SECTION 8: FOURIER ANALYSIS
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Fourier Series — Trigonometric Form
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Periodic Functions
15
A function is periodic if

f@&)=f@E+T)
where T is the period of the function

The function repeats itself every T seconds

Here, we’re assuming a function of time, but could
also be a spatial function, e.g.

o Elevation

o Pixel intensity along rows or columns of an image
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Frequency

-
The frequency of a periodic function is the inverse of its
period

1
F=7

We'll refer to a function’s frequency as its fundamental
frequency, f,

This is ordinary frequency, and has units of Hertz (Hz) (or
cycles/sec)

Can also describe a function in terms of its angular
frequency, which has units of rad/sec

2T
(U0=27T‘fo=T
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Fourier Series
X

Fourier discovered that if a periodic
function satisfies the Dirichlet
conditions:

1) Itis absolutely integrable over any period:
j f(t)dt < o
to
2) It has a finite number of maxima and
minima over any period
3)  Ithasa _finite number of discontinuities over J‘f;egsh_ﬁl’;ggr
any period

o In other words, any periodic signal of engineering interest

Then it can be represented as an infinite sum of
harmonically-related sinusoids, the Fourier series
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Fourier Series
1

The Fourier series
ft) =ay+ z lay cos(kwyt) + by, sin(kwyt)]
k=1

1
where wy is the fundamental frequency, Wy = -

and, the Fourier coefficients are given by

1 T
ag = Tjo f(t)dt

the average value of the function over a full period, and

2 T
ay = TJ f(t) cos(kwyt) dt, k=1,23..
0
and

2 T
b, = 7] f(t)sin(kwyt) dt, k=1,23..
0
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Sinusoids as Basis Functions
X

Harmonically-related sinusoids form a set of orthogonal basis
functions for any periodic functions satisfying the Dirichlet
conditions

Not unlike the unit vectors in R? space:
i=(0), =01

Any vector can be expressed as a linear combination of these basis
vectors

X = ali + azi
where each coefficient is given by an inner product

a]_:X'i
a2:X’i

These are the projections of X onto the basis vectors
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Sinusoids as Basis Functions
X

Similarly, any periodic function can be represented as a
sum of projections onto the sinusoidal basis functions

Similar to vector dot products, these projections are
also given by inner products:

2 T
a, = Tf f(t) cos(kwyt) dt, k=1,23..
0
and

2 T
b, = Tf f(t) sin(kwyt) dt, k=1,23..
0

These are projections of f(t) onto the sinusoidal basis
functions
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Fourier Series — Example

Consider a rectangular

pulse train |

oT =2sec 2 o5

ofy=-=05Hz o

0wy = 1" /sec R S H MY S B

Can determine the Fourier series by integrating over any full
period, for example, t = [0,2]

(1 0<t<05
f(t) =<0 05<t<1.5
1 15<t<20
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Fourier Series — Example — a,
I aasssss——————

Rectangular Pulse Train
T

1.5

1 0<t<05
f) =50 05<t<15
1 15<t<?20 s osh

First, calculate the average
Value % -1.5 -1 -05 e O[Sec] 0.5 1 15 2

_1rT _1 2
ao—?Jo f(t)dt—ijof(t)dt

0

1 1.5 1 2
a =7 | 1dt+—f Odt+—j 1dt
0 1

2Jos 2J1s

1 ,0.5 1 2
ag=st| +5t| =025+0.25
2 lo 2 l1s

ap, = 0.5, as would be expected
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Fourier Series — Example — a,
I aasssss——————

Next determine the cosine coefficients, ay

2 T
= —J f(t) cos(kwyt) dt

rJy

2 0.5 2 2
ay = —J cos(kmt) dt + —j cos(kmt) dt

2 )y 2)1s

L sin(k t)‘ "1 Lsin(k t)‘
A =7~ —sin(km - sin(km

1. T _ T
A =7 —|sin (kz) — 0+ 0 —sin (kBE)]

= 7 [sin (k) — sin (k37|
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Fourier Series — Example — a,
I aasssss——————

We know that

sin (k3 g) = sin (k% + kn) = —sin(k g)

SO

a, = %sin (k g), k=123..

The first few values of ay:

a—za—Oa— 2 a—Oa—2
1= g7 727 Y, "3 7 g, 4T M S T e

Zero for all even values of k
o Only odd harmonics present in the Fourier Series
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Fourier Series — Example — b,
-

Next, determine the sine coefficients, by,

T
by, = ;jo f(t) sin(kwyt) dt

2

2 0.5 2
by, = Ej sin(kmt) dt + E_[ sin(kmt) dt
0

1.5
17 0.5 2
b, = — o _cos(knt) |0 + cos(kmt) |1.5]
b, = —% :cos(kg) —1+1-— cos(k%+ kn)] =0
b, =0, k=123..

All b;, coefficients are zero

0o Only cosine terms in the Fourier series
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Fourier Series — Example
R

Rectangular Pulse Train
1.5 T T T

The Fourier series for the -
rectangular pulse train:

f(t) =05+ z —sm cos(knt)

Note that this is an equality as long as we include an
infinite number of harmonics

Can approximate f(t) by truncating after a finite
number of terms
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Fourier Series — Example

Fourier Series Approximation

15 T T T T T
k=1
1 \ /\
€ 05¢
0 N4
_0.5 1 Il 1 1 1 1
-2 -15 -1 -0.5 0 0.5 15
time [sec]
Fourier Series Approximation
15 T T T T T
k=3
1
€ 05¢
0 PanN
v \J
_0.5 1 Il 1 1 1 1
-2 -15 -1 -0.5 0 0.5 15
time [sec]
K. Webb

Fourier Series Approximation

1.5 T

-0.5 '

-2 -1.5

1.5 T

time [sec]

Fourier Series Approximation

-0.5 '

k=7

-2 -1.5

time [sec]
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Fourier Series — Example
-

Fourier Series Approximation

time [sec]

Fourier Series Approximation

K. Webb

time [sec]

Fourier Series Approximation

time [sec]

Fourier Series Approximation

time [sec]
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Even and Odd Symmetry
-

An even function is one for which

ft) = f(=t)
An odd function is one for which
ft) =—f(=t)

Consider two functions, f(t) and g(t)
o If both are even (or odd), then

| rog@dc=2 [ rogwar
- 0

o If oneis even, and one is odd, then
a
| r@g@dr=o
—-—a
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Even and Odd Symmetry

Since cos(kwyt) is even, and sin(kwgyt) is odd
o If f(t) is an even function, then

4 T/2
a, = T f(t) cos(kwyt) dt, k=1,273,..
0
b, =0, k=1,23,..

o If f(t) is an odd function, then

ax =0, k=1,23,..
4 T/2
b, = T f(t)sin(kwyt) dt, k=1,23,..
0

Recall the Fourier series for the pulse train, an even
function, had only cosine terms
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Fourier Series — Cosine w/ Phase Form
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Cosine-with-Phase Form

Given the trigonometric identity

A; cos(wt) + By sin(wt) = C; cos(wt + 6)

where  C; =A%+ B and 6 =tan! (— %)

1

We can express the Fourier series in cosine-with-phase form:

ft)=ay+ Z A cos(kwyt + 6;)
k=1

Ak = ’a,zc+b,%

0, = —atan2(by, a;)

where

Note that atan2 is a quadrant-aware inverse tangent function
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Cosine-with-Phase Form — Example

Consider, again, the
rectangular pulse train

2 . km
O a, = -—SIn 7

SO, 05,

Ay = ,/aizc+bl% = |ag| =

and

1

Rectangular Pulse Train

 [(kn
sin |

0, = tan -

—Ssin
kT

K. Webb
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Line Spectra

The cosine-with-phase form of the Fourier series is

conducive to graphical display as amplitude and phase line
spectra

Amplitude Spectrum

0.8 T T T
06+ .
®
~ 04 .
<
02+ T T .
? ¢
0 @ L 4 ® L 4
| 1 1 | 1 1 | | 1 ?
0 1 2 3 4 5 6 7 8 9 10
Normalized Frequency [@/@0]
Phase Spectrum
200 T T T T T T T
[ ] )
150 - —
~ 100 _
[es)
50 ~
Y, S S, S N AN
0 1 2 3 4 5 6 7 8 9 10

Normalized Frequency [@/030]

Average value and amplitude of odd harmonics are clearly
visible
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Fourier Series — Complex Exponential Form
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Complex Exponential Fourier Series
R

Recall Euler’s formula
e/®t = cos(wt) + j sin(wt)

This allows us to express the Fourier series in a more compact,
though equivalent form

co

FO = ) cpelent

k=—o

where the complex coefficients are given by

1 (T .
Cp = Tj f(t)e Tk@otqt
0

Note that the series is now computed for both positive and negative
harmonics of the fundamental
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Complex Exponential Fourier Series
R

We can express the complex series coefficients in
terms of the trigonometric series coefficients

C0=a0

1
Cr = E(ak —jbk), k = 1, 2, 3,

1
C_ = E(ak +]bk), k = 1, 2, 3,

Coefficients at +k are complex conjugates, so

lci| = lc_pl and zcp = —4c_y,
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Complex Exponential Fourier Series

Similarly, the coefficients of the trigonometric series in
terms of the complex coefficients are

Ao = Co
ay = C, + c_, = 2Re(cy)
by = jlcx — c_x) = —2Im(cy)

Can also relate the complex coefficients to the cosine-with-
phase series coefficients

1
|Ck| == |C—k| == EAk, k = 1, 2, 3,

L _[6 k=+1,+2,+3,..
‘““ =1-0,, k=-1,-2,-3,..
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Even and Odd Symmetry
-

For even functions, since b, = 0, coefficients of the complex series
are purely real:

Co = Qo

1
Ck = C_ = Eak, k = 1, 2, 3,

For odd functions, since a; = 0, coefficients of the complex series
are purely imaginary (except c;):

Co = Qo

1
Ck = —jibk, k = 1, 2, 3,
1
ck=Hizhy k=123,
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Complex Series — Example

Rectangular Pulse Train
1.5

1 0<t<0.5

f)=<0 05<t<15 1
1 1.5<t<20 e o5l

The complex Fourier series for

the rectangular pulse train: Yas 4 es o s TR
FO) = ) cpekwot
k=—00

The complex coefficients are given by

T/2 _ 1 1 _
Ck = = f(t)e Tkwotdt = —J f(e Jkmtqt
Tz 2J4
“T2) s 2jkm —0.5

K. Webb
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Complex Series — Example
R

Rectangular Pulse Train
15 T

Ck _ '1 —jkrrt|
2jkm -0.5 1
1 [ n 2 € 08
— “Ikg _ olk3
Ck 2k e e |
Rearranging into the form of a a5 a4 os t_ 5[ | 05 1 15 2
sinusoid
., T ., TT
1 ez —e7*2 1 L
Cr = , = sin( —)
T kn 2] km 2

Given the even symmetry of f(t), all coefficients are real, and
also have even symmetry

ot em 1o 1 1
Ck_C—k_ESIH( E)—E, ,—g, ,g, ) nes
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Line Spectra
e

The complex series coefficients can also be plotted as amplitude and
phase line spectra

o Now, plot spectra over positive and negative frequencies

Amplitude Spectrum

0.4 —

lc,|

D#,T,T,I I,T T,#_

e

Mormalized Frequency [o/op]

Phase Spectrum
200 T T T

100

T

-200
-5

LB,

Mormalized Frequency [o/op]

Note that the magnitude spectrum is an even function of frequency, and
the phase spectrum is an odd function of frequency

K. Webb ENGR 203



Fourier Transform

The Fourier transform extends the frequency-
domain analysis capability provided by the
Fourier series to aperiodic signals.
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Fourier Transform

The Fourier Series is a tool that provides insight into the frequency
content of periodic signals

co

FO = ) cpelent

k=—o
where the complex coefficients are given by

T/2 _
Cr = f(t)e Jkwotdt
~T/2
These ¢ values provide a measure of the energy present in a signal
at discrete values of frequency

O kwg, integer multiples (harmonics) of the fundamental

Frequency-domain representation is discrete, because the time-
domain signal is periodic
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Fourier Transform

Many signals of interest are aperiodic
o They never repeat
o Equivalent to an infinite period, T — oo

As T — oo, the mapping from the time domain to the
frequency domain is given by the Fourier transform

F(w) = j f(eJ@tdt
where F(w) is a complex, continuous function of

frequency

The continuous frequency-domain representation
corresponds to the aperiodic time-domain signal
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Inverse Fourier Transform
X

We can also map frequency-domain functions back
to the time domain using the inverse Fourier
transform

f(t) = % f_oo F(w)e/®tdw

The forward (—j or —i transform) and the inverse
(+j or +i transform) provide the mapping between
Fourier transform pairs

f(t) & F(w)
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Fourier Transform — Rectangular Pulse

Consider a pulse of duration, T i

f(©) = p.(0)
Calculate the Fourier transform o8
o | T/z | 04+
F(a)) — J f(t)e—]wtdt — J e—]wtdt 02}
—00 —T/Z 0
ot |2 1] Sjol ol
Flw)=——e /9t |"_ = —,—[e jog _ giwg]
Jjw —5 Jjw
2 ej“’%—e_jw% 2 W
F - — = —q] —_—
(w) o 2 wsm( > )
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Fourier Transform — Rectangular Pulse

-
Here, we can introduce the Rectangular Pulse, ()= p.()

sinc function 1
0.8
, sin(7mx) o
sinc(x) = s
X 04r
0.2
. TW
Letting x = —, we have i
2T 02, 15 1 05 0 05 1 15 2
time [sec]
F((,()) — E Sin (%) FourierTranlsform of Ip1(t), F(m)=sinc(a?/21c)
1
. Tw
Sin (TL’ E) 05 /\
27T 0 —\VA‘IAVI'\VAV/\\/ V/\ JAVAVA‘,AVI-
TWw
F ((1)) =TSslnc (_) _0'-580 -60 -40 -2|0 0 20 4|0 60 80
27‘[ frequency [rad/sec]
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Fourier Transform — Triangular Pulse

Next, consider a triangular pulse of duration,

£(©) = A (D) |

(2 T |

+—t+1, ——<t<0 oy

T 2 =

A(t) =4 2 T |

«(6) ——t+1, 0<t<-
T 2

. 0, otherwise 0

-0.2

The Fourier transform is

o . 0 /2 .
F(w) = J Ae 79t = J (;t + 1) e Jotdt + J
—00 -7/2

Integrating by parts, or symbolically in MATLAB, gives

F(w) = %sin2 (%)

K. Webb

triangular Pulse, f(t) = At(t)

T/2 2 _
(— - t + 1) e Jotqt
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Fourier Transform — Triangular Pulse
R

This, too, can be recast | TriangularPulse, )= .0
into the form of a sinc i
function Ajz /\
'l‘w = 04+
Letting x = —, we have | / \
5 41’ - / \
8 TW 02, 15 1 05 0 05 1 15 2
F = ——Si 2(— time [sec]
(w) — sin (4n)

Fourier Transform of A1(t), F(o) = 1/2*sinc2(ml41c)
06

ry = 25 (n%2) % N

I I AN
\ _—/ N—

T TW

— - 2 1 L 1

F ((1)) — — Sinc ( ) o 30 20 0 0 10 20 30 40
2 4‘7-[ frequency [rad/sec]

K. Webb ENGR 203

F()




Rectangular vs. Triangular Pulse
R

Average value in time domain f(t) = p,0 Flo) = sinc(o/2x)
translates to F(0) value in | .
frequency domain 1 /\

08¢
More abrupt transitions in time _ os 5 08
domain correspond to more 04y - A / \ A
high-frequency content 02 NN/ \/ \/ \/\/

0

Multiplication in one domain 02 ‘ Y —

. . -1 -0.5 0 0.5 1 -40 -20 0 20 40
corresponds to convolution in time  fsec] frequency  [radisec]
the other - f(t) = A,(t) o F(o) = 1/2*sinc?(o/4n)

o Convolution of two rectangular g A 05 I\
pulses is a triangular pulse 08 /\ 04 I
- 06 / = 0.3 I
o sinc becomes sinc?in the = 04 / \ P |
frequency domain 0.2 0.1
0 \_ ON\/ \/‘v\_
0205 o0 o5 1 %M 20 o0 20 a0
time [sec] frequency [rad/sec]

K. Webb ENGR 203



Fourier Transform — Impulse Function
e

The impulse function is defined as

6(t) =0, t#0
Jooc')‘(t)dt =1

Its Fourier transform is

F(w) =j 5(t)e I@tdt
Since §(t) = 0 fort # 0, and since e /¥t = 1 fort = 0
F(w) = J S(t)dt =1

The Fourier transform of the time-domain impulse function is one for all
frequencies

o Equal energy at all frequencies
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Fourier Transform — Decaying Exponential

Consider a decaying exponential

ft) =e™7" - 1(t)

where 1(t) is the unit step function 08l

f(t) = et 1(t)

06

The Fourier transform is:

)

04

(00]
F(a)) — j f(t)e_j“’tdt 0.2f
— 00
0
(00]
F(w) = J e teT/¥(t 02 0 s 2lc 3o 4o 5o 6lo
0 time [sec]
Flw) = f e-(@io)t g — _ e-otion|” - _ [0—1]
0 o+ jw 0 o+ jw

F(w) =

o+ jw
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Fourier Transform — Decaying Exponential

Fourier transform of 1 Fourier Transform of ) =< _

this exponential signal /\

is complex o9 /

Plot magnitude and //

phase separately % 5 ; ;3 0
Note the even

symmetry of 59

magnitude, andodd ¢ . \

symmetry of the phase \

of F(w) D

-100 ' I
-10 -5 0 5 10
frequency [rad/sec]
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Fourier Transform — Decaying Exponential
-

t

On logarithmic scales, this _ Fourier Transform of f( =&
Fourier transform should look 10°
familiar : N

N

f(t) could be the impulse 'F e
response of a first-order system ; | <

IF(@)I
o
/.

o Convolution of an impulse ol H R N
with the system’s impulse
response

F(w) looks like the frequency o
response of a first-order system wl | N

O Multiplication of the FT. ofan \
impulse (F(w) = 1) with the wl N
system’s frequency response |

/

/F(w)

-100 2 ‘ I I 1 I 0 I T ‘
10° 10 10 10 10
frequency [rad/sec]
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Even and Odd Symmetry
e

We are mostly concerned with real time-domain
signals

o Not true for all engineering disciplines, e.g.
communications, signal processing, etc.

For a real time-domain signal, f(t),
olf f(t) is even F(w) will be real and even
olf f(t) is odd, F(w) will be imaginary and odd

o If f(t) has neither even nor odd symmetry, F(w) will
be complex with an even real part and an odd
imaginary part.

K. Webb ENGR 203



n Discrete Fourier Transform

For discrete-time signals, mapping from the
time domain to the frequency domain is
accomplished with the discrete Fourier

transform (DFT).
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Discrete-Time Fourier Transform (DTFT)
-

The Fourier transform maps a continuous-time signal, defined for
— o0 < t < o0, to a continuous frequency-domain function defined
for—oo < w <

In practice we have to deal with discrete-time, i.e. sampled, signals
o Only defined at discrete sampling instants

f(t) - fln]

Now, mapping to the frequency domain is the discrete-time Fourier
transform (DTFT)

F)= ) flnle7/en

n=—oo

DTFT maps a discrete, aperiodic, time-domain signal to a
continuous, periodic function of frequency
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Aliasing
R

Aliasing is a phenomena that results in a signal appearing as
a lower-frequency signal as a result of sampling

In order to avoid aliasing, the sample rate must be at least
the Nyquist rate

f:S' 2 meax

where [, is the highest frequency component present in
the signal

For a given sample rate, the Nyquist frequency is the
highest frequency signal that will not result in aliasing

fs

fNyquist — 2
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Aliasing — Examples
-

f=10Hz,f_=9.0 Hz

y®, yin]

—o

Continuous-Time Signal
Sampled Signal 4
Aliased Signal

time (sec)

f=10Hz,f_=12.0 Hz

y®, yin]

—o

Continuous-Time Signal
Sampled Signal 4
Aliased Signal

K. Webb

time (sec)

y®, yin]

y®, yin]

1.5

0.5

-1

-1.5

f=10Hz,f_=20.0 Hz

—o

Continuous-Time Signal
Sampled Signal E
Aliased Signal

0.2 0.4 0.6
time (sec)

0.8 1

f=10Hz,f_=45.0 Hz

—o

Continuous-Time Signal
Sampled Signal E
Aliased Signal

time (sec)
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Discrete-Time Fourier Transform (DTFT)

[
F)= ) flnle o

n=—o

Discrete-time f[n]| generated from f(t) by sampling at a sample rate of f,, with a

sample period of T
Sampled signals can only accurately represent frequencies up to the Nyquist

frequency
fs

fmax = fNyquist = ?

Higher frequency components of f(t) are aliased down to lower frequencies in the
range of
bopoh

The DTFT is a periodic function of frequency, with a period f;
Due to aliasing, sampling in the time domain corresponds to periodicity in the
frequency domain
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The Discrete Fourier Transform (DFT)
-

The DTFT
Fw)= ) flnle7/r

n=-—oo
utilizes discrete-time, sampled, data, but still requires and infinite
amount of data

In practice, our time-domain data sets are both discrete and finite

The discrete Fourier transform, DFT, maps discrete and finite
(periodic) time-domain signals to periodic and discrete frequency-

domain signals
N-
z —]kZTC—
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The Discrete Fourier Transform (DFT)
-

Consider N samples of a time-domain signal, f[n]
o Sampled with sampling period T and sampling frequency f;
O Total time span of the sampled datais N - T

The DFT of f[n] is

N-1
F, = z f[n]e—ijnn/N
n=0

A discrete function of the integer value, k
The DFT consists of N complex values: Fy, F4, ..., Fy_1

Each value of k represents a discrete value of frequency from

f=0tof=Ff
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The Inverse Discrete Fourier Transform
X

A discrete, finite set of frequency-domain data can be
transformed back to the time domain

The inverse discrete Fourier Transform (IDFT)

1 N—
— X jk2nn/N
"N Z :

Note the 1/N scaling factor
O In practice, this is often applied when computing the DFT
o Must exist in either the DFT or IDFT, not both
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DFT Frequencies
e

N-1
F, = Z f[n]e—ijnn/N
n=0

A dot product of f[n] with a complex exponential
Fy = f[n] - e /KO

The frequency of the exponential is k(), integer multiples of the
normalized frequency, ()

QO =2m/N
which has units of rad /sample

Normalized frequency is related to the ordinary frequency by the

sample rate, f;
q— 2nf [ rad ]

fs sample
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DFT Frequencies
e

N-1
Fk — Z f[n]e—jk21m/N
n=0

# of samples: N, sample rate: f;, sample period: T
Maximum detectable frequency

fmax = fs/2

o Nyquist frequency
o Correspondstok =N/2,Q=m

Frequency increment (bin width, resolution)

fs

N-T, N

Af =

Last (N/, — 1) points of Fy, Fny i1 - Fy-1 correspond to negative frequency

fs
—E+Af...—Af
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DFT Frequencies
-
For example, consider N = 10 samples of a signal sampled

at o = 100Hz, T, = 10msec

oA =—=bc___ __ —10H2
NTs N 10-0.01sec

O fruax =2 = 50Hz

o AQ = %”md/Sa = 0.2 T4/,

0.2r 0.4 0.6m 0.8m =« 1.2 1.4m 1.6m 1.8 rad/Sa
f/fs 0 01 02 03 04 05 06 07 08 09 —
f 0 10 20 30 40 50 -40 -30 -20 -10 Hz
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DFT - Example

e
Consider the following signal

f(t)=034+05cos(2r-50-t)+ cos(2m-120-t) + 0.8 cos(2m - 320 - t)
0o Sample rate: f, = 1kHz

o Record length: N = 100
0 Bin width: Af = 10Hz

Time-Domain Signal, f(t) -- fs =1kHz, N =100

0 0.01 0.02 0.03 004 005 006 007 008 0.09
time [sec]
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DFT - Example
R

f(t)=0.3+0.5cos(2m-50-t) + cos(2m-120-t) + 0.8cos(2m - 320 - t)

DFT of f(t) -- fs =1kHz, N = 100, Af = 10.00Hz

Plotting magnitude of (real) F,, L

Components at 0, 50, 120, and
310Hz are clearly visible

0 10 20 30 40 50 60 70 80 90 100

Plot spectrum as a function of ‘
o Index value, k .
o Normalized frequency
o Ordinary frequency

F,

0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1

F}. values divided by N so that Normalized Frequency [
F, is the average value of f(t)
o Amplitude of other components 04

given by the sum of F, and F_;, =
magnitudes

02

0
-500 -400 -300 -200 -100 0 100 200 300 400 500
Frequency [HZz]
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Spectral Leakage

-0V
f(t)=0.3+0.5cos(2m-50-t) + cos(2m-120-t) + 0.8cos(2m - 320 - t)

For fy = 1kHzand N = 100, Af = 10Hz, and all signal components fall at
integer multiples of Af

o All components lie in exactly one frequency bin

Now, increase the number of samplesto N = 105
O Bin width decreasesto Af = 9.52Hz
o Each non-zero signal component now falls between frequency bins — Spectral

Leakage
DFT of f(t) -- fs =1kHz, N = 105, Af = 9.52Hz
06 I I T T T I I
04r- ® ® .
w

.........mt LM LJ«» JJ TM'J e —

-300 -200 -100 0 100 200 300 400 500
Frequency [HZ]
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Spectral Leakage
e

Signal components now fall
between two bins

DFT of f(t) -- f_ = 1kHz, N = 105, Af = 9.52Hz
04

Why non-zero F;, over more than
two bins? 035y
o Truncation (windowing) 0l !
Finite record length is equivalent to
multiplication of f(t) by a 025 e el e o
rectangular pulse (window) o .
o FT. of pulse is a sinc L 02r
o Multiplication in the time domain —
convolution in frequency domain o1
Truncated signal is assumed 0} . o
periodic
o True only if windowing function 0051 1
captures an integer number of
periods of all signal components o : -

Frequency [HZ]
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Summary of Fourier Analysis Tools
-

Fourier series continuous aperiodic
periodic (or truncated) discrete
Fourier continuous aperiodic
transform aperiodic continuous
DTFT discrete periodic
aperiodic continuous
DFT discrete periodic
periodic (or truncated) discrete
In general:
Time Domain Frequency Domain
Periodic < > Discrete
Aperiodic < > Continuous
Continuous < > Aperiodic
Discrete < > Periodic
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DFT Algorithm



Implementing the DFT in MATLAB
e

N-1
F, = Z f[n]e—jRZnn/N
n=0

A dot product of complex
N-vectors for each of the
N values of k

Fk — f[n] . e—ijnn/N

o Simple to code

o N multiplications for each
k value — N? operations

o Inefficient, particularly
for large N

K. Webb

o =1 & N o= L Ry

[ T R I e e e T R R e
e e T = B = M £ Sy Oy A T
[ | | | I O I O |

funccion Fk = dft(f)

% Computes the discrete Fourier tr

% of a vector £
E

ansform

ompute the DFT

or computing dot products

% Input:
% f: WN-wector for which to c
% OCutput:
b Fk: DFT of £ - (1xN) wector
% make sure £ T £
[M,H] = =ize(f)
fH=1
£ =1I':
H = M:
nd
3 p 11 te Fk
Fk = (1,H):

for kK = 0:N-1

or inner product

Fk(k+l) = f*exp(-j*k*2*pi*n/N);

end
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Fast Fourier Transform — FFT

The fast Fourier transform (FFT) is a very efficient
algorithm for computing the DFT

o The Cooley-Tukey algorithm

Requires on the order of N log,(IN) operations
o Significantly fewer than N2

For example, for N = 1024
o DFT: N? = 1,048,576 operations
o FFT: Nlog,(N) = 10240 operations — (102 X faster)

Requires N be a power of two
o If not, data record is padded with zeros
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- FFT in MATLAB

It is very simple to implement a straight DFT
algorithm in MATLAB, but the FFT algorithmis,
by far, more efficient .
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Fast Fourier Transform in MATLAB— £t .m
1

Xk = fft (x,n)

O x: vector of points for DFT computation
o n: optional length of the DFT to compute
O Xk: complex vector of DFT values — size (x) or an n-vector

If n is not specified, x will either be truncated or zero-
padded so that its length is n

If x is a matrix, the fft for each column of x is returned
f £t .muses the Cooley-Tukey algorithm

Fastest for 1length (x) or n that are powers of two
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Inverse FFT in MATLAB— 1fft.m
[
x=1fft (Xk,n)

o Xk: vector of points for inverse DFT computation
o n: optional length of the inverse DFT to compute

O x: complex vector of time-domain values—size (x) oran n-
vector

If n is not specified, x will either be truncated or zero-
padded so that its length is n

If Xk is a matrix, the inverse fft for each column of Xk is
returned

ifft.muses the Cooley-Tukey algorithm
Fastest for 1length (Xk) or n that are powers of two
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Shifting Negative Frequency Values — fftshift.m

[
Xshift =fft (Xk)

o Xk:vector of FFT values with zero frequency point at Xk (1)

0o Xshift: FFT vector with the zero-frequency point moved to the middle of
the vector

If N =1length (Xk) is even, first and second halves of Xk are
swapped

0 Xshift = [Xk(N/2+1:N),Xk(1:N/2)]

o Frequency points are: f = l—_ ( = Af)]

If N = length (Xk) is odd, zero frequency point moved to the
Xshift ((N+1)/2) position

0 Xshift = [Xk((N+3)/2):N ) Xk(1l:(N=1)/2)]
o Frequency points are: f = l fs fs%
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