
ESC 440 – Computational Methods for Engineers

SECTION 2: ROOT FINDING
AND OPTIMIZATION

K. Webb ESC 440

2

Root Finding & Optimization

 Two closely related topics covered in this section
 Root finding – determination of independent variable

values at which the value of a function is zero

 Optimization – determination of independent variable
values at which the value of a function is at its maximum or
minimum (optima)

Chapra

K. Webb ESC 440

Root Finding3

K. Webb ESC 440

4

Root Finding - Example

 Determine the length, L, of a single-fin heat sink to
remove 500mW from an electronic package, given
the following:

 Width: w = 1 cm

 Thickness: t = 2 mm

 Heat transfer coeff.:
h = 100 W/(m2K)

 Aluminum: k = 210 W/(m∙K)

 Ambient temperature:
𝑇∞ = 40°𝐶

 Base temperature:
 𝑇𝑏 = 100°𝐶

K. Webb ESC 440

5

Root Finding - Example

 Fin heat transfer rate is given by:

𝑞𝑓 = 𝑀 ∙
sinh 𝑚𝐿 +

ℎ
𝑚𝑘

cosh 𝑚𝐿

cosh 𝑚𝐿 +
ℎ

𝑚𝑘
sinh 𝑚𝐿

where

 𝑚 =
ℎ𝑃

𝑘𝐴𝑐
, 𝑀 = ℎ𝑃𝑘𝐴𝑐 ⋅ 𝜃𝑏

𝐴𝑐 = 𝑤 ∙ 𝑡, 𝑃 = 2𝑤 + 2𝑡

𝜃𝑏 = 𝑇𝑏 − 𝑇∞

K. Webb ESC 440

6

Root Finding - Example

 Would like to set 𝑞𝑓 = 500𝑚𝑊 and solve for 𝐿, given
all other parameters
 But, we can’t isolate 𝐿 – a transcendental equation – can’t

be solved algebraically

 Instead, subtract 500𝑚𝑊 from both sides

𝑓 𝐿 = 𝑞𝑓 𝐿 − 500𝑚𝑊

𝑓 𝐿 = 𝑀 ∙
sinh 𝑚𝐿 +

ℎ
𝑚𝑘

cosh 𝑚𝐿

cosh 𝑚𝐿 +
ℎ

𝑚𝑘
sinh 𝑚𝐿

− 500𝑚𝑊 = 0

 Now, find the value of 𝐿 for which 𝑓 𝐿 = 0
 A root-finding problem

K. Webb ESC 440

7

Root Finding - Example

 Looking for 𝐿 such that 𝑞𝑓 𝐿 = 500𝑚𝑊

K. Webb ESC 440

8

Root Finding - Example

 Find the root of 𝑓 𝐿 , i.e. 𝐿 such that 𝑓 𝐿 = 0

K. Webb ESC 440

9

Root-Finding Techniques – Bracketing vs. Open

 Two categories of root-finding methods:

 Bracketing methods

 Require two initial values – must bracket (one on either
side of) the root

 Always converge

 Can be slow

 Open methods

 Initial value(s) need not bracket the root

 Often faster

 May not converge

K. Webb ESC 440

Root Finding: Basic Concepts10

K. Webb ESC 440

11

Presence of a Root – Sign Change

 A root is a value of 𝑥 at which𝑓 𝑥 = 0

 𝑓 𝑥 crosses the x-axis

 𝑓 𝑥 changes sign

 If 𝑥𝑟 is a root of 𝑓 𝑥 , and
𝑥𝑙 < 𝑥𝑟 < 𝑥𝑢, then

𝑓 𝑥𝑙 ∙ 𝑓 𝑥𝑢 < 0

 Not always true
 e.g., multiple roots

 Won’t consider multiple
roots here

K. Webb ESC 440

12

Error Evaluation and Tracking

 Approximate error, |𝜺𝒂|
 Don’t know where the true root is, so must

approximate error

𝜺𝒂 =
ෝ𝒙𝒓,𝒊+𝟏 − ෝ𝒙𝒓,𝒊

ෝ𝒙𝒓,𝒊+𝟏
∙ 𝟏𝟎𝟎%

 Tells us when a root has been determined to adequate
precision – stop when 𝜺𝒂 ≤ 𝜺𝒔

 True error, 𝜺𝒕

 Useful for evaluating the performance of root-finding
algorithms – when we know the location of the root

K. Webb ESC 440

Root Finding: Bracketing Methods13

K. Webb ESC 440

14

Root Finding – Bracketing Methods

 We’ll look at three bracketing methods

 Incremental search

Bisection

 False position

Each require two initial values

Must bracket the root

K. Webb ESC 440

15

Incremental Search

 Say we want to find a root, 𝑥𝑟, which we know
exists between 𝑥𝑙 and 𝑥𝑢

 Initialize the search with
bracketing values

 Starting at 𝑥𝑙, move
incrementally toward 𝑥𝑢,
searching for a sign change in
𝑓(𝑥)

 Accuracy determined by
increment length
 Too large – inaccurate – could miss

closely spaced roots
 Too small - slow

K. Webb ESC 440

16

Incremental Search

 𝑓 𝑥 has three roots on 𝑥𝑙 , 𝑥𝑢

 Incremental search with increment length, Δ𝑥

 𝑓 𝑥2 ∙ 𝑓 𝑥3 > 0

 Closely-spaced roots
are missed entirely

 𝑓 𝑥6 ∙ 𝑓 𝑥7 < 0

 A root is detected

 Location only known

to within Δ𝑥

 𝐸𝑡 < Δ𝑥

K. Webb ESC 440

Bisection17

K. Webb ESC 440

18

Bisection

 Search initialized with bracketing values

 Current root estimate, ො𝑥𝑟,𝑖, is the midpoint of the current interval

ො𝑥𝑟,𝑖 =
𝑥𝑙,𝑖 + 𝑥𝑢,𝑖

2
 At each iteration, root estimate replaces upper or lower bracketing

value

𝑥𝑙,𝑖+1 = ቐ
𝑥𝑙,𝑖 𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖 𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0

𝑥𝑢,𝑖+1 = ቐ
𝑥𝑢,𝑖 𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖 𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0

K. Webb ESC 440

19

Bisection

At each iteration:

 Root estimate

 midpoint of
bracketing
interval

 New bracketing
interval

 sub-interval
containing the
sign change

Chapra

K. Webb ESC 440

20

Bisection – Absolute Error

 Absolute error is bounded by the bracketing interval

𝐸𝑡,𝑖 ≤
Δ𝑥𝑖

2
=

𝑥𝑢,𝑖 − 𝑥𝑙,𝑖

2

 Bracketing interval halved at each iteration
 Max absolute error halved each iteration. After 𝑛 iterations:

𝐸𝑡,𝑛 ≤
Δ𝑥0

2𝑛+1

 Can calculate required iterations for a specified maximum absolute
error:

𝑛 = log2

Δ𝑥0

𝐸𝑡
− 1

K. Webb ESC 440

False Position21

K. Webb ESC 440

22

False Position – Linear Inerpolation

 Similar to bisection, but root estimate calculated
differently

 Not the midpoint of the bracketing interval

 ො𝑥𝑟,𝑖 is the root of the line connecting 𝑓 𝑥𝑙,𝑖 and 𝑓 𝑥𝑢,𝑖

K. Webb ESC 440

23

False Position – Calculating ො𝑥𝑟,𝑖

 Slope of the line:

Δ𝑦

Δ𝑥
=

𝑓 𝑥𝑢,𝑖 − 𝑓 𝑥𝑙,𝑖

𝑥𝑢,𝑖 − 𝑥𝑙,𝑖

 From 𝑓 𝑥𝑢,𝑖 to zero:

Δ𝑦 = 𝑓 𝑥𝑢,𝑖

 From 𝑥𝑢,𝑖 to ො𝑥𝑟,𝑖:

Δ𝑥 =
Δ𝑥

Δ𝑦
∙ 𝑓 𝑥𝑢,𝑖

 The root estimate is:

 ො𝑥𝑟,𝑖 = 𝑥𝑢,𝑖 − Δ𝑥 →

Δ𝑦 = 𝑓 𝑥𝑢,𝑖

Δ𝑥 = 𝑥𝑢,𝑖 − ො𝑥𝑟,𝑖

ො𝑥𝑟,𝑖 = 𝑥𝑢,𝑖 − 𝑓 𝑥𝑢,𝑖

𝑥𝑢,𝑖 − 𝑥𝑙,𝑖

𝑓 𝑥𝑢,𝑖 − 𝑓 𝑥𝑙,𝑖

K. Webb ESC 440

24

False Position – Reducing the Bracket

 As with bisection, the bracket is reduced on each
iteration
 Keep the sub-bracket containing the sign change

 Root estimate replaces upper or lower bracketing value

𝑥𝑙,𝑖+1 = ቐ
𝑥𝑙,𝑖 𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖 𝑓 𝑥𝑙,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0

𝑥𝑢,𝑖+1 = ቐ
𝑥𝑢,𝑖 𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 < 0

ො𝑥𝑟,𝑖 𝑓 𝑥𝑢,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖 ≥ 0

K. Webb ESC 440

25

Bracketing Methods - Summary

 All methods require two initial values that bracket the
root

 Always convergent

 Incremental search
◼ Mostly for illustrative purposes – not recommended

 Bisection
◼ Predictable

◼ Can calculate required iterations for desired absolute error -
predictable

 False position – linear interpolation
◼ Often outperforms bisection

◼ May be slow for certain types of functions

K. Webb ESC 440

Root Finding: Open Methods26

K. Webb ESC 440

27

Root Finding – Open Methods

 May require only a single initial value

 If two initial values are required, they need not bracket
the root

 Often significantly faster than bracketing methods

 Convergence is not guaranteed
 Dependent on function and initial values

 Fixed-point iteration

 Newton-Raphson

 Secant methods

 Inverse quadratic interpolation

K. Webb ESC 440

Fixed Point Iteration28

K. Webb ESC 440

29

Fixed Point Iteration

 A fixed point of a function is a value of the
independent variable that the function maps to
itself

 Root-finding problem is determining 𝑥, such that

𝑓 𝑥 = 0

 Can add 𝒙 to both sides – equation is unchanged

𝑥 = 𝑓 𝑥 + 𝑥

𝑥 = 𝑔 𝑥

 Value of 𝑥 that satisfies the equation is still the root

K. Webb ESC 440

30

Fixed Point Iteration

 Root is the solution to

𝑥 = 𝑔 𝑥

 A fixed point of 𝑔 𝑥

 Also the solution to system of
two equations

𝑓1 𝑥 = 𝑥
𝑓2 𝑥 = 𝑔 𝑥

 Root is the intersection of 𝑓1 𝑥
and 𝑓2 𝑥
 i.e., the intersection of 𝑦 =

𝑓 𝑥 + 𝑥 and 𝑦 = 𝑥
Chapra

K. Webb ESC 440

31

Fixed Point Iteration

𝑥 = 𝑔 𝑥

 Provides an iterative
formula for 𝑥:

𝑥𝑖+1 = 𝑔 𝑥𝑖

 Iterate until
approximate error falls
below a specified
stopping criterion

휀𝑎 ≤ 휀𝑠 Chapra

K. Webb ESC 440

32

Fixed Point Iteration – Convergence

 Current error is proportional to

the previous error times the slope

of 𝒈(𝒙):

𝐸𝑡,𝑖+1 = 𝑔′ 𝜉 ∙ 𝐸𝑡,𝑖

 If 𝑔′ 𝑥 > 1, error will grow

 Estimate will diverge

 If 𝑔′ 𝑥 < 1, error will decrease

 Estimate will converge

 If 𝑔′ 𝑥 < 0, sign of error will

oscillate

 Oscillatory, or spiral convergence

or divergence Chapra

K. Webb ESC 440

33

Fixed Point Iteration – Rate of Convergence

 Current error is proportional to the previous error

times the slope of 𝒈(𝒙):

𝐸𝑡,𝑖+1 = 𝑔′ 𝜉 ∙ 𝐸𝑡,𝑖

 Once a convergent estimate becomes relatively close
to the root, the slope of 𝒈 𝒙 is relatively constant

 ො𝑥𝑟 varies little from iteration to iteration

 Error of the current iteration is roughly proportional
to the error from the previous iteration

 Linear convergence

K. Webb ESC 440

Newton-Raphson & Secant Methods34

K. Webb ESC 440

35

Newton-Raphson Method

 New estimate is the root of a line tangent to 𝑓 𝑥 at ො𝑥𝑟,𝑖

 Slope of 𝑓 𝑥 at ො𝑥𝑟,𝑖 is the derivative at ො𝑥𝑟,𝑖:

𝑓′ ො𝑥𝑟,𝑖 =
Δ𝑦

Δ𝑥
=

𝑓 ො𝑥𝑟,𝑖

ො𝑥𝑟,𝑖 − ො𝑥𝑟,𝑖+1

 Solving for the new root
estimate:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 An iterative formula for ො𝑥𝑟

K. Webb ESC 440

36

Newton-Raphson Method

 Iterate, using the Newton-Raphson formula:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 Iterate until
approximate error
falls below a
specified stopping
criterion

휀𝑎 ≤ 휀𝑠

K. Webb ESC 440

37

Newton-Raphson – Convergence

 Often fast, but convergence
is not guaranteed

 Inflection point (constant
slope) near a root causes
divergence

 Areas of near-zero slope are
problematic
 Oscillation around local

maximum/minimum

 Tangent line sends estimate
very far away – or to infinity
for zero slope

Chapra

K. Webb ESC 440

38

Newton-Raphson – Rate of Convergence

 Current error is proportional
to the square of the previous
error

𝐸𝑡,𝑖+1 = −
𝑓′′ 𝑥𝑟

2𝑓′ 𝑥𝑟
𝐸𝑡,𝑖

2

 Quadratic convergence

 Number of significant figures of
accuracy approximately doubles
each iteration

K. Webb ESC 440

39

Newton-Raphson – Derivative Function

 Newton-Raphson algorithm requires two functions

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 Function whose roots are to be found, 𝑓 𝑥

 Derivative function, 𝑓′ 𝑥

 That means 𝑓′ 𝑥 must be found analytically

 Inconvenient – may be tedious for some functions

 Already performing numerical approximations

 Why not calculate 𝑓′ 𝑥 numerically? → Secant
methods

K. Webb ESC 440

40

Secant Methods

 Same iterative formula as
Newton-Raphson:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖

𝑓′ ො𝑥𝑟,𝑖

 Now, approximate 𝑓′ 𝑥 using a
finite difference

𝑓′ 𝑥 ≅
𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖

 Secant method iterative formula:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝑓 ො𝑥𝑟,𝑖 𝑥𝑖+1 − 𝑥𝑖

𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖

 Would require two initial values

 Instead, generate the second 𝑥
value as a fractional perturbation
of the first (the current estimate)

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑥𝑖 = ො𝑥𝑟,𝑖 + 𝛿 ො𝑥𝑟,𝑖

where 𝛿 is a very small number

 Finite difference approx. of 𝑓′ 𝑥 :

𝑓′ 𝑥 ≅
𝑓 ො𝑥𝑟,𝑖 + 𝛿 ො𝑥𝑟,𝑖 − 𝑓 ො𝑥𝑟,𝑖

𝛿 ො𝑥𝑟,𝑖

 The modified secant iterative
formula:

ො𝑥𝑟,𝑖+1 = ො𝑥𝑟,𝑖 −
𝛿 ො𝑥𝑟,𝑖 ∙ 𝑓 ො𝑥𝑟,𝑖

𝑓 ො𝑥𝑟,𝑖 + 𝛿 ො𝑥𝑟,𝑖 − 𝑓 ො𝑥𝑟,𝑖

K. Webb ESC 440

Inverse Quadratic Interpolation41

K. Webb ESC 440

42

Root-Finding Methods – Interpolation

 False position and the Newton-Raphson/secant
methods all use linear interpolation

 Non-linear function approximated as a linear function

 Root of the linear approximation becomes the
approximation of the root

 We’ll get to curve-fitting and interpolation later, but we
should already suspect that a higher-order
approximation for a non-linear function may be more
accurate than a linear (first-order) approximation

 Increase accuracy of the root estimate by
approximating our non-linear function as a quadratic

K. Webb ESC 440

43

Inverse Quadratic Interpolation

 Instead of using two points to
approximate 𝑓 𝑥 as a line, use
three points to approximate it as a
parabola

 Root estimate is where the
parabola crosses the x-axis

 But, not all parabolas cross the x-
axis – complex roots

 All parabolas do cross the y-axis
 To guarantee an x-axis crossing, turn

the parabola on its side
𝑥 = 𝑔 𝑦

 An inverse quadratic function

K. Webb ESC 440

44

Inverse Quadratic Interpolation – Example

 Three points
required for
quadratic approx.
 How are they

chosen?

 Inverse quadratic
function will cross
the x-axis
 For same three

points a quadratic
may not

 May be very
efficient
 May not converge

K. Webb ESC 440

45

Inverse Quadratic Interpolation

 Three known 𝑥 and corresponding 𝑓 𝑥 values:
 𝑥1, 𝑥2, 𝑥3, and 𝑓 𝑥1 , 𝑓 𝑥2 , 𝑓 𝑥3

 Fit an inverse parabola to these three points
 Lagrange polynomial – more on these later

𝑥 = 𝑔 𝑦 =
𝑦 − 𝑦2 𝑦 − 𝑦3

𝑦1 − 𝑦2 𝑦1 − 𝑦3
𝑥1 +

𝑦 − 𝑦1 𝑦 − 𝑦3

𝑦2 − 𝑦1 𝑦1 − 𝑦3
𝑥2 +

𝑦 − 𝑦1 𝑦 − 𝑦2

𝑦3 − 𝑦1 𝑦3 − 𝑦2
𝑥3

 Don’t actually need to calculate this parabola

 Only need its root – evaluate at 𝑦 = 0 for new root estimate:

ො𝑥𝑟,𝑖+1 =
𝑦2𝑦3

𝑦1 − 𝑦2 𝑦1 − 𝑦3
𝑥1 +

𝑦1𝑦3

𝑦2 − 𝑦1 𝑦1 − 𝑦3
𝑥2 +

𝑦1𝑦2

𝑦3 − 𝑦1 𝑦3 − 𝑦2
𝑥3

K. Webb ESC 440

46

Inverse Quadratic Interpolation

 Determining ො𝑥𝑟,𝑖+1from the three points is only part
of the algorithm
 Algorithm initialized with one or two 𝑥 values
◼ Need to determine the other one or two initial 𝑥 values

 Must update 𝑥1, 𝑥2, and 𝑥3 on each iteration

 We won’t get into these details here

 Will fail if any two 𝑓 𝑥𝑖 are equal
 Revert to another open method (e.g. secant)

 May diverge
 Revert to a bracketing method (e.g. bisection)

K. Webb ESC 440

Brent’s Method47

K. Webb ESC 440

48

Brent’s Method – brentq()

 brentq() from SciPy’s optimize package is based
on Brent’s method

 A bracketing method

 Uses inverse quadratic interpolation to generate root
estimates when possible

 In case of convergence issues reverts to bisection

 Always tries faster method first, then uses bisection
only if necessary

 To use, first import the function:

from scipy.optimize import brentq

K. Webb ESC 440

49

scipy.optimize.brentq()

root = brentq(func, a, b)

 func: function whose root you are looking for

 a: lower bracketing value

 b: upper bracketing value

 root: approximate root value returned

 Alternatively, we can control the output type:

r = brentq(func, a, b, full_output=True)

 r: (root, robj) – a tuple
◼ root: approximate root value returned

◼ robj: a RootResults object including convergence information

K. Webb ESC 440

50

Example – brentq()

 Returning to our heat sink fin design problem
 Want to know the length of the fin required for a heat

transfer rate of 𝑞𝑓 = 500𝑚𝑊, given the other specified
parameters:

 Width: w = 1 cm

 Thickness: t = 2 mm

 Heat transfer coeff.:
h = 100 W/(m2K)

 Aluminum: k = 210 W/(m∙K)

 Ambient temperature:
𝑇∞ = 40°𝐶

 Base temperature:
 𝑇𝑏 = 100°𝐶

K. Webb ESC 440

51

Example – brentq()

 We’ll now use brentq() to find the root of 𝑓 𝐿

𝑓 𝐿 = 𝑀 ∙
sinh 𝑚𝐿 +

ℎ
𝑚𝑘

cosh 𝑚𝐿

cosh 𝑚𝐿 +
ℎ

𝑚𝑘
sinh 𝑚𝐿

− 500𝑚𝑊 = 0

where

 𝑚 =
ℎ𝑃

𝑘𝐴𝑐
, 𝑀 = ℎ𝑃𝑘𝐴𝑐 ⋅ 𝜃𝑏

𝐴𝑐 = 𝑤 ∙ 𝑡, 𝑃 = 2𝑤 + 2𝑡

𝜃𝑏 = 𝑇𝑏 − 𝑇∞

K. Webb ESC 440

52

Example – brentq()

 Define the function whose
root we want to find

 Define the bracket
 Values must bracket a sign

change

 Pass the function object, bracketing values, and other
arguments to brentq()

K. Webb ESC 440

53

Example – brentq()

 Convergence
achieved in nine
iterations

 Root is at 0.031 m

 A 3.1 cm fin

K. Webb ESC 440

Roots of Polynomials54

K. Webb ESC 440

55

Roots of Polynomials

 Polynomials are linear (first order) or nonlinear
(second and higher order) functions of the form

𝑓 𝑥 = 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛−1 + ⋯ + 𝑎𝑛𝑥 + 𝑎𝑛+1

 An nth-order polynomial has n roots
 Often, we’d like to find all n roots at once

 Methods described thus far find only one root at a time

 For 2nd-order,the quadratic formula yields both
roots at once:

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

K. Webb ESC 440

56

Roots of Polynomials – np.roots()

 To find all n roots of a polynomial:

x = np.roots(c)

 c: (n+1)-vector of polynomial coefficients, i.e., the 𝑎𝑖’s
from the previous slide:

𝑓 𝑥 = 𝑐 0 𝑥𝑛 + 𝑐 1 𝑥𝑛−1 + ⋯ + 𝑐 𝑛 − 1 𝑥 + 𝑐 𝑛

 x: n-vector of roots

 np.roots() works by treating the root-finding
problem as an eigenvalue problem

K. Webb ESC 440

57

Roots of Polynomials – np.poly()

 Polynomials are an important class of functions

 Curve-fitting and interpolation

 Linear system theory and controls

 Often, we may want to generate the nth-order
polynomial corresponding to a given set of n roots

c = np.poly(x)

 x: n-vector of roots

 c: (n+1)-vector of polynomial coefficients

K. Webb ESC 440

Optimization58

K. Webb ESC 440

59

Optimization

 Optimization is very important to engineers

 Adjusting parameters to maximize some measure of
performance of a system

 Process of finding maxima and minima (optima) of
functions

Chapra

K. Webb ESC 440

60

Maxima and Minima

 An optimum point of a function occurs where the
first derivative (slope) of the function is zero

𝑓′ 𝑥 = 0

 An optimum point is a maximum if the second
derivative (curvature) of the function is negative

𝑓′′ 𝑥 < 0

 An optimum point is a minimum if the second
derivative (curvature) of the function is positive

𝑓′′ 𝑥 > 0

K. Webb ESC 440

 Optima occur where 𝑓′ 𝑥 = 0
 Could find optima of 𝑓 𝑥 by finding roots of 𝑓′ 𝑥

 Requires calculation of the derivative, either analytically or
numerically

 Direct (non-derivative) methods are often faster and more
reliable

61

Optimization as a Root-Finding Problem

K. Webb ESC 440

62

Optimization

 Optimization methods exist for one-dimensional
and multi-dimensional functions

 As with root-finding, both bracketing and open
methods exist

 Here, we’ll look at:
 One dimensional optimization
◼ Golden-section search

◼ Parabolic interpolation

◼ Use of scipy.optimize.minimize_scalar()

 Multi-dimensional optimization
◼ Use of scipy.optimize.minimize()

K. Webb ESC 440

Golden-Section Search63

K. Webb ESC 440

64

The Golden Ratio – 𝜙

 Divide a value into two parts, 𝑎 and 𝑏,

such that the ratio of the larger part to the smaller part
is equal to the ratio of the whole to the larger part

𝑎

𝑏
=

𝑎 + 𝑏

𝑎

 The ratio 𝑎/𝑏 is the golden ratio

𝜙 =
1 + 5

2
= 1.618033988 …

K. Webb ESC 440

65

The Golden Ratio – 𝜙

 Given an interval 𝑥𝑙 , 𝑥𝑢 ,
subdivide it from both ends
according to the golden ratio

𝑥1 − 𝑥𝑙

𝑥𝑢 − 𝑥1
=

𝑥𝑢 − 𝑥𝑙

𝑥1 − 𝑥𝑙
= 𝜙

and

𝑥𝑢 − 𝑥2

𝑥2 − 𝑥𝑙
=

𝑥𝑢 − 𝑥𝑙

𝑥𝑢 − 𝑥2
= 𝜙

 If we discard the upper portion of
the interval

we‘re left with a smaller interval,
itself divided according to 𝜙

𝑥2 − 𝑥𝑙

𝑥1 − 𝑥2
=

𝑥1 − 𝑥𝑙

𝑥2 − 𝑥𝑙
= 𝜙

 The same is true if we discard the
lower subinterval

𝑥𝑢 − 𝑥1

𝑥1 − 𝑥2
=

𝑥𝑢 − 𝑥2

𝑥𝑢 − 𝑥1
= 𝜙

K. Webb ESC 440

66

The Golden Ratio – 𝜙

 Starting from one of the
subintervals (the lower one, here)

we can further subdivide it
according to the golden ratio,
starting from the upper bound on
the interval

𝑥1 − 𝑥3

𝑥3 − 𝑥𝑙
=

𝑥1 − 𝑥𝑙

𝑥1 − 𝑥3
= 𝜙

 If we reassign the variable names

𝑥𝑙 → 𝑥𝑙,𝑛𝑒𝑤

𝑥1 → 𝑥𝑢,𝑛𝑒𝑤

𝑥2 → 𝑥1,𝑛𝑒𝑤

𝑥3 → 𝑥2,𝑛𝑒𝑤

we‘re back where we started

 But now, the overall interval size
has been reduced by a factor of 𝝓

 This process is the basis for the
golden-section search algorithm

K. Webb ESC 440

67

Golden-Section Search

 A bracketing optimization method
 Two initial values must bracket an optimum point

 Looks for a minimum
 To find a maximum use −𝑓 𝑥

 Only one minimum point (local or global) in
the bracketing interval
 Unimodal

 Very similar to bisection
 Now looking for a minimum, instead of a zero-crossing

 Need two intermediate points

K. Webb ESC 440

68

Golden-Section Search

 Start with two initial values,𝑥𝑙 and
𝑥𝑢, that bracket a minimum point
of the function, 𝑓 𝑥

 Subdivide the interval according
to the golden ratio with two
intermediate points 𝑥1 and 𝑥2

𝑥1 = 𝑥𝑙 +
𝑥𝑢 − 𝑥𝑙

𝜙

𝑥2 = 𝑥𝑢 −
𝑥𝑢 − 𝑥𝑙

𝜙

 Evaluate the function at each of
the intermediate points

𝑓 𝑥1 and 𝑓 𝑥2

 Compare values of 𝑓 𝑥1 and 𝑓 𝑥2

 Two possibilities

 𝑓 𝑥1 > 𝑓 𝑥2 or

 𝑓 𝑥1 < 𝑓 𝑥2

K. Webb ESC 440

69

Golden-Section Search – 𝑓 𝑥1 < 𝑓 𝑥2

If 𝑓 𝑥1 < 𝑓 𝑥2

 𝑥1 is the current estimate for the
minimum point of 𝑓 𝑥 , ො𝑥𝑜𝑝𝑡

 True minimum cannot lie in the
range of [𝑥𝑙 , 𝑥2]

 Discard the lower subinterval

 Reassign variable names

𝑥2 → 𝑥𝑙

𝑥1 → 𝑥2

𝑥𝑢 → 𝑥𝑢

 Using new 𝑥𝑙, 𝑥𝑢, and 𝑥2 values,
calculate a new 𝑥1

𝑥1 = 𝑥𝑙 +
𝑥𝑢 − 𝑥𝑙

𝜙

K. Webb ESC 440

70

Golden-Section Search – 𝑓 𝑥1 > 𝑓 𝑥2

If 𝑓 𝑥1 > 𝑓 𝑥2

 𝑥2is the current estimate for the
minimum point of 𝑓 𝑥 , ො𝑥𝑜𝑝𝑡

 True minimum cannot lie in the
range of [𝑥1, 𝑥𝑢]

 Discard the upper subinterval

 Reassign variable names

𝑥𝑙 → 𝑥𝑙

𝑥2 → 𝑥1

𝑥1 → 𝑥𝑢

 Using new 𝑥𝑙, 𝑥𝑢, and 𝑥1 values,
calculate a new 𝑥2

𝑥2 = 𝑥𝑢 −
𝑥𝑢 − 𝑥𝑙

𝜙

K. Webb ESC 440

71

Golden-Section Search

 Continue iterating and updating the ො𝑥𝑜𝑝𝑡, the

estimate of the minimizing value for 𝑓(𝑥)

 Only one new point needs to be calculated at each
iteration

◼ This is the beauty of using the golden ratio

◼ Very efficient

 Size of the bracketing interval decreases by a
factor of 𝝓 = 𝟏. 𝟔𝟏𝟖 … with each iteration

 Continue to iterate until error estimate satisfies a
stopping criterion

K. Webb ESC 440

72

Golden-Section Search – Error

 Consider the case where 𝑥𝑜𝑝𝑡 = 𝑥𝑢

 Lower subinterval, [𝑥𝑙 , 𝑥2], is
discarded

 Optimum point estimate is 𝑥1

ො𝑥𝑜𝑝𝑡 = 𝑥1

 This scenario represent the worst-
case error

𝐸𝑚𝑎𝑥 = ො𝑥𝑜𝑝𝑡 − 𝑥𝑜𝑝𝑡 = 𝑥1 − 𝑥𝑢

= 𝑥𝑙 +
𝑥𝑢 − 𝑥𝑙

𝜙
− 𝑥𝑢

= 𝑥𝑢 − 𝑥𝑙 1 −
1

𝜙

and
1

𝜙
= 𝜙 − 1

K. Webb ESC 440

73

Golden-Section Search – Error

 The worst-case error is

𝐸𝑚𝑎𝑥 = 2 − 𝜙 𝑥𝑢 − 𝑥𝑙

 Normalize to the current estimate

 Convert from absolute to relative
error

 Use worst-case value as our
approximate error

휀𝑎 = 2 − 𝜙
𝑥𝑢 − 𝑥𝑙

ො𝑥𝑜𝑝𝑡
∙ 100%

 Calculate 휀𝑎 each iteration

 Continue until stopping criterion is
satisfied

K. Webb ESC 440

Parabolic Interpolation74

K. Webb ESC 440

75

Parabolic Interpolation

 Near an optimum point, many functions can be satisfactorily approximated
with a quadratic

 Three points define a unique parabola

 Two points define the bracketing interval

 A third intermediate point somewhere within the bracket

 Optimum point of the parabolic approximation becomes current estimate
of the optimum point

 Evaluate 𝑓 𝑥 at ො𝑥𝑜𝑝𝑡

 Retain the subinterval containing the optimum point, discard one of the
bracketing points, and iterate

 𝑓 𝑥 must be unimodal

 Looking for a minimum, but algorithm can easily be modified to look for a
maximum

K. Webb ESC 440

76

Parabolic Interpolation

 Start with three points,
which bracket the optimum

 Evaluate the 𝑓 𝑥 at these
points

 Fit a parabola to the three
points
 Can use a Lagrange

polynomial
 Not necessary to actually

calculate the parabola – can
jump to finding its optimum
point

𝑝 𝑥 =
𝑥 − 𝑥2 𝑥 − 𝑥3

𝑥1 − 𝑥2 𝑥1 − 𝑥3
𝑓 𝑥1 +

𝑥 − 𝑥1 𝑥 − 𝑥3

𝑥2 − 𝑥1 𝑥2 − 𝑥3
𝑓 𝑥2 +

𝑥 − 𝑥1 𝑥 − 𝑥2

𝑥3 − 𝑥1 𝑥3 − 𝑥2
𝑓 𝑥3

K. Webb ESC 440

77

Parabolic Interpolation

 Expression for 𝑥4 derived by

solving
𝑑𝑝

𝑑𝑥
= 0

 𝑥4 becomes the current
estimate for the optimum
point, ො𝑥𝑜𝑝𝑡

 Evaluate 𝑓(ො𝑥𝑜𝑝𝑡)

 Use values of ො𝑥𝑜𝑝𝑡 and 𝑓(ො𝑥𝑜𝑝𝑡)

to appropriately reduce the
bracketing interval

 Calculate the optimum point of the parabolic approximation

𝑥4 = 𝑥2 −
1

2
∙

𝑥2 − 𝑥1
2 𝑓 𝑥2 − 𝑓 𝑥3 − 𝑥2 − 𝑥3

2 𝑓 𝑥2 − 𝑓 𝑥1

𝑥2 − 𝑥1 𝑓 𝑥2 − 𝑓 𝑥3 − 𝑥2 − 𝑥3 𝑓 𝑥2 − 𝑓 𝑥1

K. Webb ESC 440

78

Parabolic Interpolation – Reducing the Bracket

 If 𝑥4 < 𝑥2

 If 𝑓 𝑥4 < 𝑓 𝑥2 (shown here)

◼ 𝑥𝑜𝑝𝑡 is in the lower subinterval

◼ Discard the upper subinterval

𝑥1,𝑖+1 = 𝑥1,𝑖

𝑥2,𝑖+1 = 𝑥4,𝑖

𝑥3,𝑖+1 = 𝑥2,𝑖

 If 𝑓 𝑥4 > 𝑓 𝑥2

◼ 𝑥𝑜𝑝𝑡 is in the upper subinterval

◼ Discard the lower subinterval

𝑥1,𝑖+1 = 𝑥4,𝑖

𝑥2,𝑖+1 = 𝑥2,𝑖

𝑥3,𝑖+1 = 𝑥3,𝑖

K. Webb ESC 440

79

Parabolic Interpolation – Reducing the Bracket

 If 𝑥4 > 𝑥2

 If 𝑓 𝑥4 < 𝑓 𝑥2 (shown here)

◼ 𝑥𝑜𝑝𝑡 is in the upper subinterval

◼ Discard the lower subinterval

𝑥1,𝑖+1 = 𝑥2,𝑖

𝑥2,𝑖+1 = 𝑥4,𝑖

𝑥3,𝑖+1 = 𝑥3,𝑖

 If 𝑓 𝑥4 > 𝑓 𝑥2

◼ 𝑥𝑜𝑝𝑡 is in the lower subinterval

◼ Discard the upper subinterval

𝑥1,𝑖+1 = 𝑥1,𝑖

𝑥2,𝑖+1 = 𝑥2,𝑖

𝑥3,𝑖+1 = 𝑥4,𝑖

K. Webb ESC 440

80

Parabolic Interpolation – Finding a Maximum

 Can also use parabolic
interpolation to locate
a maximum point

 Parabola fit to the three
points may open up or
down

 Need to adjust bracket
reduction algorithm
depending on whether a
maximum or minimum
point is sought

K. Webb ESC 440

Optimization in Python81

K. Webb ESC 440

82

One-Dimensional Optimization – minimize_scalar()

 Parabolic interpolation is efficient, but may not converge
 minimize_scalar() uses a parabolic interpolation when

possible and golden-section search when necessary

 Finds the minimum of a function over an interval

opt = minimize_scalar(f, bracket=(x0, x1))

 f: function to be optimized

 x0, x1: bracketing values

 opt: optimizeResult object returned – includes:

◼ opt.x: the solution of the optimization (i.e., 𝑥𝑜𝑝𝑡)

◼ opt.fun: value of objective function at the optimum (i.e., 𝑓 𝑥𝑜𝑝𝑡)

◼ opt.nit: number of iterations

K. Webb ESC 440

83

One-Dimensional Optimization – Example

 Determine the load resistance of an electrical circuit
that maximizes power delivered to the load
 Normalize to source resistance and open-circuit voltage
◼ 𝑅𝑡ℎ = 1Ω, 𝑉𝑜𝑐 = 1𝑉

 Power delivered to the load is

𝑃𝐿 = 𝐼𝐿𝑉𝐿

𝑃𝐿 =
𝑉𝑜𝑐

𝑅𝑡ℎ + 𝑅𝐿
∙ 𝑉𝑜𝑐

𝑅𝐿

𝑅𝑡ℎ + 𝑅𝐿

𝑃𝐿 =
𝑉𝑜𝑐

2 𝑅𝐿

𝑅𝑡ℎ + 𝑅𝐿
2

 Determine 𝑅𝐿 to maximize 𝑃𝐿

K. Webb ESC 440

84

One-Dimensional Optimization – Example

 Max Power occurs at

𝑅𝐿

𝑅𝑡ℎ
= 1 → 𝑅𝐿 = 𝑅𝑡ℎ

 Negate function to find maximum

 Use options dict to set solver
options

K. Webb ESC 440

85

Multi-Dimensional Optimization – minimize()

 Find the minimum of a function of two or more
variables

opt = minimize(f, x0)

 f: function to be optimized

 x0: array of initial values

 opt: optimizeResult object returned – includes:

◼ opt.x: the solution of the optimization (i.e., 𝑥𝑜𝑝𝑡)

◼ opt.fun: value of objective function at the optimum (i.e., 𝑓 𝑥𝑜𝑝𝑡)

◼ opt.nit: number of iterations

K. Webb ESC 440

86

Multi-Dimensional Optimization – Example

 Find the minimum of a function of two variables

𝑓 𝑥, 𝑦 = 𝑥 ∙ 𝑒−𝑥2−𝑦2

K. Webb ESC 440

87

Multi-Dimensional Optimization – Example

 Convergence for this
example depends on
choice of 𝑥0

 Use options dict to
set solver options

 Set tolerance, if desired

	Slide 1: Section 2: root finding and optimization
	Slide 2: Root Finding & Optimization
	Slide 3: Root Finding
	Slide 4: Root Finding - Example
	Slide 5: Root Finding - Example
	Slide 6: Root Finding - Example
	Slide 7: Root Finding - Example
	Slide 8: Root Finding - Example
	Slide 9: Root-Finding Techniques – Bracketing vs. Open
	Slide 10: Root Finding: Basic Concepts
	Slide 11: Presence of a Root – Sign Change
	Slide 12: Error Evaluation and Tracking
	Slide 13: Root Finding: Bracketing Methods
	Slide 14: Root Finding – Bracketing Methods
	Slide 15: Incremental Search
	Slide 16: Incremental Search
	Slide 17: Bisection
	Slide 18: Bisection
	Slide 19: Bisection
	Slide 20: Bisection – Absolute Error
	Slide 21: False Position
	Slide 22: False Position – Linear Inerpolation
	Slide 23: False Position – Calculating x hat sub , r ,i. end subscript
	Slide 24: False Position – Reducing the Bracket
	Slide 25: Bracketing Methods - Summary
	Slide 26: Root Finding: Open Methods
	Slide 27: Root Finding – Open Methods
	Slide 28: Fixed Point Iteration
	Slide 29: Fixed Point Iteration
	Slide 30: Fixed Point Iteration
	Slide 31: Fixed Point Iteration
	Slide 32: Fixed Point Iteration – Convergence
	Slide 33: Fixed Point Iteration – Rate of Convergence
	Slide 34: Newton-Raphson & Secant Methods
	Slide 35: Newton-Raphson Method
	Slide 36: Newton-Raphson Method
	Slide 37: Newton-Raphson – Convergence
	Slide 38: Newton-Raphson – Rate of Convergence
	Slide 39: Newton-Raphson – Derivative Function
	Slide 40: Secant Methods
	Slide 41: Inverse Quadratic Interpolation
	Slide 42: Root-Finding Methods – Interpolation
	Slide 43: Inverse Quadratic Interpolation
	Slide 44: Inverse Quadratic Interpolation – Example
	Slide 45: Inverse Quadratic Interpolation
	Slide 46: Inverse Quadratic Interpolation
	Slide 47: Brent’s Method
	Slide 48: Brent’s Method – brentq()
	Slide 49: scipy.optimize.brentq()
	Slide 50: Example – brentq()
	Slide 51: Example – brentq()
	Slide 52: Example – brentq()
	Slide 53: Example – brentq()
	Slide 54: Roots of Polynomials
	Slide 55: Roots of Polynomials
	Slide 56: Roots of Polynomials – np.roots()
	Slide 57: Roots of Polynomials – np.poly()
	Slide 58: Optimization
	Slide 59: Optimization
	Slide 60: Maxima and Minima
	Slide 61: Optimization as a Root-Finding Problem
	Slide 62: Optimization
	Slide 63: Golden-Section Search
	Slide 64: The Golden Ratio – phi
	Slide 65: The Golden Ratio – phi
	Slide 66: The Golden Ratio – phi
	Slide 67: Golden-Section Search
	Slide 68: Golden-Section Search
	Slide 69: Golden-Section Search – f open paren x sub 1 , , close paren less than f open paren x sub 2 , , close paren
	Slide 70: Golden-Section Search – f open paren x sub 1 , , close paren greater than f open paren x sub 2 , , close paren
	Slide 71: Golden-Section Search
	Slide 72: Golden-Section Search – Error
	Slide 73: Golden-Section Search – Error
	Slide 74: Parabolic Interpolation
	Slide 75: Parabolic Interpolation
	Slide 76: Parabolic Interpolation
	Slide 77: Parabolic Interpolation
	Slide 78: Parabolic Interpolation – Reducing the Bracket
	Slide 79: Parabolic Interpolation – Reducing the Bracket
	Slide 80: Parabolic Interpolation – Finding a Maximum
	Slide 81: Optimization in Python
	Slide 82: One-Dimensional Optimization – minimize_scalar()
	Slide 83: One-Dimensional Optimization – Example
	Slide 84: One-Dimensional Optimization – Example
	Slide 85: Multi-Dimensional Optimization – minimize()
	Slide 86: Multi-Dimensional Optimization – Example
	Slide 87: Multi-Dimensional Optimization – Example

