1𝑠𝑠 + 𝛽𝛽

𝐺𝐺 𝑠𝑠 =

1
𝛽𝛽𝑅𝑅1𝑅𝑅2𝐶𝐶1𝐶𝐶2

𝑠𝑠2 + 1
𝑅𝑅1𝐶𝐶1

+ 1
𝑅𝑅2𝐶𝐶1

+ 𝛽𝛽 − 1
𝛽𝛽𝑅𝑅2𝐶𝐶2

𝑠𝑠 + 1
𝑅𝑅1𝑅𝑅2𝐶𝐶1𝐶𝐶2

 Z1 and Z2 are resistors
 Z3 and Z4 are capacitors
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Sallen-Key Low Pass Filter

 Generalized second-order low pass transfer function:

𝐺𝐺 𝑠𝑠 = 𝐾𝐾 ⋅
𝜔𝜔02

𝑠𝑠2 + 𝜔𝜔0
𝑄𝑄 𝑠𝑠 + 𝜔𝜔02

 Equating coefficients with the Sallen-Key transfer function gives
 Resonant frequency:

𝜔𝜔0 =
1

𝑅𝑅1𝑅𝑅2𝐶𝐶1𝐶𝐶2
 Quality factor:

𝑄𝑄 =
𝑅𝑅1𝑅𝑅2𝐶𝐶1𝐶𝐶2

𝑅𝑅2𝐶𝐶2 + 𝑅𝑅1𝐶𝐶1 + 𝛽𝛽 − 1
𝛽𝛽 𝑅𝑅1𝐶𝐶1

 DC gain:

𝐾𝐾 =
1
𝛽𝛽 =

𝑅𝑅𝑓𝑓1 + 𝑅𝑅𝑓𝑓2
𝑅𝑅𝑓𝑓1



K. Webb ENGR 203

30

Sallen-Key Low Pass Filter

 𝜔𝜔0, Q, and gain all set by appropriate component selection, but
 There are more degrees of freedom than we need
 Transfer function is a bit more complicated than we’d like

 Simplify by setting component values equal

 Transfer function becomes

𝐺𝐺 𝑠𝑠 =

1
𝛽𝛽 𝑅𝑅𝐶𝐶 2

𝑠𝑠2 +
3 − 1

𝛽𝛽
𝑅𝑅𝐶𝐶 𝑠𝑠 + 1

𝑅𝑅𝐶𝐶 2

 Where now

𝜔𝜔0 = 1
𝑅𝑅𝑅𝑅

and     𝑄𝑄 = 1
3−1𝛽𝛽
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Sallen-Key Low Pass Filter

𝐺𝐺 𝑠𝑠 =

1
𝛽𝛽 𝑅𝑅𝐶𝐶 2

𝑠𝑠2 +
3 − 1

𝛽𝛽
𝑅𝑅𝐶𝐶 𝑠𝑠 + 1

𝑅𝑅𝐶𝐶 2

 We can also write the transfer function in terms of DC gain, 𝐾𝐾

𝐺𝐺 𝑠𝑠 =

𝐾𝐾
𝑅𝑅𝐶𝐶 2

𝑠𝑠2 + 3 − 𝐾𝐾
𝑅𝑅𝐶𝐶 𝑠𝑠 + 1

𝑅𝑅𝐶𝐶 2

 𝜔𝜔0 and 𝑄𝑄 in terms of 𝐾𝐾:

𝜔𝜔0 = 1
𝑅𝑅𝑅𝑅

and     𝑄𝑄 = 1
3−𝐾𝐾

 The filter’s DC gain is dependent on the filter’s 𝑸𝑸 and vice versa
 For independent control of DC gain, cascade an additional gain stage
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Sallen-Key Low Pass Filter

 Note dependence of 𝑄𝑄
and 𝐾𝐾
 Both set by feedback 

path gain
 𝑄𝑄 and gain are 

independent of 𝜔𝜔0
𝜔𝜔0 set by capacitors 

and resistors at the 
input

 Second-order
 Gain roll-off: -40 

dB/dec
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Sallen-Key High Pass Filter

 Here, we will jump straight to the simplified circuit with 
equal-valued components

 Location of resistors and capacitors swapped relative to low 
pass filter

 High pass transfer function

𝐺𝐺 𝑠𝑠 =

1
𝛽𝛽 𝑠𝑠

2

𝑠𝑠2 +
3 − 1

𝛽𝛽
𝑅𝑅𝐶𝐶 𝑠𝑠 + 1

𝑅𝑅𝐶𝐶 2

 Again,

𝜔𝜔0 = 1
𝑅𝑅𝑅𝑅

and     𝑄𝑄 = 1
3−1𝛽𝛽
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Sallen-Key High Pass Filter

 As with the low pass filter, we can write the transfer 
function in terms of gain, 𝐾𝐾
 𝐾𝐾 still represents passband gain, but now it is the high-frequency 

gain, not the DC gain

𝐺𝐺 𝑠𝑠 =
𝐾𝐾𝑠𝑠2

𝑠𝑠2 + 3 − 𝐾𝐾
𝑅𝑅𝐶𝐶 𝑠𝑠 + 1

𝑅𝑅𝐶𝐶 2

 𝜔𝜔0 and 𝑄𝑄 are the same as for the low pass filter:

𝜔𝜔0 = 1
𝑅𝑅𝑅𝑅

and     𝑄𝑄 = 1
3−𝐾𝐾

 Same dependence between passband gain, resonant 
frequency, and Q



K. Webb ENGR 203

36

Sallen-Key High Pass Filter

 Note dependence of 𝑄𝑄
and 𝐾𝐾
 Both set by feedback 

path gain
 𝑄𝑄 and gain are 

independent of 𝜔𝜔0
𝜔𝜔0 set by capacitors 

and resistors at the 
input

 Second-order
 Gain roll-off: -40 

dB/dec
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Sallen-Key Filter – Stability 

 Sallen-Key filter has two 
feedback paths:
 Negative feedback
 Generally stabilizing

 Positive feedback
 Generally destabilizing

Positive feedback

Negative 
feedback 

 Relative amount of negative and positive feedback 
determines stability
 Net negative feedback: circuit is stable
 Behaves as a linear filter/amplifier

 Net positive feedback: circuit is unstable
 Will oscillate or saturate
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Sallen-Key Filter – Stability 

 Overall net feedback must 
remain negative
 But, we can vary just how 

negative by varying 𝛽𝛽
 Varying 𝛽𝛽 allows us to vary 𝑄𝑄:

𝑄𝑄 =
1

3 − 1
𝛽𝛽

=
1

3 − 𝐾𝐾

Positive feedback

Negative 
feedback 

 As 𝛽𝛽 increases:
 Negative feedback increases
 Overall feedback becomes more negative
 Quality factor, 𝑄𝑄, decreases
 Damping ratio, 𝜁𝜁, increases
 Pass band gain, 𝐾𝐾, decreases
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Sallen-Key Filter – Stability 
Positive feedback

Negative 
feedback 

 As 𝛽𝛽 decreases:
 Negative feedback decreases
 Overall feedback becomes less 

negative
 Quality factor, 𝑄𝑄, increases
 Damping ratio, 𝜁𝜁, decreases
 Pass band gain, 𝐾𝐾, increases

 There is an upper limit on 𝐾𝐾:
 For 𝐾𝐾 = 3, 𝑄𝑄 = ∞ and 𝜁𝜁 = 0
 An un-damped circuit
 Negative and positive feedback cancel
 The border between stability and instability
 For stability: 𝐾𝐾 ≤ 3
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Filter Families

 Higher-order filters of all types can be designed 
with transfer functions that fit into one of several 
families of filters
 Butterworth 
 Chebyshev
 Elliptic
 Bessel

 Each filter family defined by the nature of its 
characteristic polynomial

 Equivalently, each defined by pole locations, e.g.,
 Butterworth poles lie evenly spaced on a circle in the 

left half of the complex plane 
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Filter Families – Frequency Response

 Butterworth
 Maximally-flat pass band
 Slow roll off

 Chebyshev
 Steeper roll off
 Pass band ripple

 Elliptic
 Very steep roll off
 Pass band ripple
 Stop band ripple

 As always, all about trade 
offs
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Filter Families – System Poles

 Butterworth
 Poles lie on a semi-

circle in the LHP
 Equally spaced
 Equal magnitude, 
𝜔𝜔0

 Chebyshev/elliptic
 Poles lie on semi-

ellipses in the LHP
 Varying 

magnitudes
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Butterworth Poles

 Butterworth poles:
 Magnitude: 𝜔𝜔0
 Order: 𝑁𝑁
 Separation angles: 180°/𝑁𝑁
 Poles for 𝑘𝑘 = 1 …𝑁𝑁

𝑠𝑠𝑘𝑘 = 𝜔𝜔0 − sin
𝜋𝜋 2𝑘𝑘 − 1

2𝑁𝑁
+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠

𝜋𝜋 2𝑘𝑘 − 1
2𝑁𝑁

 Each complex conjugate pair are the poles of a single 
second-order Sallen-Key stage
 All with equal 𝜔𝜔0
 Each with different 𝜁𝜁
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Filter Synthesis Procedure

1. Determine filter order, 𝑁𝑁, and cutoff frequency, 𝜔𝜔𝑐𝑐
2. Determine 𝜔𝜔0 and 𝑄𝑄 or 𝜁𝜁 for each stage by utilizing either

a) Design tables, or
b) MATLAB

3. For each stage, select R and C to yield the required 𝜔𝜔0

𝜔𝜔0 =
1
𝑅𝑅𝐶𝐶

4. For each stage, select 𝑅𝑅𝑓𝑓1 and 𝑅𝑅𝑓𝑓2 to set gain, 𝐾𝐾, to provide 
the required 𝑄𝑄

𝐾𝐾 = 3 −
1
𝑄𝑄
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Filter Design Tables

 Design tables exist for different filters of different 
orders from different filter families

 Pole locations, 𝜔𝜔0, and 𝑄𝑄 given for each second- and 
first-order stage for a given filter order, 𝑁𝑁
 Only second-order stages for even 𝑁𝑁
 Second-order plus one first-order stage for odd 𝑁𝑁

 Frequencies are normalized
Multiply 𝜔𝜔0 by the cutoff frequency, 𝜔𝜔𝑐𝑐
Multiply 𝜎𝜎 and 𝜔𝜔𝑑𝑑 by 𝜔𝜔𝑐𝑐
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Butterworth Design Table

Order, N Section

Poles

𝝎𝝎𝟎𝟎 𝑸𝑸 𝑲𝑲𝝈𝝈 𝝎𝝎𝒅𝒅

2 1 0.7071 0.7071 1.00 0.7071 1.5858

3 1 0.5000 0.8660 1.00 1.0000 1.0000

2 1.0000 - 1.00 - -

4 1 0.9239 0.3827 1.00 0.5412 1.1522

2 0.3827 0.9239 1.00 1.3065 2.2346

5 1 0.8090 0.5878 1.00 0.6180 1.382

2 0.3090 0.9511 1.00 1.6182 2.382

3 1.0000 - 1.00 - -

6 1 0.9659 0.2588 1.00 0.5176 1.0681

2 0.7071 0.7071 1.00 0.7071 1.5858

3 0.2588 0.9659 1.00 1.9319 2.4824
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Chebyshev Design Table – 0.5 dB ripple

Order, N Section

Poles

𝝎𝝎𝟎𝟎 𝑸𝑸 𝑲𝑲𝝈𝝈 𝝎𝝎𝒅𝒅

2 1 0.71281 1.004 1.2313 0.8638 1.8422

3 1 0.3123 1.0219 1.0689 1.7062 2.4139

2 0.6265 - 0.6265 - -

4 1 0.4233 0.4210 0.5970 0.7051 1.5818

2 0.1754 1.0163 1.0313 2.9406 2.6599

5 1 0.2931 0.6252 0.6905 1.1778 2.1510

2 0.1120 1.0116 1.0177 4.5450 2.7800

3 0.3623 - 0.3623 -

6 1 0.2898 0.2702 0.3962 0.6836 1.5372

2 0.2121 0.7382 0.7681 1.8104 2.4476

3 0.0777 1.0085 1.0114 6.5128 2.8465
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Chebyshev Design Table – 1.0 dB ripple

Order, N Section

Poles

𝝎𝝎𝟎𝟎 𝑸𝑸 𝑲𝑲𝝈𝝈 𝝎𝝎𝒅𝒅

2 1 0.5489 0.8951 1.0500 0.9565 1.9545

3 1 0.2471 0.9660 0.9771 2.0177 2.5044

2 0.4942 - 0.4942 - -

4 1 0.3369 0.4073 0.5286 0.7846 1.7254

2 0.1395 0.9834 0.9932 3.5590 2.7190

5 1 0.2342 0.6119 0.6552 1.3988 2.2851

2 0.0895 0.9901 0.9941 5.5564 2.8200

3 0.2895 - 0.2895 - -

6 1 0.2321 0.2662 0.3531 0.7609 1.6857

2 0.1699 0.7272 0.7468 2.1980 2.5450

3 0.0622 0.9934 0.9954 8.0037 2.8751
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Chebyshev Design Table – 3.0 dB ripple

Order, N Section

Poles

𝝎𝝎𝟎𝟎 𝑸𝑸 𝑲𝑲𝝈𝝈 𝝎𝝎𝒅𝒅

2 1 0.3225 0.7772 0.8414 1.3047 202335

3 1 0.1493 0.9038 0.9161 3.0677 2.6740

2 0.2986 - 0.2986 - -

4 1 0.2056 0.3921 0.4427 1.0765 2.0711

2 0.0852 0.9465 0.9503 5.5789 2.8208

5 1 0.1436 0.5970 0.6140 2.1375 2.5322

2 0.0549 0.9659 0.9675 8.8178 2.8866

3 0.1775 - 0.1775 - -

6 1 0.1427 0.2616 0.2980 1.0443 2.0425

2 0.1044 0.7148 0.7224 3.4581 2.7108

3 0.0382 0.9764 0.9772 12.7800 2.9218
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Filter synthesis in MATLAB

 MATLAB has built-in filter design functions, e.g.,
 butter.m
 cheby1.m
 ellip.m

 Design procedure:
1. Use functions to get transfer function coefficients for 

given filter specifications
2. Create MATLAB transfer function object
3. Determine filter poles, 𝜔𝜔0, and 𝑄𝑄 from transfer 

function – place low-Q stages first
4. Determine component values from 𝜔𝜔0 and 𝑄𝑄
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Butterworth Filter – butter(…)

[b,a] = butter(N,wn,ftype,’s’)

 Inputs:
 N: filter order
 wn: cutoff frequency [rad/sec]
 ftype: filter type: ‘low’, ‘bandpass’, ‘high’, 
‘stop’ – optional – default: ‘low’

 ‘s’: specifies analog filter

 Outputs:
 b: coefficients of the transfer function’s numerator 

polynomial
 a: coefficients of the transfer function’s denominator 

polynomial
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Chebyshev Filter – cheby1(…)

[b,a] = cheby1(N,R,wn,ftype,’s’)

 Inputs:
 N: filter order
 R: pass band ripple [dB]
 wn: cutoff frequency [rad/sec]
 ftype: filter type: ‘low’, ‘bandpass’, ‘high’, ‘stop’ –

optional – default: ‘low’
 ‘s’: specifies analog filter

 Outputs:
 b: coefficients of the transfer function’s numerator polynomial
 a: coefficients of the transfer function’s denominator polynomial
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Elliptic Filter – ellip(…)

[b,a] = cheby1(N,Rp,Rs,wn,ftype,’s’)

 Inputs:
 N: filter order
 Rp: pass band ripple [dB]
 Rs: stop band attenuation [dB]
 wn: cutoff frequency [rad/sec]
 ftype: filter type: ‘low’, ‘bandpass’, ‘high’, ‘stop’ –

optional – default: ‘low’
 ‘s’: specifies analog filter

 Outputs:
 b: coefficients of the transfer function’s numerator polynomial
 a: coefficients of the transfer function’s denominator polynomial
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Transfer Function Model – tf(…)

sys = tf(b,a)

 b: vector of numerator polynomial coefficients
 a: vector of denominator polynomial coefficients
 sys: transfer function model object

 Transfer function is assumed to be of the form

𝐺𝐺 𝑠𝑠 =
𝑏𝑏1𝑠𝑠𝑟𝑟 + 𝑏𝑏2𝑠𝑠𝑟𝑟−1 + ⋯+ 𝑏𝑏𝑟𝑟𝑠𝑠 + 𝑏𝑏𝑟𝑟+1
𝑎𝑎1𝑠𝑠𝑛𝑛 + 𝑎𝑎2𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑠𝑠 + 𝑎𝑎𝑛𝑛+1

 Inputs to tf(…) are
 Num = [b1,b2,…,br+1];
 Den = [a1,a2,…,an+1];
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Getting 𝜔𝜔0 and 𝑄𝑄 – damp(…)

[wn,zeta,p] = damp(sys)

 sys: transfer function system model object
 wn: vector of natural frequencies (magnitudes) of poles
 zeta: vector of damping ratios, 𝜁𝜁, of poles
 p: vector of poles

 Use wn values for 𝜔𝜔0 of each filter stage
 Calculate 𝑄𝑄 of each stage from 𝜁𝜁 values

𝑄𝑄 =
1
2𝜁𝜁
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Sallen-Key Filter – Example

 Design a Butterworth (maximally-flat) low pass 
active filter to satisfy the following specifications:
 Corner frequency: fc = 1MHz
 Frequency response roll off beyond fc: 80dB/dec
 Pass band (DC) gain: 12dB (4)

 Roll off spec of 80 dB/dec tells us we need a fourth-
order filter – cascade two Sallen-Key stages

 Add a constant gain stage if necessary to meet gain 
specification
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Sallen-Key Filter – Example

 Fourth-order filter
 Cascade two second-order Sallen-Key stages

 Additional gain stage necessary to meet gain specification
 Non-inverting opamp amplifier

 Note that the circuit in this example has been simplified by 
setting 𝑅𝑅𝑓𝑓1 equal in each stage
 Not necessarily the right choice
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Sallen-Key Filter – Example

 Butterworth filter, so, for both stages,

𝜔𝜔0 = 𝜔𝜔𝑐𝑐 = 2𝜋𝜋 ⋅ 𝑓𝑓𝑐𝑐 = 2𝜋𝜋 ⋅ 1 𝑀𝑀𝑀𝑀𝑀𝑀

 Determine 𝑅𝑅 and 𝐶𝐶 for desired 𝜔𝜔𝑐𝑐
 Arbitrarily choose 𝐶𝐶 = 1 𝑛𝑛𝑛𝑛

𝑅𝑅 =
1

2𝜋𝜋𝑓𝑓𝑐𝑐𝐶𝐶
=

1
2𝜋𝜋 ⋅ 1 𝑀𝑀𝑀𝑀𝑀𝑀 ⋅ 1 𝑛𝑛𝑛𝑛 = 159 Ω

 If using ±1% resistors, 158 Ω is a standard value

𝑅𝑅 = 158 Ω and     𝐶𝐶 = 1 𝑛𝑛𝑛𝑛
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Sallen-Key Filter – Example

 To determine gain of each stage, consult the Butterworth design table

Order, N Section

Poles

𝝎𝝎𝟎𝟎 𝑸𝑸𝝈𝝈 𝝎𝝎𝒅𝒅

4 1 0.9239 0.3827 1.00 0.5412

2 0.3827 0.9239 1.00 1.3065

 Calculate 𝐾𝐾 for each stage from its 𝑄𝑄

𝐾𝐾1 = 3 −
1
𝑄𝑄1

= 3 −
1

0.5412 = 1.152

𝐾𝐾2 = 3 −
1
𝑄𝑄2

= 3 −
1

1.3065 = 2.235
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Sallen-Key Filter – Example

 Alternatively, use MATLAB to determine 𝜔𝜔0 and 𝐾𝐾 values for 
each stage

 Note that we would put the low-Q stage first
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Sallen-Key Filter – Example

 Arbitrarily choose 𝑅𝑅𝑓𝑓1 = 5.11 𝑘𝑘Ω
 Calculate 𝑅𝑅𝑓𝑓2 and 𝑅𝑅𝑓𝑓3 to give the required 𝐾𝐾1 and 𝐾𝐾2

𝐾𝐾1 =
𝑅𝑅𝑓𝑓1 + 𝑅𝑅𝑓𝑓2

𝑅𝑅𝑓𝑓1
→ 𝑅𝑅𝑓𝑓2 = 𝑅𝑅𝑓𝑓1 𝐾𝐾1 − 1 = 5.11 𝑘𝑘Ω ⋅ 0.152 = 778 Ω

𝐾𝐾2 =
𝑅𝑅𝑓𝑓1 + 𝑅𝑅𝑓𝑓3

𝑅𝑅𝑓𝑓1
→ 𝑅𝑅𝑓𝑓3 = 𝑅𝑅𝑓𝑓1 𝐾𝐾2 − 1 = 5.11 𝑘𝑘Ω ⋅ 1.235 = 6.31 𝑘𝑘Ω

 Again, assuming ±1% resistors, we choose the closest standard values:

𝑅𝑅𝑓𝑓2 = 787 Ω and     𝑅𝑅𝑓𝑓3 = 6.34 𝑘𝑘Ω
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Sallen-Key Filter – Example

 Finally, set the gain of the third stage to satisfy the gain requirement
 Overall gain given by

𝐾𝐾 = 𝐾𝐾1𝐾𝐾2𝐾𝐾3 = 4 → 𝐾𝐾3 =
4

𝐾𝐾1𝐾𝐾2
=

4
1.152 ⋅ 2.235 = 1.554

 Calculate 𝑅𝑅𝑓𝑓4 to give the required 𝐾𝐾3

𝐾𝐾3 =
𝑅𝑅𝑓𝑓1 + 𝑅𝑅𝑓𝑓4

𝑅𝑅𝑓𝑓1
→ 𝑅𝑅𝑓𝑓4 = 𝑅𝑅𝑓𝑓1 𝐾𝐾3 − 1 = 5.11 𝑘𝑘Ω ⋅ 0.554 = 2.83 𝑘𝑘Ω

 Again, assuming ±1% resistors, we choose the closest standard value:

𝑅𝑅𝑓𝑓4 = 2.8 𝑘𝑘Ω
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Sallen-Key Filter – Example

The complete 4th-order Sallen-Key Butterworth low pass filter:
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Sallen-Key Filter – Example

 DC gain: ~12 dB
 𝑓𝑓𝑐𝑐 ≈ 1 𝑀𝑀𝑀𝑀𝑀𝑀
 Gain rolloff: -80 dB/dec
 Stage 1:

 Low Q
 Low gain

 Stage 2:
 Higher Q
 Higher gain

 Stage 3:
 Constant gain
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