
ESC 440 – Computational Methods for Engineers

SECTION 2: ROOT FINDING 
AND OPTIMIZATION
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Root Finding & Optimization

 Two closely related topics covered in this section
 Root finding – determination of independent variable 

values at which the value of a function is zero 

 Optimization – determination of independent variable 
values at which the value of a function is at its maximum or 
minimum (optima)

Chapra
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Root Finding - Example

 Determine the length, L, of a single-fin heat sink to 
remove 500mW from an electronic package, given 
the following:

 Width:  w = 1 cm

 Thickness:  t = 2 mm

 Heat transfer coeff.:          
h = 100 W/(m2K)

 Aluminum:  k = 210 W/(m∙K)

 Ambient temperature:  
𝑇∞ = 40°𝐶

 Base temperature:  
 𝑇𝑏 = 100°𝐶 
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Root Finding - Example

 Fin heat transfer rate is given by:

𝑞𝑓 = 𝑀 ∙
sinh 𝑚𝐿 +

ℎ
𝑚𝑘

cosh 𝑚𝐿

cosh 𝑚𝐿 +
ℎ

𝑚𝑘
sinh 𝑚𝐿

where

 𝑚 =
ℎ𝑃

𝑘𝐴𝑐
,    𝑀 = ℎ𝑃𝑘𝐴𝑐 ⋅ 𝜃𝑏

𝐴𝑐 = 𝑤 ∙ 𝑡,     𝑃 = 2𝑤 + 2𝑡

𝜃𝑏 = 𝑇𝑏 − 𝑇∞
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Root Finding - Example

 Would like to set 𝑞𝑓 = 500𝑚𝑊 and solve for 𝐿, given 
all other parameters
 But, we can’t isolate 𝐿 – a transcendental equation – can’t 

be solved algebraically 

 Instead, subtract 500𝑚𝑊 from both sides

𝑓 𝐿 = 𝑞𝑓 𝐿 − 500𝑚𝑊

𝑓 𝐿 = 𝑀 ∙
sinh 𝑚𝐿 +

ℎ
𝑚𝑘

cosh 𝑚𝐿

cosh 𝑚𝐿 +
ℎ

𝑚𝑘
sinh 𝑚𝐿

− 500𝑚𝑊 = 0

 Now, find the value of 𝐿 for which 𝑓 𝐿 = 0
 A root-finding problem
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Root Finding - Example

 Looking for 𝐿 such that 𝑞𝑓 𝐿 = 500𝑚𝑊
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Root Finding - Example

 Find the root of  𝑓 𝐿 , i.e. 𝐿 such that 𝑓 𝐿 = 0
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Root-Finding Techniques – Bracketing vs. Open

 Two categories of root-finding methods:

 Bracketing methods

 Require two initial values – must bracket (one on either 
side of) the root

 Always converge

 Can be slow

 Open methods

 Initial value(s) need not bracket the root

 Often faster

 May not converge
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Presence of a Root – Sign Change

 A root is a value of 𝑥 at which𝑓 𝑥 = 0

 𝑓 𝑥  crosses the x-axis

 𝑓 𝑥  changes sign

 If 𝑥𝑟 is a root of 𝑓 𝑥 , and 
𝑥𝑙 < 𝑥𝑟 < 𝑥𝑢, then

𝑓 𝑥𝑙 ∙ 𝑓 𝑥𝑢 < 0

 Not always true 
 e.g., multiple roots

 Won’t consider multiple 
roots here
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Error Evaluation and Tracking

 Approximate error, |𝜺𝒂|
 Don’t know where the true root is, so must 

approximate error

𝜺𝒂 =
ෝ𝒙𝒓,𝒊+𝟏 − ෝ𝒙𝒓,𝒊

ෝ𝒙𝒓,𝒊+𝟏
∙ 𝟏𝟎𝟎%

 Tells us when a root has been determined to adequate 
precision – stop when 𝜺𝒂 ≤ 𝜺𝒔

 True error, 𝜺𝒕

 Useful for evaluating the performance of root-finding 
algorithms – when we know the location of the root
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Root Finding – Bracketing Methods

 We’ll look at three bracketing methods

 Incremental search

Bisection

 False position

Each require two initial values

Must bracket the root



K. Webb ESC 440

15

Incremental Search

 Say we want to find a root, 𝑥𝑟, which we know 
exists between 𝑥𝑙 and 𝑥𝑢

 Initialize the search with 
bracketing values

 Starting at 𝑥𝑙, move 
incrementally toward 𝑥𝑢, 
searching for a sign change in 
𝑓(𝑥)

 Accuracy determined by 
increment length
 Too large – inaccurate – could miss 

closely spaced roots
 Too small - slow
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Incremental Search

 𝑓 𝑥  has three roots on 𝑥𝑙 , 𝑥𝑢

 Incremental search with increment length, Δ𝑥

 𝑓 𝑥2 ∙ 𝑓 𝑥3 > 0

 Closely-spaced roots 
are missed entirely

 𝑓 𝑥6 ∙ 𝑓 𝑥7 < 0

 A root is detected

 Location only known 

to within Δ𝑥

 𝐸𝑡 < Δ𝑥
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Bisection

 Search initialized with bracketing values

 Current root estimate, ො𝑥𝑟,𝑖, is the midpoint of the current interval

ො𝑥𝑟,𝑖 =
𝑥𝑙,𝑖 + 𝑥𝑢,𝑖

2
 At each iteration, root estimate replaces upper or lower bracketing 

value

𝑥𝑙,𝑖+1 = ቐ
𝑥𝑙,𝑖  𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖  𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0

𝑥𝑢,𝑖+1 = ቐ
𝑥𝑢,𝑖  𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖  𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0
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Bisection

At each iteration:

 Root estimate 

 midpoint of 
bracketing  
interval

 New bracketing 
interval

 sub-interval 
containing the 
sign change

Chapra
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Bisection – Absolute Error

 Absolute error is bounded by the bracketing interval

𝐸𝑡,𝑖 ≤
Δ𝑥𝑖

2
=

𝑥𝑢,𝑖 − 𝑥𝑙,𝑖

2

 Bracketing interval halved at each iteration
 Max absolute error halved each iteration. After 𝑛 iterations:

𝐸𝑡,𝑛 ≤
Δ𝑥0

2𝑛+1

 Can calculate required iterations for a specified maximum absolute 
error:

𝑛 = log2

Δ𝑥0

𝐸𝑡
− 1
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False Position – Linear Inerpolation

 Similar to bisection, but root estimate calculated 
differently

 Not the midpoint of the bracketing interval

 ො𝑥𝑟,𝑖  is the root of the line connecting 𝑓 𝑥𝑙,𝑖  and 𝑓 𝑥𝑢,𝑖



K. Webb ESC 440

23

False Position – Calculating ො𝑥𝑟,𝑖

 Slope of the line:

Δ𝑦

Δ𝑥
=

𝑓 𝑥𝑢,𝑖 − 𝑓 𝑥𝑙,𝑖

𝑥𝑢,𝑖 − 𝑥𝑙,𝑖

 From 𝑓 𝑥𝑢,𝑖  to zero:

Δ𝑦 = 𝑓 𝑥𝑢,𝑖

 From 𝑥𝑢,𝑖  to ො𝑥𝑟,𝑖:

Δ𝑥 =
Δ𝑥

Δ𝑦
∙ 𝑓 𝑥𝑢,𝑖

 The root estimate is:

 ො𝑥𝑟,𝑖 = 𝑥𝑢,𝑖 − Δ𝑥 →

Δ𝑦 = 𝑓 𝑥𝑢,𝑖

Δ𝑥 = 𝑥𝑢,𝑖 − ො𝑥𝑟,𝑖

ො𝑥𝑟,𝑖 = 𝑥𝑢,𝑖 − 𝑓 𝑥𝑢,𝑖

𝑥𝑢,𝑖 − 𝑥𝑙,𝑖

𝑓 𝑥𝑢,𝑖 − 𝑓 𝑥𝑙,𝑖
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False Position – Reducing the Bracket

 As with bisection, the bracket is reduced on each 
iteration
 Keep the sub-bracket containing the sign change

 Root estimate replaces upper or lower bracketing value

𝑥𝑙,𝑖+1 = ቐ
𝑥𝑙,𝑖 𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖 𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0

𝑥𝑢,𝑖+1 = ቐ
𝑥𝑢,𝑖  𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖 𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0
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Bracketing Methods - Summary

 All methods require two initial values that bracket the 
root

 Always convergent

 Incremental search
◼ Mostly for illustrative purposes – not recommended 

 Bisection
◼ Predictable

◼ Can calculate required iterations for desired absolute error - 
predictable

 False position – linear interpolation
◼ Often outperforms bisection

◼ May be slow for certain types of functions
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Root Finding – Open Methods

 May require only a single initial value

 If two initial values are required, they need not bracket 
the root

 Often significantly faster than bracketing methods

 Convergence is not guaranteed
 Dependent on function and initial values

 Fixed-point iteration

 Newton-Raphson

 Secant methods

 Inverse quadratic interpolation
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Fixed Point Iteration

 A fixed point of a function is a value of the 
independent variable that the function maps to 
itself

 Root-finding problem is determining 𝑥, such that 

𝑓 𝑥 = 0

 Can add 𝒙 to both sides – equation is unchanged

𝑥 = 𝑓 𝑥 + 𝑥

𝑥 = 𝑔 𝑥

 Value of 𝑥 that satisfies the equation is still the root
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Fixed Point Iteration

 Root is the solution to

𝑥 = 𝑔 𝑥

 A fixed point of 𝑔 𝑥

 Also the solution to system of 
two equations

𝑓1 𝑥 = 𝑥
𝑓2 𝑥 = 𝑔 𝑥

 Root is the intersection of 𝑓1 𝑥  
and 𝑓2 𝑥
 i.e., the intersection of 𝑦 =

𝑓 𝑥 + 𝑥 and 𝑦 = 𝑥
Chapra
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Fixed Point Iteration

𝑥 = 𝑔 𝑥

 Provides an iterative 
formula for 𝑥:

𝑥𝑖+1 = 𝑔 𝑥𝑖

 Iterate until 
approximate error falls 
below a specified 
stopping criterion

휀𝑎 ≤ 휀𝑠 Chapra
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Fixed Point Iteration – Convergence 

 Current error is proportional to 

the previous error times the slope 

of 𝒈(𝒙):

𝐸𝑡,𝑖+1 = 𝑔′ 𝜉 ∙ 𝐸𝑡,𝑖

 If 𝑔′ 𝑥 > 1, error will grow

 Estimate will diverge

 If 𝑔′ 𝑥 < 1, error will decrease

 Estimate will converge

 If 𝑔′ 𝑥 < 0, sign of error will 

oscillate

 Oscillatory, or spiral convergence 

or divergence Chapra
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Fixed Point Iteration – Rate of Convergence 

 Current error is proportional to the previous error 

times the slope of 𝒈(𝒙):

𝐸𝑡,𝑖+1 = 𝑔′ 𝜉 ∙ 𝐸𝑡,𝑖

 Once a convergent estimate becomes relatively close 
to the root, the slope of 𝒈 𝒙  is relatively constant

 ො𝑥𝑟 varies little from iteration to iteration

 Error of the current iteration is roughly proportional 
to the error from the previous iteration

 Linear convergence
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Newton-Raphson Method

 New estimate is the root of a line tangent to 𝑓 𝑥  at ො𝑥𝑟,𝑖

 Slope of 𝑓 𝑥  at ො𝑥𝑟,𝑖  is the derivative at ො𝑥𝑟,𝑖:

𝑓′ ො𝑥𝑟,𝑖 =
Δ𝑦

Δ𝑥
=

𝑓 ො𝑥𝑟,𝑖

ො𝑥𝑟,𝑖 − ො𝑥𝑟,𝑖+1

 Solving for the new root 
estimate:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 An iterative formula for ො𝑥𝑟
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Newton-Raphson Method

 Iterate, using the Newton-Raphson formula:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 Iterate until 
approximate error 
falls below a 
specified stopping 
criterion

휀𝑎 ≤ 휀𝑠
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Newton-Raphson – Convergence

 Often fast, but convergence 
is not guaranteed

 Inflection point (constant 
slope) near a root causes 
divergence

 Areas of near-zero slope are 
problematic
 Oscillation around local 

maximum/minimum

 Tangent line sends estimate 
very far away – or to infinity 
for zero slope

Chapra
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Newton-Raphson – Rate of Convergence

 Current error is proportional 
to the square of the previous 
error

𝐸𝑡,𝑖+1 = −
𝑓′′ 𝑥𝑟

2𝑓′ 𝑥𝑟
𝐸𝑡,𝑖

2

 Quadratic convergence

 Number of significant figures of 
accuracy approximately doubles 
each iteration
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Newton-Raphson – Derivative Function

 Newton-Raphson algorithm requires two functions

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 Function whose roots are to be found, 𝑓 𝑥

 Derivative function, 𝑓′ 𝑥

 That means 𝑓′ 𝑥  must be found analytically

 Inconvenient – may be tedious for some functions

 Already performing numerical approximations

 Why not calculate 𝑓′ 𝑥  numerically? → Secant 
methods
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Secant Methods

 Same iterative formula as 
Newton-Raphson:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 Now, approximate 𝑓′ 𝑥  using a 
finite difference

𝑓′ 𝑥 ≅
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖

 Secant method iterative formula:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖 𝑥𝑖+1 − 𝑥𝑖

𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

 Would require two initial values

 Instead, generate the second 𝑥 
value as a fractional perturbation 
of the first (the current estimate)

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑥𝑖 = ො𝑥𝑟,𝑖 + 𝛿 ො𝑥𝑟,𝑖

where 𝛿 is a very small number

 Finite difference approx. of 𝑓′ 𝑥 :

𝑓′ 𝑥 ≅
𝑓 ො𝑥𝑟,𝑖 + 𝛿 ො𝑥𝑟,𝑖 − 𝑓 ො𝑥𝑟,𝑖

𝛿 ො𝑥𝑟,𝑖

 The modified secant iterative 
formula:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝛿 ො𝑥𝑟,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖

𝑓 ො𝑥𝑟,𝑖 + 𝛿 ො𝑥𝑟,𝑖 − 𝑓 ො𝑥𝑟,𝑖
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Root-Finding Methods – Interpolation 

 False position and the Newton-Raphson/secant 
methods all use linear interpolation

 Non-linear function approximated as a linear function

 Root of the linear approximation becomes the 
approximation of the root

 We’ll get to curve-fitting and interpolation later, but we 
should already suspect that a higher-order 
approximation for a non-linear function may be more 
accurate than a linear (first-order) approximation

 Increase accuracy of the root estimate by 
approximating our non-linear function as a quadratic
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Inverse Quadratic Interpolation

 Instead of using two points to 
approximate 𝑓 𝑥  as a line, use 
three points to approximate it as a 
parabola

 Root estimate is where the 
parabola crosses the x-axis

 But, not all parabolas cross the x-
axis – complex roots

 All parabolas do cross the y-axis
 To guarantee an x-axis crossing, turn 

the parabola on its side
𝑥 = 𝑔 𝑦

 An inverse quadratic function
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Inverse Quadratic Interpolation – Example

 Three points 
required for 
quadratic approx.
 How are they 

chosen?

 Inverse quadratic 
function will cross 
the x-axis
 For same three 

points a quadratic 
may not

 May be very 
efficient
 May not converge



K. Webb ESC 440

45

Inverse Quadratic Interpolation

 Three known 𝑥 and corresponding 𝑓 𝑥  values:
 𝑥1, 𝑥2, 𝑥3, and 𝑓 𝑥1 , 𝑓 𝑥2 , 𝑓 𝑥3

 Fit an inverse parabola to these three points 
 Lagrange polynomial – more on these later

𝑥 = 𝑔 𝑦 =
𝑦 − 𝑦2 𝑦 − 𝑦3

𝑦1 − 𝑦2 𝑦1 − 𝑦3
𝑥1 +

𝑦 − 𝑦1 𝑦 − 𝑦3

𝑦2 − 𝑦1 𝑦1 − 𝑦3
𝑥2 +

𝑦 − 𝑦1 𝑦 − 𝑦2

𝑦3 − 𝑦1 𝑦3 − 𝑦2
𝑥3

 Don’t actually need to calculate this parabola

 Only need its root – evaluate at 𝑦 = 0 for new root estimate:

ො𝑥𝑟,𝑖+1 =
𝑦2𝑦3

𝑦1 − 𝑦2 𝑦1 − 𝑦3
𝑥1 +

𝑦1𝑦3

𝑦2 − 𝑦1 𝑦1 − 𝑦3
𝑥2 +

𝑦1𝑦2

𝑦3 − 𝑦1 𝑦3 − 𝑦2
𝑥3
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Inverse Quadratic Interpolation

 Determining ො𝑥𝑟,𝑖+1from the three points is only part 
of the algorithm
 Algorithm initialized with one or two 𝑥 values
◼ Need to determine the other one or two initial 𝑥 values

 Must update 𝑥1, 𝑥2, and 𝑥3 on each iteration

 We won’t get into these details here

 Will fail if any two 𝑓 𝑥𝑖  are equal
 Revert to another open method (e.g. secant)

 May diverge
 Revert to a bracketing method (e.g. bisection)
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Brent’s Method – brentq()

 brentq() from SciPy’s optimize package is based 
on Brent’s method

 A bracketing method

 Uses inverse quadratic interpolation to generate root 
estimates when possible

 In case of convergence issues reverts to bisection

 Always tries faster method first, then uses bisection 
only if necessary

 To use, first import the function:

from scipy.optimize import brentq
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scipy.optimize.brentq()

root = brentq(func, a, b)

 func: function whose root you are looking for

 a: lower bracketing value

 b: upper bracketing value

 root: approximate root value returned

 Alternatively, we can control the output type:

r = brentq(func, a, b, full_output=True)

 r: (root, robj) – a tuple
◼ root: approximate root value returned

◼ robj: a RootResults object including convergence information
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Example – brentq()

 Returning to our heat sink fin design problem
 Want to know the length of the fin required for a heat 

transfer rate of 𝑞𝑓 = 500𝑚𝑊, given the other specified 
parameters:

 Width:  w = 1 cm

 Thickness:  t = 2 mm

 Heat transfer coeff.:          
h = 100 W/(m2K)

 Aluminum:  k = 210 W/(m∙K)

 Ambient temperature:  
𝑇∞ = 40°𝐶

 Base temperature:  
 𝑇𝑏 = 100°𝐶 
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Example – brentq()

 We’ll now use brentq() to find the root of 𝑓 𝐿

𝑓 𝐿 = 𝑀 ∙
sinh 𝑚𝐿 +

ℎ
𝑚𝑘

cosh 𝑚𝐿

cosh 𝑚𝐿 +
ℎ

𝑚𝑘
sinh 𝑚𝐿

− 500𝑚𝑊 = 0

where

 𝑚 =
ℎ𝑃

𝑘𝐴𝑐
,    𝑀 = ℎ𝑃𝑘𝐴𝑐 ⋅ 𝜃𝑏

𝐴𝑐 = 𝑤 ∙ 𝑡,     𝑃 = 2𝑤 + 2𝑡

𝜃𝑏 = 𝑇𝑏 − 𝑇∞
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Example – brentq()

 Define the function whose 
root we want to find

 Define the bracket
 Values must bracket a sign 

change

 Pass the function object, bracketing values, and other 
arguments to brentq()
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Example – brentq()

 Convergence 
achieved in nine 
iterations

 Root is at 0.031 m

 A 3.1 cm fin
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Roots of Polynomials

 Polynomials are linear (first order) or nonlinear 
(second and higher order) functions of the form

𝑓 𝑥 = 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛−1 + ⋯ + 𝑎𝑛𝑥 + 𝑎𝑛+1

 An nth-order polynomial has n roots
 Often, we’d like to find all n roots at once

 Methods described thus far find only one root at a time

 For 2nd-order,the quadratic formula yields both 
roots at once:

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎
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Roots of Polynomials – np.roots()

 To find all n roots of a polynomial:

x = np.roots(c)

 c: (n+1)-vector of polynomial coefficients, i.e., the 𝑎𝑖’s 
from the previous slide:

𝑓 𝑥 = 𝑐 0 𝑥𝑛 + 𝑐 1 𝑥𝑛−1 + ⋯ + 𝑐 𝑛 − 1 𝑥 + 𝑐 𝑛

 x: n-vector of roots

 np.roots() works by treating the root-finding 
problem as an eigenvalue problem
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Roots of Polynomials – np.poly()

 Polynomials are an important class of functions

 Curve-fitting and interpolation

 Linear system theory and controls

 Often, we may want to generate the nth-order 
polynomial corresponding to a given set of n roots

c = np.poly(x)

 x: n-vector of roots

 c: (n+1)-vector of polynomial coefficients
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Optimization

 Optimization is very important to engineers

 Adjusting parameters to maximize some measure of 
performance of a system

 Process of finding maxima and minima (optima) of 
functions

Chapra
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Maxima and Minima

 An optimum point of a function occurs where the 
first derivative (slope) of the function is zero

𝑓′ 𝑥 = 0

 An optimum point is a maximum if the second 
derivative (curvature) of the function is negative

𝑓′′ 𝑥 < 0

 An optimum point is a minimum if the second 
derivative (curvature) of the function is positive

𝑓′′ 𝑥 > 0
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 Optima occur where 𝑓′ 𝑥 = 0
 Could find optima of 𝑓 𝑥  by finding roots of 𝑓′ 𝑥

 Requires calculation of the derivative, either analytically or 
numerically

 Direct (non-derivative) methods are often faster and more 
reliable

61

Optimization as a Root-Finding Problem
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Optimization

 Optimization methods exist for one-dimensional 
and multi-dimensional functions

 As with root-finding, both bracketing and open 
methods exist

 Here, we’ll look at:
 One dimensional optimization
◼ Golden-section search

◼ Parabolic interpolation

◼ Use of scipy.optimize.minimize_scalar()

 Multi-dimensional optimization
◼ Use of scipy.optimize.minimize()
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The Golden Ratio – 𝜙 

 Divide a value into two parts, 𝑎 and  𝑏,

such that the ratio of the larger part to the smaller part 
is equal to the ratio of the whole to the larger part

𝑎

𝑏
=

𝑎 + 𝑏

𝑎

 The ratio 𝑎/𝑏 is the golden ratio

𝜙 =
1 + 5

2
= 1.618033988 …
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The Golden Ratio – 𝜙 

 Given an interval 𝑥𝑙 , 𝑥𝑢 , 
subdivide it from both ends 
according to the golden ratio

𝑥1 − 𝑥𝑙

𝑥𝑢 − 𝑥1
=

𝑥𝑢 − 𝑥𝑙

𝑥1 − 𝑥𝑙
= 𝜙

and

𝑥𝑢 − 𝑥2

𝑥2 − 𝑥𝑙
=

𝑥𝑢 − 𝑥𝑙

𝑥𝑢 − 𝑥2
= 𝜙

 If we discard the upper portion of 
the interval

we‘re left with a smaller interval, 
itself divided according to 𝜙

𝑥2 − 𝑥𝑙

𝑥1 − 𝑥2
=

𝑥1 − 𝑥𝑙

𝑥2 − 𝑥𝑙
= 𝜙

 The same is true if we discard the 
lower subinterval 

𝑥𝑢 − 𝑥1

𝑥1 − 𝑥2
=

𝑥𝑢 − 𝑥2

𝑥𝑢 − 𝑥1
= 𝜙
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The Golden Ratio – 𝜙 

 Starting from one of the 
subintervals (the lower one, here)

we can further subdivide it 
according to the golden ratio, 
starting from the upper bound on 
the interval

𝑥1 − 𝑥3

𝑥3 − 𝑥𝑙
=

𝑥1 − 𝑥𝑙

𝑥1 − 𝑥3
= 𝜙

 If we reassign the variable names

𝑥𝑙 → 𝑥𝑙,𝑛𝑒𝑤

𝑥1 → 𝑥𝑢,𝑛𝑒𝑤

𝑥2 → 𝑥1,𝑛𝑒𝑤

𝑥3 → 𝑥2,𝑛𝑒𝑤

we‘re back where we started

 But now, the overall interval size 
has been reduced by a factor of 𝝓 

 This process is the basis for the 
golden-section search algorithm
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Golden-Section Search 

 A bracketing optimization method
 Two initial values must bracket an optimum point

 Looks for a minimum
 To find a maximum use −𝑓 𝑥

 Only one minimum point (local or global) in 
the bracketing interval
 Unimodal

 Very similar to bisection
 Now looking for a minimum, instead of a zero-crossing

 Need two intermediate points
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Golden-Section Search 

 Start with two initial values,𝑥𝑙 and 
𝑥𝑢, that bracket a minimum point 
of the function, 𝑓 𝑥

 Subdivide the interval according 
to the golden ratio with two 
intermediate points 𝑥1 and 𝑥2 

𝑥1 = 𝑥𝑙 +
𝑥𝑢 − 𝑥𝑙

𝜙

𝑥2 = 𝑥𝑢 −
𝑥𝑢 − 𝑥𝑙

𝜙

 Evaluate the function at each of 
the intermediate points

𝑓 𝑥1   and 𝑓 𝑥2

 Compare values of 𝑓 𝑥1   and 𝑓 𝑥2

 Two possibilities

 𝑓 𝑥1 > 𝑓 𝑥2  or

 𝑓 𝑥1 < 𝑓 𝑥2
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Golden-Section Search – 𝑓 𝑥1 < 𝑓 𝑥2

If 𝑓 𝑥1 < 𝑓 𝑥2

 𝑥1 is the current estimate for the 
minimum point of 𝑓 𝑥 , ො𝑥𝑜𝑝𝑡

 True minimum cannot lie in the 
range of [𝑥𝑙 , 𝑥2] 

 Discard the lower subinterval

 Reassign variable names

𝑥2 → 𝑥𝑙

𝑥1 → 𝑥2

𝑥𝑢 → 𝑥𝑢

 Using new 𝑥𝑙, 𝑥𝑢, and 𝑥2 values, 
calculate a new 𝑥1

𝑥1 = 𝑥𝑙 +
𝑥𝑢 − 𝑥𝑙

𝜙
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Golden-Section Search – 𝑓 𝑥1 > 𝑓 𝑥2

If 𝑓 𝑥1 > 𝑓 𝑥2

 𝑥2is the current estimate for the 
minimum point of 𝑓 𝑥 , ො𝑥𝑜𝑝𝑡

 True minimum cannot lie in the 
range of [𝑥1, 𝑥𝑢] 

 Discard the upper subinterval

 Reassign variable names

𝑥𝑙 → 𝑥𝑙

𝑥2 → 𝑥1

𝑥1 → 𝑥𝑢

 Using new 𝑥𝑙, 𝑥𝑢, and 𝑥1 values, 
calculate a new 𝑥2

𝑥2 = 𝑥𝑢 −
𝑥𝑢 − 𝑥𝑙

𝜙
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Golden-Section Search

 Continue iterating and updating the ො𝑥𝑜𝑝𝑡, the 

estimate of the minimizing value for 𝑓(𝑥)

 Only one new point needs to be calculated at each 
iteration

◼ This is the beauty of using the golden ratio

◼ Very efficient

 Size of the bracketing interval decreases by a 
factor of 𝝓 = 𝟏. 𝟔𝟏𝟖 … with each iteration

 Continue to iterate until error estimate satisfies a 
stopping criterion
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Golden-Section Search – Error 

 Consider the case where 𝑥𝑜𝑝𝑡 = 𝑥𝑢

 Lower subinterval, [𝑥𝑙 , 𝑥2], is 
discarded

 Optimum point estimate is 𝑥1

ො𝑥𝑜𝑝𝑡 = 𝑥1

 This scenario represent the worst-
case error

𝐸𝑚𝑎𝑥 = ො𝑥𝑜𝑝𝑡 − 𝑥𝑜𝑝𝑡 = 𝑥1 − 𝑥𝑢

= 𝑥𝑙 +
𝑥𝑢 − 𝑥𝑙

𝜙
− 𝑥𝑢

= 𝑥𝑢 − 𝑥𝑙 1 −
1

𝜙

and 
1

𝜙
= 𝜙 − 1
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Golden-Section Search – Error 

 The worst-case error is

𝐸𝑚𝑎𝑥 = 2 − 𝜙 𝑥𝑢 − 𝑥𝑙

 Normalize to the current estimate 

 Convert from absolute to relative 
error

 Use worst-case value as our 
approximate error

휀𝑎 = 2 − 𝜙
𝑥𝑢 − 𝑥𝑙

ො𝑥𝑜𝑝𝑡
∙ 100%

 Calculate 휀𝑎 each iteration

 Continue until stopping criterion is 
satisfied
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Parabolic Interpolation

 Near an optimum point, many functions can be satisfactorily approximated 
with a quadratic

 Three points define a unique parabola

 Two points define the bracketing interval

 A third intermediate point somewhere within the bracket

 Optimum point of the parabolic approximation becomes current estimate 
of the optimum point

 Evaluate 𝑓 𝑥  at ො𝑥𝑜𝑝𝑡

 Retain the subinterval containing the optimum point, discard one of the 
bracketing points, and iterate

 𝑓 𝑥  must be unimodal

 Looking for a minimum, but algorithm can easily be modified to look for a 
maximum
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Parabolic Interpolation

 Start with three points, 
which bracket the optimum

 Evaluate the 𝑓 𝑥  at these 
points

 Fit a parabola to the three 
points
 Can use a Lagrange 

polynomial
 Not necessary to actually 

calculate the parabola – can 
jump to finding its optimum 
point

𝑝 𝑥 =
𝑥 − 𝑥2 𝑥 − 𝑥3

𝑥1 − 𝑥2 𝑥1 − 𝑥3
𝑓 𝑥1 +

𝑥 − 𝑥1 𝑥 − 𝑥3

𝑥2 − 𝑥1 𝑥2 − 𝑥3
𝑓 𝑥2 +

𝑥 − 𝑥1 𝑥 − 𝑥2

𝑥3 − 𝑥1 𝑥3 − 𝑥2
𝑓 𝑥3



K. Webb ESC 440

77

Parabolic Interpolation

 Expression for 𝑥4 derived by 

solving 
𝑑𝑝

𝑑𝑥
= 0

 𝑥4 becomes the current 
estimate for the optimum 
point, ො𝑥𝑜𝑝𝑡

 Evaluate 𝑓( ො𝑥𝑜𝑝𝑡)

 Use values of ො𝑥𝑜𝑝𝑡 and 𝑓( ො𝑥𝑜𝑝𝑡) 

to appropriately reduce the 
bracketing interval

 Calculate the optimum point of the parabolic approximation

𝑥4 = 𝑥2 −
1

2
∙

𝑥2 − 𝑥1
2 𝑓 𝑥2 − 𝑓 𝑥3 − 𝑥2 − 𝑥3

2 𝑓 𝑥2 − 𝑓 𝑥1

𝑥2 − 𝑥1 𝑓 𝑥2 − 𝑓 𝑥3 − 𝑥2 − 𝑥3 𝑓 𝑥2 − 𝑓 𝑥1
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Parabolic Interpolation – Reducing the Bracket

 If 𝑥4 < 𝑥2

 If 𝑓 𝑥4 < 𝑓 𝑥2   (shown here)

◼ 𝑥𝑜𝑝𝑡 is in the lower subinterval

◼ Discard the upper subinterval

𝑥1,𝑖+1 = 𝑥1,𝑖

𝑥2,𝑖+1 = 𝑥4,𝑖

𝑥3,𝑖+1 = 𝑥2,𝑖

 If 𝑓 𝑥4 > 𝑓 𝑥2

◼ 𝑥𝑜𝑝𝑡 is in the upper subinterval

◼ Discard the lower subinterval

𝑥1,𝑖+1 = 𝑥4,𝑖

𝑥2,𝑖+1 = 𝑥2,𝑖

𝑥3,𝑖+1 = 𝑥3,𝑖
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Parabolic Interpolation – Reducing the Bracket

 If 𝑥4 > 𝑥2

 If 𝑓 𝑥4 < 𝑓 𝑥2   (shown here)

◼ 𝑥𝑜𝑝𝑡 is in the upper subinterval

◼ Discard the lower subinterval

𝑥1,𝑖+1 = 𝑥2,𝑖

𝑥2,𝑖+1 = 𝑥4,𝑖

𝑥3,𝑖+1 = 𝑥3,𝑖

 If 𝑓 𝑥4 > 𝑓 𝑥2

◼ 𝑥𝑜𝑝𝑡 is in the lower subinterval

◼ Discard the upper subinterval

𝑥1,𝑖+1 = 𝑥1,𝑖

𝑥2,𝑖+1 = 𝑥2,𝑖

𝑥3,𝑖+1 = 𝑥4,𝑖
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Parabolic Interpolation – Finding a Maximum

 Can  also use parabolic 
interpolation to locate 
a maximum point

 Parabola fit to the three 
points may open up or 
down

 Need to adjust bracket 
reduction algorithm 
depending on whether a 
maximum or minimum 
point is sought
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One-Dimensional Optimization – minimize_scalar()

 Parabolic interpolation is efficient, but may not converge
 minimize_scalar() uses a parabolic interpolation when 

possible and golden-section search when necessary

 Finds the minimum of a function over an interval

opt = minimize_scalar(f, bracket=(x0, x1))

 f: function to be optimized

 x0, x1: bracketing values

 opt: optimizeResult object returned – includes:

◼ opt.x: the solution of the optimization (i.e., 𝑥𝑜𝑝𝑡)

◼ opt.fun: value of objective function at the optimum (i.e., 𝑓 𝑥𝑜𝑝𝑡 )

◼ opt.nit: number of iterations
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One-Dimensional Optimization – Example

 Determine the load resistance of an electrical circuit 
that maximizes power delivered to the load
 Normalize to source resistance and open-circuit voltage
◼ 𝑅𝑡ℎ = 1Ω, 𝑉𝑜𝑐 = 1𝑉

 Power delivered to the load is

𝑃𝐿 = 𝐼𝐿𝑉𝐿

𝑃𝐿 =
𝑉𝑜𝑐

𝑅𝑡ℎ + 𝑅𝐿
∙ 𝑉𝑜𝑐

𝑅𝐿

𝑅𝑡ℎ + 𝑅𝐿

𝑃𝐿 =
𝑉𝑜𝑐

2 𝑅𝐿

𝑅𝑡ℎ + 𝑅𝐿
2

 Determine 𝑅𝐿 to maximize 𝑃𝐿
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One-Dimensional Optimization – Example

 Max Power occurs at

𝑅𝐿

𝑅𝑡ℎ
= 1 → 𝑅𝐿 = 𝑅𝑡ℎ

 Negate function to find maximum

 Use options dict to set solver 
options
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Multi-Dimensional Optimization – minimize()

 Find the minimum of a function of two or more 
variables

opt = minimize(f, x0)

 f: function to be optimized

 x0: array of initial values

 opt: optimizeResult object returned – includes:

◼ opt.x: the solution of the optimization (i.e., 𝑥𝑜𝑝𝑡)

◼ opt.fun: value of objective function at the optimum (i.e., 𝑓 𝑥𝑜𝑝𝑡 )

◼ opt.nit: number of iterations
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Multi-Dimensional Optimization – Example

 Find the minimum of a function of two variables

𝑓 𝑥, 𝑦 = 𝑥 ∙ 𝑒−𝑥2−𝑦2
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Multi-Dimensional Optimization – Example

 Convergence for this 
example depends on 
choice of 𝑥0

 Use options dict to 
set solver options

 Set tolerance, if desired
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