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Fourier Series – Trigonometric Form2
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Periodic Functions

 A function is periodic if

𝑓𝑓 𝑡𝑡 = 𝑓𝑓 𝑡𝑡 + 𝑇𝑇

where 𝑇𝑇 is the period of the function

 The function repeats itself every 𝑇𝑇 seconds
 Here, we’re assuming a function of time, but could 

also be a spatial function, e.g.
 Elevation
 Pixel intensity along rows or columns of an image
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Frequency

 The frequency of a periodic function is the inverse of its 
period

𝑓𝑓 =
1
𝑇𝑇

 We’ll refer to a function’s frequency as its fundamental 
frequency, 𝑓𝑓0

 This is ordinary frequency, and has units of Hertz (Hz) (or 
cycles/sec)

 Can also describe a function in terms of its angular
frequency, which has units of rad/sec

𝜔𝜔0 = 2𝜋𝜋 ⋅ 𝑓𝑓0 =
2𝜋𝜋
𝑇𝑇
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Fourier Series

 In other words, any periodic signal of engineering interest

 Then it can be represented as an infinite sum of 
harmonically-related sinusoids, the Fourier series

 Fourier discovered that if a periodic 
function satisfies the Dirichlet 
conditions:
1) It is absolutely integrable over any period:

�
𝑡𝑡0

𝑡𝑡0+𝑇𝑇
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡 < ∞

2) It has a finite number of maxima and 
minima over any period

3) It has a finite number of discontinuities over 
any period

Joseph Fourier
1768 – 1830 
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Fourier Series
 The Fourier series

𝑓𝑓 𝑡𝑡 = 𝑎𝑎0 + �
𝑘𝑘=1

∞

𝑎𝑎𝑘𝑘 cos 𝑘𝑘𝜔𝜔0𝑡𝑡 + 𝑏𝑏𝑘𝑘 sin 𝑘𝑘𝜔𝜔0𝑡𝑡

where 𝜔𝜔0 is the fundamental frequency,  𝜔𝜔0 = 1
𝑇𝑇

and, the Fourier coefficients are given by

𝑎𝑎0 =
1
𝑇𝑇�0

𝑇𝑇
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡

the average value of the function over a full period, and

𝑎𝑎𝑘𝑘 =
2
𝑇𝑇�0

𝑇𝑇
𝑓𝑓 𝑡𝑡 cos 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡 , 𝑘𝑘 = 1,2,3 …

and

𝑏𝑏𝑘𝑘 =
2
𝑇𝑇�0

𝑇𝑇
𝑓𝑓 𝑡𝑡 sin 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡 , 𝑘𝑘 = 1,2,3 …
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Sinusoids as Basis Functions

 Harmonically-related sinusoids form a set of orthogonal basis 
functions for any periodic functions satisfying the Dirichlet 
conditions

 Not unlike the unit vectors in 𝐑𝐑2 space:

�̂�𝐢 = 1,0 , �̂�𝐣 = 0,1

 Any vector can be expressed as a linear combination of these basis 
vectors

𝐱𝐱 = 𝑎𝑎1�̂�𝐢 + 𝑎𝑎2�̂�𝐣

where each coefficient is given by an inner product

𝑎𝑎1 = 𝐱𝐱 ⋅ �̂�𝐢
𝑎𝑎2 = 𝐱𝐱 ⋅ �̂�𝐣

 These are the projections of 𝐱𝐱 onto the basis vectors
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Sinusoids as Basis Functions

 Similarly, any periodic function can be represented as a 
sum of projections onto the sinusoidal basis functions

 Similar to vector dot products, these projections are 
also given by inner products: 

𝑎𝑎𝑘𝑘 =
2
𝑇𝑇
�
0

𝑇𝑇
𝑓𝑓 𝑡𝑡 cos 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡 , 𝑘𝑘 = 1,2,3 …

and

𝑏𝑏𝑘𝑘 =
2
𝑇𝑇
�
0

𝑇𝑇
𝑓𝑓 𝑡𝑡 sin 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡 , 𝑘𝑘 = 1,2,3 …

 These are projections of 𝑓𝑓 𝑡𝑡 onto the sinusoidal basis 
functions
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Fourier Series – Example 

 Consider a rectangular 
pulse train

 𝑇𝑇 = 2 𝑠𝑠𝑠𝑠𝑠𝑠

 𝑓𝑓0 = 1
𝑇𝑇

= 0.5𝐻𝐻𝐻𝐻

 𝜔𝜔0 = 𝜋𝜋 ⁄𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠

 Can determine the Fourier series by integrating over any full 
period, for example, 𝑡𝑡 = 0,2

𝑓𝑓 𝑡𝑡 = �
1 0 < 𝑡𝑡 < 0.5
0 0.5 < 𝑡𝑡 < 1.5
1 1.5 < 𝑡𝑡 < 2.0
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Fourier Series – Example – 𝑎𝑎0

𝑓𝑓 𝑡𝑡 = �
1 0 < 𝑡𝑡 < 0.5
0 0.5 < 𝑡𝑡 < 1.5
1 1.5 < 𝑡𝑡 < 2.0

 First, calculate the average 
value

𝑎𝑎0 =
1
𝑇𝑇
�
0

𝑇𝑇
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡 =

1
2
�
0

2
𝑓𝑓 𝑡𝑡 𝑑𝑑𝑡𝑡

𝑎𝑎0 =
1
2
�
0

0.5
1𝑑𝑑𝑡𝑡 +

1
2
�
0.5

1.5
0𝑑𝑑𝑡𝑡 +

1
2
�
1.5

2
1𝑑𝑑𝑡𝑡

𝑎𝑎0 =
1
2
𝑡𝑡 �

0

0.5
+

1
2
𝑡𝑡 �
1.5

2
= 0.25 + 0.25

𝑎𝑎0 = 0.5,  as would be expected
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Fourier Series – Example – 𝑎𝑎𝑘𝑘
 Next determine the cosine coefficients, 𝑎𝑎𝑘𝑘

𝑎𝑎𝑘𝑘 =
2
𝑇𝑇�0

𝑇𝑇
𝑓𝑓 𝑡𝑡 cos 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡

𝑎𝑎𝑘𝑘 =
2
2�0

0.5
cos 𝑘𝑘𝜋𝜋𝑡𝑡 𝑑𝑑𝑡𝑡 +

2
2�1.5

2
cos 𝑘𝑘𝜋𝜋𝑡𝑡 𝑑𝑑𝑡𝑡

𝑎𝑎𝑘𝑘 =
1
𝑘𝑘𝜋𝜋 sin 𝑘𝑘𝜋𝜋𝑡𝑡 �

0

0.5
+

1
𝑘𝑘𝜋𝜋 sin 𝑘𝑘𝜋𝜋𝑡𝑡 �

1.5

2

𝑎𝑎𝑘𝑘 =
1
𝑘𝑘𝜋𝜋 sin 𝑘𝑘

𝜋𝜋
2 − 0 + 0 − sin 𝑘𝑘3

𝜋𝜋
2

𝑎𝑎𝑘𝑘 =
1
𝑘𝑘𝜋𝜋 sin 𝑘𝑘

𝜋𝜋
2 − sin 𝑘𝑘𝑘

𝜋𝜋
2
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Fourier Series – Example – 𝑎𝑎𝑘𝑘
 We know that

sin 𝑘𝑘𝑘
𝜋𝜋
2

= sin 𝑘𝑘
𝜋𝜋
2

+ 𝑘𝑘𝜋𝜋 = −sin(𝑘𝑘
𝜋𝜋
2

)

so
𝑎𝑎𝑘𝑘 =

2
𝑘𝑘𝜋𝜋

sin 𝑘𝑘
𝜋𝜋
2

, 𝑘𝑘 = 1,2,3 …

 The first few values of 𝑎𝑎𝑘𝑘:

𝑎𝑎1 = 2
𝜋𝜋

,  𝑎𝑎2 = 0 ,  𝑎𝑎3 = − 2
3𝜋𝜋

,  𝑎𝑎4 = 0 ,  𝑎𝑎5 = 2
5𝜋𝜋

 Zero for all even values of 𝑘𝑘
 Only odd harmonics present in the Fourier Series
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Fourier Series – Example – 𝑏𝑏𝑘𝑘
 Next, determine the sine coefficients, 𝑏𝑏𝑘𝑘

𝑏𝑏𝑘𝑘 =
2
𝑇𝑇
�
0

𝑇𝑇
𝑓𝑓 𝑡𝑡 sin 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡

𝑏𝑏𝑘𝑘 =
2
2
�
0

0.5
sin 𝑘𝑘𝜋𝜋𝑡𝑡 𝑑𝑑𝑡𝑡 +

2
2
�
1.5

2
sin 𝑘𝑘𝜋𝜋𝑡𝑡 𝑑𝑑𝑡𝑡

𝑏𝑏𝑘𝑘 = −
1
𝑘𝑘𝜋𝜋

cos 𝑘𝑘𝜋𝜋𝑡𝑡 �
0

0.5
+ cos 𝑘𝑘𝜋𝜋𝑡𝑡 �

1.5

2

𝑏𝑏𝑘𝑘 = −
1
𝑘𝑘𝜋𝜋

cos 𝑘𝑘
𝜋𝜋
2

− 1 + 1 − cos 𝑘𝑘
𝜋𝜋
2

+ 𝑘𝑘𝜋𝜋 = 0

𝑏𝑏𝑘𝑘 = 0 , 𝑘𝑘 = 1,2,3 …

 All 𝑏𝑏𝑘𝑘 coefficients are zero
 Only cosine terms in the Fourier series



K. Webb ENGR 203

14

Fourier Series – Example

 The Fourier series for the 
rectangular pulse train:

𝑓𝑓 𝑡𝑡 = 0.5 + �
𝑘𝑘=1

∞
2
𝑘𝑘𝜋𝜋 sin 𝑘𝑘

𝜋𝜋
2 cos 𝑘𝑘𝜋𝜋𝑡𝑡

 Note that this is an equality as long as we include an 
infinite number of harmonics

 Can approximate 𝑓𝑓 𝑡𝑡 by truncating after a finite 
number of terms



K. Webb ENGR 203

15

Fourier Series – Example
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Fourier Series – Example
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Even and Odd Symmetry 

 An even function is one for which

𝑓𝑓 𝑡𝑡 = 𝑓𝑓 −𝑡𝑡

 An odd function is one for which

𝑓𝑓 𝑡𝑡 = −𝑓𝑓 −𝑡𝑡

 Consider two functions, 𝑓𝑓 𝑡𝑡 and 𝑔𝑔 𝑡𝑡
 If both are even (or odd), then

�
−𝛼𝛼

𝛼𝛼
𝑓𝑓 𝑡𝑡 𝑔𝑔 𝑡𝑡 𝑑𝑑𝑡𝑡 = 2�

0

𝛼𝛼
𝑓𝑓 𝑡𝑡 𝑔𝑔 𝑡𝑡 𝑑𝑑𝑡𝑡

 If one is even, and one is odd, then

�
−𝛼𝛼

𝛼𝛼
𝑓𝑓 𝑡𝑡 𝑔𝑔 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0
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Even and Odd Symmetry 

 Since cos 𝑘𝑘𝜔𝜔0𝑡𝑡 is even, and sin 𝑘𝑘𝜔𝜔0𝑡𝑡 is odd
 If 𝑓𝑓 𝑡𝑡 is an even function, then

𝑎𝑎𝑘𝑘 =
4
𝑇𝑇
�
0

𝑇𝑇/2
𝑓𝑓 𝑡𝑡 cos 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡 , 𝑘𝑘 = 1, 2, 3, …

𝑏𝑏𝑘𝑘 = 0, 𝑘𝑘 = 1, 2, 3, …

 If 𝑓𝑓 𝑡𝑡 is an odd function, then
𝑎𝑎𝑘𝑘 = 0, 𝑘𝑘 = 1, 2, 3, …

𝑏𝑏𝑘𝑘 =
4
𝑇𝑇
�
0

𝑇𝑇/2
𝑓𝑓 𝑡𝑡 sin 𝑘𝑘𝜔𝜔0𝑡𝑡 𝑑𝑑𝑡𝑡 , 𝑘𝑘 = 1, 2, 3, …

 Recall the Fourier series for the pulse train, an even 
function, had only cosine terms
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Fourier Series – Cosine w/ Phase Form19
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Cosine-with-Phase Form

 Given the trigonometric identity

𝐴𝐴1 cos 𝜔𝜔𝑡𝑡 + 𝐵𝐵1 sin 𝜔𝜔𝑡𝑡 = 𝐶𝐶1 cos 𝜔𝜔𝑡𝑡 + 𝜃𝜃

where        𝐶𝐶1 = 𝐴𝐴12 + 𝐵𝐵12 and     𝜃𝜃 = tan−1 − 𝐵𝐵1
𝐴𝐴1

 We can express the Fourier series in cosine-with-phase form: 

𝑓𝑓 𝑡𝑡 = 𝑎𝑎0 + �
𝑘𝑘=1

∞

𝐴𝐴𝑘𝑘 cos 𝑘𝑘𝜔𝜔0𝑡𝑡 + 𝜃𝜃𝑘𝑘

where

𝐴𝐴𝑘𝑘 = 𝑎𝑎𝑘𝑘2 + 𝑏𝑏𝑘𝑘2

𝜃𝜃𝑘𝑘 = −atan2 𝑏𝑏𝑘𝑘 , 𝑎𝑎𝑘𝑘

 Note that atan2 is a quadrant-aware inverse tangent function
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Cosine-with-Phase Form – Example 

 Consider, again, the 
rectangular pulse train

 𝑎𝑎𝑘𝑘 = 2
𝑘𝑘𝜋𝜋

sin 𝑘𝑘𝜋𝜋
2

 𝑏𝑏𝑘𝑘 = 0

 So,

𝐴𝐴𝑘𝑘 = 𝑎𝑎𝑘𝑘2 + 𝑏𝑏𝑘𝑘2 = 𝑎𝑎𝑘𝑘 =
2
𝑘𝑘𝜋𝜋

sin
𝑘𝑘𝜋𝜋
2

and 

𝜃𝜃𝑘𝑘 = tan−1 −
0

2
𝑘𝑘𝜋𝜋 sin 𝑘𝑘𝜋𝜋

2
= �0, 𝑘𝑘 = 1, 5, 9, …

𝜋𝜋, 𝑘𝑘 = 3, 7, 11, …
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Line Spectra

 The cosine-with-phase form of the Fourier series is 
conducive to graphical display as amplitude and phase line 
spectra

 Average value and amplitude of odd harmonics are clearly 
visible
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Fourier Series – Complex Exponential Form23
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Complex Exponential Fourier Series

 Recall Euler’s formula

𝑠𝑠𝑗𝑗𝑗𝑗𝑡𝑡 = cos 𝜔𝜔𝑡𝑡 + 𝑗𝑗 sin 𝜔𝜔𝑡𝑡

 This allows us to express the Fourier series in a more compact, 
though equivalent form

𝑓𝑓 𝑡𝑡 = �
𝑘𝑘=−∞

∞

𝑠𝑠𝑘𝑘𝑠𝑠𝑗𝑗𝑘𝑘𝑗𝑗0𝑡𝑡

where the complex coefficients are given by

𝑠𝑠𝑘𝑘 =
1
𝑇𝑇
�
0

𝑇𝑇
𝑓𝑓 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑘𝑘𝑗𝑗0𝑡𝑡𝑑𝑑𝑡𝑡

 Note that the series is now computed for both positive and negative 
harmonics of the fundamental
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Complex Exponential Fourier Series

 We can express the complex series coefficients in 
terms of the trigonometric series coefficients

𝑠𝑠0 = 𝑎𝑎0

𝑠𝑠𝑘𝑘 =
1
2
𝑎𝑎𝑘𝑘 − 𝑗𝑗𝑏𝑏𝑘𝑘 , 𝑘𝑘 = 1, 2, 3, …

𝑠𝑠−𝑘𝑘 =
1
2
𝑎𝑎𝑘𝑘 + 𝑗𝑗𝑏𝑏𝑘𝑘 , 𝑘𝑘 = 1, 2, 3, …

 Coefficients at ±𝑘𝑘 are complex conjugates, so

𝑠𝑠𝑘𝑘 = 𝑠𝑠−𝑘𝑘 and     ∠𝑠𝑠𝑘𝑘 = −∠𝑠𝑠−𝑘𝑘
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Complex Exponential Fourier Series

 Similarly, the coefficients of the trigonometric series in 
terms of the complex coefficients are

𝑎𝑎0 = 𝑠𝑠0
𝑎𝑎𝑘𝑘 = 𝑠𝑠𝑘𝑘 + 𝑠𝑠−𝑘𝑘 = 2ℛℯ 𝑠𝑠𝑘𝑘
𝑏𝑏𝑘𝑘 = 𝑗𝑗 𝑠𝑠𝑘𝑘 − 𝑠𝑠−𝑘𝑘 = −2ℐ𝓂𝓂 𝑠𝑠𝑘𝑘

 Can also relate the complex coefficients to the cosine-with-
phase series coefficients

𝑠𝑠𝑘𝑘 = 𝑠𝑠−𝑘𝑘 =
1
2
𝐴𝐴𝑘𝑘 , 𝑘𝑘 = 1, 2, 3, …

∠𝑠𝑠𝑘𝑘 = �𝜃𝜃𝑘𝑘 , 𝑘𝑘 = +1, +2, +3, …
−𝜃𝜃𝑘𝑘 , 𝑘𝑘 = −1,−2,−3, …
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Even and Odd Symmetry

 For even functions, since 𝑏𝑏𝑘𝑘 = 0, coefficients of the complex series 
are purely real:

𝑠𝑠0 = 𝑎𝑎0

𝑠𝑠𝑘𝑘 = 𝑠𝑠−𝑘𝑘 =
1
2𝑎𝑎𝑘𝑘 , 𝑘𝑘 = 1, 2, 3, …

 For odd functions, since 𝑎𝑎𝑘𝑘 = 0, coefficients of the complex series 
are purely imaginary (except 𝑠𝑠0):

𝑠𝑠0 = 𝑎𝑎0

𝑠𝑠𝑘𝑘 = −𝑗𝑗
1
2
𝑏𝑏𝑘𝑘 , 𝑘𝑘 = 1, 2, 3, …

𝑠𝑠−𝑘𝑘 = +𝑗𝑗
1
2
𝑏𝑏𝑘𝑘 , 𝑘𝑘 = 1, 2, 3, …
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Complex Series – Example 

𝑓𝑓 𝑡𝑡 = �
1 0 < 𝑡𝑡 < 0.5
0 0.5 < 𝑡𝑡 < 1.5
1 1.5 < 𝑡𝑡 < 2.0

 The complex Fourier series for 
the rectangular pulse train:

𝑓𝑓 𝑡𝑡 = �
𝑘𝑘=−∞

∞

𝑠𝑠𝑘𝑘𝑠𝑠𝑗𝑗𝑘𝑘𝑗𝑗0𝑡𝑡

 The complex coefficients are given by

𝑠𝑠𝑘𝑘 =
1
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
𝑓𝑓 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑘𝑘𝑗𝑗0𝑡𝑡𝑑𝑑𝑡𝑡 =

1
2
�
−1

1
𝑓𝑓 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑘𝑘𝜋𝜋𝑡𝑡𝑑𝑑𝑡𝑡

𝑠𝑠𝑘𝑘 =
1
2
�
−0.5

0.5
𝑠𝑠−𝑗𝑗𝑘𝑘𝜋𝜋𝑡𝑡𝑑𝑑𝑡𝑡 = −

1
2𝑗𝑗𝑘𝑘𝜋𝜋

𝑠𝑠−𝑗𝑗𝑘𝑘𝜋𝜋𝑡𝑡 �
−0.5

0.5
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Complex Series – Example 

𝑠𝑠𝑘𝑘 = −
1

2𝑗𝑗𝑘𝑘𝜋𝜋
𝑠𝑠−𝑗𝑗𝑘𝑘𝜋𝜋𝑡𝑡 �

−0.5

0.5

𝑠𝑠𝑘𝑘 = −
1

2𝑗𝑗𝑘𝑘𝜋𝜋
𝑠𝑠−𝑗𝑗𝑘𝑘

𝜋𝜋
2 − 𝑠𝑠𝑗𝑗𝑘𝑘

𝜋𝜋
2

 Rearranging into the form of a 
sinusoid

𝑠𝑠𝑘𝑘 =
1
𝑘𝑘𝜋𝜋

𝑠𝑠𝑗𝑗𝑘𝑘
𝜋𝜋
2 − 𝑠𝑠−𝑗𝑗𝑘𝑘

𝜋𝜋
2

2𝑗𝑗
=

1
𝑘𝑘𝜋𝜋

sin 𝑘𝑘
𝜋𝜋
2

 Given the even symmetry of 𝑓𝑓 𝑡𝑡 , all coefficients are real, and 
also have even symmetry 

𝑠𝑠𝑘𝑘 = 𝑠𝑠−𝑘𝑘 =
1
𝑘𝑘𝜋𝜋 sin 𝑘𝑘

𝜋𝜋
2 =

1
𝜋𝜋 , 0,−

1
𝑘𝜋𝜋 , 0,

1
5𝜋𝜋 , 0, …
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Line Spectra

 The complex series coefficients can also be plotted as amplitude and 
phase line spectra
 Now, plot spectra over positive and negative frequencies

 Note that the magnitude spectrum is an even function of frequency, and 
the phase spectrum is an odd function of frequency
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The Fourier transform extends the frequency-
domain analysis capability provided by the 
Fourier series to aperiodic signals.

Fourier Transform31
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Fourier Transform

 The Fourier Series is a tool that provides insight into the frequency 
content of periodic signals

𝑓𝑓 𝑡𝑡 = �
𝑘𝑘=−∞

∞

𝑠𝑠𝑘𝑘𝑠𝑠𝑗𝑗𝑘𝑘𝑗𝑗0𝑡𝑡

where the complex coefficients are given by 

𝑠𝑠𝑘𝑘 = �
−𝑇𝑇/2

𝑇𝑇/2
𝑓𝑓 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑘𝑘𝑗𝑗0𝑡𝑡𝑑𝑑𝑡𝑡

 These 𝑠𝑠𝑘𝑘 values provide a measure of the energy present in a signal 
at discrete values of frequency
 𝑘𝑘𝜔𝜔0, integer multiples (harmonics) of the fundamental 

 Frequency-domain representation is discrete, because the time-
domain signal is periodic
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Fourier Transform

 Many signals of interest are aperiodic
 They never repeat
 Equivalent to an infinite period, 𝑇𝑇 → ∞

 As 𝑇𝑇 → ∞, the mapping from the time domain to the 
frequency domain is given by the Fourier transform

𝐹𝐹 𝜔𝜔 = �
−∞

∞
𝑓𝑓 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡

where 𝐹𝐹 𝜔𝜔 is a complex, continuous function of 
frequency

 The continuous frequency-domain representation 
corresponds to the aperiodic time-domain signal
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Inverse Fourier Transform

 We can also map frequency-domain functions back 
to the time domain using the inverse Fourier 
transform

𝑓𝑓 𝑡𝑡 =
1
2𝜋𝜋

�
−∞

∞
𝐹𝐹 𝜔𝜔 𝑠𝑠𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝜔𝜔

 The forward (−𝑗𝑗 or −𝑖𝑖 transform) and the inverse 
(+𝑗𝑗 or +𝑖𝑖 transform) provide the mapping between 
Fourier transform pairs

𝑓𝑓 𝑡𝑡 ↔ 𝐹𝐹 𝜔𝜔
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Fourier Transform – Rectangular Pulse 

 Consider a pulse of duration, 𝜏𝜏
𝑓𝑓 𝑡𝑡 = 𝑝𝑝𝜏𝜏 𝑡𝑡

 Calculate the Fourier transform

𝐹𝐹 𝜔𝜔 = �
−∞

∞
𝑓𝑓 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡 = �

−𝜏𝜏/2

𝜏𝜏/2
𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡

𝐹𝐹 𝜔𝜔 = −
1
𝑗𝑗𝜔𝜔

𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡 �
−𝜏𝜏2

𝜏𝜏
2 = −

1
𝑗𝑗𝜔𝜔

𝑠𝑠−𝑗𝑗𝑗𝑗
𝜏𝜏
2 − 𝑠𝑠𝑗𝑗𝑗𝑗

𝜏𝜏
2

𝐹𝐹 𝜔𝜔 =
2
𝜔𝜔

𝑠𝑠𝑗𝑗𝑗𝑗
𝜏𝜏
2 − 𝑠𝑠−𝑗𝑗𝑗𝑗

𝜏𝜏
2

2𝑗𝑗
=

2
𝜔𝜔

sin
𝜏𝜏𝜔𝜔
2
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Fourier Transform – Rectangular Pulse 

 Here, we can introduce the 
sinc function

𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥 =
sin 𝜋𝜋𝑥𝑥
𝜋𝜋𝑥𝑥

 Letting 𝑥𝑥 = 𝜏𝜏𝑗𝑗
2𝜋𝜋

, we have

𝐹𝐹 𝜔𝜔 =
2
𝜔𝜔 sin

𝜏𝜏𝜔𝜔
2

𝐹𝐹 𝜔𝜔 = 𝜏𝜏
sin 𝜋𝜋 𝜏𝜏𝜔𝜔2𝜋𝜋
𝜋𝜋 𝜏𝜏𝜔𝜔2𝜋𝜋

𝐹𝐹 𝜔𝜔 = 𝜏𝜏 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
𝜏𝜏𝜔𝜔
2𝜋𝜋
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Fourier Transform – Triangular Pulse 

 Next, consider a triangular pulse of duration, 𝜏𝜏

𝑓𝑓 𝑡𝑡 = Λ𝜏𝜏 𝑡𝑡

Λ𝜏𝜏 𝑡𝑡 =

+
2
𝜏𝜏
𝑡𝑡 + 1, −

𝜏𝜏
2
≤ 𝑡𝑡 ≤ 0

−
2
𝜏𝜏 𝑡𝑡 + 1, 0 ≤ 𝑡𝑡 ≤

𝜏𝜏
2

0, otherwise

 The Fourier transform is

𝐹𝐹 𝜔𝜔 = �
−∞

∞
Λ𝜏𝜏𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡 = �

−𝜏𝜏/2

0 2
𝜏𝜏 𝑡𝑡 + 1 𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡 + �

0

𝜏𝜏/2
−

2
𝜏𝜏 𝑡𝑡 + 1 𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡

 Integrating by parts, or symbolically in MATLAB, gives

𝐹𝐹 𝜔𝜔 =
8
𝜏𝜏𝜔𝜔2 sin2

𝜏𝜏𝜔𝜔
4
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Fourier Transform – Triangular Pulse 

 This, too, can be recast 
into the form of a sinc
function

 Letting 𝑥𝑥 = 𝜏𝜏𝑗𝑗
4𝜋𝜋

, we have

𝐹𝐹 𝜔𝜔 =
8
𝜏𝜏𝜔𝜔2 sin2

𝜏𝜏𝜔𝜔
4𝜋𝜋

𝐹𝐹 𝜔𝜔 =
𝜏𝜏
2

sin2 𝜋𝜋 𝜏𝜏𝜔𝜔4𝜋𝜋

𝜋𝜋 𝜏𝜏𝜔𝜔4𝜋𝜋
2

𝐹𝐹 𝜔𝜔 =
𝜏𝜏
2
𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2

𝜏𝜏𝜔𝜔
4𝜋𝜋
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Rectangular vs. Triangular Pulse 

 Average value in time domain 
translates to 𝐹𝐹 0 value in 
frequency domain

 More abrupt transitions in time 
domain correspond to more 
high-frequency content 

 Multiplication in one domain 
corresponds to convolution in 
the other

 Convolution of two rectangular 
pulses is a triangular pulse

 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 becomes 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2in the 
frequency domain
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Fourier Transform – Impulse Function
 The impulse function is defined as

𝛿𝛿 𝑡𝑡 = 0, 𝑡𝑡 ≠ 0

�
−∞

∞
𝛿𝛿 𝑡𝑡 𝑑𝑑𝑡𝑡 = 1

 Its Fourier transform is

𝐹𝐹 𝜔𝜔 = �
−∞

∞
𝛿𝛿 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡

 Since 𝛿𝛿 𝑡𝑡 = 0 for 𝑡𝑡 ≠ 0, and since 𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡 = 1 for 𝑡𝑡 = 0

𝐹𝐹 𝜔𝜔 = �
−∞

∞
𝛿𝛿 𝑡𝑡 𝑑𝑑𝑡𝑡 = 1

 The Fourier transform of the time-domain impulse function is one for all 
frequencies
 Equal energy at all frequencies
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Fourier Transform – Decaying Exponential

 Consider a decaying exponential

𝑓𝑓 𝑡𝑡 = 𝑠𝑠−𝜎𝜎𝑡𝑡 ⋅ 1 𝑡𝑡

where 1 𝑡𝑡 is the unit step function

 The Fourier transform is:

𝐹𝐹 𝜔𝜔 = �
−∞

∞
𝑓𝑓 𝑡𝑡 𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡

𝐹𝐹 𝜔𝜔 = �
0

∞
𝑠𝑠−𝜎𝜎𝑡𝑡𝑠𝑠−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡

𝐹𝐹 𝜔𝜔 = �
0

∞
𝑠𝑠− 𝜎𝜎+𝑗𝑗𝑗𝑗 𝑡𝑡𝑑𝑑𝑡𝑡 = −

1
𝜎𝜎 + 𝑗𝑗𝜔𝜔

𝑠𝑠− 𝜎𝜎+𝑗𝑗𝑗𝑗 𝑡𝑡 �
0

∞
= −

1
𝜎𝜎 + 𝑗𝑗𝜔𝜔

0 − 1

𝐹𝐹 𝜔𝜔 =
1

𝜎𝜎 + 𝑗𝑗𝜔𝜔
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Fourier Transform – Decaying Exponential

 Fourier transform of 
this exponential signal 
is complex

 Plot magnitude and 
phase separately

 Note the even 
symmetry of 
magnitude, and odd 
symmetry of the phase 
of 𝐹𝐹 𝜔𝜔
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Fourier Transform – Decaying Exponential

 On logarithmic scales, this 
Fourier transform should look 
familiar

 𝑓𝑓 𝑡𝑡 could be the impulse 
response of a first-order system
 Convolution of an impulse 

with the system’s impulse 
response

 𝐹𝐹 𝜔𝜔 looks like the frequency 
response of a first-order system
 Multiplication of the F.T. of an 

impulse (𝐹𝐹 𝜔𝜔 = 1) with the 
system’s frequency response
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Even and Odd Symmetry

 We are mostly concerned with real time-domain 
signals
 Not true for all engineering disciplines, e.g. 

communications, signal processing, etc.
 For a real time-domain signal, 𝒇𝒇 𝒕𝒕 , 

 If 𝑓𝑓 𝑡𝑡 is even 𝐹𝐹 𝜔𝜔 will be real and even
 If 𝑓𝑓 𝑡𝑡 is odd, 𝐹𝐹 𝜔𝜔 will be imaginary and odd
 If 𝑓𝑓 𝑡𝑡 has neither even nor odd symmetry,  𝐹𝐹 𝜔𝜔 will 

be complex with an even real part and an odd 
imaginary part.
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For discrete-time signals, mapping from the 
time domain to the frequency domain is 
accomplished with the discrete Fourier 
transform (DFT).

Discrete Fourier Transform45
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Discrete-Time Fourier Transform (DTFT)

 The Fourier transform maps a continuous-time signal, defined for 
−∞ < 𝑡𝑡 < ∞, to a continuous frequency-domain function defined 
for −∞ < 𝜔𝜔 < ∞

 In practice we have to deal with discrete-time, i.e. sampled, signals
 Only defined at discrete sampling instants

𝑓𝑓 𝑡𝑡 → 𝑓𝑓[𝑠𝑠]

 Now, mapping to the frequency domain is the discrete-time Fourier 
transform (DTFT)

𝐹𝐹 𝜔𝜔 = �
𝑛𝑛=−∞

∞

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑗𝑗𝑛𝑛

 DTFT maps a discrete, aperiodic, time-domain signal to a 
continuous, periodic function of frequency 
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Aliasing

 Aliasing is a phenomena that results in a signal appearing as 
a lower-frequency signal as a result of sampling

 In order to avoid aliasing, the sample rate must be at least 
the Nyquist rate

𝑓𝑓𝑠𝑠 ≥ 2𝑓𝑓𝑚𝑚𝑟𝑟𝑚𝑚

where 𝑓𝑓𝑚𝑚𝑟𝑟𝑚𝑚 is the highest frequency component present in 
the signal

 For a given sample rate, the Nyquist frequency is the 
highest frequency signal that will not result in aliasing

𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑡𝑡 =
𝑓𝑓𝑠𝑠
2
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Aliasing – Examples 
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Discrete-Time Fourier Transform (DTFT)

𝐹𝐹 𝜔𝜔 = �
𝑛𝑛=−∞

∞

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑗𝑗𝑛𝑛

 Discrete-time 𝑓𝑓 𝑠𝑠 generated from 𝑓𝑓 𝑡𝑡 by sampling at a sample rate of 𝑓𝑓𝑠𝑠, with a  
sample period of 𝑇𝑇𝑠𝑠

 Sampled signals can only accurately represent frequencies up to the Nyquist 
frequency

𝑓𝑓𝑚𝑚𝑟𝑟𝑚𝑚 = 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑡𝑡 =
𝑓𝑓𝑠𝑠
2

 Higher frequency components of 𝑓𝑓 𝑡𝑡 are aliased down to lower frequencies in the 
range of 

−
𝑓𝑓𝑠𝑠
2 ≤ 𝑓𝑓 ≤

𝑓𝑓𝑠𝑠
2

 The DTFT is a periodic function of frequency, with a period 𝑓𝑓𝑠𝑠
 Due to aliasing, sampling in the time domain corresponds to periodicity in the 

frequency domain
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The Discrete Fourier Transform (DFT)

 The DTFT

𝐹𝐹 𝜔𝜔 = �
𝑛𝑛=−∞

∞

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑗𝑗𝑛𝑛

utilizes discrete-time, sampled, data, but still requires and infinite 
amount of data

 In practice, our time-domain data sets are both discrete and finite
 The discrete Fourier transform, DFT, maps discrete and finite

(periodic) time-domain signals to periodic and discrete frequency-
domain signals

𝐹𝐹𝑘𝑘 = �
𝑛𝑛=0

𝑁𝑁−1

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑘𝑘2𝜋𝜋
𝑛𝑛
𝑁𝑁
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The Discrete Fourier Transform (DFT)

 Consider 𝑁𝑁 samples of a time-domain signal, 𝑓𝑓 𝑠𝑠
 Sampled with sampling period 𝑇𝑇𝑠𝑠 and sampling frequency 𝑓𝑓𝑠𝑠
 Total time span of the sampled data is 𝑁𝑁 ⋅ 𝑇𝑇𝑠𝑠

 The DFT of 𝑓𝑓 𝑠𝑠 is

𝐹𝐹𝑘𝑘 = �
𝑛𝑛=0

𝑁𝑁−1

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑘𝑘2𝜋𝜋𝑛𝑛/𝑁𝑁

 A discrete function of the integer value, 𝑘𝑘
 The DFT consists of 𝑁𝑁 complex values: 𝐹𝐹0,𝐹𝐹1, … ,𝐹𝐹𝑁𝑁−1
 Each value of 𝑘𝑘 represents a discrete value of frequency from 
𝑓𝑓 = 0 to  𝑓𝑓 = 𝑓𝑓𝑠𝑠
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The Inverse Discrete Fourier Transform

 A discrete, finite set of frequency-domain data can be 
transformed back to the time domain

 The inverse discrete Fourier Transform (IDFT)

𝑥𝑥 𝑠𝑠 =
1
𝑁𝑁
�
𝑘𝑘=0

𝑁𝑁−1

𝑋𝑋𝑘𝑘𝑠𝑠𝑗𝑗𝑘𝑘2𝜋𝜋𝑛𝑛/𝑁𝑁

 Note the 1/𝑁𝑁 scaling factor
 In practice, this is often applied when computing the DFT
 Must exist in either the DFT or IDFT, not both
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DFT Frequencies

𝐹𝐹𝑘𝑘 = �
𝑛𝑛=0

𝑁𝑁−1

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑘𝑘2𝜋𝜋𝑛𝑛/𝑁𝑁

 A dot product of 𝑓𝑓 𝑠𝑠 with a complex exponential

𝐹𝐹𝑘𝑘 = 𝑓𝑓 𝑠𝑠 ⋅ 𝑠𝑠−𝑗𝑗𝑘𝑘Ω𝑛𝑛

 The frequency of the exponential is 𝑘𝑘Ω, integer multiples of the 
normalized frequency, Ω

Ω = 2𝜋𝜋/𝑁𝑁

which has units of 𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠
 Normalized frequency is related to the ordinary frequency by the 

sample rate, 𝑓𝑓𝑠𝑠

Ω =
2𝜋𝜋𝑓𝑓
𝑓𝑓𝑠𝑠

𝑟𝑟𝑎𝑎𝑑𝑑
𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠
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DFT Frequencies

𝐹𝐹𝑘𝑘 = �
𝑛𝑛=0

𝑁𝑁−1

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑘𝑘2𝜋𝜋𝑛𝑛/𝑁𝑁

 # of samples: 𝑁𝑁,  sample rate: 𝑓𝑓𝑠𝑠,  sample period: 𝑇𝑇𝑠𝑠
 Maximum detectable frequency

𝑓𝑓𝑚𝑚𝑟𝑟𝑚𝑚 = 𝑓𝑓𝑠𝑠/2
 Nyquist frequency
 Corresponds to 𝑘𝑘 = 𝑁𝑁/2, Ω = 𝜋𝜋

 Frequency increment (bin width, resolution)

Δ𝑓𝑓 =
1

𝑁𝑁 ⋅ 𝑇𝑇𝑠𝑠
=
𝑓𝑓𝑠𝑠
𝑁𝑁

 Last ⁄𝑁𝑁 2 − 1 points of 𝐹𝐹𝑘𝑘, 𝐹𝐹 ⁄𝑁𝑁 2+1 …𝐹𝐹𝑁𝑁−1 correspond to negative frequency

−
𝑓𝑓𝑠𝑠
2 + Δ𝑓𝑓…− Δ𝑓𝑓
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DFT Frequencies

 For example, consider 𝑁𝑁 = 10 samples of a signal sampled 
at 𝑓𝑓𝑠𝑠 = 100𝐻𝐻𝐻𝐻, 𝑇𝑇𝑠𝑠 = 10𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 Δ𝑓𝑓 = 1
𝑁𝑁𝑇𝑇𝑠𝑠

= 𝑓𝑓𝑠𝑠
𝑁𝑁

= 1
10⋅0.01𝑠𝑠𝑠𝑠𝑠𝑠

= 10𝐻𝐻𝐻𝐻

 𝑓𝑓𝑚𝑚𝑟𝑟𝑚𝑚 = 𝑓𝑓𝑠𝑠
2

= 50𝐻𝐻𝐻𝐻

 ΔΩ = 2𝜋𝜋
𝑁𝑁

⁄𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑟𝑟 = 0.2𝜋𝜋 ⁄𝑟𝑟𝑟𝑟𝑟𝑟

𝑆𝑆𝑟𝑟

𝒌𝒌 𝟎𝟎 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟒𝟒 𝟓𝟓 𝟔𝟔 𝟕𝟕 𝟖𝟖 𝟗𝟗 Units

Ω 𝟎𝟎 𝟎𝟎.𝟐𝟐𝟐𝟐 𝟎𝟎.𝟒𝟒𝟐𝟐 𝟎𝟎.𝟔𝟔𝟐𝟐 𝟎𝟎.𝟖𝟖𝟐𝟐 𝟐𝟐 𝟏𝟏.𝟐𝟐𝟐𝟐 𝟏𝟏.𝟒𝟒𝟐𝟐 𝟏𝟏.𝟔𝟔𝟐𝟐 𝟏𝟏.𝟖𝟖𝟐𝟐 𝑟𝑟𝑎𝑎𝑑𝑑/𝑆𝑆𝑎𝑎

𝑓𝑓/𝑓𝑓𝑠𝑠 𝟎𝟎 𝟎𝟎.𝟏𝟏 𝟎𝟎.𝟐𝟐 𝟎𝟎.𝟑𝟑 𝟎𝟎.𝟒𝟒 𝟎𝟎.𝟓𝟓 𝟎𝟎.𝟔𝟔 𝟎𝟎.𝟕𝟕 𝟎𝟎.𝟖𝟖 𝟎𝟎.𝟗𝟗 −

𝑓𝑓 𝟎𝟎 𝟏𝟏𝟎𝟎 𝟐𝟐𝟎𝟎 𝟑𝟑𝟎𝟎 𝟒𝟒𝟎𝟎 𝟓𝟓𝟎𝟎 −𝟒𝟒𝟎𝟎 −𝟑𝟑𝟎𝟎 −𝟐𝟐𝟎𝟎 −𝟏𝟏𝟎𝟎 𝐻𝐻𝐻𝐻
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DFT - Example

 Consider the following signal
𝑓𝑓 𝑡𝑡 = 0.3 + 0.5 cos 2𝜋𝜋 ⋅ 50 ⋅ 𝑡𝑡 + cos 2𝜋𝜋 ⋅ 120 ⋅ 𝑡𝑡 + 0.8 cos 2𝜋𝜋 ⋅ 320 ⋅ 𝑡𝑡

 Sample rate: 𝑓𝑓𝑠𝑠 = 1𝑘𝑘𝐻𝐻𝐻𝐻
 Record length: 𝑁𝑁 = 100
 Bin width: Δ𝑓𝑓 = 10𝐻𝐻𝐻𝐻
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DFT - Example

 Plotting magnitude of (real) 𝐹𝐹𝑘𝑘
 Components at 0, 50, 120, and 
𝑘10𝐻𝐻𝐻𝐻 are clearly visible

 Plot spectrum as a function of
 Index value, 𝑘𝑘
 Normalized frequency
 Ordinary frequency

 𝐹𝐹𝑘𝑘 values divided by 𝑁𝑁 so that 
𝐹𝐹0 is the average value of 𝑓𝑓 𝑡𝑡
 Amplitude of other components 

given by the sum of 𝐹𝐹𝑘𝑘 and 𝐹𝐹−𝑘𝑘
magnitudes

𝑓𝑓 𝑡𝑡 = 0.3 + 0.5 cos 2𝜋𝜋 ⋅ 50 ⋅ 𝑡𝑡 + cos 2𝜋𝜋 ⋅ 120 ⋅ 𝑡𝑡 + 0.8 cos 2𝜋𝜋 ⋅ 320 ⋅ 𝑡𝑡
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Spectral Leakage

𝑓𝑓 𝑡𝑡 = 0.3 + 0.5 cos 2𝜋𝜋 ⋅ 50 ⋅ 𝑡𝑡 + cos 2𝜋𝜋 ⋅ 120 ⋅ 𝑡𝑡 + 0.8 cos 2𝜋𝜋 ⋅ 320 ⋅ 𝑡𝑡

 For 𝑓𝑓𝑠𝑠 = 1𝑘𝑘𝐻𝐻𝐻𝐻 and 𝑁𝑁 = 100, Δ𝑓𝑓 = 10𝐻𝐻𝐻𝐻, and  all signal components fall at 
integer multiples of Δ𝑓𝑓
 All components lie in exactly one frequency bin

 Now, increase the number of samples to 𝑁𝑁 = 105
 Bin width decreases to Δ𝑓𝑓 = 9.52𝐻𝐻𝐻𝐻
 Each non-zero signal component now falls between frequency bins – Spectral 

Leakage
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Spectral Leakage

 Signal components now fall 
between two bins

 Why non-zero 𝐹𝐹𝑘𝑘 over more than 
two bins?
 Truncation (windowing)

 Finite record length is equivalent to 
multiplication of 𝑓𝑓 𝑡𝑡 by a 
rectangular pulse (window)
 F.T. of pulse is a sinc
 Multiplication in the time domain →

convolution in frequency domain

 Truncated signal is assumed 
periodic
 True only if windowing function 

captures an integer number of 
periods of all signal components
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Summary of Fourier Analysis Tools

Time Domain Frequency Domain

Fourier series continuous
periodic (or truncated)

aperiodic
discrete

Fourier 
transform

continuous
aperiodic 

aperiodic
continuous

DTFT discrete
aperiodic

periodic
continuous

DFT discrete
periodic (or truncated)

periodic
discrete

 In general:
Frequency Domain
Discrete
Continuous
Aperiodic
Periodic

Time Domain
Periodic 

Aperiodic
Continuous

Discrete
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Implementing the DFT in MATLAB

𝐹𝐹𝑘𝑘 = �
𝑛𝑛=0

𝑁𝑁−1

𝑓𝑓 𝑠𝑠 𝑠𝑠−𝑗𝑗𝑘𝑘2𝜋𝜋𝑛𝑛/𝑁𝑁

 A dot product of complex 
𝑁𝑁-vectors for each of the 
𝑁𝑁 values of 𝑘𝑘

𝐹𝐹𝑘𝑘 = 𝑓𝑓 𝑠𝑠 ⋅ 𝑠𝑠−𝑗𝑗𝑘𝑘2𝜋𝜋𝑛𝑛/𝑁𝑁

 Simple to code
 𝑁𝑁 multiplications for each 
𝑘𝑘 value – 𝑁𝑁2 operations

 Inefficient, particularly 
for large 𝑁𝑁
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Fast Fourier Transform – FFT 

 The fast Fourier transform (FFT) is a very efficient 
algorithm for computing the DFT
 The Cooley-Tukey algorithm

 Requires on the order of 𝑁𝑁 log2 𝑁𝑁 operations 
 Significantly fewer than 𝑁𝑁2

 For example, for 𝑁𝑁 = 1024: 
 DFT: 𝑁𝑁2 = 1,048,576 operations
 FFT: 𝑁𝑁 log2 𝑁𝑁 = 10240 operations – (102 × faster)

 Requires 𝑁𝑁 be a power of two
 If not, data record is padded with zeros
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It is very simple to implement a straight DFT 
algorithm in MATLAB, but the FFT algorithm is, 
by far, more efficient .

FFT in MATLAB64



K. Webb ENGR 203

65

Fast Fourier Transform in MATLAB – fft.m

Xk = fft(x,n)

 x: vector of points for DFT computation
 n: optional length of the DFT to compute
 Xk: complex vector of DFT values – size(x) or an n-vector

 If n is not specified, x will either be truncated or zero-
padded so that its length is n

 If x is a matrix, the fft for each column of x is returned

 fft.m uses the Cooley-Tukey algorithm
 Fastest for length(x) or n that are powers of two
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Inverse FFT in MATLAB – ifft.m

x = ifft(Xk,n)

 Xk: vector of points for inverse DFT computation
 n: optional length of the inverse DFT to compute
 x: complex vector of time-domain values – size(x) or an n-

vector

 If n is not specified, x will either be truncated or zero-
padded so that its length is n

 If Xk is a matrix, the inverse fft for each column of Xk is 
returned

 ifft.m uses the Cooley-Tukey algorithm
 Fastest for length(Xk) or n that are powers of two
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Shifting Negative Frequency Values – fftshift.m

Xshift = fft(Xk)

 Xk: vector of FFT values with zero frequency point at Xk(1)
 Xshift: FFT vector with the zero-frequency point moved to the middle of 

the vector

 If N = length(Xk) is even, first and second halves of Xk are 
swapped
 Xshift = [Xk(N/2+1:N),Xk(1:N/2)]

 Frequency points are: 𝑓𝑓 = −𝑓𝑓𝑠𝑠
2

… 𝑓𝑓𝑠𝑠
2
− Δ𝑓𝑓

 If N = length(Xk) is odd, zero frequency point moved to the 
Xshift((N+1)/2) position
 Xshift = [Xk((N+3)/2):N),Xk(1:(N-1)/2)]

 Frequency points are: 𝑓𝑓 = −𝑓𝑓𝑠𝑠
𝑁𝑁−1
2𝑁𝑁

… 𝑓𝑓𝑠𝑠
𝑁𝑁−1
2𝑁𝑁
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