SECTION 2: ROOT FINDING AND OPTIMIZATION

ESC 440 - Computational Methods for Engineers

Root Finding \& Optimization

\square Two closely related topics covered in this section
\square Root finding - determination of independent variable values at which the value of a function is zero

- Optimization - determination of independent variable values at which the value of a function is at its maximum or minimum (optima)

3
 Root Finding

Root Finding - Example

\square Determine the length, L, of a single-fin heat sink to remove 500 mW from an electronic package, given the following:

- Width: $w=1 \mathrm{~cm}$
- Thickness: $t=2 \mathrm{~mm}$
- Heat transfer coeff.:

$$
h=100 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)
$$

- Aluminum: $\mathrm{k}=210 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$
- Ambient temperature:

$$
T_{\infty}=40^{\circ} \mathrm{C}
$$

- Base temperature:

$$
T_{b}=100^{\circ} \mathrm{C}
$$

Root Finding - Example

\square Fin heat transfer rate is given by:

$$
q_{f}=M \cdot \frac{\sinh (m L)+\left(\frac{h}{m k}\right) \cosh (m L)}{\cosh (m L)+\left(\frac{h}{m k}\right) \sinh (m L)}
$$

where

$$
\begin{gathered}
m=\sqrt{\frac{h P}{k A_{c}}} \quad \quad M=\sqrt{h P k A_{c}} \cdot \theta_{b} \\
A_{c}=w \cdot t, \quad P=2 w+2 t \\
\theta_{b}=T_{b}-T_{\infty}
\end{gathered}
$$

Root Finding - Example

\square Would like to set $q_{f}=500 \mathrm{~mW}$ and solve for L, given all other parameters

- But, we can't isolate L - a transcendental equation - can't be solved algebraically
\square Instead, subtract 500 mW from both sides

$$
\begin{aligned}
& f(L)=q_{f}(L)-500 m W \\
& f(L)=M \cdot \frac{\sinh (m L)+\left(\frac{h}{m k}\right) \cosh (m L)}{\cosh (m L)+\left(\frac{h}{m k}\right) \sinh (m L)}-500 m W=0
\end{aligned}
$$

\square Now, find the value of L for which $f(L)=0$
\square A root-finding problem

Root Finding - Example

\square Looking for L such that $q_{f}(L)=500 \mathrm{~mW}$

Heat Transfer Rate vs. Fin Length

Root Finding - Example

Find the root of $f(L)$, i.e. L such that $f(L)=0$

Root-Finding Techniques - Bracketing vs. Open

\square Two categories of root-finding methods:
\square Bracketing methods

- Require two initial values - must bracket (one on either side of) the root
- Always converge
- Can be slow
\square Open methods
- Initial value(s) need not bracket the root
- Often faster
- May not converge

Root Finding: Basic Concepts

Presence of a Root - Sign Change

\square A root is a value of x at which $f(x)=0$
$\square f(x)$ crosses the x-axis
$\square f(x)$ changes sign
\square If x_{r} is a root of $f(x)$, and $x_{l}<x_{r}<x_{u}$, then

$$
f\left(x_{l}\right) \cdot f\left(x_{u}\right)<0
$$

\square Not always true
\square e.g., multiple roots

- Won't consider multiple roots here

Error Evaluation and Tracking

\square Approximate error, $\left|\varepsilon_{a}\right|$

- Don't know where the true root is, so must approximate error

$$
\left|\varepsilon_{a}\right|=\left|\frac{\widehat{x}_{r, i+1}-\widehat{x}_{r, i}}{\widehat{x}_{r, i+1}}\right| \cdot 100 \%
$$

- Tells us when a root has been determined to adequate precision - stop when $\left|\varepsilon_{a}\right| \leq\left|\varepsilon_{\boldsymbol{s}}\right|$
\square True error, $\left|\varepsilon_{t}\right|$
- Useful for evaluating the performance of root-finding algorithms - when we know the location of the root

Root Finding: Bracketing Methods

Root Finding - Bracketing Methods

\square We'll look at three bracketing methods

- Incremental search
- Bisection
\square False position
\square Each require two initial values
- Must bracket the root

Incremental Search

\square Say we want to find a root, x_{r}, which we know exists between x_{l} and x_{u}
\square Initialize the search with bracketing values
\square Starting at x_{l}, move incrementally toward x_{u}, searching for a sign change in $f(x)$
\square Accuracy determined by increment length

- Too large - inaccurate - could miss closely spaced roots

- Too small - slow

Incremental Search

$\square f(x)$ has three roots on $\left[x_{l}, x_{u}\right]$
\square Incremental search with increment length, Δx
$\square f\left(x_{2}\right) \cdot f\left(x_{3}\right)>0$

- Closely-spaced roots are missed entirely
$\square f\left(x_{6}\right) \cdot f\left(x_{7}\right)<0$
- A root is detected
- Location only known to within Δx
 - $\left|E_{t}\right|<\Delta x$

17 Bisection

Bisection

\square Search initialized with bracketing values
\square Current root estimate, $\hat{x}_{r, i}$, is the midpoint of the current interval

$$
\hat{x}_{r, i}=\frac{x_{l, i}+x_{u, i}}{2}
$$

\square At each iteration, root estimate replaces upper or lower bracketing value

$$
\begin{aligned}
& x_{l, i+1}= \begin{cases}x_{l, i} & f\left(x_{l, i}\right) \cdot f\left(\hat{x}_{r, i}\right)<0 \\
\hat{x}_{r, i} & f\left(x_{l, i}\right) \cdot f\left(\hat{x}_{r, i}\right) \geq 0\end{cases} \\
& x_{u, i+1}= \begin{cases}x_{u, i} & f\left(x_{u, i}\right) \cdot f\left(\hat{x}_{r, i}\right)<0 \\
\hat{x}_{r, i} & f\left(x_{u, i}\right) \cdot f\left(\hat{x}_{r, i}\right) \geq 0\end{cases}
\end{aligned}
$$

Bisection

At each iteration:
\square Root estimate

- midpoint of bracketing interval
\square New bracketing interval
a sub-interval containing the sign change

Bisection - Absolute Error

\square Absolute error is bounded by the bracketing interval

$$
\left|E_{t, i}\right| \leq \frac{\Delta x_{i}}{2}=\frac{\left(x_{u, i}-x_{l, i}\right)}{2}
$$

\square Bracketing interval halved at each iteration

- Max absolute error halved each iteration. After n iterations:

$$
\left|E_{t, n}\right| \leq \frac{\Delta x_{0}}{2^{n+1}}
$$

\square Can calculate required iterations for a specified maximum absolute error:

$$
n=\log _{2}\left(\frac{\Delta x_{0}}{E_{t}}\right)-1
$$

21

False Position

False Position - Linear Inerpolation

\square Similar to bisection, but root estimate calculated differently

- Not the midpoint of the bracketing interval
$\square \hat{x}_{r, i}$ is the root of the line connecting $f\left(x_{l, i}\right)$ and $f\left(x_{u, i}\right)$

False Position - Calculating $\hat{x}_{r, i}$

\square Slope of the line:

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{u, i}\right)-f\left(x_{l, i}\right)}{x_{u, i}-x_{l, i}}
$$

${ } \quad$ From $x_{u, i}$ to $\hat{x}_{r, i}$:

$$
\Delta x=\frac{\Delta x}{\Delta y} \cdot f\left(x_{u, i}\right)
$$

\square The root estimate is:

$$
\hat{x}_{r, i}=x_{u, i}-\Delta x \quad \rightarrow \quad \hat{x}_{r, i}=x_{u, i}-f\left(x_{u, i}\right) \frac{x_{u, i}-x_{l, i}}{f\left(x_{u, i}\right)-f\left(x_{l, i}\right)}
$$

False Position - Reducing the Bracket

\square As with bisection, the bracket is reduced on each iteration

- Keep the sub-bracket containing the sign change
- Root estimate replaces upper or lower bracketing value

$$
\begin{gathered}
x_{l, i+1}= \begin{cases}x_{l, i} & f\left(x_{l, i}\right) \cdot f\left(\hat{x}_{r, i}\right)<0 \\
\hat{x}_{r, i} & f\left(x_{l, i}\right) \cdot f\left(\hat{x}_{r, i}\right) \geq 0\end{cases} \\
x_{u, i+1}= \begin{cases}x_{u, i} & f\left(x_{u, i}\right) \cdot f\left(\hat{x}_{r, i}\right)<0 \\
\hat{x}_{r, i} & f\left(x_{u, i}\right) \cdot f\left(\hat{x}_{r, i}\right) \geq 0\end{cases}
\end{gathered}
$$

Bracketing Methods - Summary

\square All methods require two initial values that bracket the root
\square Always convergent

- Incremental search
- Mostly for illustrative purposes - not recommended
- Bisection
- Predictable
- Can calculate required iterations for desired absolute error predictable
- False position - linear interpolation
- Often outperforms bisection
- May be slow for certain types of functions

Root Finding: Open Methods

Root Finding - Open Methods

\square May require only a single initial value
\square If two initial values are required, they need not bracket the root
\square Often significantly faster than bracketing methods
\square Convergence is not guaranteed

- Dependent on function and initial values
\square Fixed-point iteration
\square Newton-Raphson
\square Secant methods
\square Inverse quadratic interpolation

28

Fixed Point Iteration

Fixed Point Iteration

\square A fixed point of a function is a value of the independent variable that the function maps to itself
\square Root-finding problem is determining x, such that

$$
f(x)=0
$$

\square Can add x to both sides - equation is unchanged

$$
\begin{aligned}
& x=f(x)+x \\
& x=g(x)
\end{aligned}
$$

\square Value of x that satisfies the equation is still the root

Fixed Point Iteration

\square Root is the solution to

$$
x=g(x)
$$

- A fixed point of $g(x)$
\square Also the solution to system of two equations

$$
\begin{aligned}
& f_{1}(x)=x \\
& f_{2}(x)=g(x)
\end{aligned}
$$

\square Root is the intersection of $f_{1}(x)$ and $f_{2}(x)$

- i.e., the intersection of $y=$ $f(x)+x$ and $y=x$

Fixed Point Iteration

$$
x=g(x)
$$

\square Provides an iterative formula for x :

$$
x_{i+1}=g\left(x_{i}\right)
$$

\square Iterate until approximate error falls below a specified stopping criterion

$$
\left|\varepsilon_{a}\right| \leq \varepsilon_{s}
$$

Fixed Point Iteration - Convergence

\square Current error is proportional to the previous error times the slope of $\boldsymbol{g}(x)$:

$$
E_{t, i+1}=g^{\prime}(\xi) \cdot E_{t, i}
$$

\square If $\left|g^{\prime}(x)\right|>1$, error will grow

- Estimate will diverge
\square If $\left|g^{\prime}(x)\right|<1$, error will decrease
- Estimate will converge
\square If $g^{\prime}(x)<0$, sign of error will oscillate
- Oscillatory, or spiral convergence or divergence

Fixed Point Iteration - Rate of Convergence

\square Current error is proportional to the previous error times the slope of $\boldsymbol{g}(\boldsymbol{x})$:

$$
E_{t, i+1}=g^{\prime}(\xi) \cdot E_{t, i}
$$

\square Once a convergent estimate becomes relatively close to the root, the slope of $\boldsymbol{g}(\boldsymbol{x})$ is relatively constant
$\square \hat{x}_{r}$ varies little from iteration to iteration
\square Error of the current iteration is roughly proportional to the error from the previous iteration

- Linear convergence

34

Newton-Raphson \& Secant Methods

Newton-Raphson Method

\square New estimate is the root of a line tangent to $f(x)$ at $\hat{x}_{r, i}$
\square Slope of $f(x)$ at $\hat{x}_{r, i}$ is the derivative at $\hat{x}_{r, i}$:

$$
f^{\prime}\left(\hat{x}_{r, i}\right)=\frac{\Delta y}{\Delta x}=\frac{f\left(\hat{x}_{r, i}\right)}{\hat{x}_{r, i}-\hat{x}_{r, i+1}}
$$

\square Solving for the new root estimate:

$$
\hat{x}_{r, i+1}=\hat{x}_{r, i}-\frac{f\left(\hat{x}_{r, i}\right)}{f^{\prime}\left(\hat{x}_{r, i}\right)}
$$

\square An iterative formula for \hat{x}_{r}

Newton-Raphson Method

\square Iterate, using the Newton-Raphson formula:

$$
\hat{x}_{r, i+1}=\hat{x}_{r, i}-\frac{f\left(\hat{x}_{r, i}\right)}{f^{\prime}\left(\hat{x}_{r, i}\right)}
$$

\square Iterate until
approximate error
falls below a
specified stopping
criterion

$$
\left|\varepsilon_{a}\right| \leq \varepsilon_{s}
$$

Newton-Raphson - Convergence

\square Often fast, but convergence is not guaranteed
\square Inflection point (constant slope) near a root causes
 divergence
\square Areas of near-zero slope are problematic

- Oscillation around local maximum/minimum
- Tangent line sends estimate very far away - or to infinity for zero slope

Newton-Raphson - Rate of Convergence

\square Current error is proportional to the square of the previous error

$$
E_{t, i+1}=-\frac{f^{\prime \prime}\left(x_{r}\right)}{2 f^{\prime}\left(x_{r}\right)} E_{t, i}^{2}
$$

\square Quadratic convergence
\square Number of significant figures of accuracy approximately doubles each iteration

Newton-Raphson - Derivative Function

\square Newton-Raphson algorithm requires two functions

$$
\hat{x}_{r, i+1}=\hat{x}_{r, i}-\frac{f\left(\hat{x}_{r, i}\right)}{f^{\prime}\left(\hat{x}_{r, i}\right)}
$$

\square Function whose roots are to be found, $f(x)$

- Derivative function, $f^{\prime}(x)$
\square That means $f^{\prime}(x)$ must be found analytically
- Inconvenient - may be tedious for some functions
\square Already performing numerical approximations
\square Why not calculate $f^{\prime}(x)$ numerically? \rightarrow Secant methods

Secant Methods

\square Same iterative formula as Newton-Raphson:

$$
\hat{x}_{r, i+1}=\hat{x}_{r, i}-\frac{f\left(\hat{x}_{r, i}\right)}{f^{\prime}\left(\hat{x}_{r, i}\right)}
$$

\square Now, approximate $f^{\prime}(x)$ using a finite difference

$$
f^{\prime}(x) \cong \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}
$$

\square Secant method iterative formula:

$$
\hat{x}_{r, i+1}=\hat{x}_{r, i}-\frac{f\left(\hat{x}_{r, i}\right)\left(x_{i+1}-x_{i}\right)}{f\left(x_{i+1}\right)-f\left(x_{i}\right)}
$$

\square Would require two initial values
$\square \quad$ Instead, generate the second x value as a fractional perturbation of the first (the current estimate)

$$
x_{i+1}=x_{i}+\delta x_{i}=\hat{x}_{r, i}+\delta \hat{x}_{r, i}
$$

where δ is a very small number
\square Finite difference approx. of $f^{\prime}(x)$:

$$
f^{\prime}(x) \cong \frac{f\left(\hat{x}_{r, i}+\delta \hat{x}_{r, i}\right)-f\left(\hat{x}_{r, i}\right)}{\delta \hat{x}_{r, i}}
$$

\square The modified secant iterative formula:

$$
\hat{x}_{r, i+1}=\hat{x}_{r, i}-\frac{\delta \hat{x}_{r, i} \cdot f\left(\hat{x}_{r, i}\right)}{f\left(\hat{x}_{r, i}+\delta \hat{x}_{r, i}\right)-f\left(\hat{x}_{r, i}\right)}
$$

Inverse Quadratic Interpolation

Root-Finding Methods - Interpolation

\square False position and the Newton-Raphson/secant methods all use linear interpolation

- Non-linear function approximated as a linear function
- Root of the linear approximation becomes the approximation of the root
\square We'll get to curve-fitting and interpolation later, but we should already suspect that a higher-order approximation for a non-linear function may be more accurate than a linear (first-order) approximation
\square Increase accuracy of the root estimate by approximating our non-linear function as a quadratic

Inverse Quadratic Interpolation

\square Instead of using two points to approximate $f(x)$ as a line, use three points to approximate it as a parabola
\square Root estimate is where the parabola crosses the x-axis
\square But, not all parabolas cross the x axis - complex roots
\square All parabolas do cross the y-axis

- To guarantee an x-axis crossing, turn the parabola on its side

$$
x=g(y)
$$

\square An inverse quadratic function

Inverse Quadratic Interpolation - Example

\square Three points required for quadratic approx.

- How are they chosen?
\square Inverse quadratic function will cross the x-axis
- For same three points a quadratic may not
\square May be very efficient

- May not converge

Inverse Quadratic Interpolation

\square Three known x and corresponding $f(x)$ values:

- x_{1}, x_{2}, x_{3}, and $f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right)$
\square Fit an inverse parabola to these three points
- Lagrange polynomial - more on these later

$$
x=g(y)=\frac{\left(y-y_{2}\right)\left(y-y_{3}\right)}{\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)} x_{1}+\frac{\left(y-y_{1}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{1}\right)\left(y_{1}-y_{3}\right)} x_{2}+\frac{\left(y-y_{1}\right)\left(y-y_{2}\right)}{\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)} x_{3}
$$

\square Don't actually need to calculate this parabola
\square Only need its root - evaluate at $y=0$ for new root estimate:

$$
\hat{x}_{r, i+1}=\frac{y_{2} y_{3}}{\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)} x_{1}+\frac{y_{1} y_{3}}{\left(y_{2}-y_{1}\right)\left(y_{1}-y_{3}\right)} x_{2}+\frac{y_{1} y_{2}}{\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)} x_{3}
$$

Inverse Quadratic Interpolation

\square Determining $\hat{x}_{r, i+1}$ from the three points is only part of the algorithm
\square Algorithm initialized with one or two x values
\square Need to determine the other one or two initial x values
\square Must update x_{1}, x_{2}, and x_{3} on each iteration
\square We won't get into these details here
\square Will fail if any two $f\left(x_{i}\right)$ are equal

- Revert to another open method (e.g. secant)
\square May diverge
\square Revert to a bracketing method (e.g. bisection)

47

Brent's Method

Brent's Method - brentq ()

\square brentq () from SciPy's optimize package is based on Brent's method

- A bracketing method
\square Uses inverse quadratic interpolation to generate root estimates when possible
\square In case of convergence issues reverts to bisection
- Always tries faster method first, then uses bisection only if necessary
\square To use, first import the function:
from scipy.optimize import brentq

scipy.optimize.brentq()

$$
\text { root }=\operatorname{brentq}(f u n c, a, b)
$$

- func: function whose root you are looking for
- a: lower bracketing value
- b: upper bracketing value
- root: approximate root value returned
\square Alternatively, we can control the output type:

$$
r=\operatorname{brentq}\left(f u n c, a, b, f u l L _o u t p u t=T r u e\right)
$$

ar: (root, robj) - atuple

- root: approximate root value returned
- robj: a RootResults object including convergence information

Example - brentq()

\square Returning to our heat sink fin design problem
\square Want to know the length of the fin required for a heat transfer rate of $q_{f}=500 \mathrm{~mW}$, given the other specified parameters:

- Width: $w=1 \mathrm{~cm}$
- Thickness: $t=2 \mathrm{~mm}$
- Heat transfer coeff.:

$$
h=100 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)
$$

- Aluminum: $\mathrm{k}=210 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$
- Ambient temperature:

$$
T_{\infty}=40^{\circ} \mathrm{C}
$$

- Base temperature:

$$
T_{b}=100^{\circ} \mathrm{C}
$$

Example - brentq()

\square We'll now use brentq () to find the root of $f(L)$

$$
f(L)=M \cdot \frac{\sinh (m L)+\left(\frac{h}{m k}\right) \cosh (m L)}{\cosh (m L)+\left(\frac{h}{m k}\right) \sinh (m L)}-500 m W=0
$$

where

$$
\begin{gathered}
m=\sqrt{\frac{h P}{k A_{c}}}, \quad M=\sqrt{h P k A_{c}} \cdot \theta_{b} \\
A_{c}=w \cdot t, \quad P=2 w+2 t \\
\theta_{b}=T_{b}-T_{\infty}
\end{gathered}
$$

Example - brentq()

\square Pass the function object, bracketing values, and other arguments to brentq()

Example - brentq()

Convergence achieved in nine iterations

Root is at 0.031 m

- A 3.1 cm fin

Roots of Polynomials

Roots of Polynomials

\square Polynomials are linear (first order) or nonlinear (second and higher order) functions of the form

$$
f(x)=a_{1} x^{n}+a_{2} x^{n-1}+\cdots+a_{n} x+a_{n+1}
$$

\square An $n^{\text {th }}$-order polynomial has n roots
\square Often, we'd like to find all n roots at once

- Methods described thus far find only one root at a time
\square For $2^{\text {nd }}$-order,the quadratic formula yields both roots at once:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Roots of Polynomials - np.roots ()

\square To find all n roots of a polynomial:

$$
x=n p \cdot \operatorname{roots}(c)
$$

- C: $(\mathrm{n}+1)$-vector of polynomial coefficients, i.e., the a_{i} 's from the previous slide:
$f(x)=c[0] x^{n}+c[1] x^{n-1}+\cdots+c[n-1] x+c[n]$
ㅁ x : n-vector of roots
\square np. roots() works by treating the root-finding problem as an eigenvalue problem

Roots of Polynomials - np.poly ()

\square Polynomials are an important class of functions

- Curve-fitting and interpolation
- Linear system theory and controls
\square Often, we may want to generate the $\mathrm{n}^{\text {th }}$-order polynomial corresponding to a given set of n roots

$$
\mathrm{c}=\mathrm{np} \cdot \mathrm{poly}(\mathrm{x})
$$

- x: n-vector of roots
- $\mathrm{C}:(\mathrm{n}+1)$-vector of polynomial coefficients

58
 Optimization

Optimization

\square Optimization is very important to engineers

- Adjusting parameters to maximize some measure of performance of a system
\square Process of finding maxima and minima (optima) of functions

Maxima and Minima

\square An optimum point of a function occurs where the first derivative (slope) of the function is zero

$$
f^{\prime}(x)=0
$$

\square An optimum point is a maximum if the second derivative (curvature) of the function is negative

$$
f^{\prime \prime}(x)<0
$$

\square An optimum point is a minimum if the second derivative (curvature) of the function is positive

$$
f^{\prime \prime}(x)>0
$$

Optimization as a Root-Finding Problem

\square Optima occur where $f^{\prime}(x)=0$

- Could find optima of $f(x)$ by finding roots of $f^{\prime}(x)$

\square Requires calculation of the derivative, either analytically or numerically
\square Direct (non-derivative) methods are often faster and more reliable

Optimization

\square Optimization methods exist for one-dimensional and multi-dimensional functions
\square As with root-finding, both bracketing and open methods exist
\square Here, we'll look at:

- One dimensional optimization
- Golden-section search
- Parabolic interpolation

■ Use of scipy. optimize.minimize_scalar()

- Multi-dimensional optimization

■ Use of scipy.optimize.minimize()
${ }^{63}$ Golden-Section Search

The Golden Ratio - ϕ

\square Divide a value into two parts, a and b,

such that the ratio of the larger part to the smaller part is equal to the ratio of the whole to the larger part

$$
\frac{a}{b}=\frac{a+b}{a}
$$

\square The ratio a / b is the golden ratio

$$
\phi=\frac{1+\sqrt{5}}{2}=1.618033988 \ldots
$$

The Golden Ratio - ϕ

\square Given an interval $\left[x_{l}, x_{u}\right]$, subdivide it from both ends according to the golden ratio

$$
\frac{x_{1}-x_{l}}{x_{u}-x_{1}}=\frac{x_{u}-x_{l}}{x_{1}-x_{l}}=\phi
$$

and

$$
\frac{x_{u}-x_{2}}{x_{2}-x_{l}}=\frac{x_{u}-x_{l}}{x_{u}-x_{2}}=\phi
$$

\square If we discard the upper portion of the interval

we're left with a smaller interval, itself divided according to ϕ

$$
\frac{x_{2}-x_{l}}{x_{1}-x_{2}}=\frac{x_{1}-x_{l}}{x_{2}-x_{l}}=\phi
$$

$\square \quad$ The same is true if we discard the lower subinterval

$$
\frac{x_{u}-x_{1}}{x_{1}-x_{2}}=\frac{x_{u}-x_{2}}{x_{u}-x_{1}}=\phi
$$

The Golden Ratio - ϕ

\square Starting from one of the subintervals (the lower one, here)

we can further subdivide it according to the golden ratio, starting from the upper bound on the interval

$$
\frac{x_{1}-x_{3}}{x_{3}-x_{l}}=\frac{x_{1}-x_{l}}{x_{1}-x_{3}}=\phi
$$

$\square \quad$ If we reassign the variable names

$$
\begin{aligned}
x_{l} & \rightarrow x_{l, \text { new }} \\
x_{1} & \rightarrow x_{u, \text { new }} \\
x_{2} & \rightarrow x_{1, \text { new }} \\
x_{3} & \rightarrow x_{2, \text { new }}
\end{aligned}
$$

we're back where we started

\square But now, the overall interval size has been reduced by a factor of $\boldsymbol{\phi}$
$\square \quad$ This process is the basis for the golden-section search algorithm

Golden-Section Search

\square A bracketing optimization method

- Two initial values must bracket an optimum point
\square Looks for a minimum
\square To find a maximum use $-f(x)$
\square Only one minimum point (local or global) in the bracketing interval
- Unimodal
\square Very similar to bisection
- Now looking for a minimum, instead of a zero-crossing
- Need two intermediate points

Golden-Section Search

\square Start with two initial values, x_{l} and x_{u}, that bracket a minimum point of the function, $f(x)$
\square Subdivide the interval according to the golden ratio with two intermediate points x_{1} and x_{2}

$$
\begin{aligned}
& x_{1}=x_{l}+\frac{x_{u}-x_{l}}{\phi} \\
& x_{2}=x_{u}-\frac{x_{u}-x_{l}}{\phi}
\end{aligned}
$$

\square Evaluate the function at each of the intermediate points

$$
f\left(x_{1}\right) \text { and } f\left(x_{2}\right)
$$

\square Compare values of $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$
\square Two possibilities

- $f\left(x_{1}\right)>f\left(x_{2}\right)$ or
- $f\left(x_{1}\right)<f\left(x_{2}\right)$

Golden-Section Search $-f\left(x_{1}\right)<f\left(x_{2}\right)$

If $f\left(x_{1}\right)<f\left(x_{2}\right)$
$\square x_{1}$ is the current estimate for the minimum point of $f(x), \hat{x}_{o p t}$
\square True minimum cannot lie in the range of $\left[x_{l}, x_{2}\right]$
\square Discard the lower subinterval
\square Reassign variable names

$$
\begin{aligned}
& x_{2} \rightarrow x_{l} \\
& x_{1} \rightarrow x_{2} \\
& x_{u} \rightarrow x_{u}
\end{aligned}
$$

\square Using new x_{l}, x_{u}, and x_{2} values, calculate a new x_{1}

$$
x_{1}=x_{l}+\frac{x_{u}-x_{l}}{\phi}
$$

Golden-Section Search $-f\left(x_{1}\right)>f\left(x_{2}\right)$

If $f\left(x_{1}\right)>f\left(x_{2}\right)$
$\square x_{2}$ is the current estimate for the minimum point of $f(x), \hat{x}_{o p t}$
\square True minimum cannot lie in the range of $\left[x_{1}, x_{u}\right]$
\square Discard the upper subinterval
\square Reassign variable names

$$
\begin{aligned}
& x_{l} \rightarrow x_{l} \\
& x_{2} \rightarrow x_{1} \\
& x_{1} \rightarrow x_{u}
\end{aligned}
$$

\square Using new x_{l}, x_{u}, and x_{1} values, calculate a new x_{2}

$$
x_{2}=x_{u}-\frac{x_{u}-x_{l}}{\phi}
$$

Golden-Section Search

\square Continue iterating and updating the $\hat{x}_{o p t}$, the estimate of the minimizing value for $f(x)$

- Only one new point needs to be calculated at each iteration
- This is the beauty of using the golden ratio
- Very efficient
\square Size of the bracketing interval decreases by a factor of $\phi=1.618 \ldots$ with each iteration
\square Continue to iterate until error estimate satisfies a stopping criterion

Golden-Section Search - Error

\square Consider the case where $x_{o p t}=x_{u}$
\square Lower subinterval, $\left[x_{l}, x_{2}\right]$, is discarded
\square Optimum point estimate is x_{1}

$$
\hat{x}_{o p t}=x_{1}
$$

\square This scenario represent the worstcase error

$$
\begin{aligned}
\left|E_{\max }\right| & =\left|\hat{x}_{o p t}-x_{o p t}\right|=\left|x_{1}-x_{u}\right| \\
= & \left|\left(x_{l}+\frac{x_{u}-x_{l}}{\phi}\right)-x_{u}\right| \\
& =\left(x_{u}-x_{l}\right)\left(1-\frac{1}{\phi}\right)
\end{aligned}
$$

and

$$
\frac{1}{\phi}=\phi-1
$$

Golden-Section Search - Error

\square The worst-case error is

$$
\left|E_{\max }\right|=(2-\phi)\left(x_{u}-x_{l}\right)
$$

\square Normalize to the current estimate

- Convert from absolute to relative error
\square Use worst-case value as our approximate error

$$
\varepsilon_{a}=(2-\phi)\left|\frac{x_{u}-x_{l}}{\hat{x}_{o p t}}\right| \cdot 100 \%
$$

\square Calculate ε_{a} each iteration

- Continue until stopping criterion is satisfied

Parabolic Interpolation

Parabolic Interpolation

- Near an optimum point, many functions can be satisfactorily approximated with a quadratic
\square Three points define a unique parabola
- Two points define the bracketing interval
- A third intermediate point somewhere within the bracket
\square Optimum point of the parabolic approximation becomes current estimate of the optimum point
\square Evaluate $f(x)$ at $\hat{x}_{o p t}$
\square Retain the subinterval containing the optimum point, discard one of the bracketing points, and iterate
$\square \quad f(x)$ must be unimodal
\square Looking for a minimum, but algorithm can easily be modified to look for a maximum

Parabolic Interpolation

\square Start with three points, which bracket the optimum
\square Evaluate the $f(x)$ at these points
\square Fit a parabola to the three points

- Can use a Lagrange polynomial
- Not necessary to actually calculate the parabola - can jump to finding its optimum point

$$
p(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} f\left(x_{2}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} f\left(x_{3}\right)
$$

Parabolic Interpolation

\square Calculate the optimum point of the parabolic approximation

$$
x_{4}=x_{2}-\frac{1}{2} \cdot \frac{\left(x_{2}-x_{1}\right)^{2}\left[f\left(x_{2}\right)-f\left(x_{3}\right)\right]-\left(x_{2}-x_{3}\right)^{2}\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]}{\left(x_{2}-x_{1}\right)\left[f\left(x_{2}\right)-f\left(x_{3}\right)\right]-\left(x_{2}-x_{3}\right)\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]}
$$

\square Expression for x_{4} derived by solving $\frac{d p}{d x}=0$
$\square x_{4}$ becomes the current estimate for the optimum point, $\hat{x}_{\text {opt }}$

- Evaluate $f\left(\hat{x}_{o p t}\right)$
- Use values of $\hat{x}_{\text {opt }}$ and $f\left(\hat{x}_{\text {opt }}\right)$ to appropriately reduce the bracketing interval

Parabolic Interpolation - Reducing the Bracket

\square If $x_{4}<x_{2}$

- If $f\left(x_{4}\right)<f\left(x_{2}\right)$ (shown here)
- $x_{o p t}$ is in the lower subinterval
- Discard the upper subinterval

$$
\begin{aligned}
& x_{1, i+1}=x_{1, i} \\
& x_{2, i+1}=x_{4, i} \\
& x_{3, i+1}=x_{2, i}
\end{aligned}
$$

- If $f\left(x_{4}\right)>f\left(x_{2}\right)$
- $x_{o p t}$ is in the upper subinterval
- Discard the lower subinterval

$$
\begin{aligned}
& x_{1, i+1}=x_{4, i} \\
& x_{2, i+1}=x_{2, i} \\
& x_{3, i+1}=x_{3, i}
\end{aligned}
$$

Parabolic Interpolation - Reducing the Bracket

\square If $x_{4}>x_{2}$

- If $f\left(x_{4}\right)<f\left(x_{2}\right)$ (shown here)
- $x_{o p t}$ is in the upper subinterval
- Discard the lower subinterval

$$
\begin{aligned}
& x_{1, i+1}=x_{2, i} \\
& x_{2, i+1}=x_{4, i} \\
& x_{3, i+1}=x_{3, i}
\end{aligned}
$$

- If $f\left(x_{4}\right)>f\left(x_{2}\right)$
- $x_{o p t}$ is in the lower subinterval
- Discard the upper subinterval

$$
\begin{aligned}
& x_{1, i+1}=x_{1, i} \\
& x_{2, i+1}=x_{2, i} \\
& x_{3, i+1}=x_{4, i}
\end{aligned}
$$

Parabolic Interpolation

Parabolic Interpolation

Parabolic Interpolation - Finding a Maximum

\square Can also use parabolic interpolation to locate a maximum point

- Parabola fit to the three points may open up or down
- Need to adjust bracket reduction algorithm depending on whether a
 maximum or minimum point is sought

Optimization in Python

One-Dimensional Optimization - minimize_scalar()

\square Parabolic interpolation is efficient, but may not converge
a minimize_scalar() uses a parabolic interpolation when possible and golden-section search when necessary
\square Finds the minimum of a function over an interval

```
opt = minimize_scalar(f, bracket=(x0, x1))
```

- f: function to be optimized
- x0, x1: bracketing values
- opt: optimizeResult object returned - includes:
- opt.x: the solution of the optimization (i.e., $x_{o p t}$)
- opt. fun: value of objective function at the optimum (i.e., $f\left(x_{\text {opt }}\right)$)
- opt.nit: number of iterations

One-Dimensional Optimization - Example

\square Determine the load resistance of an electrical circuit that maximizes power delivered to the load
\square Normalize to source resistance and open-circuit voltage

- $R_{t h}=1 \Omega, V_{o c}=1 V$
- Power delivered to the load is

$$
\begin{aligned}
P_{L} & =I_{L} V_{L} \\
P_{L} & =\frac{V_{o c}}{R_{t h}+R_{L}} \cdot V_{o c} \frac{R_{L}}{R_{t h}+R_{L}} \\
P_{L} & =\frac{V_{o c}^{2} R_{L}}{\left(R_{t h}+R_{L}\right)^{2}}
\end{aligned}
$$

口 Determine R_{L} to maximize P_{L}

One-Dimensional Optimization - Example

\square Negate function to find maximum

Multi-Dimensional Optimization - minimize()

\square Find the minimum of a function of two or more variables
opt = minimize(f, x0)

- f: function to be optimized
- x0: array of initial values
- opt: optimizeResult object returned - includes:
\square opt. x : the solution of the optimization (i.e., $x_{o p t}$)
- opt. fun: value of objective function at the optimum (i.e., $f\left(x_{o p t}\right)$)
- opt. nit: number of iterations

Multi-Dimensional Optimization - Example

Find the minimum of a function of two variables

$$
\begin{aligned}
f(x, y) & =x \cdot e^{-x^{2}-y^{2}} \\
z & =\mathbf{x e}^{-\mathbf{x}^{2}-\mathbf{y}^{2}}
\end{aligned}
$$

Multi-Dimensional Optimization - Example

\square Use options dict to set solver options

```
# function to be minimized
f = lambda x: x[0]*np.exp(-x[0]**2-x[1]**2)
# setup and run optimization
x0 = [0.5, -1.5]
opt_opts = {'disp': True, 'maxiter': 1000}
opt = minimize(f, x0, tol=1e-6, options=opt_opts)
xmin = opt.x[0]
ymin = opt.x[1]
zmin = opt.fun
\(\square\) Set tolerance, if desired
```



```
Section2/twoDoptim.py', wdir='C:/Users/webbky/
Python/Section2')
Optimization terminated successfully.
    Current function value: -0.428882
    Iterations: 30
    Function evaluations: 144
    Gradient evaluations: 48
```

\square Convergence for this example depends on choice of x_{0}

