SECTION 1: ROUNDOFF AND TRUNCATION ERRORS

ESC 440 - Computational Methods for Engineers

Introduction and Course Overview

Mathematical Models

\square As engineers, we are interested in

- Designing and analyzing physical systems
- Analyzing data
\square We can represent these systems or data with mathematical models
- An equation or system of equations that describe the system or behavior
- Relates inputs to outputs
\square Mathematical models used for analysis and simulation
- May be done analytically - by hand
- More often performed numerically - on a computer

Numerical Analysis

\square In practice, most engineering problems are solved, and analyses are performed numerically

- Using computers
\square Often, we use simulators
- Electronic circuits
- Electromagnetic fields
- Thermal/fluid systems
- Structural analysis
\square Sometimes, we use existing packages, libraries, toolboxes, functions, etc. E.g.,
- NumPy, SciPy in Python
- MATLAB
\square Other times, we must write our own code

Engineering Analyses

\square Many of the types of analyses we perform as engineers are those you have learned about in previous classes

- Solution of systems of equations
- Integration/differentiation
- Solution of differential equations
- Optimization
- Curve fitting, etc.
\square You have learned to perform these operations analytically
- By hand
- Solutions are exact
\square In this course, you will learn to solve the same types of problems numerically
- Using a computer
- Solutions are estimates

Numerical Analysis

\square Numerical analysis yields an approximate solution

- An estimate of the actual solution
\square The solution is not exact
- It includes error
\square In this first section of the course, we will learn about numerical error
\square Where does it come from?
\square What causes it to increase? Decrease?
\square How do we approximate it?

Course Overview

1. Roundoff \& Truncation Error
2. Root Finding \& Optimization
3. Systems of Equations
4. Curve Fitting
5. Integration
6. Ordinary Differential Equations
7. Fourier Analysis

Definitions of Error

True Error

\square Absolute error - the difference between an approximation and the true value

$$
E_{t}=(\text { approx } . \text { value })-(\text { true value })=\hat{x}-x
$$

\square Relative error - the true error as a percentage of the true value

$$
\varepsilon_{t}=\frac{\hat{x}-x}{x} \cdot 100 \%
$$

\square Both definitions require knowledge of the true value!

- If we had that, why would we be approximating?

Approximating the Error

\square Since we don't know the true value, we can only approximate the error
\square Often, approximations are made iteratively

- Approximate the error as the change in the approximate value from one iteration to the next

$$
\hat{E}=\hat{x}_{i+1}-\hat{x}_{i}
$$

Relative Approximate Error

\square We don't know the true value, so we can't calculate the true error - approximate the error
\square Relative approximate error - an approximation of the error relative to the approximation itself

$$
\varepsilon_{a}=\frac{\text { approx.error }}{\text { approximation }} \cdot 100 \%=\frac{\hat{E}}{\hat{x}} \cdot 100 \%
$$

Stopping Criterion

\square For iterative approximations, continue to iterate until the relative approximate error magnitude is less than a specified stopping criterion

$$
\left|\varepsilon_{a}\right|<\varepsilon_{s}
$$

\square For accuracy to at least \boldsymbol{n} significant figures set the stopping criterion to

$$
\varepsilon_{s}=\left(0.5 \times 10^{2-n}\right) \%
$$

13
 Roundoff Error

Roundoff Errors

\square Roundoff errors occur due to the way in which computers represent numerical values
\square Computer representation of numerical values is limited in terms of:

- Magnitude - there are upper and lower bounds on the magnitude of numbers that can be represented
- Precision - not all numbers can be represented exactly
\square Certain types of mathematical manipulations are more susceptible to roundoff error than others

Number Systems - Decimal

\square We are accustomed to the decimal number system

- A base-10 number system
- Ten digits: $0,1,2,3,4,5,6,7,8,9$
\square Each digit represents an integer power of 10

Binary Number System

\square Computers represent numbers in binary format

- A base-2 number system
- Two digits: 0, 1
- Easy to store binary values in computer hardware - an on or off switch - a high or low voltage
- One digit is a bit - eight bits is a byte
- Each bit represents an integer power of 2

IEEE Double-Precision Format

\square Floating point numbers in Python are represented as 64-bit double-precision floating point values - float64

- 64-bit binary word

$$
\pm\left(1+\sum_{i=1}^{52} f_{i} \cdot 2^{-i}\right) \times 2^{e}
$$

IEEE Double-Precision Format

\square Mantissa

- Only the fractional portion of the mantissa stored
- Bit to the left of the binary point assumed to be 1
- Normalized numbers
- Really a 53-bit value
\square Exponent
- 11-bit signed integer value: -1022 ... 1023
- Two special cases:
- $e=0 \times 000$ (i.e. all zeros): zero if $f=0$, subnormal \#'s if $\mathrm{f} \neq 0$
- $e=0 \times 7 \mathrm{FF}$ (i.e. all ones): ∞ if $f=0, \mathrm{NaN}$ if $\mathrm{f} \neq 0$

Normalized numbers

\square Leading zeros are removed

- Most significant digit (must be a 1 in binary) moved to the left of the binary point
$\square 53^{\text {rd }}$ bit of the mantissa (always 1) needn't be stored
\square Maximum mantissa

Subnormal Numbers

\square If $f_{0}=1$, always, then the smallest number that could be represented is: $2^{-1022} \approx 2.225 \times \mathbf{1 0}^{-308}$
\square If we allow for $f_{0}=0$, then the most significant bit is somewhere to the right of the binary point

- Leading zeros - not normalized ... subnormal
\square Allows for smaller numbers, filling in the hole around zero
\square Subnormal numbers represented by setting the exponent to zero
\square Smallest subnormal number:

$$
2^{-1022-52}=2^{-1074} \approx \mathbf{5} \times \mathbf{1 0}^{-324}
$$

Doubles - Range

\square Maximum value:

$$
\max =\left(1+\sum_{i=1}^{52} 2^{-i}\right) \times 2^{1023} \approx \mathbf{1 . 7 9 8} \times \mathbf{1 0}^{\mathbf{3 0 8}}
$$

\square Minimum normal value:

$$
\min _{\text {norm }}=2^{-1022} \approx \mathbf{2 . 2 2 5} \times \mathbf{1 0}^{-\mathbf{3 0 8}}
$$

\square Minimum subnormal value:

$$
\min _{s u b}=2^{-1022-52}=2^{-1074} \approx \mathbf{5} \times \mathbf{1 0}^{-324}
$$

\square Precision - machine epsilon

$$
\varepsilon=2^{-52} \approx 2.22 \times 10^{-16}
$$

Roundoff Error - Mathematical Operations

Certain types of mathematical operations are more susceptible to roundoff errors:
\square Subtractive cancellation - subtracting of two nearlyequal numbers results in a loss of significant digits
\square Large computations - even if the roundoff error from a single operation is small, the cumulative error from many operations may be significant
\square Adding large and small numbers - as in an infinite series
\square Inner products - (i.e., dot product) very common operation - solution of linear systems of equations

Truncation Error

Truncation Errors

\square Errors that result from the use of an approximation in place of an exact mathematical procedure

- E.g., numerical integration, or the approximation derivatives with finite-difference approximations
\square To understand how truncation errors arise, and to gain an understanding of their magnitudes, we'll make use of the Taylor Series

Taylor Series

\square Taylor's Theorem - any smooth (i.e., continuously differentiable) function can be approximated as a polynomial
\square Taylor Series

$$
f\left(x_{i+1}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{i}\right)}{n!}\left(x_{i+1}-x_{i}\right)^{n}
$$

\square This infinite series is an equality

- An exact representation of any smooth function as a polynomial
\square An infinite-order polynomial - impractical

Taylor Series Approximation

\square Can approximate a function as a polynomial by truncating the Taylor series after a finite number of terms

$$
f\left(x_{i+1}\right) \approx f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+\cdots+\frac{f^{(n)}\left(x_{i}\right)}{n!} h^{n}
$$

where $h=x_{i+1}-x_{i}$ is the step size

Taylor Series Truncation Error

\square Can account for error by lumping the $n+1$ and higher-order terms into a single term, R_{n}

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+\cdots+\frac{f^{(n)}\left(x_{i}\right)}{n!} h^{n}+R_{n}
$$

$\square R_{n}$ is the error associated with truncating after n terms

$$
R_{n}=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}
$$

$\square \xi$ is some (unknown) value of x between x_{i} and x_{i+1}

Derivative Mean-Value Theorem

\square If $f(x)$ and $f^{\prime}(x)$ are continuous on $\left[x_{i}, x_{i+1}\right]$, then there is a point on this interval, ξ, where $f^{\prime}(\xi)$ is the slope of the line joining $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$

Truncation Error - Dependence on Step Size

$$
R_{n}=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}
$$

\square We don't know ξ, so we don't know R_{n}
\square We do know it's proportional to h^{n+1}, where h is the step size

- Error is on the order of h^{n+1}

$$
R_{n}=O\left(h^{n+1}\right)
$$

\square If $n=1$ (first-order approx.), halving the step size will quarter the error

Truncation Errors in Practice

- Discretizing equations

Finite-difference approximations

Discretization of Equations

\square As engineers, many of the mathematical expressions we are interested in are differential equations

- We know how to evaluate derivatives analytically
\square Need an approximation for the derivative operation in order to solve numerically
\square Discretization - conversion of a continuous function, e.g., differentiation, to a discrete approximation for numerical evaluation

Finite Difference Approximations

\square Recall the definition of a derivative

$$
f^{\prime}\left(x_{i}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}
$$

\square Remove the limit to approximate this numerically

$$
f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}
$$

\square This is the forward difference approximation

- Uses value at x_{i} and forward one step at x_{i+1} to approximate the derivative at x_{i}

Discretizing Equations - Example

\square A free-falling object can be modeled as

$$
\frac{d v}{d t}=g-\frac{c_{d}}{m} v^{2}
$$

where v is velocity, m is mass, g is gravitational acceleration, and c_{d} is a lumped drag coefficient
\square This is a non-linear ordinary differential equation (ODE), which can be solved analytically to yield

$$
v(t)=\sqrt{\frac{m g}{c_{d}}} \tanh \left(\sqrt{\frac{g c_{d}}{m}} \cdot t\right)
$$

Discretizing Equations - Example

\square To solve numerically instead, approximate the derivative operation with a finite difference

$$
\frac{v\left(t_{i+1}\right)-v\left(t_{i}\right)}{t_{i+1}-t_{i}} \cong g-\frac{c_{d}}{m} v\left(t_{i}\right)^{2}
$$

\square Solving for $v\left(t_{i+1}\right)$ and using h to denote the time step yields

$$
v\left(t_{i+1}\right) \cong v\left(t_{i}\right)+\left[g-\frac{c_{d}}{m} v\left(t_{i}\right)^{2}\right] h
$$

\square We've transformed the differential equation to a difference equation
\square An algebraic equation

- Can be solved iteratively - using a loop

Discretizing Equations - Example

$$
v\left(t_{i+1}\right) \cong v\left(t_{i}\right)+\left[g-\frac{c_{d}}{m} v\left(t_{i}\right)^{2}\right] h
$$

\square The term in the square brackets is the original diff. eq., i.e., it is $v^{\prime}(t)$
\square The difference equation is a first-order Taylor series approximation

$$
v\left(t_{i+1}\right)=v\left(t_{i}\right)+v^{\prime}\left(t_{i}\right) h+R_{1}
$$

\square Where we know that the error is on the order of the step size squared

$$
R_{1}=O\left(h^{2}\right)
$$

\square Taylor series provides a relation between the step size and the accuracy of the numerical solution to the diff. eqn.

Finite Difference Methods

\square The preceding example showed

- One method - forward difference - for numerically approximating a derivative
\square Transformation of a differential equation to a difference equation
- How Taylor series can provide an understanding of the error associated with an approximation
\square Now we'll take a closer look at three finite difference methods and how Taylor series can help us understand the error associated with each

Forward Difference

\square Can also derive the forward difference approximation from the Taylor Series

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+R_{1}
$$

\square Solving for $f^{\prime}\left(x_{i}\right)$

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}-\frac{R_{1}}{h}
$$

\square We've already seen that

$$
R_{1}=O\left(h^{2}\right)
$$

\square So, the error term is

$$
\frac{R_{1}}{h}=O(h)
$$

\square The forward difference, including error, is

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}+O(h)
$$

\square Error of the forward difference approximation is on the order of the step size

Forward Difference

\square Value of the function, $f(x)$, at x_{i} and forward one step at x_{i+1} used to approximate the derivative at x_{i}

Backward Difference

\square Backward difference uses value of $f(x)$ at x_{i} and one step backward at x_{i-1} to approximate the derivative at x_{i}

$$
f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{h}
$$

\square This can also be developed by expanding the Taylor series backward

$$
f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h+R_{1}
$$

\square Then solving for $f^{\prime}\left(x_{i}\right)$

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{h}+\frac{R_{1}}{h}
$$

\square Again the error is on the order of the step size

$$
\frac{R_{1}}{h}=O(h)
$$

\square The backward difference expression, including error, becomes

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{h}+O(h)
$$

\square Error of the backward difference approximation is on the order of the step size

Backward Difference

\square Now use the value of $f(x)$ at x_{i} and backward one step at x_{i-1} to approximate the derivative at x_{i}

Again, error is

$$
R=O(h)
$$

Central Difference

\square Central difference uses value of $f(x)$ one step backward at x_{i-1} and ones step ahead at x_{i+1} to approximate the derivative at x_{i}

$$
f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h}
$$

$\square \quad$ This can also be developed by subtracting the backward Taylor series from the forward series
\square Second-order derivative terms cancel, leaving

$$
f\left(x_{i+1}\right)=f\left(x_{i-1}\right)+2 f^{\prime}\left(x_{i}\right) h+R_{2}
$$

\square Now, the remainder term is

$$
R_{2}=O\left(h^{3}\right)
$$

\square The central difference expression, including error, becomes

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h}+O\left(h^{2}\right)
$$

\square Error of the central difference approximation is on the order of the step size squared
\square Central difference method is more accurate than forward or backward

- Uses more information

Central Difference

\square Now use the value of $f(x)$ backward one
step at x_{i-1} and
forward one step
at x_{i+1} to
approximate the derivative at x_{i}
\square Reduced error:

$$
R=O\left(h^{2}\right)
$$

Total Numerical Error

Total Numerical Error

\square Total numerical error is the sum of roundoff and truncation error
\square Roundoff error is largely out of your control, and, with double precision arithmetic, it is not typically an issue

- Truncation error can be a significant problem, but can be reduced by decreasing step size
\square Reducing step size reduces truncation error, but may also result in subtractive cancellation, thereby increasing roundoff error
\square Choose step size to minimize total error
- Or, more typically, to reduce truncation error to an acceptable level

Total Numerical Error

\square Reducing step size reduces truncation error, but may also result in subtractive cancellation, thereby increasing roundoff error
\square Could choose step size to minimize total error
\square But, more typically, reduce step size just enough to reduce truncation error to an acceptable level

Central Difference Error Analysis

\square First derivative of a function in terms of the central difference approximation is

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h}-\frac{\mathrm{f}^{(3)}(\xi)}{6} h^{2}
$$

\square The last term on the right is the truncation error
\square There is also roundoff error associated with each value

$$
\begin{aligned}
& f\left(x_{i-1}\right)=\tilde{f}\left(x_{i-1}\right)-e_{i-1} \\
& f\left(x_{i+1}\right)=\tilde{f}\left(x_{i+1}\right)-e_{i+1}
\end{aligned}
$$

were $\tilde{f}\left(x_{i}\right)$ represents a rounded value, and e_{i} is the corresponding roundoff error

Central Difference Error Analysis

\square Substituting the expressions for the rounded values into the expression for the true derivative yields

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h}-\frac{\mathrm{f}^{(3)}(\xi)}{6} h^{2}+\frac{e_{i+1}-e_{i-1}}{2 h}
$$

\square Giving a total error of

\square Truncation error increases with step size
\square Roundoff error decreases with step size

