
ESC 440 – Numerical Methods for Engineers

SECTION 1: ROUNDOFF AND 
TRUNCATION ERRORS
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Mathematical Models

 As engineers, we are interested in
 Designing and analyzing physical systems

 Analyzing data

 We can represent these systems or data with 
mathematical models
 An equation or system of equations that describe the 

system or behavior
◼ Relates inputs to outputs

 Mathematical models used for analysis and simulation
 May be done analytically – by hand

 More often performed numerically – on a computer



K. Webb ESC 440

4

Numerical Analysis

 In practice, most engineering problems are solved, and analyses are 
performed numerically
 Using computers

 Often, we use simulators 
 Electronic circuits

 Electromagnetic fields

 Thermal/fluid systems

 Structural analysis

 Sometimes, we use existing packages, libraries, toolboxes, functions, 
etc. E.g., 
 NumPy, SciPy in Python

 MATLAB

 Other times, we must write our own code
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Engineering Analyses

 Many of the types of analyses we perform as engineers are those 
you have learned about in previous classes
 Solution of systems of equations

 Integration/differentiation

 Solution of differential equations

 Optimization

 Curve fitting, etc.

 You have learned to perform these operations analytically 
 By hand

 Solutions are exact

 In this course, you will learn to solve the same types of problems 
numerically
 Using a computer

 Solutions are estimates
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Numerical Analysis

 Numerical analysis yields an approximate solution

 An estimate of the actual solution

 The solution is not exact

 It includes error

 In this first section of the course, we will learn 
about numerical error

 Where does it come from?

 What causes it to increase? Decrease?

 How do we approximate it?
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Course Overview

1. Roundoff & Truncation Error

2. Root Finding & Optimization

3. Systems of Equations

4. Curve Fitting

5. Integration

6. Ordinary Differential Equations

7. Fourier Analysis
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True Error

 Absolute error – the difference between an 
approximation and the true value

𝐸𝑡 = 𝑎𝑝𝑝𝑟𝑜𝑥. 𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 = ො𝑥 − 𝑥

 Relative error – the true error as a percentage of the 
true value

𝜀𝑡 =
ො𝑥 − 𝑥

𝑥
∙ 100%

 Both definitions require knowledge of the true value!

 If we had that, why would we be approximating?
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Approximating the Error

 Since we don’t know the true value, we can only 
approximate the error

 Often, approximations are made iteratively

 Approximate the error as the change in the 
approximate value from one iteration to the next

𝐸  = ො𝑥𝑖+1 − ො𝑥𝑖
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Relative Approximate Error

 We don’t know the true value, so we can’t calculate 
the true error – approximate the error

 Relative approximate error – an approximation of 
the error relative to the approximation itself

𝜀𝑎 =
𝑎𝑝𝑝𝑟𝑜𝑥. 𝑒𝑟𝑟𝑜𝑟

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛
∙ 100% =

𝐸

ො𝑥
∙ 100%
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Stopping Criterion

 For iterative approximations, continue to iterate 
until the relative approximate error magnitude is 
less than a specified stopping criterion

𝜀𝑎 < 𝜀𝑠

 For accuracy to at least 𝒏 significant figures set the 
stopping criterion to

𝜀𝑠 = 0.5 × 102−𝑛 %
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Roundoff Errors

 Roundoff errors occur due to the way in which 
computers represent numerical values

 Computer representation of numerical values is 
limited in terms of:

 Magnitude – there are upper and lower bounds on the 
magnitude of numbers that can be represented

 Precision – not all numbers can be represented exactly

 Certain types of mathematical manipulations are 
more susceptible to roundoff error than others
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Number Systems – Decimal 

 We are accustomed to the decimal number system

 A base-10 number system

 Ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 Each digit represents an integer power of 10

7281.36

6 x 10-2

3 x 10-1

1 x 10-0

8 x 101

2 x 102

7 x 103
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Binary Number System

 Computers represent numbers in binary format
 A base-2 number system

 Two digits: 0, 1
◼ Easy to store binary values in computer hardware – an on or off switch – a  high or low 

voltage

 One digit is a bit – eight bits is a byte

 Each bit represents an integer power of 2

10110101
1 x 20

 = 1
0 x 21

 = 0

1 x 22
 = 4

0 x 23
 = 0

1 x 24
 = 16

1 x 25
 = 32

0 x 26
 = 0

1 x 27
 = 128

= (181)10
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IEEE Double-Precision Format

 Floating point numbers in Python are represented as 
64-bit double-precision floating point values – float64

 64-bit binary word

52 bits11 bits

Mantissa – (f)

Signed 
Exponent – (e)

Sign bit

± 1 + 
𝑖=1

52

𝑓𝑖 ∙ 2
−𝑖 × 2𝑒
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IEEE Double-Precision Format

 Mantissa

 Only the fractional portion of the mantissa stored

 Bit to the left of the binary point assumed to be 1

◼ Normalized numbers

◼ Really a 53-bit value

 Exponent

 11-bit signed integer value: -1022 … 1023

 Two special cases:

◼ e = 0x000 (i.e. all zeros): zero if f = 0, subnormal #’s if f≠0

◼ e = 0x7FF (i.e. all ones): ∞ if f = 0, NaN if f≠0
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Normalized numbers

 Leading zeros are removed

 Most significant digit (must be a 1 in binary) moved to 
the left of the binary point

 53rd bit of the mantissa (always 1) needn’t be stored

 Maximum mantissa

1.111……11

𝑓52𝑓0

Not stored

𝑓1

𝑓51
𝑓2
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Subnormal Numbers

 If 𝑓0 = 1, always, then the smallest number that 
could be represented is: 2−1022 ≈ 𝟐. 𝟐𝟐𝟓 × 𝟏𝟎−𝟑𝟎𝟖

 If we allow for 𝑓0 = 0, then the most significant bit 
is somewhere to the right of the binary point
 Leading zeros – not normalized … subnormal

 Allows for smaller numbers, filling in the hole around 
zero

 Subnormal numbers represented by setting the 
exponent to zero

 Smallest subnormal number:

2−1022−52 = 2−1074 ≈ 𝟓 × 𝟏𝟎−𝟑𝟐𝟒
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Doubles – Range 

 Maximum value:

𝑚𝑎𝑥 = 1 + 
𝑖=1

52

2−𝑖 × 21023 ≈ 𝟏. 𝟕𝟗𝟖 × 𝟏𝟎𝟑𝟎𝟖

 Minimum normal value:

𝑚𝑖𝑛𝑛𝑜𝑟𝑚 = 2−1022 ≈ 𝟐. 𝟐𝟐𝟓 × 𝟏𝟎−𝟑𝟎𝟖

 Minimum subnormal value:

𝑚𝑖𝑛𝑠𝑢𝑏 = 2−1022−52 = 2−1074 ≈ 𝟓 × 𝟏𝟎−𝟑𝟐𝟒

 Precision – machine epsilon

𝜺 = 𝟐−𝟓𝟐 ≈ 𝟐. 𝟐𝟐 × 𝟏𝟎−𝟏𝟔
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Roundoff Error – Mathematical Operations

Certain types of mathematical operations are more 
susceptible to roundoff errors:

 Subtractive cancellation – subtracting of two nearly-
equal numbers results in a loss of significant digits

 Large computations – even if the roundoff error from a 
single operation is small, the cumulative error from 
many operations may be significant

 Adding large and small numbers – as in an infinite 
series

 Inner products – (i.e., dot product) very common 
operation – solution of linear systems of equations
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Truncation Errors

 Errors that result from the use of an approximation 
in place of an exact mathematical procedure

 E.g., numerical integration, or the approximation 
derivatives with finite-difference approximations

 To understand how truncation errors arise, and to 
gain an understanding of their magnitudes, we’ll 
make use of the Taylor Series



K. Webb ESC 440

25

Taylor Series

 Taylor’s Theorem – any smooth (i.e., continuously 
differentiable) function can be approximated as a 
polynomial

 Taylor Series

𝑓 𝑥𝑖+1 = 

𝑛=0

∞
𝑓 𝑛 𝑥𝑖

𝑛!
𝑥𝑖+1 − 𝑥𝑖

𝑛

 This infinite series is an equality

 An exact representation of any smooth function as a 
polynomial

 An infinite-order polynomial – impractical
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Taylor Series Approximation

 Can approximate a function as a polynomial by truncating 
the Taylor series after a finite number of terms

𝑓 𝑥𝑖+1 ≈ 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 ℎ +
𝑓′′ 𝑥𝑖

2!
ℎ2 + ⋯ +

𝑓 𝑛 𝑥𝑖

𝑛!
ℎ𝑛

where ℎ = 𝑥𝑖+1 − 𝑥𝑖  is the step size

Chapra
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Taylor Series Truncation Error

 Can account for error by lumping the 𝑛 + 1 and 
higher-order terms into a single term, 𝑅𝑛

𝑓 𝑥𝑖+1 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 ℎ +
𝑓′′ 𝑥𝑖

2!
ℎ2 + ⋯ +

𝑓 𝑛 𝑥𝑖

𝑛!
ℎ𝑛 + 𝑅𝑛

 𝑅𝑛 is the error associated with truncating after 𝑛 terms

𝑅𝑛 =
𝑓 𝑛+1 𝜉

𝑛 + 1 !
ℎ𝑛+1

 𝜉 is some (unknown) value of 𝑥 between 𝑥𝑖 and 𝑥𝑖+1
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Derivative Mean-Value Theorem

 If 𝑓 𝑥  and 𝑓′ 𝑥  are continuous on 𝑥𝑖 , 𝑥𝑖+1 , then 
there is a point on this interval, 𝜉, where 𝑓′ 𝜉  is the 
slope of the line joining 𝑓 𝑥𝑖  and 𝑓 𝑥𝑖+1

Chapra



K. Webb ESC 440

29

Truncation Error – Dependence on Step Size

𝑅𝑛 =
𝑓

𝑛+1
𝜉

𝑛 + 1 !
ℎ

𝑛+1

 We don’t know 𝜉, so we don’t know 𝑅𝑛

 We do know it’s proportional to ℎ𝑛+1, where ℎ is the 
step size

 Error is on the order of ℎ𝑛+1

𝑅𝑛 = 𝑂 ℎ𝑛+1

 If 𝑛 = 1 (first-order approx.), halving the step size 
will quarter the error
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• Discretizing equations

• Finite-difference approximations

Truncation Errors in Practice30
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Discretization of Equations

 As engineers, many of the mathematical 
expressions we are interested in are differential 
equations

 We know how to evaluate derivatives analytically

 Need an approximation for the derivative operation in 
order to solve numerically

 Discretization – conversion of a continuous 
function, e.g., differentiation, to a discrete 
approximation for numerical evaluation
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Finite Difference Approximations

 Recall the definition of a derivative

𝑓′ 𝑥𝑖 = lim
ℎ→0

𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ

 Remove the limit to  approximate this numerically

𝑓′ 𝑥𝑖 ≈
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ

 This is the forward difference approximation

 Uses value at 𝑥𝑖 and forward one step at 𝑥𝑖+1 to 
approximate the derivative at 𝑥𝑖
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Discretizing Equations – Example 

 A free-falling object can be modeled as 

𝑑𝑣

𝑑𝑡
= 𝑔 −

𝑐𝑑

𝑚
𝑣2

where 𝑣 is velocity, 𝑚 is mass, 𝑔 is gravitational acceleration, and  𝑐𝑑 is a 
lumped drag coefficient

 This is a non-linear ordinary differential equation 
(ODE), which can be solved analytically to yield

𝑣 𝑡 =
𝑚𝑔

𝑐𝑑
tanh

𝑔𝑐𝑑

𝑚
∙ 𝑡
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Discretizing Equations – Example 

 To solve numerically instead, approximate the 
derivative operation with a finite difference

𝑣 𝑡𝑖+1 − 𝑣 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
≅ 𝑔 −

𝑐𝑑

𝑚
𝑣 𝑡𝑖

2

 Solving for 𝑣 𝑡𝑖+1  and using ℎ to denote the time step 
yields

𝑣 𝑡𝑖+1 ≅ 𝑣 𝑡𝑖 + 𝑔 −
𝑐𝑑

𝑚
𝑣 𝑡𝑖

2 ℎ

 We’ve transformed the differential equation to a 
difference equation
 An algebraic equation
 Can be solved iteratively – using a loop
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Discretizing Equations – Example 

𝑣 𝑡𝑖+1 ≅ 𝑣 𝑡𝑖 + 𝑔 −
𝑐𝑑

𝑚
𝑣 𝑡𝑖

2 ℎ

 The term in the square brackets is the original diff. eq., i.e., it is 
𝑣′ 𝑡

 The difference equation is a first-order Taylor series 
approximation

𝑣 𝑡𝑖+1 = 𝑣 𝑡𝑖 + 𝑣′ 𝑡𝑖  ℎ + 𝑅1

 Where we know that the error is on the order of the step size 
squared

𝑅1 = 𝑂 ℎ2

 Taylor series provides a relation between the step size and 
the accuracy of the numerical solution to the diff. eqn.
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Finite Difference Methods

 The preceding example showed

 One method – forward difference – for numerically 
approximating a derivative

 Transformation of a differential equation to a difference 
equation

 How Taylor series can provide an understanding of the 
error associated with an approximation

 Now we’ll take a closer look at three finite 
difference methods and how Taylor series can help 
us understand the error associated with each
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Forward Difference

 Can also derive the forward 
difference approximation from 
the Taylor Series

𝑓 𝑥𝑖+1 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 ℎ + 𝑅1

 Solving for 𝑓′ 𝑥𝑖

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ
−

𝑅1

ℎ

 We’ve already seen that

𝑅1 = 𝑂 ℎ2

 So, the error term is

𝑅1

ℎ
= 𝑂(ℎ)

 The forward difference, 
including error, is

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

ℎ
+ 𝑂 ℎ

 Error of the forward 
difference approximation is 
on the order of the step 
size
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Forward Difference

 Value of the 
function, 𝑓 𝑥 , 
at 𝑥𝑖 and 
forward one 
step at 𝑥𝑖+1 
used to 
approximate 
the derivative 
at 𝑥𝑖Chapra
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Backward Difference

 Backward difference uses value of 
𝑓(𝑥) at 𝑥𝑖 and one step backward at 
𝑥𝑖−1 to approximate the derivative at 
𝑥𝑖

𝑓′ 𝑥𝑖 ≈
𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

ℎ

 This can also be developed by 

expanding the Taylor series backward

𝑓 𝑥𝑖−1 = 𝑓 𝑥𝑖 − 𝑓′ 𝑥𝑖 ℎ + 𝑅1

 Then solving for 𝑓′ 𝑥𝑖

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

ℎ
+

𝑅1

ℎ

 Again the error is on the order of 
the step size

𝑅1

ℎ
= 𝑂(ℎ)

 The backward difference 
expression, including error, 
becomes

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

ℎ
+ 𝑂 ℎ

 Error of the backward 
difference approximation is 
on the order of the step size
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Backward Difference

 Now use the 
value of 𝑓 𝑥  
at 𝑥𝑖 and 
backward one 
step at 𝑥𝑖−1 to 
approximate 
the derivative 
at 𝑥𝑖

 Again, error is

𝑅 = 𝑂 ℎChapra
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Central Difference

 Central difference uses value of 𝑓(𝑥) 
one step backward at 𝑥𝑖−1 and ones 
step ahead at 𝑥𝑖+1 to approximate 
the derivative at 𝑥𝑖

𝑓′ 𝑥𝑖 ≈
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ

 This can also be developed by 

subtracting  the backward Taylor 

series from the forward series

 Second-order derivative terms 

cancel, leaving

𝑓 𝑥𝑖+1 = 𝑓 𝑥𝑖−1 + 2𝑓′ 𝑥𝑖 ℎ + 𝑅2

 Now, the remainder term is

𝑅2 = 𝑂(ℎ3)

 The central difference expression, 
including error, becomes

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ
+ 𝑂 ℎ2

 Error of the central difference 
approximation is on the order of 
the step size squared

 Central difference method is 
more accurate than forward or 
backward

 Uses more information
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Central Difference

 Now use the 
value of 𝑓 𝑥  
backward one 
step at 𝑥𝑖−1 and 
forward one step 
at 𝑥𝑖+1 to 
approximate the 
derivative at 𝑥𝑖

 Reduced error:

𝑅 = 𝑂 ℎ2
Chapra
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Total Numerical Error

 Total numerical error is the sum of roundoff and 
truncation error
 Roundoff error is largely out of your control, and, with 

double precision arithmetic, it is not typically an issue

 Truncation error can be a significant problem, but can 
be reduced by decreasing step size

 Reducing step size reduces truncation error, but 
may also result in subtractive cancellation, thereby 
increasing roundoff error

 Choose step size to minimize total error
 Or, more typically, to reduce truncation error to an 

acceptable level
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Total Numerical Error

 Reducing step size reduces truncation error, but may 
also result in subtractive cancellation, thereby 
increasing roundoff error

 Could choose step size 
to minimize total error

 But, more typically, 
reduce step size just 
enough to reduce 
truncation error to an 
acceptable level

Chapra
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Central Difference Error Analysis

 First derivative of a function in terms of the central 
difference approximation is

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ
−

f 3 𝜉

6
ℎ2

 The last term on the right is the truncation error
 There is also roundoff error associated with each value

𝑓 𝑥𝑖−1 = ሚ𝑓 𝑥𝑖−1 − 𝑒𝑖−1

𝑓 𝑥𝑖+1 = ሚ𝑓 𝑥𝑖+1 − 𝑒𝑖+1

were ሚ𝑓 𝑥𝑖  represents a rounded value, and 𝑒𝑖 is the 
corresponding roundoff error
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Central Difference Error Analysis

 Substituting the expressions for the rounded values into 
the expression for the true derivative yields

𝑓′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖−1

2ℎ
−

f 3 𝜉

6
ℎ2 +

𝑒𝑖+1 − 𝑒𝑖−1

2ℎ

 Giving a total error of 

𝑒𝑟𝑟 =
𝑒𝑖+1 − 𝑒𝑖−1

2ℎ
 −

f 3 𝜉

6
ℎ2

 Truncation error increases with step size

 Roundoff error decreases with step size

Truncation error
Roundoff error
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