SECTION 7: ACTIVE FILTERS

- ENGR 203 — Electrical Fundamentals il



Introduction

In ENGR 202 we studied different types of first- and
second-order passive filters

O Passive, because they contain only passive components:
Resistors, capacitors, and inductors

Can also construct filters using opamps
o Active filters
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Introduction
-
Active filters have advantages over passive filters:
o Can build high-Q filters without inductors
o Low output impedance
o Easily adjustable: f., Q
o Can provide gain (> 0 dB )

Before getting into the design of active filters, we
will look at two fundamental filter building blocks:

o Opamp integrators
o Opamp differentiators
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- Opamp Integrators
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Integrators and Differentiators

Opamp circuits can perform many different
mathematical operations

o Operational amplifiers

Multiplication
o Inverting and non-inverting amplifiers

Addition and subtraction
o Summing and difference amplifiers

Can also perform integration and differentiation
o Feedback controllers
o Building block of active filters
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Opamp Integrator — Time Domain

Analyze the opamp integrator

in the time domain c i),
|
ylrtual ground at inverting o R . it
Input, so o N —o
. vi(t) ~
t) =
i©) ==

Capacitor integrates input current to give output voltage

1t 1 (¢
v, (t) = _Ej i()dtv,(t) = T v;(t)dt
0 0

Output is the (scaled and inverted) integral of the input

K. Webb ENGR 203




Opamp Integrator — Laplace Domain

Analyze the opamp integrator

. . 1
in the Laplace domain cs 1),
I
Again, a virtual ground at Vis) R, < Vi(s)
Inverting input, so s . =
Vi(S) v
I(s) =
() = =
Output voltage:

1 Vi 1V
Vo(s) = —1() - = — R<CSS> -1 R(;)

Recall that multiplication by 1/s in the Laplace domain
corresponds to integration in the time domain
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Opamp Integrator — Frequency Response

Transfer function: & o),
1 Vi(s) R
e o YAV - Egs)
G(s) RCs [N >
Single poleats =0 X Opemp negrator
o Gain: constant slope of ]
-20 dB/dec sl
Infinite DC gain o

= T
=

10° 104 108

o Phase: -90° from
integrator pole + 180°
from inversion yields
constant +90°

[
[
T

=
=
T

Phase [deq]

L%
L]
T

=

=
=

102 10 108

Frequency [HZ]
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ldeal Integrator - Problem
e

Laplace domain step response of the ideal integrator

Inverse transforming to the time domain

1
vo(t)=—ﬁ-t

Output increases linearly with time
Opamp will quickly saturate in response any DC input component
o Infinite DC gain

Not a practical circuit
o Inputs will always have some non-zero offset

o Real (non-ideal) opamps have non-zero offset voltages and input bias
currents
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Practical Opamp Integrator

Problem with ideal 3
integrator is infinite DC gain “X
o No DC feedback v R i

o Open-loop at DC WV }—X

Add a feedback resistor in

parallel with the capacitor

o Now there is a feedback path for DC signals
0 DC gain limited to R¢/R

Behaves as an inverting opamp at low frequencies
Still behaves as an integrator at high frequencies
A practical or lossy integrator circuit
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Opamp Integrator — Frequency Response
N

. R
Transfer function: R
Rf i
m v, R 11
T R
G(s) = Kt _ K1 1}
R R ReCs +1
50 - Iﬂpamp Integratarl
Pole (corner frequency) set by the _ phLET s - lceimegrar
feedback network: = I _
= [ Amplifier | Integrator
1 0] €1 | >
W, = —— : N
RfC =0 2 i ? 6
10 1[: P10 10
| |
For w > w,, still behaves like an 200 : :
integrator 3 I i
O Gain: rolls off at -20 dB/dec o ] :
@ I [
o Phase: ~90° o 100 ' :
|

104 108

Frequency [HZ]
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n Opamp Differentiators
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Opamp Differentiator — Time Domain

Analyze the opamp

differentiator in the time i),

R
domain A
. . . Vi(t) C
Virtual ground at inverting o— >_ Vo(t)
: —_— —O
input, so i) +
T

Ohm’s law gives the output voltage

. dv;
v, (t) = —Ri(t) = _RCE

Output is the (scaled and inverted) derivative of the input
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Opamp Differentiator — Laplace Domain

Analyze the differentiator in

the Laplace domain R s),

Again, a virtual ground at Vi(s) <|:1_|s . v

Inverting Input, so # >i—o
I(s) =Cs - V;(s) 7

Output voltage:

V,(s) = —RI(s) = —RCsV;(s) = —s - RCV;(s)

Recall that multiplication by s in the Laplace domain
corresponds to differentiation in the time domain
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Opamp Differentiator — Frequency Response

Transfer function: R 1

G(s) = —RCs e S

Single zeroats = 0

o Gain: constant slope of
+20 dB/dec

Very large high-frequency
gain

[
=
T

Gain  [dB]
[ )

.ED L

o Phase: +90° from zero at ;D ’ ¢ ¢
the origin + 180° from |

inversion yields constant
+270° =-90°

n
=
.

Phase [deg]

-150 |

10" 10° 10*
Frequency [HZ]
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|deal Differentiator - Problem

Gain continues to
increase with
frequency

High-frequency gain is
very large

o Any input signal will
include some noise

Better to limit the gain
above some upper
frequency

K. Webb
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Practical Opamp Differentiator

Problem with ideal
differentiator: A
o Low input impedance at high w R C

frequency VWV >

o Excessive high-frequency
input current

‘s

Add a resistor in series with
the input capacitor

o High-frequency gain limited to R¢/R

Still behaves as a differentiator at low frequencies
Behaves as an inverting opamp at high frequencies
A practical or lossy differentiator circuit
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Practical Opamp Differentiator

Transfer function:
Rf _ RfCS

1~ RCs+1
R-l-ﬁ

G(s) =—

Pole (corner frequency) set
by the input network:

1
"~ RC

For w K w,, still behaves
like a differentiator

o Gain: increases at +20 dB/dec
o Phase: ~-90°

W¢
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- First-Order Opamp Active Filters



First-Order Active Filters

Practical integrator and differentiator circuits

o Additional resistors fix problems with ideal circuits
O First-order low pass and high pass filters

- Opamp Integrator
~T . .
™ Practical Integrator
& T = = = |daal Integrator
=,
D -
=
m
o
-50 ;
10° 102 104 108
200

Frequency [HZz]

Opamp Differentiator
ED T T #
Practical Differentiator - -
) = = = |deal Differentiator -
=}
D L
=
‘m
o
-50 : :
10° 102 104 108
-80
—-=100
H.-120
a =140
(%3]
&
= -160
-180
10° 10° 104 108

Frequency [HZ]
ENGR 203




First-Order Low Pass Filter

Transfer function

G(s) Ry 1
S) =—
R (RsCs+1)
1
R R:C
G(s)=—-2L—2
* ()
ReC)
Corner frequency e
1 0-40—
Je = 2mRC "’
Pass-band gain g :
R § 50 -
f &
Av == —?
-100 5
10
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First-Order High Pass Filter

Transfer function

RfCS R C
G(s) = — J N — | - Vo
(s) RCs +1 ” . —°
Rf S AV
G(s) = —
RC of
g-20
Corner frequency .
1 -60 : ! :
fC — 107? 107 10° 10" 10? 10° 10*
2nRC 00 e
Pass-band gain g \
A = _& : T
voR T
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Higher-Order Active Filters

-0V
Higher order active filters can be constructed by:
o Cascading first-order active filters
o Using second-order active filter stages
o Cascading second- and first-order stages

Create higher order band pass/stop filters similarly:
o Cascade first-order high/low pass filters

o Use and/or cascade second-order band pass/stop
stages

Many different second-order active filter topologies
o We'll look at the Sallen-Key circuit
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Sallen-Key Filter — Generalized Form
R

Sallen-Key filter topology
o Low pass and high pass filters
o Band-pass, and notch filters with slight modifications

We'll look first at the filter in its most generalized
form, then consider the specific low pass and high
pass filter forms

Type of filter depends on the location of
components — resistors and capacitors
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Sallen-Key Filter — Generalized Form

] Zs
Transfer function —
o Nodal analysis v Z Z; N
o L1 {1 + Vo
KCL at V* and V, K - °
Virtual short at opamp inputs 24 AN
Re

o After a lot of ugly algebra:

1

G(s) = 7.7,

Zy , 52 5121
BIF+BF+BZ+(B-DF 4B

where [ is the feedback path gain

Rpq

f =
Re1 + Ry
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Sallen-Key Low Pass Filter
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Sallen-Key Second-Order Low Pass Filter

Z, and Z, are resistors

) o— W VA +
Z, and Z, are capacitors l -
CzI AN
Re.
. Rf1
Transfer function
1
G(s) = >
ﬁRlec‘lCZS + ﬁRzCZS + ,BRlCZS + (ﬁ — 1)R1€15 + ,8
1
G(s) = BR1R,C,C;

1 1 (ﬁ — 1) 1
2
S (R161 T’ T BRLG, )S T RIR,CC,
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Sallen-Key Low Pass Filter
e

Generalized second-order low pass transfer function:

w§
o

G(s) =K -
52+75+a)§

Equating coefficients with the Sallen-Key transfer function gives

O Resonant frequency:
1

-~ JRR,C,C,

On)

O Quality factor:

VR1R2C1 G,

Q= =
R2C2+R1C1+ T R1C1
o DC gain:
1 Rfp +R
K=-=J11"772
/5 Rpq
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Sallen-Key Low Pass Filter

wo, Q, and gain all set by appropriate component selection, but

o There are more degrees of freedom than we need
o Transfer function is a bit more complicated than we’d like

Simplify by setting component values equal

Transfer function becomes

1
2
2b)s v
s+ \—x¢ S+(RC)2
o Where now
w =L d Q=
0 — RC an —

K. Webb
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Sallen-Key Low Pass Filter
e

1
R 2
SZ + (3__F> s+ L
RC (RC)?
We can also write the transfer function in terms of DC gain, K
_K__
2
G(s) = ARC)
RC (RC)?
wgo and Q in terms of K:
1 1
Wy = E and Q = m

The filter’s DC gain is dependent on the filter’s Q and vice versa
o For independent control of DC gain, cascade an additional gain stage
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Sallen-Key Low Pass Filter

Note dependence of _ Sallen-Key LPF Bode Plotv. K_

and K

o Both set by feedback
path gain

() and gain are
independent of w,

Gain [dB]

O w, set by capacitors S
and resistors at the 2
input g

Second-order !

o Gain roll-off: -40 "

d B/d eC Normalized Frequency [f/fO]
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Sallen-Key High Pass Filter

Here, we will jump straight to the simplified circuit with
equal-valued components

Location of resistors and capacitors swapped relative to low
pass filter

High pass transfer function

1, AN
ES
G(s) = . C C
31 o : '
RC (RC) w
o Again, ERH ’
1 1
wog = — and = —
0 RC Q 3_1
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Sallen-Key High Pass Filter

As with the low pass filter, we can write the transfer
function in terms of gain, K

o K still represents passband gain, but now it is the high-frequency
gain, not the DC gain

G (s) Ks?
S) =
3—K 1
2 -
> +( RC )S+(RC)2

wq and Q are the same as for the low pass filter:

1 1
Wo = and Q =3 x

Same dependence between passband gain, resonant
frequency, and Q
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Sallen-Key High Pass Filter
R

Note dependence of o Sallen ey HPE B Plotve.K_
20 i
and K

o Both set by feedback
path gain

(Q and gain are
independent of w,

Gain [dB]

20 F

40 -

O wy set by capacitors 200 —————
and resistors at the 150
input 2 0l
Second-order £ 5!
o Gain roll-off: -40 o
dB/deC Normalized Frequency [f/f

ol
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Sallen-Key Filter — Stability
e

Sallen-Key filter has two Positive feedback
feedback paths: \,@\
o Negative feedback oo L » o
Generally stabilizing Z, é .

o Positive feedback .
Negative

Generally destabilizing feedback

Relative amount of negative and positive feedback
determines stability

o Net negative feedback: circuit is stable
Behaves as a linear filter/amplifier

O Net positive feedback: circuit is unstable
Will oscillate or saturate
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Sallen-Key Filter — Stability
e

Overall net feedback must Positive feedback

remain negative /L\

o But, we can vary just how v ‘
negative by varying 8 w Al s » Ve
Varying [ allows us to vary Q: ’ 24@ ’ O
1 1
CTio1TIR e

As [ increases:

o Negative feedback increases

o Overall feedback becomes more negative
o Quality factor, Q, decreases

o Damping ratio, {, increases

o Pass band gain, K, decreases
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Sallen-Key Filter — Stability
e

As ﬁ decreases: Positive feedback
o Negative feedback decreases \,@\
o Overall feedback becomes less .z a
negative o ¥ s
o Quality factor, Q, increases z4é .
o Damping ratio, ¢, decreases

Negative

o Pass band gain, K, increases
feedback

There is an upper limit on K:
OoForK=3,Q=coand{ =0

o An un-damped circuit

o Negative and positive feedback cancel

o The border between stability and instability
o For stability: K < 3
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“ Filter Families
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Filter Families

Higher-order filters of all types can be designed
with transfer functions that fit into one of several
families of filters

o Butterworth
o Chebyshev
o Elliptic

o Bessel

Each filter family defined by the nature of its
characteristic polynomial

Equivalently, each defined by pole locations, e.g.,

o Butterworth poles lie evenly spaced on a circle in the
left half of the complex plane
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Filter Families — Frequency Response

5

0

5+

-10

-15

Magnitude [dB]

-35

-40 -

-45 -

-50

Comparison of Fourth-Order Low Pass Filters

m— Butterworth
== == Chebyshev | |

Lk == == E|liptic

10™" 10° 10’
Normalized Frequency (f/fc)

K. Webb

Butterworth
o Maximally-flat pass band
o Slow roll off

Chebyshev

o Steeper roll off
o Pass band ripple

Elliptic

o Very steep roll off
o Pass band ripple
o Stop band ripple

As always, all about trade
offs
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Imaginary

Filter Families — System Poles
e

Filter Poles

® Butterworth
0.8 | % Chebyshev
- Elliptic

0.6} 7

0.4} ?(

o
o N
T T
—

O
N
T
—

0.4 | s‘

06 F \

-0.8

K. Webb

Butterworth

o Poles lie on a semi-
circle in the LHP

o Equally spaced

o Equal magnitude,
Wo

Chebyshev/elliptic

o Poles lie on semi-
ellipses in the LHP

o Varying
maghnitudes

ENGR 203



Butterworth Poles
e

Butterworth Poles

Butterworth poles: | T
. 0.8+ 27 :

o Magnitude: wg . SN
of , _—
o Order: N 04/ " \ 2
. ~ 20 \
O Separation angles: 180°/N > 02| ;’ RGN
o Polesfork =1..N ‘_;’OZ 1 e,e/l?
_ S ,

0.4 s"// ,/e
| rk—-1)| | 2k — 1) sl \ 72

Sk = Wqo |— SIn N + jcos oN o \\ Y

_1 | | i

_-2 -1.5 -1 -0.5 0

Real

Each complex conjugate pair are the poles of a single
second-order Sallen-Key stage

o All with equal w,
o Each with different ¢
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Filter Synthesis Procedure

-
Determine filter order, N, and cutoff frequency, w,

Determine wqy and Q or ¢ for each stage by utilizing either
a) Design tables, or

b) MATLAB
For each stage, select R and C to yield the required wy
1
Wy = C

For each stage, select R¢; and Ry, to set gain, K, to provide
the required Q
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Filter Design Tables
e

Design tables exist for different filters of different
orders from different filter families

O Pole locations, wgy, and Q given for each second- and
first-order stage for a given filter order, N

Only second-order stages for even N
Second-order plus one first-order stage for odd N

O Frequencies are normalized
Multiply w, by the cutoff frequency, w,
Multiply o and w,4 by w,
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Butterworth Design Table

2 O 7071 O 7071 0.7071 1.5858

3 1 0.5000 0.8660 1.00 1.0000 1.0000
2 1.0000 - 1.00 - -

4 1 0.9239 0.3827 1.00 0.5412 1.1522
2 0.3827 0.9239 1.00 1.3065 2.2346

5 1 0.8090 0.5878 1.00 0.6180 1.382
2 0.3090 0.9511 1.00 1.6182 2.382
3 1.0000 - 1.00 = -

6 1 0.9659 0.2588 1.00 0.5176 1.0681
2 0.7071 0.7071 1.00 0.7071 1.5858
3 0.2588 0.9659 1.00 1.9319 2.4824
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Chebyshev Design Table — 0.5 dB ripple

K. Webb

O 71281

0.3123
0.6265

0.4233
0.1754

0.2931
0.1120
0.3623

0.2898
0.2121
0.0777

1 004

1.0219

0.4210
1.0163

0.6252
1.0116

0.2702
0.7382
1.0085

1.2313

1.0689
0.6265

0.5970
1.0313

0.6905
1.0177
0.3623

0.3962
0.7681
1.0114

0.8638

1.7062

0.7051
2.9406

1.1778
4.5450

0.6836
1.8104
6.5128

1.8422

2.4139

1.5818
2.6599

2.1510
2.7800

1.5372
2.4476
2.8465
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Chebyshev Design Table — 1.0 dB ripple

K. Webb

O 5489

0.2471
0.4942

0.3369
0.1395

0.2342
0.0895
0.2895

0.2321
0.1699
0.0622

O 8951

0.9660

0.4073
0.9834

0.6119
0.9901

0.2662
0.7272
0.9934

1.0500

0.9771
0.4942

0.5286
0.9932

0.6552
0.9941
0.2895

0.3531
0.7468
0.9954

0.9565

2.0177

0.7846
3.5590

1.3988
5.5564

0.7609
2.1980
8.0037

1.9545

2.5044

1.7254
2.7190

2.2851
2.8200

1.6857
2.5450
2.8751
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Chebyshev Design Table — 3.0 dB ripple

K. Webb

O 3225

0.1493
0.2986

0.2056
0.0852

0.1436
0.0549
0.1775

0.1427
0.1044
0.0382

O 7772

0.9038

0.3921
0.9465

0.5970
0.9659

0.2616
0.7148
0.9764

0.8414

0.9161
0.2986

0.4427
0.9503

0.6140
0.9675
0.1775

0.2980
0.7224
0.9772

1.3047

3.0677

1.0765
5.5789

2.1375
8.8178

1.0443
3.4581
12.7800

202335

2.6740

2.0711
2.8208

2.5322
2.8866

2.0425
2.7108
2.9218
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Filter synthesis in MATLAB

MATLAB has built-in filter design functions, e.g.,
O butterm

o chebyl.m

o ellip.m

Design procedure:

1. Use functions to get transfer function coefficients for
given filter specifications

2. Create MATLAB transfer function object

3. Determine filter poles, wg, and Q from transfer
function — place low-Q stages first

4. Determine component values from wy and Q
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Butterworth Filter — butter (...)
-

[b,a] =butter (N,wn, ftype,’'s’)

Inputs:
o N: filter order
o wn: cutoff frequency [rad/sec]

o ftype:filtertype: *1low’, ‘bandpass’, *high’,
‘stop’ —optional —default: Y1ow’

O ‘s’ :specifies analog filter

Outputs:

O b : coefficients of the transfer function’s numerator
polynomial

O a: coefficients of the transfer function’s denominator
polynomial
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Chebyshev Filter — chebyl1 (...)
-

[b,a] =chebyl (N,R,wn, ftype,’'s’)

Inputs:

O N: filter order

O R: pass band ripple [dB]

o wn: cutoff frequency [rad/sec]

o ftype:filter type: ‘1low’, ‘bandpass’, ‘high’, ‘stop’ -
optional —default: ‘1ow’

O ‘s’ :specifies analog filter

Outputs:
O b: coefficients of the transfer function’s numerator polynomial
O a: coefficients of the transfer function’s denominator polynomial

K. Webb ENGR 203



Elliptic Filter—ellip (...)
-
[b,a] =chebyl (N,Rp,Rs,wn, ftype,’'s’)

Inputs:

o N: filter order

O Rp: pass band ripple [dB]

O Rs: stop band attenuation [dB]
o wn: cutoff frequency [rad/sec]

o ftype:filtertype: *1ow’, ‘bandpass’, ‘high’, ‘stop’ -
optional — default: ‘1ow’

O ‘s’ :specifies analog filter

Outputs:
O b: coefficients of the transfer function’s numerator polynomial
O a: coefficients of the transfer function’s denominator polynomial
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Transfer Function Model — t £ (...)
-

sys=tf (b, a)

O b: vector of numerator polynomial coefficients
O a: vector of denominator polynomial coefficients
O sys: transfer function model object

Transfer function is assumed to be of the form

bys" + b,s™ 1+ -+ b.s+ by
a;s"+a,s" 1+t a,s+ agyq

G(s) =

Inputs to £ £ (...) are
o Num= [bl,b2,..,br+l1];
O Den=[al,a?2,..,antl];
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Getting wy and () — damp (...)
e

lwn, zeta,p] =damp (sys)

O sys: transfer function system model object

O wn: vector of natural frequencies (magnitudes) of poles
O zeta: vector of damping ratios, ¢, of poles

O p: vector of poles

Use wn values for w, of each filter stage

Calculate Q of each stage from ¢ values

1

T
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- Filter Design Example
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Sallen-Key Filter — Example

Design a Butterworth (maximally-flat) low pass
active filter to satisfy the following specifications:

o Corner frequency: f. = 1IMHz
o Frequency response roll off beyond f.: 80dB/dec

o Pass band (DC) gain: 12dB (4)

Roll off spec of 80 dB/dec tells us we need a fourth-
order filter — cascade two Sallen-Key stages

Add a constant gain stage if necessary to meet gain
specification
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Sallen-Key Filter — Example

Fourth-order filter
o Cascade two second-order Sallen-Key stages

Additional gain stage necessary to meet gain specification
o Non-inverting opamp amplifier

Vi

1 R T

Note that the circuit in this example has been simplified by
setting Rr; equal in each stage

o Not necessarily the right choice
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Sallen-Key Filter — Example

Butterworth filter, so, for both stages,

wWy=w,=2n-f.=2m-1MHz
Determine R and C for desired w,

o Arbitrarily choose C = 1 nF

1 1
- 2nf.C 2m-1MHz-1nF

R =159 Q)

o If using £1% resistors, 158 Q is a standard value

R=158Q and C =1nF

K. Webb ENGR 203



Sallen-Key Filter — Example

v, 1580 1580 1580 1580

-1 To determine gain of each stage, consult the Butterworth design table

0.9239 0.3827 1.00 0.5412
2 0.3827 0.9239 1.00 1.3065

- Calculate K for each stage from its Q

1
K,=3——=3-— = 1.152
1 Q4 0.5412
1
K,=3——=3-— = 2.235

0, 1.3065
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Sallen-Key Filter — Example

Alternatively, use MATLAB to determine wg and K values for
each stage

5 %% filter specs

6 N =4,

7 fc = 1le6; filt params =

8 we = fc*(2%pi); -

: 4x3 table
10 % design a butterworth filter
11 [num,den] = butter(N,wc, 's');
12 Gb = tf(num,den); e wo K
13
14 % get poles and corresponding magnitudes and damping
= [wo, zeta, p] = damp(Gb): 0.5412 6.2832e+06 1.1522
16 0.5412 6.2832e+06 1.1522
17 Q = 1./(2%zeta); 1.3066 6.2832e+06 2.2346
18 K=3-1./0; 1.3066  6.2832e+06  2.2346
19
20 filt_params = table(Q, we, K); >>
21
22 display(filt_params)

Note that we would put the low-Q stage first
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Sallen-Key Filter — Example

1nF
\nl 1ﬂF
1

y, 1980 1580 1580 1580

il
3
W VI l : AN AN l N
1nF I 1nF I
Re
R Ri Re

Arbitrarily choose Ry = 5.11 k()
Calculate Rs, and R¢3 to give the required K; and K;

1=~ > Rp=Rpu(K—1)=511k0- 0152 = 7780
f1
Rfl + Rf3
, =——=—" > Rp3=R(K,~1)=511kQ 1235 = 631 kQ
1

Again, assuming +1% resistors, we choose the closest standard values:

R, =787Q and Rp; = 6.34 kQ
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Sallen-Key Filter — Example

1580 1580

1580 1580

IV :\/;l \7 sea | 158 |‘7
: I 1nF%

787Q
5.11KaQ

6.34K0
5.11KQ

Finally, set the gain of the third stage to satisfy the gain requirement
Overall gain given by
4

= = 1.554

K == K1K2K3 == 4 = K3 ==

Calculate Ry, to give the required K3

3 = Rpy = Rpy (K3 — 1) = 5.11 k) - 0.554 = 2.83 kQ)

Rpq

Again, assuming +1% resistors, we choose the closest standard value:

Ry = 2.8 kQ)
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Sallen-Key Filter — Example

The complete 4th-order Sallen-Key Butterworth low pass filter:

N 1nF
1 [
il
1580 1580 158Q 1580
o VAYA VAVA +
l VAVA VA +
_ + Vo
_ —]
. i . - l >—
7870 9
o I 6.34K0 2‘/gf(0
11KQ '
511KQ
5.11KQ
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Sallen-Key Filter — Example

90 e ‘4th-|0r‘delrlBIL‘|t‘tlerwort'h Fiter | DC gain: ~12 dB

= == Stage 1

=—=== Stage 2 fc =~ 1 MHZ
10 -

- —rier_| Gain rolloff: -80 dB/dec
Stage 1:

o Low Q

o Low gain

Gain [dB]

Stage 2:
o Higher Q
o Higher gain

Stage 3:

o Constant gain

10° 10°
Frequency [Hz]

107
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