SECTION 8: FOURIER ANALYSIS

ENGR 203 - Electrical Fundamentals III

Periodic Functions

\square A function is periodic if

$$
f(t)=f(t+T)
$$

where T is the period of the function
\square The function repeats itself every T seconds
\square Here, we're assuming a function of time, but could also be a spatial function, e.g.

- Elevation
\square Pixel intensity along rows or columns of an image

Frequency

\square The frequency of a periodic function is the inverse of its period

$$
f=\frac{1}{T}
$$

\square We'll refer to a function's frequency as its fundamental frequency, f_{0}
\square This is ordinary frequency, and has units of Hertz (Hz) (or cycles/sec)
\square Can also describe a function in terms of its angular frequency, which has units of rad/sec

$$
\omega_{0}=2 \pi \cdot f_{0}=\frac{2 \pi}{T}
$$

Fourier Series

\square Fourier discovered that if a periodic function satisfies the Dirichlet conditions:

1) It is absolutely integrable over any period:

$$
\int_{t_{0}}^{t_{0}+T} f(t) d t<\infty
$$

2) It has a finite number of maxima and minima over any period
3) It has a finite number of discontinuities over any period

Joseph Fourier 1768-1830
\square In other words, any periodic signal of engineering interest
\square Then it can be represented as an infinite sum of harmonically-related sinusoids, the Fourier series

Fourier Series

\square The Fourier series

$$
f(t)=a_{0}+\sum_{k=1}^{\infty}\left[a_{k} \cos \left(k \omega_{0} t\right)+b_{k} \sin \left(k \omega_{0} t\right)\right]
$$

where ω_{0} is the fundamental frequency, $\omega_{0}=\frac{1}{T}$
and, the Fourier coefficients are given by

$$
a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t
$$

the average value of the function over a full period, and

$$
a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

and

$$
b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

Sinusoids as Basis Functions

\square Harmonically-related sinusoids form a set of orthogonal basis functions for any periodic functions satisfying the Dirichlet conditions
\square Not unlike the unit vectors in \mathbf{R}^{2} space:

$$
\hat{\mathbf{\imath}}=(1,0), \quad \hat{\mathbf{\jmath}}=(0,1)
$$

\square Any vector can be expressed as a linear combination of these basis vectors

$$
\mathbf{x}=a_{1} \hat{\mathbf{\imath}}+a_{2} \hat{\mathbf{\jmath}}
$$

where each coefficient is given by an inner product

$$
\begin{aligned}
& a_{1}=\mathbf{x} \cdot \hat{\mathbf{1}} \\
& a_{2}=\mathbf{x} \cdot \hat{\mathbf{j}}
\end{aligned}
$$

\square These are the projections of \mathbf{x} onto the basis vectors

Sinusoids as Basis Functions

\square Similarly, any periodic function can be represented as a sum of projections onto the sinusoidal basis functions
\square Similar to vector dot products, these projections are also given by inner products:

$$
a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

and

$$
b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

\square These are projections of $f(t)$ onto the sinusoidal basis functions

Fourier Series - Example

\square Consider a rectangular pulse train
$\square T=2 \mathrm{sec}$

- $f_{0}=\frac{1}{T}=0.5 \mathrm{~Hz}$
- $\omega_{0}=\pi \mathrm{rad} / \mathrm{sec}$

\square Can determine the Fourier series by integrating over any full period, for example, $t=[0,2]$

$$
f(t)=\left\{\begin{array}{rr}
1 & 0<t<0.5 \\
0 & 0.5<t<1.5 \\
1 & 1.5<t<2.0
\end{array}\right.
$$

Fourier Series - Example $-a_{0}$

$$
f(t)=\left\{\begin{array}{rr}
1 & 0<t<0.5 \\
0 & 0.5<t<1.5 \\
1 & 1.5<t<2.0
\end{array}\right.
$$

First, calculate the average value

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t=\frac{1}{2} \int_{0}^{2} f(t) d t \\
& a_{0}=\frac{1}{2} \int_{0}^{0.5} 1 d t+\frac{1}{2} \int_{0.5}^{1.5} 0 d t+\frac{1}{2} \int_{1.5}^{2} 1 d t \\
& a_{0}=\left.\frac{1}{2} t\right|_{0} ^{0.5}+\left.\frac{1}{2} t\right|_{1.5} ^{2}=0.25+0.25 \\
& a_{0}=0.5, \text { as would be expected }
\end{aligned}
$$

Fourier Series - Example $-a_{k}$

\square Next determine the cosine coefficients, a_{k}

$$
\begin{aligned}
& a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(k \omega_{0} t\right) d t \\
& a_{k}=\frac{2}{2} \int_{0}^{0.5} \cos (k \pi t) d t+\frac{2}{2} \int_{1.5}^{2} \cos (k \pi t) d t \\
& a_{k}=\left.\frac{1}{k \pi} \sin (k \pi t)\right|_{0} ^{0.5}+\left.\frac{1}{k \pi} \sin (k \pi t)\right|_{1.5} ^{2} \\
& a_{k}=\frac{1}{k \pi}\left[\sin \left(k \frac{\pi}{2}\right)-0+0-\sin \left(k 3 \frac{\pi}{2}\right)\right] \\
& a_{k}=\frac{1}{k \pi}\left[\sin \left(k \frac{\pi}{2}\right)-\sin \left(k 3 \frac{\pi}{2}\right)\right]
\end{aligned}
$$

Fourier Series - Example $-a_{k}$

\square We know that

$$
\sin \left(k 3 \frac{\pi}{2}\right)=\sin \left(k \frac{\pi}{2}+k \pi\right)=-\sin \left(k \frac{\pi}{2}\right)
$$

so

$$
a_{k}=\frac{2}{k \pi} \sin \left(k \frac{\pi}{2}\right), \quad k=1,2,3 \ldots
$$

\square The first few values of a_{k} :

$$
a_{1}=\frac{2}{\pi}, a_{2}=0, a_{3}=-\frac{2}{3 \pi}, a_{4}=0, a_{5}=\frac{2}{5 \pi}
$$

\square Zero for all even values of k

- Only odd harmonics present in the Fourier Series

Fourier Series - Example - b_{k}

\square Next, determine the sine coefficients, b_{k}

$$
\begin{aligned}
& b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(k \omega_{0} t\right) d t \\
& b_{k}=\frac{2}{2} \int_{0}^{0.5} \sin (k \pi t) d t+\frac{2}{2} \int_{1.5}^{2} \sin (k \pi t) d t \\
& b_{k}=-\frac{1}{k \pi}\left[\left.\cos (k \pi t)\right|_{0} ^{0.5}+\left.\cos (k \pi t)\right|_{1.5} ^{2}\right] \\
& b_{k}=-\frac{1}{k \pi}\left[\cos \left(k \frac{\pi}{2}\right)-1+1-\cos \left(k \frac{\pi}{2}+k \pi\right)\right]=0 \\
& b_{k}=0, \quad k=1,2,3 \ldots
\end{aligned}
$$

\square All b_{k} coefficients are zero

- Only cosine terms in the Fourier series

Fourier Series - Example

\square The Fourier series for the rectangular pulse train:

$$
f(t)=0.5+\sum_{k=1}^{\infty} \frac{2}{k \pi} \sin \left(k \frac{\pi}{2}\right) \cos (k \pi t)
$$

\square Note that this is an equality as long as we include an infinite number of harmonics
\square Can approximate $f(t)$ by truncating after a finite number of terms

Fourier Series - Example

Fourier Series - Example

Even and Odd Symmetry

\square An even function is one for which

$$
f(t)=f(-t)
$$

\square An odd function is one for which

$$
f(t)=-f(-t)
$$

\square Consider two functions, $f(t)$ and $g(t)$

- If both are even (or odd), then

$$
\int_{-\alpha}^{\alpha} f(t) g(t) d t=2 \int_{0}^{\alpha} f(t) g(t) d t
$$

- If one is even, and one is odd, then

$$
\int_{-\alpha}^{\alpha} f(t) g(t) d t=0
$$

Even and Odd Symmetry

\square Since $\cos \left(k \omega_{0} t\right)$ is even, and $\sin \left(k \omega_{0} t\right)$ is odd - If $f(t)$ is an even function, then

$$
\begin{array}{ll}
a_{k}=\frac{4}{T} \int_{0}^{T / 2} f(t) \cos \left(k \omega_{0} t\right) d t, & k=1,2,3, \ldots \\
b_{k}=0, & k=1,2,3, \ldots
\end{array}
$$

- If $f(t)$ is an odd function, then

$$
\begin{array}{ll}
a_{k}=0, & k=1,2,3, \ldots \\
b_{k}=\frac{4}{T} \int_{0}^{T / 2} f(t) \sin \left(k \omega_{0} t\right) d t, & k=1,2,3, \ldots
\end{array}
$$

\square Recall the Fourier series for the pulse train, an even function, had only cosine terms

19
 Fourier Series - Cosine w/ Phase Form

Cosine-with-Phase Form

\square Given the trigonometric identity

$$
A_{1} \cos (\omega t)+B_{1} \sin (\omega t)=C_{1} \cos (\omega t+\theta)
$$

where

$$
C_{1}=\sqrt{A_{1}^{2}+B_{1}^{2}} \quad \text { and } \quad \theta=\tan ^{-1}\left(-\frac{B_{1}}{A_{1}}\right)
$$

\square We can express the Fourier series in cosine-with-phase form:

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\theta_{k}\right)
$$

where

$$
\begin{aligned}
& A_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}} \\
& \theta_{k}=-\operatorname{atan} 2\left(b_{k}, a_{k}\right)
\end{aligned}
$$

\square Note that atan2 is a quadrant-aware inverse tangent function

Cosine-with-Phase Form - Example

\square Consider, again, the rectangular pulse train

- $a_{k}=\frac{2}{k \pi} \sin \left(\frac{k \pi}{2}\right)$
- $b_{k}=0$
\square So,

$$
A_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}}=\left|a_{k}\right|=\frac{2}{k \pi}\left|\sin \left(\frac{k \pi}{2}\right)\right|
$$

and

$$
\theta_{k}=\tan ^{-1}\left(-\frac{0}{\frac{2}{k \pi} \sin \left(\frac{k \pi}{2}\right)}\right)= \begin{cases}0, & k=1,5,9, \ldots \\ \pi, & k=3,7,11, \ldots\end{cases}
$$

Line Spectra

\square The cosine-with-phase form of the Fourier series is conducive to graphical display as amplitude and phase line spectra

Phase Spectrum

\square Average value and amplitude of odd harmonics are clearly visible

Fourier Series - Complex Exponential Form

Complex Exponential Fourier Series

\square Recall Euler's formula

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

\square This allows us to express the Fourier series in a more compact, though equivalent form

$$
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

where the complex coefficients are given by

$$
c_{k}=\frac{1}{T} \int_{0}^{T} f(t) e^{-j k \omega_{0} t} d t
$$

\square Note that the series is now computed for both positive and negative harmonics of the fundamental

Complex Exponential Fourier Series

\square We can express the complex series coefficients in terms of the trigonometric series coefficients

$$
\begin{aligned}
& c_{0}=a_{0} \\
& c_{k}=\frac{1}{2}\left(a_{k}-j b_{k}\right), \quad k=1,2,3, \ldots \\
& c_{-k}=\frac{1}{2}\left(a_{k}+j b_{k}\right), \quad k=1,2,3, \ldots
\end{aligned}
$$

\square Coefficients at $\pm k$ are complex conjugates, so

$$
\left|c_{k}\right|=\left|c_{-k}\right| \quad \text { and } \quad \angle c_{k}=-\angle c_{-k}
$$

Complex Exponential Fourier Series

\square Similarly, the coefficients of the trigonometric series in terms of the complex coefficients are

$$
\begin{aligned}
& a_{0}=c_{0} \\
& a_{k}=c_{k}+c_{-k}=2 \mathcal{R e}\left(c_{k}\right) \\
& b_{k}=j\left(c_{k}-c_{-k}\right)=-2 \mathcal{J} m\left(c_{k}\right)
\end{aligned}
$$

\square Can also relate the complex coefficients to the cosine-withphase series coefficients

$$
\begin{aligned}
& \left|c_{k}\right|=\left|c_{-k}\right|=\frac{1}{2} A_{k}, \quad k=1,2,3, \ldots \\
& \angle c_{k}= \begin{cases}\theta_{k}, & k=+1,+2,+3, \ldots \\
-\theta_{k}, & k=-1,-2,-3, \ldots\end{cases}
\end{aligned}
$$

Even and Odd Symmetry

\square For even functions, since $b_{k}=0$, coefficients of the complex series are purely real:

$$
\begin{aligned}
& c_{0}=a_{0} \\
& c_{k}=c_{-k}=\frac{1}{2} a_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

\square For odd functions, since $a_{k}=0$, coefficients of the complex series are purely imaginary (except c_{0}):

$$
\begin{array}{ll}
c_{0}=a_{0} \\
c_{k}=-j \frac{1}{2} b_{k}, & k=1,2,3, \ldots \\
c_{-k}=+j \frac{1}{2} b_{k}, & k=1,2,3, \ldots
\end{array}
$$

Complex Series - Example

$$
f(t)=\left\{\begin{array}{rr}
1 & 0<t<0.5 \\
0 & 0.5<t<1.5 \\
1 & 1.5<t<2.0
\end{array}\right.
$$

\square The complex Fourier series for the rectangular pulse train:

$$
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

\square The complex coefficients are given by

$$
\begin{aligned}
& c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j k \omega_{0} t} d t=\frac{1}{2} \int_{-1}^{1} f(t) e^{-j k \pi t} d t \\
& c_{k}=\frac{1}{2} \int_{-0.5}^{0.5} e^{-j k \pi t} d t=-\left.\frac{1}{2 j k \pi} e^{-j k \pi t}\right|_{-0.5} ^{0.5}
\end{aligned}
$$

Complex Series - Example

$$
\begin{aligned}
c_{k} & =-\left.\frac{1}{2 j k \pi} e^{-j k \pi t}\right|_{-0.5} ^{0.5} \\
c_{k} & =-\frac{1}{2 j k \pi}\left[e^{-j k \frac{\pi}{2}}-e^{j k \frac{\pi}{2}}\right]
\end{aligned}
$$

\square Rearranging into the form of a sinusoid

$$
c_{k}=\frac{1}{k \pi}\left[\frac{e^{j k \frac{\pi}{2}}-e^{-j k \frac{\pi}{2}}}{2 j}\right]=\frac{1}{k \pi} \sin \left(k \frac{\pi}{2}\right)
$$

\square Given the even symmetry of $f(t)$, all coefficients are real, and also have even symmetry

$$
c_{k}=c_{-k}=\frac{1}{k \pi} \sin \left(k \frac{\pi}{2}\right)=\frac{1}{\pi}, 0,-\frac{1}{3 \pi}, 0, \frac{1}{5 \pi}, 0, \ldots
$$

Line Spectra

\square The complex series coefficients can also be plotted as amplitude and phase line spectra

- Now, plot spectra over positive and negative frequencies

\square Note that the magnitude spectrum is an even function of frequency, and the phase spectrum is an odd function of frequency

31

Fourier Transform

The Fourier transform extends the frequencydomain analysis capability provided by the Fourier series to aperiodic signals.

Fourier Transform

\square The Fourier Series is a tool that provides insight into the frequency content of periodic signals

$$
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

where the complex coefficients are given by

$$
c_{k}=\int_{-T / 2}^{T / 2} f(t) e^{-j k \omega_{0} t} d t
$$

\square These c_{k} values provide a measure of the energy present in a signal at discrete values of frequency

- $k \omega_{0}$, integer multiples (harmonics) of the fundamental
\square Frequency-domain representation is discrete, because the timedomain signal is periodic

Fourier Transform

\square Many signals of interest are aperiodic

- They never repeat
- Equivalent to an infinite period, $T \rightarrow \infty$
\square As $T \rightarrow \infty$, the mapping from the time domain to the frequency domain is given by the Fourier transform

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
$$

where $F(\omega)$ is a complex, continuous function of frequency
\square The continuous frequency-domain representation corresponds to the aperiodic time-domain signal

Inverse Fourier Transform

\square We can also map frequency-domain functions back to the time domain using the inverse Fourier transform

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
$$

\square The forward ($-j$ or $-i$ transform) and the inverse ($+j$ or $+i$ transform) provide the mapping between Fourier transform pairs

$$
f(t) \leftrightarrow F(\omega)
$$

Fourier Transform - Rectangular Pulse

\square Consider a pulse of duration, τ

$$
f(t)=p_{\tau}(t)
$$

\square Calculate the Fourier transform

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t=\int_{-\tau / 2}^{\tau / 2} e^{-j \omega t} d t
$$

$$
\begin{aligned}
& F(\omega)=-\left.\frac{1}{j \omega} e^{-j \omega t}\right|_{-\frac{\tau}{2}} ^{\frac{\tau}{2}}=-\frac{1}{j \omega}\left[e^{-j \omega \frac{\tau}{2}}-e^{j \omega \frac{\tau}{2}}\right] \\
& F(\omega)=\frac{2}{\omega}\left[\frac{e^{j \omega \frac{\tau}{2}}-e^{-j \omega \frac{\tau}{2}}}{2 j}\right]=\frac{2}{\omega} \sin \left(\frac{\tau \omega}{2}\right)
\end{aligned}
$$

Fourier Transform - Rectangular Pulse

\square Here, we can introduce the sinc function

$$
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
$$

Letting $x=\frac{\tau \omega}{2 \pi^{\prime}}$, we have

$$
F(\omega)=\frac{2}{\omega} \sin \left(\frac{\tau \omega}{2}\right)
$$

$$
F(\omega)=\tau \frac{\sin \left(\pi \frac{\tau \omega}{2 \pi}\right)}{\pi \frac{\tau \omega}{2 \pi}}
$$

$$
F(\omega)=\tau \operatorname{sinc}\left(\frac{\tau \omega}{2 \pi}\right)
$$

Fourier Transform of $p_{1}(t), F(\omega)=\operatorname{sinc}(\omega / 2 \pi)$

Fourier Transform - Triangular Pulse

$\square \quad$ Next, consider a triangular pulse of duration, τ

$$
\begin{aligned}
& f(t)=\Lambda_{\tau}(t) \\
& \Lambda_{\tau}(t)=\left\{\begin{array}{lc}
+\frac{2}{\tau} t+1, & -\frac{\tau}{2} \leq t \leq 0 \\
-\frac{2}{\tau} t+1, & 0 \leq t \leq \frac{\tau}{2} \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$\square \quad$ The Fourier transform is

$$
F(\omega)=\int_{-\infty}^{\infty} \Lambda_{\tau} e^{-j \omega t} d t=\int_{-\tau / 2}^{0}\left(\frac{2}{\tau} t+1\right) e^{-j \omega t} d t+\int_{0}^{\tau / 2}\left(-\frac{2}{\tau} t+1\right) e^{-j \omega t} d t
$$

\square Integrating by parts, or symbolically in MATLAB, gives

$$
F(\omega)=\frac{8}{\tau \omega^{2}} \sin ^{2}\left(\frac{\tau \omega}{4}\right)
$$

Fourier Transform - Triangular Pulse

\square This, too, can be recast into the form of a sinc function
\square Letting $x=\frac{\tau \omega}{4 \pi}$, we have

$$
\begin{aligned}
& F(\omega)=\frac{8}{\tau \omega^{2}} \sin ^{2}\left(\frac{\tau \omega}{4 \pi}\right) \\
& F(\omega)=\frac{\tau}{2} \frac{\sin ^{2}\left(\pi \frac{\tau \omega}{4 \pi}\right)}{\left(\pi \frac{\tau \omega}{4 \pi}\right)^{2}} \\
& F(\omega)=\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\tau \omega}{4 \pi}\right)
\end{aligned}
$$

Fourier Transform of $\Lambda_{1}(\mathbf{t}), F(\omega)=1 / 2^{*} \operatorname{sinc}^{2}(\omega / 4 \pi)$

Rectangular vs. Triangular Pulse

\square Average value in time domain translates to $F(0)$ value in frequency domain
\square More abrupt transitions in time domain correspond to more high-frequency content
\square Multiplication in one domain corresponds to convolution in the other

- Convolution of two rectangular pulses is a triangular pulse
- sinc becomes sinc^{2} in the frequency domain
$f(t)=p_{1}(t)$

$F(\omega)=\operatorname{sinc}(\omega / 2 \pi)$

Fourier Transform - Impulse Function

\square The impulse function is defined as

$$
\begin{aligned}
& \delta(t)=0, \quad t \neq 0 \\
& \int_{-\infty}^{\infty} \delta(t) d t=1
\end{aligned}
$$

\square Its Fourier transform is

$$
F(\omega)=\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t
$$

\square Since $\delta(t)=0$ for $t \neq 0$, and since $e^{-j \omega t}=1$ for $t=0$

$$
F(\omega)=\int_{-\infty}^{\infty} \delta(t) d t=1
$$

\square The Fourier transform of the time-domain impulse function is one for all frequencies

- Equal energy at all frequencies

Fourier Transform - Decaying Exponential

\square Consider a decaying exponential

$$
f(t)=e^{-\sigma t} \cdot 1(t)
$$

where $1(t)$ is the unit step function
\square The Fourier transform is:

$$
\begin{aligned}
& F(\omega)= \int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& F(\omega)= \int_{0}^{\infty} e^{-\sigma t} e^{-j \omega t} d t \\
& F(\omega)=\int_{0}^{\infty} e^{-(\sigma+j \omega) t} d t=-\left.\frac{1}{\sigma+j \omega} e^{-(\sigma+j \omega) t}\right|_{0} ^{\infty}=-\frac{1}{\sigma+j \omega}[0-1] \\
& F(\omega)=\frac{1}{\sigma+j \omega}
\end{aligned}
$$

Fourier Transform - Decaying Exponential

\square Fourier transform of this exponential signal is complex
\square Plot magnitude and phase separately

\square Note the even symmetry of magnitude, and odd symmetry of the phase of $F(\omega)$

Fourier Transform - Decaying Exponential

\square On logarithmic scales, this Fourier transform should look familiar
$\square f(t)$ could be the impulse response of a first-order system

- Convolution of an impulse with the system's impulse response
$\square \quad F(\omega)$ looks like the frequency response of a first-order system
- Multiplication of the F.T. of an impulse $(F(\omega)=1)$ with the system's frequency response

Even and Odd Symmetry

\square We are mostly concerned with real time-domain signals
\square Not true for all engineering disciplines, e.g. communications, signal processing, etc.
\square For a real time-domain signal, $f(t)$,

- If $f(t)$ is even $F(\omega)$ will be real and even
- If $f(t)$ is odd, $F(\omega)$ will be imaginary and odd
- If $f(t)$ has neither even nor odd symmetry, $F(\omega)$ will be complex with an even real part and an odd imaginary part.

45

Discrete Fourier Transform

For discrete-time signals, mapping from the time domain to the frequency domain is accomplished with the discrete Fourier transform (DFT).

Discrete-Time Fourier Transform (DTFT)

\square The Fourier transform maps a continuous-time signal, defined for $-\infty<t<\infty$, to a continuous frequency-domain function defined for $-\infty<\omega<\infty$
\square In practice we have to deal with discrete-time, i.e. sampled, signals

- Only defined at discrete sampling instants

$$
f(t) \rightarrow f[n]
$$

\square Now, mapping to the frequency domain is the discrete-time Fourier transform (DTFT)

$$
F(\omega)=\sum_{n=-\infty}^{\infty} f[n] e^{-j \omega n}
$$

\square DTFT maps a discrete, aperiodic, time-domain signal to a continuous, periodic function of frequency

Aliasing

\square Aliasing is a phenomena that results in a signal appearing as a lower-frequency signal as a result of sampling
\square In order to avoid aliasing, the sample rate must be at least the Nyquist rate

$$
f_{s} \geq 2 f_{\max }
$$

where $f_{\text {max }}$ is the highest frequency component present in the signal
\square For a given sample rate, the Nyquist frequency is the highest frequency signal that will not result in aliasing

$$
f_{\text {Nyquist }}=\frac{f_{s}}{2}
$$

Aliasing - Examples

Discrete-Time Fourier Transform (DTFT)

$$
F(\omega)=\sum_{n=-\infty}^{\infty} f[n] e^{-j \omega n}
$$

\square Discrete-time $f[n]$ generated from $f(t)$ by sampling at a sample rate of f_{s}, with a sample period of T_{S}
\square Sampled signals can only accurately represent frequencies up to the Nyquist frequency

$$
f_{\max }=f_{N y q u i s t}=\frac{f_{s}}{2}
$$

\square Higher frequency components of $f(t)$ are aliased down to lower frequencies in the range of

$$
-\frac{f_{s}}{2} \leq f \leq \frac{f_{s}}{2}
$$

$\square \quad$ The DTFT is a periodic function of frequency, with a period f_{s}
\square Due to aliasing, sampling in the time domain corresponds to periodicity in the frequency domain

The Discrete Fourier Transform (DFT)

\square The DTFT

$$
F(\omega)=\sum_{n=-\infty}^{\infty} f[n] e^{-j \omega n}
$$

utilizes discrete-time, sampled, data, but still requires and infinite amount of data
\square In practice, our time-domain data sets are both discrete and finite
\square The discrete Fourier transform, DFT, maps discrete and finite (periodic) time-domain signals to periodic and discrete frequencydomain signals

$$
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi \frac{n}{N}}
$$

The Discrete Fourier Transform (DFT)

\square Consider N samples of a time-domain signal, $f[n]$

- Sampled with sampling period T_{s} and sampling frequency f_{s}
- Total time span of the sampled data is $N \cdot T_{S}$
\square The DFT of $f[n]$ is

$$
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
$$

\square A discrete function of the integer value, k
\square The DFT consists of N complex values: $F_{0}, F_{1}, \ldots, F_{N-1}$
\square Each value of k represents a discrete value of frequency from $f=0$ to $f=f_{s}$

The Inverse Discrete Fourier Transform

\square A discrete, finite set of frequency-domain data can be transformed back to the time domain
\square The inverse discrete Fourier Transform (IDFT)

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j k 2 \pi n / N}
$$

\square Note the $1 / N$ scaling factor

- In practice, this is often applied when computing the DFT
- Must exist in either the DFT or IDFT, not both

DFT Frequencies

$$
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
$$

\square A dot product of $f[n]$ with a complex exponential

$$
F_{k}=f[n] \cdot e^{-j k \Omega n}
$$

\square The frequency of the exponential is $k \Omega$, integer multiples of the normalized frequency, Ω

$$
\Omega=2 \pi / N
$$

which has units of rad/sample
\square Normalized frequency is related to the ordinary frequency by the sample rate, f_{s}

$$
\Omega=\frac{2 \pi f}{f_{s}} \quad\left[\frac{\mathrm{rad}}{\text { sample }}\right]
$$

DFT Frequencies

$$
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
$$

\square \# of samples: N, sample rate: f_{S}, sample period: T_{S}
\square Maximum detectable frequency

$$
f_{\max }=f_{s} / 2
$$

- Nyquist frequency
- Corresponds to $k=N / 2, \Omega=\pi$
\square Frequency increment (bin width, resolution)

$$
\Delta f=\frac{1}{N \cdot T_{s}}=\frac{f_{s}}{N}
$$

\square Last $(N / 2-1)$ points of $F_{k}, F_{N / 2+1} \ldots F_{N-1}$ correspond to negative frequency

$$
-\frac{f_{s}}{2}+\Delta f \ldots-\Delta f
$$

DFT Frequencies

\square For example, consider $N=10$ samples of a signal sampled at $f_{s}=100 \mathrm{~Hz}, T_{s}=10 \mathrm{msec}$

- $\Delta f=\frac{1}{N T_{s}}=\frac{f_{s}}{N}=\frac{1}{10 \cdot 0.01 \mathrm{sec}}=10 \mathrm{~Hz}$
- $f_{\text {max }}=\frac{f_{s}}{2}=50 \mathrm{~Hz}$
- $\Delta \Omega=\frac{2 \pi}{N} \mathrm{rad} / \mathrm{sa}=0.2 \pi \mathrm{rad} / \mathrm{sa}$

k	0	1	2	3	4	5	6	7	8	9	Units
Ω	$\mathbf{0}$	$\mathbf{0 . 2 \boldsymbol { \pi }}$	$\mathbf{0 . 4 \pi}$	$\mathbf{0 . 6 \boldsymbol { \pi }}$	$\mathbf{0 . 8 \boldsymbol { \pi }}$	$\boldsymbol{\pi}$	$\mathbf{1 . 2 \boldsymbol { \pi }}$	$\mathbf{1 . 4 \pi}$	$\mathbf{1 . 6 \boldsymbol { \pi }}$	$\mathbf{1 . 8 \boldsymbol { \pi }}$	$\mathrm{rad} / \mathrm{Sa}$
f / f_{s}	$\mathbf{0}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$	$\mathbf{0 . 8}$	$\mathbf{0 . 9}$	-
f	$\mathbf{0}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{- 4 0}$	$\mathbf{- 3 0}$	$\mathbf{- 2 0}$	$\mathbf{- 1 0}$	Hz

DFT - Example

\square Consider the following signal
$f(t)=0.3+0.5 \cos (2 \pi \cdot 50 \cdot t)+\cos (2 \pi \cdot 120 \cdot t)+0.8 \cos (2 \pi \cdot 320 \cdot t)$
\square Sample rate: $f_{s}=1 \mathrm{kHz}$
\square Record length: $N=100$
\square Bin width: $\Delta f=10 \mathrm{~Hz}$

DFT - Example

$$
f(t)=0.3+0.5 \cos (2 \pi \cdot 50 \cdot t)+\cos (2 \pi \cdot 120 \cdot t)+0.8 \cos (2 \pi \cdot 320 \cdot t)
$$

\square Plotting magnitude of (real) F_{k}
\square Components at $0,50,120$, and 310 Hz are clearly visible
\square Plot spectrum as a function of

- Index value, k
- Normalized frequency
- Ordinary frequency
$\square F_{k}$ values divided by N so that

 F_{0} is the average value of $f(t)$
- Amplitude of other components given by the sum of F_{k} and F_{-k} magnitudes

Spectral Leakage

$$
f(t)=0.3+0.5 \cos (2 \pi \cdot 50 \cdot t)+\cos (2 \pi \cdot 120 \cdot t)+0.8 \cos (2 \pi \cdot 320 \cdot t)
$$

\square For $f_{s}=1 \mathrm{kHz}$ and $N=100, \Delta f=10 \mathrm{~Hz}$, and all signal components fall at integer multiples of Δf

- All components lie in exactly one frequency bin
\square Now, increase the number of samples to $N=105$
- Bin width decreases to $\Delta f=9.52 \mathrm{~Hz}$
- Each non-zero signal component now falls between frequency bins - Spectral Leakage

Spectral Leakage

\square Signal components now fall between two bins
\square Why non-zero F_{k} over more than two bins?

- Truncation (windowing)
\square Finite record length is equivalent to multiplication of $f(t)$ by a rectangular pulse (window)
- F.T. of pulse is a sinc
- Multiplication in the time domain \rightarrow convolution in frequency domain
\square Truncated signal is assumed periodic
- True only if windowing function captures an integer number of periods of all signal components

Summary of Fourier Analysis Tools

	Time Domain	Frequency Domain
Fourier series	continuous periodic (or truncated)	aperiodic discrete
Fourier	continuous aperiodic	aperiodic continuous
DTFT	discrete aperiodic	periodic continuous
DFT	discrete periodic (or truncated)	periodic discrete

\square In general:

${ }^{61}$ DFT Algorithm

Implementing the DFT in MATLAB

$$
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
$$

\square A dot product of complex N-vectors for each of the N values of k

$$
F_{k}=f[n] \cdot e^{-j k 2 \pi n / N}
$$

\square Simple to code

- N multiplications for each k value - N^{2} operations
- Inefficient, particularly for large N

Fast Fourier Transform - FFT

\square The fast Fourier transform (FFT) is a very efficient algorithm for computing the DFT

- The Cooley-Tukey algorithm
\square Requires on the order of $N \log _{2}(N)$ operations
\square Significantly fewer than N^{2}
\square For example, for $N=1024$:
- DFT: $N^{2}=1,048,576$ operations
- FFT: $N \log _{2}(N)=10240$ operations - ($102 \times$ faster)
\square Requires N be a power of two
- If not, data record is padded with zeros

64
 FFT in MATLAB

It is very simple to implement a straight DFT algorithm in MATLAB, but the FFT algorithm is, by far, more efficient .

Fast Fourier Transform in MATLAB - fft .m

$$
X k=f f t(x, n)
$$

- x: vector of points for DFT computation
- n: optional length of the DFT to compute
- Xk: complex vector of DFT values - size (x) or an n-vector
\square If n is not specified, x will either be truncated or zeropadded so that its length is n
\square If x is a matrix, the fft for each column of x is returned
$\square \mathrm{fft} . \mathrm{m}$ uses the Cooley-Tukey algorithm
\square Fastest for length (x) or n that are powers of two

Inverse FFT in MATLAB - ifft.m

$$
x=\operatorname{ifft}(X k, n)
$$

- Xk: vector of points for inverse DFT computation
- n: optional length of the inverse DFT to compute
- x: complex vector of time-domain values - size (x) or an nvector
\square If n is not specified, x will either be truncated or zeropadded so that its length is n
\square If Xk is a matrix, the inverse fft for each column of Xk is returned
\square ifft.m uses the Cooley-Tukey algorithm
\square Fastest for length (Xk) or n that are powers of two

Shifting Negative Frequency Values - fftshift.m

$$
\text { Xshift }=\mathrm{fft}(\mathrm{Xk})
$$

- Xk: vector of FFT values with zero frequency point at $\mathrm{Xk}(1)$
- Xshift: FFT vector with the zero-frequency point moved to the middle of the vector
\square If $\mathrm{N}=$ length (Xk) is even, first and second halves of Xk are swapped
- Xshift $=[\mathrm{Xk}(\mathrm{N} / 2+1: N), \mathrm{Xk}(1: N / 2)]$
- Frequency points are: $f=\left[-\frac{f_{S}}{2} \ldots\left(\frac{f_{S}}{2}-\Delta f\right)\right]$

If $\mathrm{N}=$ length (Xk) is odd, zero frequency point moved to the Xshift((N+1)/2) position

- Xshift $=[\mathrm{Xk}((\mathrm{N}+3) / 2): \mathrm{N}), \mathrm{Xk}(1:(\mathrm{N}-1) / 2)]$
- Frequency points are: $f=\left[-f_{S} \frac{N-1}{2 N} \ldots f_{S} \frac{N-1}{2 N}\right]$

