SECTION 1: ROUNDOFF AND
TRUNCATION ERRORS

- ESC 440 — Numerical Methods for Engineers



Introduction and Course Overview
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Mathematical Models

As engineers, we are interested in
o Designing and analyzing physical systems
o Analyzing data

We can represent these systems or data with
mathematical models

O An equation or system of equations that describe the
system or behavior

Relates inputs to outputs

Mathematical models used for analysis and simulation
o May be done analytically — by hand
o More often performed numerically — on a computer
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Numerical Analysis
R

In practice, most engineering problems are solved, and analyses are
performed numerically

o Using computers

Often, we use simulators
o Electronic circuits

o Electromagnetic fields
o Thermal/fluid systems
o Structural analysis

Sometimes, we use existing packages, libraries, toolboxes, functions,
etc. E.g,,

o NumPy, SciPy in Python
o MATLAB

Other times, we must write our own code
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Engineering Analyses
R

Many of the types of analyses we perform as engineers are those
you have learned about in previous classes

o Solution of systems of equations
O Integration/differentiation

o Solution of differential equations
o Optimization

o Curve fitting, etc.

You have learned to perform these operations analytically
o By hand
o Solutions are exact

In this course, you will learn to solve the same types of problems
numerically

O Using a computer
o Solutions are estimates
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Numerical Analysis
-
Numerical analysis yields an approximate solution
o An estimate of the actual solution
The solution is not exact
o It includes error

In this first section of the course, we will learn
about numerical error

0 Where does it come from?
o What causes it to increase? Decrease?
o How do we approximate it?
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Course Overview
-

Roundoff & Truncation Error

Root Finding & Optimization

Systems of Equations

Curve Fitting

Integration

Ordinary Differential Equations

Fourier Analysis
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- Definitions of Error
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True Error
X

Absolute error — the difference between an
approximation and the true value

E;. = (approx.value) — (true value) = X — x

Relative error — the true error as a percentage of the
true value

N\

- 100%

gt:
X

Both definitions require knowledge of the true value!

o If we had that, why would we be approximating?
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Approximating the Error
e

Since we don’t know the true value, we can only
approximate the error
Often, approximations are made iteratively

o Approximate the error as the change in the
approximate value from one iteration to the next

E =Xiy1 — X
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Relative Approximate Error

We don’t know the true value, so we can’t calculate
the true error — approximate the error

Relative approximate error — an approximation of
the error relative to the approximation itself

approx.error
Eq = il -100% =

= : _ - 100%
approximation

= | T
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Stopping Criterion
=
For iterative approximations, continue to iterate

until the relative approximate error magnitude is
less than a specified stopping criterion

|€a| < &

For accuracy to at least n significant figures set the
stopping criterion to

gs = (0.5 X 1027™")%
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- Roundoff Error
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Roundoff Errors
-

Roundoff errors occur due to the way in which
computers represent numerical values

Computer representation of numerical values is
limited in terms of:

o Magnitude — there are upper and lower bounds on the
magnitude of numbers that can be represented

o Precision — not all numbers can be represented exactly

Certain types of mathematical manipulations are
more susceptible to roundoff error than others

K. Webb ESC 440



Number Systems — Decimal
e

We are accustomed to the decimal number system

o A base-10 number system
o Ten digits: 0,1, 2,3,4,5,6, 7,8, 9
o Each digit represents an integer power of 10

71281.30

‘ 6 x 1072
3x101
1x10°
8 x 10!
2 x 107
7 x 103
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Binary Number System
R

Computers represent numbers in binary format
O A base-2 number system
o Two digits: 0, 1

Easy to store binary values in computer hardware — an on or off switch —a high or low
voltage

o One digit is a bit — eight bits is a byte
o Each bit represents an integer power of 2

10110101
‘ L > 1x20=1

0x2'=0

1x2%2=4

0x23=0 = (181)10
1x2%4=16

1x2°=32

0x26=0

1x27=128
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|EEE Double-Precision Format
-

Floating point numbers in Python are represented as
64-bit double-precision floating point values — float64

o 64-bit binary word

o Signed
Sign bit Exponent — (e) Mantissa — (f)
\ A
l ( M\ :
11 bits o2 bits

52 )
i(1+ ];.z-l)xze
1

1=
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IEEE Double-Precision Format
I

Mantissa

o Only the fractional portion of the mantissa stored
O Bit to the left of the binary point assumed to be 1

Normalized numbers
Really a 53-bit value

Exponent
o 11-bit signed integer value: -1022 ... 1023

o Two special cases:
e = 0x000 (i.e. all zeros): zero if f = 0, subnormal #’s if f+0
e = OX7FF (i.e. all ones): oo if f=0, NaN if f#0
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Normalized numbers

Leading zeros are removed

0 Most significant digit (must be a 1 in binary) moved to
the left of the binary point

o 53 bit of the mantissa (always 1) needn’t be stored

Maximum mantissa

1.111...11
. \
fo h fs2

Not stored f2 f=1

K. Webb ESC 440



Subnormal Numbers

-
If fo = 1, always, then the smallest number that
could be represented is: 271022 ~ 2,225 x 107308
If we allow for f, = 0, then the most significant bit
is somewhere to the right of the binary point
O Leading zeros — not normalized ... subnormal

o Allows for smaller numbers, filling in the hole around
Zero

Subnormal numbers represented by setting the
exponent to zero

Smallest subnormal number:
2—1022—52 — 2—1074 ~ 5 X 10—324
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Doubles — Range
e

Maximum value:

52
max = (1 + z 2-l> x 21023 ~ 1,798 x 10308
i=1

Minimum normal value:

MiNyppm = 271022 =~ 2,225 x 107308

Minimum subnormal value:

minsub — 2—1022—52 — 2—1074— ~ 5 X 10—324-

Precision — machine epsilon
£=2"2x~222x10716
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Roundoff Error — Mathematical Operations
e

Certain types of mathematical operations are more
susceptible to roundoff errors:

Subtractive cancellation — subtracting of two nearly-
equal numbers results in a loss of significant digits

Large computations — even if the roundoff error from a
single operation is small, the cumulative error from
many operations may be significant

Adding large and small numbers — as in an infinite
series

Inner products — (i.e., dot product) very common
operation — solution of linear systems of equations
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- Truncation Error
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Truncation Errors
X

Errors that result from the use of an approximation
in place of an exact mathematical procedure

o E.g., numerical integration, or the approximation
derivatives with finite-difference approximations

To understand how truncation errors arise, and to
gain an understanding of their magnitudes, we’ll
make use of the Taylor Series
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Taylor Series
R

Taylor’s Theorem — any smooth (i.e., continuously
differentiable) function can be approximated as a
polynomial

Taylor Series
NARED
flt) = ) 28 (g — )"
n=0

This infinite series is an equality

O An exact representation of any smooth function as a
polynomial

o An infinite-order polynomial — impractical
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Taylor Series Approximation

Can approximate a function as a polynomial by truncating
the Taylor series after a finite number of terms

" (1) (.
Flxir) ~ FG) + fGeh + ) GO

h% 4 -+
n!
where h = x;,1 — x; is the step size

flx)4 f('\'i)

Zero order ® flv..) = flx)
- R e TEm@ Sl ) = flx) + [k
s @ flay 1) = i) + Pl L o
Sxiq)
0

I =
o
b ]
X
Il
=l
-Y

v
h Chapra
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Taylor Series Truncation Error
e

Can account for error by lumping then + 1 and
higher-order terms into a single term, R,

(e (M) (5.
RCOIPSY Lelc
2! n!

fxiv1) = f(x) + f'(x)h + h™ + R,

R,, is the error associated with truncating after n terms

f(n+1) (5)
(n+ 1)'

n

¢ is some (unknown) value of x between x; and x;4 1
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Derivative Mean-Value Theorem

If f(x) and f'(x) are continuous on [x;, x;.+1], then
there is a point on this interval, &, where f'(§) is the
slope of the line joining f(x;) and f(x;+1)

f(l) A

Slope =f'(£)

h aaaaaa
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Truncation Error — Dependence on Step Size
e

f(n+1) (f) 1
— Bt
(n+ 1!

n

We don’t know ¢, so we don’t know R,

o We do know it’s proportional to h™*!, where h is the
step size

o Error is on the order of h™*1
Rn — O(hn+1)

If n = 1 (first-order approx.), halving the step size
will quarter the error
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- Truncation Errors in Practice

Discretizing equations
Finite-difference approximations

K. Webb ESC 440



Discretization of Equations
-
As engineers, many of the mathematical

expressions we are interested in are differential
equations

o We know how to evaluate derivatives analytically

o Need an approximation for the derivative operation in
order to solve numerically

Discretization — conversion of a continuous
function, e.g., differentiation, to a discrete
approximation for numerical evaluation
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Finite Difference Approximations
R
Recall the definition of a derivative

fQxivr) — FQx)
h

f'(x) = lim

Remove the limit to approximate this numerically

f(xiv1) — f(x;)
h

fi(x) =

This is the forward difference approximation

O Uses value at x; and forward one step at x;,4 to
approximate the derivative at x;
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Discretizing Equations — Example
e
A free-falling object can be modeled as

where v is velocity, m is mass, g is gravitational acceleration, and ¢, is a
lumped drag coefficient

This is a non-linear ordinary differential equation
(ODE), which can be solved analytically to yield

m C
v(t) = —gtanh< /ﬁ-t)
Cd m

N
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Discretizing Equations — Example

To solve numerically instead, approximate the
derivative operation with a finite difference

v(tir1) — v(t;) -
tiv1 —

Cd
— —v(t;)?
m

Solving for v(t;4+1) and using h to denote the time step
yields

v(tin) = v(t) + [g — 2 v()?] h

We've transformed the differential equation to a
difference equation

o An algebraic equation
o Can be solved iteratively — using a loop
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Discretizing Equations — Example
e

v(tin) = v(t) + [g — L v(t)?] b

The term in the square brackets is the original diff. eq., i.e., it is
v'(t)

The difference equation is a first-order Taylor series
approximation

v(tipq) =v(ty) +v' (&) h+ Ry

Where we know that the error is on the order of the step size
squared

R, = 0(h?)

Taylor series provides a relation between the step size and
the accuracy of the numerical solution to the diff. eqn.
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Finite Difference Methods
-

The preceding example showed

o One method — forward difference — for numerically
approximating a derivative

o Transformation of a differential equation to a difference
equation

o How Taylor series can provide an understanding of the
error associated with an approximation

Now we’ll take a closer look at three finite
difference methods and how Taylor series can help
us understand the error associated with each
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Forward Difference

Can also derive the forward
difference approximation from
the Taylor Series

fxiv1) = f(x) + f'(x)h + Ry
Solving for f'(x;)

fOv) =) Ry
h h

frx) =

We’ve already seen that

R, = 0(h?)

K. Webb

So, the error term is

%o
The forward difference,

including error, is

fQxivr) — FQx)
h

f'(x) = + 0(h)
Error of the forward
difference approximation is
on the order of the step
size
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Forward Difference
-

flod Value of the
function, f(x),
at x; and
forward one
step at x;.4
used to
approximate
the derivative

at Xi

aaaaaa
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Backward Difference
-

Backward difference uses value of Again the error is on the order of
f (x) at x; and one step backward at the step size

X;_1 to approximate the derivative at

X Rl

- =0
ooy ) = fxiog)
frx) = h The backward difference
expression, including error,

This can also be developed by

expanding the Taylor series backward becomes

fi) = fG) = f' G+ Ry fGx) = f(xim)
fle) = —=————

+ O(h)

Then solving for f'(x;)

Error of the backward

£1(x) = fOx) = fxi-1) LR difference approximation is
h h on the order of the step size
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Backward Difference
-

Now use the
value of f(x)
at x; and
backward one
stepat x;_; to
approximate
the derivative
at Xi

flx)4

f——h— Again, error is
R =0(h)

=Y

aaaaaa
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Central Difference
-

Central difference uses value of f(x) Now, the remainder term is

one step backward at x;_, a.nd ones R, = O(h3)

step ahead at x;, 1 to approximate

the derivative at x; The central difference expression,

including error, becomes

f(xipq) — f(xi—1)

2h '(x;) = f(xig1) — fxi-1)
This can also be developed by fx) = 2h

subtracting the backward Taylor
series from the forward series

fix) =

+ 0(h?)

Error of the central difference
approximation is on the order of

Second-order derivative terms the step size squared

cancel, leaving
Central difference method is

f(xi41) = f(xi—1) +2f " (x;))h + R, more accurate than forward or
backward

o Uses more information
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Central Difference

Now use the
oy value of f(x)
' backward one
step at x;_4 and
forward one step
at x;,4 to
approximate the
derivative at x;

o 2h - Reduced error:
aaaaaa ot R=0(h?)

~Y
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- Total Numerical Error
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Total Numerical Error

Total numerical error is the sum of roundoff and
truncation error

o0 Roundoff error is largely out of your control, and, with
double precision arithmetic, it is not typically an issue

o Truncation error can be a significant problem, but can
be reduced by decreasing step size

Reducing step size reduces truncation error, but
may also result in subtractive cancellation, thereby
increasing roundoff error

Choose step size to minimize total error

o Or, more typically, to reduce truncation error to an
acceptable level
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Total Numerical Error
X

Reducing step size reduces truncation error, but may
also result in subtractive cancellation, thereby
increasing roundoff error

Could choose step size ,
. . . .P(?ll?t qf
to minimize total error diminishing

returns

But, more typically,
reduce step size just
enough to reduce
truncation error to an
acceptable level .

Log step size

Log error
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Central Difference Error Analysis

First derivative of a function in terms of the central
difference approximation is

oy flag) = flgog)  FO(E)
f'(x;) = - 7 - 6 h?

The last term on the right is the truncation error
There is also roundoff error associated with each value

~

f(xi—q) = f (xi—1) — €1
f(xip1) = f (Xi+1) — €j41

were f(x;) represents a rounded value, and ¢; is the
corresponding roundoff error
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Central Difference Error Analysis

Substituting the expressions for the rounded values into
the expression for the true derivative yields

fxip1) — f(xi2q) _ £ (£) B2 4 €i+1 — €i—1

fila) = 2h 6 2h

Giving a total error of
Truncatlon error

Roundoff error

err =

Truncation error increases with step size

Roundoff error decreases with step size
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