SECTION 7: ACTIVE FILTERS

ENGR 203 – Electrical Fundamentals III

Introduction

- In ENGR 202 we studied different types of first- and second-order *passive* filters
 - **D** *Passive*, because they contain only passive components:
 - Resistors, capacitors, and inductors
- Can also construct filters using opamps
 Active filters

Introduction

- Active filters have advantages over passive filters:
 - Can build high-Q filters without inductors
 - Low output impedance
 - Easily *adjustable*: *f_c*, *Q*
 - \blacksquare Can provide *gain* (> 0 dB)
- Before getting into the design of active filters, we will look at two fundamental filter building blocks:
 Opamp integrators
 - Opamp differentiators

Integrators and Differentiators

- 5
- Opamp circuits can perform many different mathematical operations
 - Operational amplifiers
- Multiplication
 - Inverting and non-inverting amplifiers
- Addition and subtraction
 - Summing and difference amplifiers
- Can also perform *integration* and *differentiation* Feedback controllers
 Duilding block of active filters
 - Building block of active filters

Opamp Integrator – Time Domain

- 5
- Analyze the opamp integrator in the time domain
- Virtual ground at inverting input, so

$$i(t) = \frac{v_i(t)}{R}$$

Capacitor *integrates* input current to give output voltage

$$v_o(t) = -\frac{1}{C} \int_0^t i(\tau) d\tau \, v_o(t) = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau$$

Output is the (scaled and inverted) integral of the input

Opamp Integrator – Laplace Domain

- 7
- Analyze the opamp integrator in the Laplace domain
- Again, a virtual ground at inverting input, so

$$I(s) = \frac{V_i(s)}{R}$$

Output voltage:

$$V_o(s) = -I(s)\frac{1}{Cs} = -\frac{V_i(s)}{RCs} = -\frac{1}{s} \cdot \frac{V_i(s)}{RC}$$

Recall that multiplication by 1/s in the Laplace domain corresponds to integration in the time domain

Opamp Integrator – Frequency Response

8

Transfer function:

$$G(s) = -\frac{1}{RCs}$$

- □ Single pole at s = 0
 - Gain: constant slope of -20 dB/dec
 - Infinite DC gain
 - Phase: -90° from integrator pole + 180° from inversion yields constant +90°

Ideal Integrator - Problem

9

Laplace domain step response of the ideal integrator

$$V_o(s) = \frac{1}{s} \cdot G(s) = -\frac{1}{RC} \cdot \frac{1}{s^2}$$

Inverse transforming to the time domain

$$v_o(t) = -\frac{1}{RC} \cdot t$$

- Output increases linearly with time
- Opamp will quickly saturate in response *any* DC input component
 Infinite DC gain
- Not a practical circuit
 - Inputs will always have some non-zero offset
 - Real (non-ideal) opamps have non-zero offset voltages and input bias currents

Practical Opamp Integrator

- 10
- Problem with ideal integrator is infinite DC gain
 No DC feedback
 Open-loop at DC
- Add a feedback resistor in parallel with the capacitor

- Now there is a feedback path for DC signals
- **D**C gain limited to R_f/R
- Behaves as an inverting opamp at low frequencies
- Still behaves as an integrator at high frequencies
- A practical or lossy integrator circuit

Opamp Integrator – Frequency Response

11

Transfer function:

$$G(s) = -\frac{\frac{\frac{R_f}{Cs}}{R_f + \frac{1}{Cs}}}{R} = -\frac{R_f}{R}\frac{1}{R_f Cs + 1}$$

 Pole (corner frequency) set by the feedback network:

$$\omega_c = \frac{1}{R_f C}$$

- □ For $\omega \gg \omega_c$, still behaves like an integrator
 - Gain: rolls off at -20 dB/dec
 - Phase: ~90°

¹² Opamp Differentiators

Opamp Differentiator – Time Domain

13

- Analyze the opamp differentiator in the time domain
- Virtual ground at inverting input, so

$$i(t) = C \frac{dv_i}{dt}$$

Ohm's law gives the output voltage

$$v_o(t) = -Ri(t) = -RC\frac{dv_i}{dt}$$

Output is the (scaled and inverted) derivative of the input

14

Opamp Differentiator – Laplace Domain

- Analyze the differentiator in the Laplace domain
- Again, a virtual ground at inverting input, so

 $I(s) = Cs \cdot V_i(s)$

- Output voltage:
 - $V_o(s) = -RI(s) = -RCsV_i(s) = -s \cdot RCV_i(s)$
- Recall that multiplication by s in the Laplace domain corresponds to differentiation in the time domain

Opamp Differentiator – Frequency Response

15

Transfer function:

G(s) = -RCs

- \Box Single zero at s = 0
 - Gain: constant slope of +20 dB/dec
 - Very large high-frequency gain
 - Phase: +90° from zero at the origin + 180° from inversion yields constant +270° = -90°

ENGR 203

Ideal Differentiator - Problem

- 16
- Gain continues to increase with frequency
- High-frequency gain is very large
 - Any input signal will include some noise
- Better to limit the gain above some upper frequency

Practical Opamp Differentiator

- Problem with ideal differentiator:
 - Low input impedance at high frequency
 - Excessive high-frequency input current
- Add a resistor in series with the input capacitor
 - **•** High-frequency gain limited to R_f/R
- Still behaves as a differentiator at low frequencies
- Behaves as an inverting opamp at high frequencies
- A practical or lossy differentiator circuit

Practical Opamp Differentiator

L8

Transfer function:

$$G(s) = -\frac{R_f}{R + \frac{1}{Cs}} = -\frac{R_f Cs}{RCs + 1}$$

 Pole (corner frequency) set by the input network:

$$\omega_c = \frac{1}{RC}$$

 For ω ≪ ω_c, still behaves like a differentiator
 Gain: increases at +20 dB/dec
 Phase: ~-90°

First-Order Active Filters

- 20
- Practical integrator and differentiator circuits
 Additional resistors fix problems with ideal circuits
 First-order low pass and high pass filters

First-Order Low Pass Filter

21

Transfer function

$$G(s) = -\frac{R_f}{R} \frac{1}{\left(R_f C s + 1\right)}$$
$$G(s) = -\frac{R_f}{R} \frac{\frac{1}{R_f C}}{\left(s + \frac{1}{R_f C}\right)}$$

Corner frequency

$$f_c = \frac{1}{2\pi R_f C}$$

Pass-band gain

$$A_v = -\frac{R_f}{R}$$

First-Order High Pass Filter

22

Transfer function

$$G(s) = -\frac{R_f Cs}{RCs + 1}$$
$$G(s) = -\frac{R_f}{R} \frac{s}{\left(s + \frac{1}{RC}\right)}$$

Corner frequency

$$f_c = \frac{1}{2\pi RC}$$

Pass-band gain

$$A_{v} = -\frac{R_{f}}{R}$$

²³ Higher Order Active Filters

Higher-Order Active Filters

- Higher order active filters can be constructed by:
 Cascading first-order active filters
 Using second-order active filter stages
 Cascading second- and first-order stages
- Create higher order band pass/stop filters similarly:
 Cascade first-order high/low pass filters
 Use and/or cascade second-order band pass/stop stages
- Many different second-order active filter topologies
 We'll look at the *Sallen-Key circuit*

Sallen-Key Filter – Generalized Form

- Sallen-Key filter topology
 - Low pass and high pass filters
 - Band-pass, and notch filters with slight modifications
- We'll look first at the filter in its most generalized form, then consider the specific low pass and high pass filter forms
- Type of filter depends on the location of components resistors and capacitors

Sallen-Key Filter – Generalized Form

where β is the feedback path gain

$$\beta = \frac{R_{f1}}{R_{f1} + R_{f2}}$$

²⁷ Sallen-Key Low Pass Filter

Sallen-Key Second-Order Low Pass Filter

28

- \Box Z₁ and Z₂ are resistors
- \Box Z₃ and Z₄ are capacitors
- Transfer function

$$G(s) = \frac{1}{\beta R_1 R_2 C_1 C_2 s^2 + \beta R_2 C_2 s + \beta R_1 C_2 s + (\beta - 1) R_1 C_1 s + \beta}$$

1

$$G(s) = \frac{\frac{1}{\beta R_1 R_2 C_1 C_2}}{s^2 + \left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_1} + \frac{(\beta - 1)}{\beta R_2 C_2}\right)s + \frac{1}{R_1 R_2 C_1 C_2}}$$

29

□ Generalized second-order low pass transfer function:

$$G(s) = K \cdot \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

Equating coefficients with the Sallen-Key transfer function gives
 Resonant frequency:

$$\omega_0 = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$

Quality factor:

$$Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{R_2 C_2 + R_1 C_1 + \left(\frac{\beta - 1}{\beta}\right) R_1 C_1}$$

DC gain:

$$K = \frac{1}{\beta} = \frac{R_{f1} + R_{f2}}{R_{f1}}$$

- 30
- ω₀, Q, and gain all set by appropriate component selection, but
 There are more degrees of freedom than we need
 Transfer function is a bit more complicated than we'd like
- Simplify by setting component values equal
- Transfer function becomes

$$G(s) = \frac{\frac{1}{\beta(RC)^2}}{s^2 + \left(\frac{3 - \frac{1}{\beta}}{RC}\right)s + \frac{1}{(RC)^2}}$$

Where now

$$\omega_0 = \frac{1}{RC}$$
 and $Q = \frac{1}{3 - \frac{1}{\beta}}$

We can also write the transfer function in terms of DC gain, K

$$G(s) = \frac{\frac{K}{(RC)^2}}{s^2 + \left(\frac{3-K}{RC}\right)s + \frac{1}{(RC)^2}}$$

 $\Box \quad \omega_0$ and Q in terms of K:

$$\omega_0 = \frac{1}{RC}$$
 and $Q = \frac{1}{3-K}$

The filter's DC gain is dependent on the filter's Q and vice versa
 For independent control of DC gain, cascade an additional gain stage

- 32
- Note dependence of Q and K
 - Both set by feedback path gain
- $\Box \ Q \text{ and gain are} \\ \text{independent of } \omega_0$
 - ω₀ set by capacitors and resistors at the input
- Second-order
 Gain roll-off: -40 dB/dec

³³ Sallen-Key High Pass Filter

Sallen-Key High Pass Filter

- Here, we will jump straight to the simplified circuit with equal-valued components
- Location of resistors and capacitors swapped relative to low pass filter
- High pass transfer function

$$G(s) = \frac{\frac{1}{\beta}s^2}{s^2 + \left(\frac{3 - \frac{1}{\beta}}{RC}\right)s + \frac{1}{(RC)^2}}$$

Again,

$$\omega_0 = \frac{1}{\scriptscriptstyle RC} \quad \text{and} \quad Q = \frac{1}{3 - \frac{1}{\beta}}$$

34

Sallen-Key High Pass Filter

- 35
- As with the low pass filter, we can write the transfer function in terms of gain, K
 - K still represents passband gain, but now it is the high-frequency gain, not the DC gain

$$G(s) = \frac{Ks^{2}}{s^{2} + \left(\frac{3-K}{RC}\right)s + \frac{1}{(RC)^{2}}}$$

 $\square \omega_0$ and Q are the same as for the low pass filter:

$$\omega_0 = \frac{1}{RC}$$
 and $Q = \frac{1}{3-K}$

Same dependence between passband gain, resonant frequency, and Q

Sallen-Key High Pass Filter

- 36
- Note dependence of Q and K
 - Both set by feedback path gain
- Q and gain are independent of ω₀
 - ω₀ set by capacitors and resistors at the input
- Second-order
 Gain roll-off: -40 dB/dec

Sallen-Key Filter – Stability

- Sallen-Key filter has two feedback paths:
 - **Negative** feedback
 - Generally stabilizing
 - **Positive** feedback
 - Generally *destabilizing*

- Relative amount of negative and positive feedback determines stability
 - Net negative feedback: circuit is stable
 - Behaves as a linear filter/amplifier
 - Net positive feedback: circuit is unstable
 - Will oscillate or saturate

Sallen-Key Filter – Stability

- 38
- Overall net feedback must remain negative
 - But, we can vary just how negative by varying β
- Varying β allows us to vary Q:

$$Q = \frac{1}{3 - \frac{1}{\beta}} = \frac{1}{3 - K}$$

- As β increases:
 - Negative feedback increases
 - Overall feedback becomes more negative
 - Quality factor, Q, decreases
 - **Damping ratio**, ζ , increases
 - Pass band gain, K, decreases

Sallen-Key Filter – Stability

- As β decreases:
 - Negative feedback decreases
 - Overall feedback becomes less negative
 - Quality factor, Q, increases
 - **Damping ratio**, ζ , decreases
 - Pass band gain, K, increases
- \Box There is an upper limit on K:
 - For K = 3, $Q = \infty$ and $\zeta = 0$
 - An un-damped circuit
 - Negative and positive feedback cancel
 - The border between stability and instability
 - **D** For stability: $K \leq 3$

40 Filter Families

Filter Families

- Higher-order filters of all types can be designed with transfer functions that fit into one of several *families of filters*
 - Butterworth
 - **Chebyshev**
 - Elliptic
 - Bessel
- Each filter family defined by the nature of its characteristic polynomial
- Equivalently, each defined by *pole locations*, e.g.,
 Butterworth poles lie evenly spaced on a circle in the left half of the complex plane

Filter Families – Frequency Response

- Butterworth
 - Maximally-flat pass band

Slow roll off

- Chebyshev
 - Steeper roll off
 - Pass band ripple
- Elliptic
 - Very steep roll off
 - Pass band ripple
 - Stop band ripple
- As always, all about trade offs

Filter Families – System Poles

43

Butterworth

- Poles lie on a semicircle in the LHP
- Equally spaced
- Equal magnitude, ω_0
- Chebyshev/elliptic
 - Poles lie on semiellipses in the LHP

Varying magnitudes

Butterworth Poles

- Butterworth poles:
 - **D** Magnitude: ω_0
 - Order: N
 - Separation angles: 180°/N
 - Poles for $k = 1 \dots N$

$$s_k = \omega_0 \left[-\sin\left[\frac{\pi(2k-1)}{2N}\right] + j\cos\left[\frac{\pi(2k-1)}{2N}\right] \right]$$

- Each complex conjugate pair are the poles of a single second-order Sallen-Key stage
 - **\square** All with equal ω_0
 - **\square** Each with different ζ

45 Filter Synthesis

Filter Synthesis Procedure

- 46
- 1. Determine filter order, N, and cutoff frequency, ω_c
- 2. Determine ω_0 and Q or ζ for each stage by utilizing either
 - a) Design tables, or
 - b) MATLAB
- 3. For each stage, select R and C to yield the required ω_0

$$\omega_0 = \frac{1}{RC}$$

4. For each stage, select R_{f1} and R_{f2} to set gain, K, to provide the required Q

$$K=3-\frac{1}{Q}$$

Filter Design Tables

- Design tables exist for different filters of different orders from different filter families
 - Pole locations, ω_0 , and Q given for each second- and first-order stage for a given filter order, N
 - Only second-order stages for even N
 - Second-order plus one first-order stage for odd N
 - Frequencies are normalized
 - Multiply ω_0 by the cutoff frequency, ω_c
 - Multiply σ and ω_d by ω_c

Butterworth Design Table

		Poles				
Order, N	Section	σ	ω _d	ω_0	Q	K
2	1	0.7071	0.7071	1.00	0.7071	1.5858
3	1	0.5000	0.8660	1.00	1.0000	1.0000
	2	1.0000	-	1.00	-	-
4	1	0.9239	0.3827	1.00	0.5412	1.1522
	2	0.3827	0.9239	1.00	1.3065	2.2346
5	1	0.8090	0.5878	1.00	0.6180	1.382
	2	0.3090	0.9511	1.00	1.6182	2.382
	3	1.0000	-	1.00	-	-
6	1	0.9659	0.2588	1.00	0.5176	1.0681
	2	0.7071	0.7071	1.00	0.7071	1.5858
	3	0.2588	0.9659	1.00	1.9319	2.4824

Chebyshev Design Table – 0.5 dB ripple

		Poles				
Order, N	Section	σ	ω _d	ω ₀	Q	K
2	1	0.71281	1.004	1.2313	0.8638	1.8422
3	1	0.3123	1.0219	1.0689	1.7062	2.4139
	2	0.6265	-	0.6265	-	-
4	1	0.4233	0.4210	0.5970	0.7051	1.5818
	2	0.1754	1.0163	1.0313	2.9406	2.6599
5	1	0.2931	0.6252	0.6905	1.1778	2.1510
	2	0.1120	1.0116	1.0177	4.5450	2.7800
	3	0.3623	-	0.3623	-	
6	1	0.2898	0.2702	0.3962	0.6836	1.5372
	2	0.2121	0.7382	0.7681	1.8104	2.4476
	3	0.0777	1.0085	1.0114	6.5128	2.8465

Chebyshev Design Table – 1.0 dB ripple

		Poles				
Order, N	Section	σ	ω _d	ω_0	Q	K
2	1	0.5489	0.8951	1.0500	0.9565	1.9545
3	1	0.2471	0.9660	0.9771	2.0177	2.5044
	2	0.4942	-	0.4942	-	-
4	1	0.3369	0.4073	0.5286	0.7846	1.7254
	2	0.1395	0.9834	0.9932	3.5590	2.7190
5	1	0.2342	0.6119	0.6552	1.3988	2.2851
	2	0.0895	0.9901	0.9941	5.5564	2.8200
	3	0.2895	-	0.2895	-	-
6	1	0.2321	0.2662	0.3531	0.7609	1.6857
	2	0.1699	0.7272	0.7468	2.1980	2.5450
	3	0.0622	0.9934	0.9954	8.0037	2.8751

Chebyshev Design Table – 3.0 dB ripple

		Poles				
Order, N	Section	σ	ω _d	ω_0	Q	K
2	1	0.3225	0.7772	0.8414	1.3047	202335
3	1	0.1493	0.9038	0.9161	3.0677	2.6740
	2	0.2986	-	0.2986	-	-
4	1	0.2056	0.3921	0.4427	1.0765	2.0711
	2	0.0852	0.9465	0.9503	5.5789	2.8208
5	1	0.1436	0.5970	0.6140	2.1375	2.5322
	2	0.0549	0.9659	0.9675	8.8178	2.8866
	3	0.1775	-	0.1775	-	-
6	1	0.1427	0.2616	0.2980	1.0443	2.0425
	2	0.1044	0.7148	0.7224	3.4581	2.7108
	3	0.0382	0.9764	0.9772	12.7800	2.9218

Filter synthesis in MATLAB

- MATLAB has built-in filter design functions, e.g.,
 butter.m
 - **c**heby1.m
 - ellip.m
- Design procedure:
 - 1. Use functions to get transfer function coefficients for given filter specifications
 - 2. Create MATLAB transfer function object
 - 3. Determine filter poles, ω_0 , and Q from transfer function *place low-Q stages first*
 - 4. Determine component values from ω_0 and Q

Butterworth Filter - butter (...)

[b,a] = butter(N,wn,ftype,'s')

- □ Inputs:
 - N: filter order
 - wn: cutoff frequency [rad/sec]

 - `s': specifies analog filter

Outputs:

- b: coefficients of the transfer function's numerator polynomial
- a: coefficients of the transfer function's denominator polynomial

Chebyshev Filter - cheby1 (...)

[b,a] = chebyl(N,R,wn,ftype,'s')

- Inputs:
 - N: filter order
 - R: pass band ripple [dB]
 - wn: cutoff frequency [rad/sec]
 - ftype: filter type: `low', `bandpass', `high', `stop' optional default: `low'
 - `s': specifies analog filter

Outputs:

- b: coefficients of the transfer function's numerator polynomial
- **a** : coefficients of the transfer function's denominator polynomial

Elliptic Filter - ellip(...)

[b,a] = cheby1(N,Rp,Rs,wn,ftype,'s')

- □ Inputs:
 - N: filter order
 - Rp: pass band ripple [dB]
 - Rs: stop band attenuation [dB]
 - wn: cutoff frequency [rad/sec]
 - Inter type: filter type: `low', `bandpass', `high', `stop' optional default: `low'
 - `s': specifies analog filter

Outputs:

- b: coefficients of the transfer function's numerator polynomial
- **a** : coefficients of the transfer function's denominator polynomial

Transfer Function Model – tf(...)

b: vector of numerator polynomial coefficients
 a: vector of denominator polynomial coefficients
 sys: transfer function model object

Transfer function is assumed to be of the form

$$G(s) = \frac{b_1 s^r + b_2 s^{r-1} + \dots + b_r s + b_{r+1}}{a_1 s^n + a_2 s^{n-1} + \dots + a_n s + a_{n+1}}$$

□ Inputs to tf (...) are

Getting ω_0 and Q – damp (...)

[wn,zeta,p] = damp(sys)

- sys: transfer function system model object
- wn: vector of natural frequencies (magnitudes) of poles
- \blacksquare zeta: vector of damping ratios, ζ , of poles
- p: vector of poles
- Use wn values for ω_0 of each filter stage
- Calculate Q of each stage from ζ values

$$Q = \frac{1}{2\zeta}$$

58 Filter Design Example

- Design a Butterworth (maximally-flat) low pass active filter to satisfy the following specifications:
 - **Corner frequency**: $f_c = 1MHz$
 - Frequency response roll off beyond f_c: 80dB/dec
 Pass band (DC) gain: 12dB (4)
- Roll off spec of 80 dB/dec tells us we need a fourthorder filter – cascade two Sallen-Key stages
- Add a constant gain stage if necessary to meet gain specification

59

- 60
- Fourth-order filter
 - Cascade two second-order Sallen-Key stages
- Additional gain stage necessary to meet gain specification
 Non-inverting opamp amplifier

Note that the circuit in this example has been simplified by setting R_{f1} equal in each stage
 Not necessarily the right choice

Butterworth filter, so, for both stages,

$$\omega_0 = \omega_c = 2\pi \cdot f_c = 2\pi \cdot 1 MHz$$

Determine R and C for desired ω_c Arbitrarily choose C = 1 nF

$$R = \frac{1}{2\pi f_c C} = \frac{1}{2\pi \cdot 1 MHz \cdot 1 nF} = 159 \,\Omega$$

I If using $\pm 1\%$ resistors, 158 Ω is a standard value

$$R = 158 \Omega$$
 and $C = 1 nF$

□ To determine gain of each stage, consult the Butterworth design table

		Poles			
Order, N	Section	σ	ω _d	ω_0	Q
4	1	0.9239	0.3827	1.00	0.5412
	2	0.3827	0.9239	1.00	1.3065

 \Box Calculate K for each stage from its Q

$$K_1 = 3 - \frac{1}{Q_1} = 3 - \frac{1}{0.5412} = 1.152$$
$$K_2 = 3 - \frac{1}{Q_2} = 3 - \frac{1}{1.3065} = 2.235$$

62

- 63
- Alternatively, use MATLAB to determine ω_0 and K values for each stage

5	%% filter specs
6	N = 4;
7	fc = 1e6;
8	wc = fc*(2*pi);
9	
10	% design a butterworth filter
11	<pre>[num,den] = butter(N,wc,'s');</pre>
12	Gb = tf(num,den);
13	
14	% get poles and corresponding magnitudes and damping
15	[w0, zeta, p] = damp(Gb);
16	
17	Q = 1./(2*zeta);
18	K = 3 - 1./Q;
19	
20	<pre>filt_params = table(Q, w0, K);</pre>
21	
22	display(filt params)

filt_params	=	
4×3 <u>table</u>		
Q	w0	к
0.5412	6.2832e+06	1.1522
0.5412	6.2832e+06	1.1522
1.3066	6.2832e+06	2.2346
1.3066	6.2832e+06	2.2346
>>		

Note that we would put the low-Q stage first

64

• Arbitrarily choose $R_{f1} = 5.11 k\Omega$

□ Calculate R_{f2} and R_{f3} to give the required K_1 and K_2

$$K_1 = \frac{R_{f1} + R_{f2}}{R_{f1}} \rightarrow R_{f2} = R_{f1}(K_1 - 1) = 5.11 \ k\Omega \cdot 0.152 = 778 \ \Omega$$

$$K_2 = \frac{R_{f1} + R_{f3}}{R_{f1}} \rightarrow R_{f3} = R_{f1}(K_2 - 1) = 5.11 \ k\Omega \cdot 1.235 = 6.31 \ k\Omega$$

 \Box Again, assuming $\pm 1\%$ resistors, we choose the closest standard values:

$$R_{f2} = 787 \Omega$$
 and $R_{f3} = 6.34 k\Omega$

Finally, set the gain of the third stage to satisfy the gain requirement
 Overall gain given by

$$K = K_1 K_2 K_3 = 4 \quad \rightarrow \quad K_3 = \frac{4}{K_1 K_2} = \frac{4}{1.152 \cdot 2.235} = 1.554$$

 \Box Calculate R_{f4} to give the required K_3

$$K_3 = \frac{R_{f1} + R_{f4}}{R_{f1}} \rightarrow R_{f4} = R_{f1}(K_3 - 1) = 5.11 \ k\Omega \cdot 0.554 = 2.83 \ k\Omega$$

 \Box Again, assuming $\pm 1\%$ resistors, we choose the closest standard value:

$$R_{f4} = 2.8 \ k\Omega$$

The complete 4th-order Sallen-Key Butterworth low pass filter:

67

- □ DC gain: \sim 12 dB
- $\Box f_c \approx 1 \, MHz$
- □ Gain rolloff: -80 dB/dec
- □ Stage 1:
 - Low Q
 - Low gain
- □ Stage 2:
 - Higher Q
 - Higher gain
- □ Stage 3:
 - Constant gain