
ESC 440 – Numerical Methods for Engineers

SECTION 1: ROUNDOFF AND 
TRUNCATION ERRORS
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Mathematical Models

 As engineers, we are interested in
 Designing and analyzing physical systems

 Analyzing data

 We can represent these systems or data with 
mathematical models
 An equation or system of equations that describe the 

system or behavior
◼ Relates inputs to outputs

 Mathematical models used for analysis and simulation
 May be done analytically – by hand

 More often performed numerically – on a computer
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Numerical Analysis

 In practice, most engineering problems are solved, and analyses are 
performed numerically
 Using computers

 Often, we use simulators 
 Electronic circuits

 Electromagnetic fields

 Thermal/fluid systems

 Structural analysis

 Sometimes, we use existing packages, libraries, toolboxes, functions, 
etc. E.g., 
 NumPy, SciPy in Python

 MATLAB

 Other times, we must write our own code
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Engineering Analyses

 Many of the types of analyses we perform as engineers are those 
you have learned about in previous classes
 Solution of systems of equations

 Integration/differentiation

 Solution of differential equations

 Optimization

 Curve fitting, etc.

 You have learned to perform these operations analytically 
 By hand

 Solutions are exact

 In this course, you will learn to solve the same types of problems 
numerically
 Using a computer

 Solutions are estimates
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Numerical Analysis

 Numerical analysis yields an approximate solution

 An estimate of the actual solution

 The solution is not exact

 It includes error

 In this first section of the course, we will learn 
about numerical error

 Where does it come from?

 What causes it to increase? Decrease?

 How do we approximate it?
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Course Overview

1. Roundoff & Truncation Error

2. Root Finding & Optimization

3. Systems of Equations

4. Curve Fitting

5. Integration

6. Ordinary Differential Equations

7. Fourier Analysis
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True Error

 Absolute error – the difference between an 
approximation and the true value

𝐸𝑡 = 𝑎𝑝𝑝𝑟𝑜𝑥. 𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 = ො𝑥 − 𝑥

 Relative error – the true error as a percentage of the 
true value

𝜀𝑡 =
ො𝑥 − 𝑥

𝑥
∙ 100%

 Both definitions require knowledge of the true value!

 If we had that, why would we be approximating?
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Approximating the Error

 Since we don’t know the true value, we can only 
approximate the error

 Often, approximations are made iteratively

 Approximate the error as the change in the 
approximate value from one iteration to the next

෠𝐸  = ො𝑥𝑖+1 − ො𝑥𝑖
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Relative Approximate Error

 We don’t know the true value, so we can’t calculate 
the true error – approximate the error

 Relative approximate error – an approximation of 
the error relative to the approximation itself

𝜀𝑎 =
𝑎𝑝𝑝𝑟𝑜𝑥. 𝑒𝑟𝑟𝑜𝑟

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛
∙ 100% =

෠𝐸

ො𝑥
∙ 100%
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Stopping Criterion

 For iterative approximations, continue to iterate 
until the relative approximate error magnitude is 
less than a specified stopping criterion

𝜀𝑎 < 𝜀𝑠

 For accuracy to at least 𝒏 significant figures set the 
stopping criterion to

𝜀𝑠 = 0.5 × 102−𝑛 %
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Roundoff Errors

 Roundoff errors occur due to the way in which 
computers represent numerical values

 Computer representation of numerical values is 
limited in terms of:

 Magnitude – there are upper and lower bounds on the 
magnitude of numbers that can be represented

 Precision – not all numbers can be represented exactly

 Certain types of mathematical manipulations are 
more susceptible to roundoff error than others
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Number Systems – Decimal 

 We are accustomed to the decimal number system

 A base-10 number system

 Ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 Each digit represents an integer power of 10

7281.36

6 x 10-2

3 x 10-1

1 x 10-0

8 x 101

2 x 102

7 x 103
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Binary Number System

 Computers represent numbers in binary format
 A base-2 number system

 Two digits: 0, 1
◼ Easy to store binary values in computer hardware – an on or off switch – a  high or low 

voltage

 One digit is a bit – eight bits is a byte

 Each bit represents an integer power of 2

10110101
1 x 20

 = 1
0 x 21

 = 0

1 x 22
 = 4

0 x 23
 = 0

1 x 24
 = 16

1 x 25
 = 32

0 x 26
 = 0

1 x 27
 = 128

= (181)10
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IEEE Double-Precision Format

 Floating point numbers in Python are represented as 
64-bit double-precision floating point values – float64

 64-bit binary word

52 bits11 bits

Mantissa – (f)

Signed 
Exponent – (e)

Sign bit

± 1 + ෍
𝑖=1

52

𝑓𝑖 ∙ 2
−𝑖 × 2𝑒
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IEEE Double-Precision Format

 Mantissa

 Only the fractional portion of the mantissa stored

 Bit to the left of the binary point assumed to be 1

◼ Normalized numbers

◼ Really a 53-bit value

 Exponent

 11-bit signed integer value: -1022 … 1023

 Two special cases:

◼ e = 0x000 (i.e. all zeros): zero if f = 0, subnormal #’s if f≠0

◼ e = 0x7FF (i.e. all ones): ∞ if f = 0, NaN if f≠0
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Normalized numbers

 Leading zeros are removed

 Most significant digit (must be a 1 in binary) moved to 
the left of the binary point

 53rd bit of the mantissa (always 1) needn’t be stored

 Maximum mantissa

1.111……11

𝑓52𝑓0

Not stored

𝑓1

𝑓51
𝑓2
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Subnormal Numbers

 If 𝑓0 = 1, always, then the smallest number that 
could be represented is: 2−1022 ≈ 𝟐. 𝟐𝟐𝟓 × 𝟏𝟎−𝟑𝟎𝟖

 If we allow for 𝑓0 = 0, then the most significant bit 
is somewhere to the right of the binary point
 Leading zeros – not normalized … subnormal

 Allows for smaller numbers, filling in the hole around 
zero

 Subnormal numbers represented by setting the 
exponent to zero

 Smallest subnormal number:

2−1022−52 = 2−1074 ≈ 𝟓 × 𝟏𝟎−𝟑𝟐𝟒
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Doubles – Range 

 Maximum value:

𝑚𝑎𝑥 = 1 + ෍
𝑖=1

52

2−𝑖 × 21023 ≈ 𝟏. 𝟕𝟗𝟖 × 𝟏𝟎𝟑𝟎𝟖

 Minimum normal value:

𝑚𝑖𝑛𝑛𝑜𝑟𝑚 = 2−1022 ≈ 𝟐. 𝟐𝟐𝟓 × 𝟏𝟎−𝟑𝟎𝟖

 Minimum subnormal value:

𝑚𝑖𝑛𝑠𝑢𝑏 = 2−1022−52 = 2−1074 ≈ 𝟓 × 𝟏𝟎−𝟑𝟐𝟒

 Precision – machine epsilon

𝜺 = 𝟐−𝟓𝟐 ≈ 𝟐. 𝟐𝟐 × 𝟏𝟎−𝟏𝟔
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Roundoff Error – Mathematical Operations

Certain types of mathematical operations are more 
susceptible to roundoff errors:

 Subtractive cancellation – subtracting of two nearly-
equal numbers results in a loss of significant digits

 Large computations – even if the roundoff error from a 
single operation is small, the cumulative error from 
many operations may be significant

 Adding large and small numbers – as in an infinite 
series

 Inner products – (i.e., dot product) very common 
operation – solution of linear systems of equations
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Truncation Errors

 Errors that result from the use of an approximation 
in place of an exact mathematical procedure

 E.g., numerical integration, or the approximation 
derivatives with finite-difference approximations

 To understand how truncation errors arise, and to 
gain an understanding of their magnitudes, we’ll 
make use of the Taylor Series
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Taylor Series

 Taylor’s Theorem – any smooth (i.e., continuously 
differentiable) function can be approximated as a 
polynomial

 Taylor Series

𝑓 𝑥𝑖+1 = ෍

𝑛=0

∞
𝑓 𝑛 𝑥𝑖

𝑛!
𝑥𝑖+1 − 𝑥𝑖

𝑛

 This infinite series is an equality

 An exact representation of any smooth function as a 
polynomial

 An infinite-order polynomial – impractical
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Taylor Series Approximation

 Can approximate a function as a polynomial by truncating 
the Taylor series after a finite number of terms

𝑓 𝑥𝑖+1 ≈ 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 ℎ +
𝑓′′ 𝑥𝑖

2!
ℎ2 + ⋯ +

𝑓 𝑛 𝑥𝑖

𝑛!
ℎ𝑛

where ℎ = 𝑥𝑖+1 − 𝑥𝑖  is the step size

Chapra
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Taylor Series Truncation Error

 Can account for error by lumping the 𝑛 + 1 and 
higher-order terms into a single term, 𝑅𝑛

𝑓 𝑥𝑖+1 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 ℎ +
𝑓′′ 𝑥𝑖

2!
ℎ2 + ⋯ +

𝑓 𝑛 𝑥𝑖

𝑛!
ℎ𝑛 + 𝑅𝑛

 𝑅𝑛 is the error associated with truncating after 𝑛 terms

𝑅𝑛 =
𝑓 𝑛+1 𝜉

𝑛 + 1 !
ℎ𝑛+1

 𝜉 is some (unknown) value of 𝑥 between 𝑥𝑖 and 𝑥𝑖+1
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Derivative Mean-Value Theorem

 If 𝑓 𝑥  and 𝑓′ 𝑥  are continuous on 𝑥𝑖 , 𝑥𝑖+1 , then 
there is a point on this interval, 𝜉, where 𝑓′ 𝜉  is the 
slope of the line joining 𝑓 𝑥𝑖  and 𝑓 𝑥𝑖+1

Chapra
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Truncation Error – Dependence on Step Size

𝑅𝑛 =
𝑓

𝑛+1
𝜉

𝑛 + 1 !
ℎ

𝑛+1

 We don’t know 𝜉, so we don’t know 𝑅𝑛

 We do know it’s proportional to ℎ𝑛+1, where ℎ is the 
step size

 Error is on the order of ℎ𝑛+1

𝑅𝑛 = 𝑂 ℎ𝑛+1

 If 𝑛 = 1 (first-order approx.), halving the step size 
will quarter the error
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• Discretizing equations

• Finite-difference approximations

Truncation Errors in Practice30
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Discretization of Equations

 As engineers, many of the mathematical 
expressions we are interested in are differential 
equations

 We know how to evaluate derivatives analytically

 Need an approximation for the derivative operation in 
order to solve numerically

 Discretization – conversion of a continuous 
function, e.g., differentiation, to a discrete 
approximation for numerical evaluation
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Finite Difference Approximations

 Recall the definition of a derivative

𝑓′ 𝑥𝑖 = lim
ℎ→0

𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ

 Remove the limit to  approximate this numerically

𝑓′ 𝑥𝑖 ≈
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ

 This is the forward difference approximation

 Uses value at 𝑥𝑖 and forward one step at 𝑥𝑖+1 to 
approximate the derivative at 𝑥𝑖
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Discretizing Equations – Example 

 A free-falling object can be modeled as 

𝑑𝑣

𝑑𝑡
= 𝑔 −

𝑐𝑑

𝑚
𝑣2

where 𝑣 is velocity, 𝑚 is mass, 𝑔 is gravitational acceleration, and  𝑐𝑑 is a 
lumped drag coefficient

 This is a non-linear ordinary differential equation 
(ODE), which can be solved analytically to yield

𝑣 𝑡 =
𝑚𝑔

𝑐𝑑
tanh

𝑔𝑐𝑑

𝑚
∙ 𝑡
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Discretizing Equations – Example 

 To solve numerically instead, approximate the 
derivative operation with a finite difference

𝑣 𝑡𝑖+1 − 𝑣 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
≅ 𝑔 −

𝑐𝑑

𝑚
𝑣 𝑡𝑖

2

 Solving for 𝑣 𝑡𝑖+1  and using ℎ to denote the time step 
yields

𝑣 𝑡𝑖+1 ≅ 𝑣 𝑡𝑖 + 𝑔 −
𝑐𝑑

𝑚
𝑣 𝑡𝑖

2 ℎ

 We’ve transformed the differential equation to a 
difference equation
 An algebraic equation
 Can be solved iteratively – using a loop
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Discretizing Equations – Example 

𝑣 𝑡𝑖+1 ≅ 𝑣 𝑡𝑖 + 𝑔 −
𝑐𝑑

𝑚
𝑣 𝑡𝑖

2 ℎ

 The term in the square brackets is the original diff. eq., i.e., it is 
𝑣′ 𝑡

 The difference equation is a first-order Taylor series 
approximation

𝑣 𝑡𝑖+1 = 𝑣 𝑡𝑖 + 𝑣′ 𝑡𝑖  ℎ + 𝑅1

 Where we know that the error is on the order of the step size 
squared

𝑅1 = 𝑂 ℎ2

 Taylor series provides a relation between the step size and 
the accuracy of the numerical solution to the diff. eqn.
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Finite Difference Methods

 The preceding example showed

 One method – forward difference – for numerically 
approximating a derivative

 Transformation of a differential equation to a difference 
equation

 How Taylor series can provide an understanding of the 
error associated with an approximation

 Now we’ll take a closer look at three finite 
difference methods and how Taylor series can help 
us understand the error associated with each



K. Webb ESC 440

37

Forward Difference

 Can also derive the forward 
difference approximation from 
the Taylor Series

𝑓 𝑥𝑖+1 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 ℎ + 𝑅1

 Solving for 𝑓′ 𝑥𝑖

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ
−

𝑅1

ℎ

 We’ve already seen that

𝑅1 = 𝑂 ℎ2

 So, the error term is

𝑅1

ℎ
= 𝑂(ℎ)

 The forward difference, 
including error, is

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ
+ 𝑂 ℎ

 Error of the forward 
difference approximation is 
on the order of the step 
size
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Forward Difference

 Value of the 
function, 𝑓 𝑥 , 
at 𝑥𝑖 and 
forward one 
step at 𝑥𝑖+1 
used to 
approximate 
the derivative 
at 𝑥𝑖Chapra
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Backward Difference

 Backward difference uses value of 
𝑓(𝑥) at 𝑥𝑖 and one step backward at 
𝑥𝑖−1 to approximate the derivative at 
𝑥𝑖

𝑓′ 𝑥𝑖 ≈
𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

ℎ

 This can also be developed by 

expanding the Taylor series backward

𝑓 𝑥𝑖−1 = 𝑓 𝑥𝑖 − 𝑓′ 𝑥𝑖 ℎ + 𝑅1

 Then solving for 𝑓′ 𝑥𝑖

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

ℎ
+

𝑅1

ℎ

 Again the error is on the order of 
the step size

𝑅1

ℎ
= 𝑂(ℎ)

 The backward difference 
expression, including error, 
becomes

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

ℎ
+ 𝑂 ℎ

 Error of the backward 
difference approximation is 
on the order of the step size
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Backward Difference

 Now use the 
value of 𝑓 𝑥  
at 𝑥𝑖 and 
backward one 
step at 𝑥𝑖−1 to 
approximate 
the derivative 
at 𝑥𝑖

 Again, error is

𝑅 = 𝑂 ℎChapra
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Central Difference

 Central difference uses value of 𝑓(𝑥) 
one step backward at 𝑥𝑖−1 and ones 
step ahead at 𝑥𝑖+1 to approximate 
the derivative at 𝑥𝑖

𝑓′ 𝑥𝑖 ≈
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ

 This can also be developed by 

subtracting  the backward Taylor 

series from the forward series

 Second-order derivative terms 

cancel, leaving

𝑓 𝑥𝑖+1 = 𝑓 𝑥𝑖−1 + 2𝑓′ 𝑥𝑖 ℎ + 𝑅2

 Now, the remainder term is

𝑅2 = 𝑂(ℎ3)

 The central difference expression, 
including error, becomes

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ
+ 𝑂 ℎ2

 Error of the central difference 
approximation is on the order of 
the step size squared

 Central difference method is 
more accurate than forward or 
backward

 Uses more information
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Central Difference

 Now use the 
value of 𝑓 𝑥  
backward one 
step at 𝑥𝑖−1 and 
forward one step 
at 𝑥𝑖+1 to 
approximate the 
derivative at 𝑥𝑖

 Reduced error:

𝑅 = 𝑂 ℎ2
Chapra
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Total Numerical Error

 Total numerical error is the sum of roundoff and 
truncation error
 Roundoff error is largely out of your control, and, with 

double precision arithmetic, it is not typically an issue

 Truncation error can be a significant problem, but can 
be reduced by decreasing step size

 Reducing step size reduces truncation error, but 
may also result in subtractive cancellation, thereby 
increasing roundoff error

 Choose step size to minimize total error
 Or, more typically, to reduce truncation error to an 

acceptable level



K. Webb ESC 440

45

Total Numerical Error

 Reducing step size reduces truncation error, but may 
also result in subtractive cancellation, thereby 
increasing roundoff error

 Could choose step size 
to minimize total error

 But, more typically, 
reduce step size just 
enough to reduce 
truncation error to an 
acceptable level

Chapra
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Central Difference Error Analysis

 First derivative of a function in terms of the central 
difference approximation is

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ
−

f 3 𝜉

6
ℎ2

 The last term on the right is the truncation error
 There is also roundoff error associated with each value

𝑓 𝑥𝑖−1 = ሚ𝑓 𝑥𝑖−1 − 𝑒𝑖−1

𝑓 𝑥𝑖+1 = ሚ𝑓 𝑥𝑖+1 − 𝑒𝑖+1

were ሚ𝑓 𝑥𝑖  represents a rounded value, and 𝑒𝑖 is the 
corresponding roundoff error
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Central Difference Error Analysis

 Substituting the expressions for the rounded values into 
the expression for the true derivative yields

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ
−

f 3 𝜉

6
ℎ2 +

𝑒𝑖+1 − 𝑒𝑖−1

2ℎ

 Giving a total error of 

𝑒𝑟𝑟 =
𝑒𝑖+1 − 𝑒𝑖−1

2ℎ
 −

f 3 𝜉

6
ℎ2

 Truncation error increases with step size

 Roundoff error decreases with step size

Truncation error
Roundoff error
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