SECTION 3: SYSTEMS OF EQUATIONS

ESC 440 – Computational Methods for Engineers

Three masses
 m₁, m₂, and m₃
 Three springs
 k₁, k₂, k₃

Connected in series and suspended

 Determine the displacement of each mass from its unstretched position

- 4
- Three unknown displacements: x₁, x₂, x₃
 Need three equations to find displacements
 Apply Newton's second law to each mass

Steady-state, so
$$\ddot{x}_i = 0, \forall i$$

 $m_1g + k_2(x_2 - x_1) - k_1x_1 = 0$
 $m_2g + k_3(x_3 - x_2) - k_2(x_2 - x_1) = 0$
 $m_3g - k_3(x_3 - x_2) = 0$

Rearranging

 $(k_1 + k_2)x_1 - k_2x_2 + 0x_3 = m_1g$ $-k_2x_1 + (k_2 + k_3)x_2 - k_3x_3 = m_2g$ $0x_1 - k_3x_2 + k_3x_3 = m_3g$

5

Our system of three equations

$$(k_1 + k_2)x_1 - k_2x_2 + 0x_3 = m_1g$$

$$-k_2x_1 + (k_2 + k_3)x_2 - k_3x_3 = m_2g$$

$$0x_1 - k_3x_2 + k_3x_3 = m_3g$$

can be put into matrix form

$$\begin{bmatrix} (k_1 + k_2) & -k_2 & 0 \\ -k_2 & (k_2 + k_3) & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} m_1 g \\ m_2 g \\ m_3 g \end{bmatrix}$$

$$\begin{bmatrix} (k_1 + k_2) & -k_2 & 0 \\ -k_2 & (k_2 + k_3) & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} m_1 g \\ m_2 g \\ m_3 g \end{bmatrix}$$

We can rewrite this matrix equation as

Ax = b

Can apply tools of linear algebra to determine the vector of unknown displacements

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Conventions for matrix notation vary greatly. In general, the dimensions of a variable are known from context. These notes will use the following convention:

Matrices

■ Upper-case, bold variables, e.g. A

Vectors

■ Lower-case, bold variables, e.g. **x**

Hand-written matrices and vectors

\square Underbar, instead of bold, e.g. <u>A</u> or <u>x</u>

9 Solving Systems of Equations with Python

Before getting into the algorithms used to solve systems of linear equations, we'll take a look at how we can use available Python functions to find a solution.

System as a Matrix Equation

10

Our system of equations has the form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

This can be written in matrix form as

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

or

11

Solving our system of equations amounts to solving the matrix equation

$$Ax = b$$

for the vector \boldsymbol{x}

To isolate x on the left of the equal sign, left multiply by the inverse of the coefficient matrix

$$A^{-1}Ax = A^{-1}b$$
$$x = A^{-1}b$$

Solving the Matrix Equation

\square In NumPy's linalg module – left-multiply by $\mathbf{A^{-1}}$

3	# %% solve using matrix inverse
4	
5	import numpy as np
6	
7	A = np.array([[7, 3, 8],
8	[2, 1, 9],
9	[0, 6, 4]])
10	b = np.array([3, 7, 2])
11	
12	<pre>x = np.linalg.inv(A)@b</pre>
13	
14	print('\n x =', x)
15	
16	

```
In [4]: runcell('solve using matrix inverse',
Notes/Python/Section3/linSysSolve.py')
x = [-0.50359712 -0.28057554  0.92086331]
```

Use np.linalg.inv() for matrix inversion

- Use @ for matrix multiplication
 - * performs element-by-element multiplication
- Note that **b** can be a row or column vector
 - Treated as a column vector either way
- Matrix inversion works, but is not always the best way to solve
 - Inefficient, slow
 - Sensitive to numerical error
 - Some systems worse than others

Solving the Matrix Equation

13

Instead, use NumPy's linalg.solve() function

17	
18	#%% solve using np.linalg.solve
19	
20	import numpy as np
21	
22	A = np.array([[7, 3, 8],
23	[2, 1, 9],
24	[0, 6, 4]])
25	b = np.array([3, 7, 2])
26	
27	<pre>x = np.linalg.solve(A,b)</pre>
28	
29	print('\n x =', x)
30	

```
In [5]: runcell('solve using np.linalg.solve',
Notes/Python/Section3/linSysSolve.py')
x = [-0.50359712 -0.28057554 0.92086331]
```

Faster, more robust

Makes use of techniques we'll explore next

Example – Solving Using NumPy

Our linear system is described by the matrix equation

$$\begin{bmatrix} (k_1 + k_2) & -k_2 & 0 \\ -k_2 & (k_2 + k_3) & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} m_1 g \\ m_2 g \\ m_3 g \end{bmatrix}$$

$\mathbf{A}\mathbf{x} = \mathbf{b}$

Find the displacements, **x**, for the following system parameters

a
$$k_1 = 500 \frac{N}{m}, \ k_2 = 800 \frac{N}{m}, \ k_3 = 400 \frac{N}{m}$$

b $m_1 = 3kg, \ m_2 = 1kg, \ m_3 = 7kg$

14

Example – Solving Using NumPy


```
# linSysEx.py
 2
З
      import numpy as np
                                           In [235]: runfile('C:/Users/webbky/Box
4
                                           Section3/linSysEx.py', wdir='C:/Users/
 5
      # spring constants [N/m]
                                           Python/Section3')
 6
      k1 = 500
7
      k_2 = 800
8
      k3 = 400
                                           Solution using linalg.inv():
9
                                               x = [0.21582 \ 0.31392 \ 0.485595]
10
      # masses [ka]
11
      m1 = 3
                                           Solution using linalg.solve():
12
      m^2 = 1
                                               x = [0.21582 0.31392 0.485595]
13
      m3 = 7
14
      # grav. accel. [m/s^2]
15
16
      g = 9.81
17
18
      A = np.array([[k1+k2, -k2, 0]])
19
                    [-k2, k2+k3, -k3],
20
                    [0, -k3, k3]])
21
      b = np.array([m1*g, m2*g, m3*g])
22
23
24
      x1 = np.linalg.inv(A)@b
25
26
      x2 = np.linalg.solve(A, b)
27
      print('\nSolution using linalg.inv():\n\tx =', x1)
28
      print('\nSolution using linalg.solve():\n\tx =', x2)
29
30
```

 $x_1 = 21.6cm, x_2 = 31.4cm, x_3 = 48.6cm$

15

16 Techniques for Solving Linear Systems

Solving Systems of Linear Equations

- Techniques exist for finding the solution to *small systems* of linear equations:
 - Graphical method
 - Cramer's rule
 - Elimination of unknowns
- Not generally useful for numerical solution of larger systems, but they do provide insight
- For numerical solution of *larger systems* techniques include:
 - Gaussian elimination
 - Jacobi method
 - Gauss-Seidel

Graphical Solution

A system of two linear equations with two unknown variables

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

can be thought of as equations of two lines in the x - y plane:

$$x_{2} = -\frac{a_{11}}{a_{12}}x_{1} + \frac{b_{1}}{a_{12}}$$
$$x_{2} = -\frac{a_{21}}{a_{22}}x_{1} + \frac{b_{2}}{a_{22}}$$

Graphical Solution

$$x_{2} = -\frac{a_{11}}{a_{12}}x_{1} + \frac{b_{1}}{a_{12}}$$
$$x_{2} = -\frac{a_{21}}{a_{22}}x_{1} + \frac{b_{2}}{a_{22}}$$

- □ Solution to this system of equations is the point of intersection (x_1, x_2) of the two lines
 - May not exist
 - May not be unique
 - May exist, but be difficult to determine accurately

Unique Solution

- System of two linear equations:
 - $\begin{array}{l} 0.5x_1 + x_2 = 5\\ 3x_1 x_2 = 2 \end{array}$
- Represented in matrix form

$$\begin{bmatrix} 0.5 & 1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

Ax = b

Solution at the point of intersection: $(x_1, x_2) = (2,4)$

No Solution

System of two linear equations:

$$3x_1 - x_2 = 2 3x_1 - x_2 = 4$$

 Represented in matrix form

$$\begin{bmatrix} 3 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Lines don't intersect, so no solution exists

Infinite Solutions

System of two linear equations:

$$3x_1 - x_2 = 2 -6x_1 + 2x_2 = -4$$

 Represented in matrix form

$$\begin{bmatrix} 3 & -1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

Ax = b

 Solutions at all points along the lines

Infinite Number of Solutions

Ill-Conditioned System

System of two linear equations:

 $0.5x_1 + x_2 = 5$ $0.48x_1 + x_2 = 4.96$

 Represented in matrix form

$$\begin{bmatrix} 0.5 & 1\\ 0.48 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 5\\ 4.96 \end{bmatrix}$$

$$Ax = b$$

Solutions exists, but it is difficult to identify accurately

III-Conditioned System

Singularity and the Coefficient Matrix, A

- Systems with no solutions or infinite solutions are both referred to as *singular*
- Coefficient matrix, A, is singular
 - A⁻¹, does not exist
 - $\Box \det(\mathbf{A}) = 0$

For the example with no solutions

$$\det(\mathbf{A}) = \begin{vmatrix} 3 & -1 \\ 3 & -1 \end{vmatrix} = -3 - (-3) = 0$$

For the example with infinite solutions

$$\det(\mathbf{A}) = \begin{vmatrix} 3 & -1 \\ -6 & 2 \end{vmatrix} = 6 - 6 = 0$$

Ill-Conditioned Systems

- 25
- □ Ill-conditioned systems are nearly-singular
 □ det(A) ≈ 0
 - $\square A^{-1}$ exists, but may be difficult to determine accurately
 - Solution exists, but it may difficult to determine accurately either graphically or numerically
- For the previous example of an ill-conditioned system

$$\det(\mathbf{A}) = \begin{vmatrix} 0.5 & 1\\ 0.48 & 1 \end{vmatrix} = 0.5 - 0.48 = 0.02$$

(This example may be ill-conditioned for graphical solution, but would not be if solving numerically)

Rank of the Coefficient Matrix, A

- 26
- Rank of a matrix number of linearly-independent rows (or columns) of the matrix
- *Full-rank* matrix
 - All rows and columns are linearly-independent
 - Must be square
 - $\Box \det(\mathbf{A}) \neq 0, \mathbf{A}^{-1} \text{ exists}$
- □ In both of our singular examples **A** is *rank-deficient*

$$\mathbf{A_1} = \begin{bmatrix} 3 & -1 \\ 3 & -1 \end{bmatrix} \text{ and } \mathbf{A_2} = \begin{bmatrix} 3 & -1 \\ -6 & 2 \end{bmatrix}$$

For a 2 × 2, rank-deficient matrix, columns and rows represent *collinear vectors*

²⁷ Gaussian Elimination

Gaussian Elimination

Two steps in Gaussian elimination:
 Elimination of unknowns Solution through back-substitution Applies to arbitrarily large systems

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

The basic algorithm will be introduced using an example system of three equations with three unknowns

Gaussian Elimination – the Basic Algorithm

□ The basic algorithm:

1. Forward elimination of unknowns

Reduce to an <u>upper-triangular</u> system

2. Back-substitution to solve for unknowns

- Reduction to an upper-triangular system yields the solution for x_n directly
- Back-substitute the solution for x_n to solve for x_{n-1}
- Back-substitute the solution for x_{n-1} to solve for x_{n-2}
- Continue until all x_i have been determined

30

We'll use a system of three equations with three unknowns as an example

a_{11}	a_{12}	a_{13}	$\begin{bmatrix} x_1 \end{bmatrix}$		b_1
a ₂₁	a_{22}	a ₂₃	<i>x</i> ₂	=	<i>b</i> ₂
a_{31}	a_{32}	a_{33}	$\begin{bmatrix} x_3 \end{bmatrix}$		<i>b</i> ₃

Create the *augmented* system matrix

ſ	a_{11}	a_{12}	<i>a</i> ₁₃	•	b_1
	a ₂₁	a_{22}	a ₂₃	:	<i>b</i> ₂
	<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	:	b_3

 Each row represents an equation – row operations are operations on the equations

- 31
- Reduce to an upper-triangular system
 Eliminate x_i from the (i + 1)st through nth equations for i = 1 ... n
- \Box First eliminate x_1 from the second equation
 - Perform row operations to set the first element on the second row to zero
 - Normalize the first equation (row) divide by the leading coefficient, a₁₁
 - Multiply the first equation (row) by the leading coefficient of the second equation (row), a₂₁

$$\begin{bmatrix} a_{21} & \frac{a_{21}}{a_{11}} a_{12} & \frac{a_{21}}{a_{11}} a_{13} & \vdots & \frac{a_{21}}{a_{11}} b_1 \\ a_{21} & a_{22} & a_{23} & \vdots & b_2 \\ a_{31} & a_{32} & a_{33} & \vdots & b_3 \end{bmatrix}$$

32

Subtract the first row from the second, and replace the first row with its original values

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & b_1 \\ 0 & a_{22} - \frac{a_{21}}{a_{11}} a_{12} & a_{23} - \frac{a_{21}}{a_{11}} a_{13} & \vdots & b_2 - \frac{a_{21}}{a_{11}} b_1 \\ a_{31} & a_{32} & a_{33} & \vdots & b_3 \end{bmatrix}$$

Use prime notation to indicate a modified coefficient value

Add additional *prime* mark for each modification

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & b_1 \\ 0 & a'_{22} & a'_{23} & \vdots & b'_2 \\ a_{31} & a_{32} & a_{33} & \vdots & b_3 \end{bmatrix}$$

- 33
- Next, eliminate x₁ from the third equation
 Normalize the first row
 - **\square** Multiply by the leading coefficient of the third row, a_{31}

$$\begin{bmatrix} a_{31} & \frac{a_{31}}{a_{11}} a_{12} & \frac{a_{31}}{a_{11}} a_{13} & \vdots & \frac{a_{31}}{a_{11}} b_1 \\ 0 & a'_{22} & a'_{23} & \vdots & b'_2 \\ a_{31} & a_{32} & a_{33} & \vdots & b_3 \end{bmatrix}$$

Subtract the first row from the third and reset the first row to its original values

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & b_1 \\ 0 & a'_{22} & a'_{23} & \vdots & b'_2 \\ 0 & a_{32} - \frac{a_{31}}{a_{11}} a_{12} & a_{33} - \frac{a_{31}}{a_{11}} a_{13} & \vdots & b_3 - \frac{a_{31}}{a_{11}} b_1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & b_1 \\ 0 & a'_{22} & a'_{23} & \vdots & b'_2 \\ 0 & a'_{32} & a'_{33} & \vdots & b'_3 \end{bmatrix}$$

Elimination of Unknowns - Terminology

- 34
- First row is used for the elimination of x₁ from second and third rows
- □ In general, i^{th} row used to eliminate the i^{th} unknown from the $(i + 1)^{st}$ through n^{th} rows
 - This is the *pivot row*
 - \square (n-1) rows will be pivot rows at some point
 - Leading coefficient in the pivot row, a_{ii}, is the **pivot** element
- Normalization involves dividing the pivot row by the pivot element
 - Could this be problematic?

- 35
- Finally, eliminate x₂ from the third equation
 D Normalize the second row (the pivot row)
 D Multiply by the leading coefficient of the third row, a'₃₂

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & b_1 \\ 0 & a'_{32} & \frac{a'_{32}}{a'_{22}}a'_{23} & \vdots & \frac{a'_{32}}{a'_{22}}b'_2 \\ 0 & a'_{32} & a'_{33} & \vdots & b'_3 \end{bmatrix}$$

Subtract the second row from the third and reset the second row to its previous values

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & b_1 \\ 0 & a'_{22} & a'_{23} & \vdots & b'_2 \\ 0 & 0 & a'_{33} - \frac{a'_{32}}{a'_{22}}a'_{23} & \vdots & b'_3 - \frac{a'_{32}}{a'_{22}}b'_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & b_1 \\ 0 & a'_{22} & a'_{23} & \vdots & b'_2 \\ 0 & 0 & a''_{33} & \vdots & b''_3 \end{bmatrix}$$

Back-Substitution

System is now *upper-triangular*

a_{11}	a_{12}	a_{13}	÷	b_1
0	a'_{22}	a'_{23}	:	b_2'
0	0	a_{33}''	÷	$b_3^{\prime\prime}$

 Last row represents a single equation with a single unknown, x₃

$$x_3 = \frac{b_3''}{a_{33}''}$$

 \Box In general, solve for the n^{th} unknown as

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$
Back-Substitution

37

 \Box Next, substitute x_3 into the second equation

$$a'_{22}x_2 + a'_{23}x_3 = b'_2$$
$$a'_{22}x_2 + a'_{23}\frac{b''_3}{a''_3} = b'_2$$

and solve for x_2

$$x_2 = \frac{b_2' - a_{23}' \frac{b_3''}{a_{33}''}}{a_{22}'}$$

□ In general:

$$x_{i} = \frac{1}{a_{ii}^{(i-1)}} \left(b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j} \right)$$

Back-Substitution

38

 \Box Finally, substitute x_2 and x_3 into the first equation

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{11}x_1 + a_{12}\frac{b_2' - a_{23}'\frac{b_3''}{a_{33}'}}{a_{22}'} + a_{13}\frac{b_3''}{a_{33}''} = b_1$$

and solve for x_1

$$x_{1} = \frac{b_{1} - a_{12} \frac{b_{2}' - a_{23}' \frac{b_{3}''}{a_{33}'}}{a_{22}'} - a_{13} \frac{b_{3}''}{a_{33}'}}{a_{11}}$$

□ In practice we'd solve for x_1 using the general formula

$$x_{i} = \frac{1}{a_{ii}^{(i-1)}} \left(b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j} \right)$$

Algorithm Summary

- 1) Form augmented system matrix
- 2) **Elimination of unknowns** for $i = 1 \dots n 1$
 - a) Normalize pivot row (i^{th} row)
 - b) Multiply pivot row by leading coefficient of j^{th} row, a_{ji} (for $j = (i + 1) \dots n$)
 - c) Subtract pivot row from j^{th} row
- 3) Back-substitution
 - a) Determine x_n from the last row: $x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$
 - b) Solve for remaining x_i for $i = (n 1) \dots 1$:

$$x_{i} = \frac{1}{a_{ii}^{(i-1)}} \left(b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j} \right)$$

Partial Pivoting

 During forward elimination of unknowns, pivot row is normalized

 \Box *i*th row divided by leading coefficient, a_{ii}

- If $a_{ii} = 0 \rightarrow$ divide-by-zero, algorithm fails
- If $a_{ii} \approx 0 \rightarrow$ not fatal, but susceptible to roundoff error

Partial pivoting

- Prior to normalizing the pivot (ith) row, search all rows from i ... n for the one with the largest value in the ith column
- Move to the current pivot row location and continue with algorithm

- Simple statically-determinate truss
- Determine all internal and external forces

43

Force components at each joint must balance

 $F_{Ax} + F_{AC} + F_{AB} \cos(55^{\circ}) = 0 \qquad -F_{AC} - F_{BC} \cos(35^{\circ}) = 0$ $F_{Ay} + F_{AB} \sin(55^{\circ}) = 0 \qquad F_{Cy} + F_{BC} \sin(35^{\circ}) = 0$

44

System of six equations with six unknown internal and external forces

Python Gaussian elimination demo...

```
# truss example.py
 1
 2
 3
      import numpy as np
      from gausselim import gausselim
 4
 5
 6
 7
      theta1 = np.radians(55)
 8
      theta2 = np.radians(35)
9
10
      A = np.array([[np.cos(theta1), 1,
                                                       0, 1, 0, 0],
11
                    [np.sin(theta1), 0,
                                                      0, 0, 1, 0],
                    [-np.cos(theta1), 0, np.cos(theta2), 0, 0, 0],
12
                    [np.sin(theta1), 0, np.sin(theta2), 0, 0, 0],
13
                                   -1, -np.cos(theta2), 0, 0, 0],
14
                    [0,
                                    0, np.sin(theta2), 0, 0, 1]])
15
                    [0,
16
      b = np.array([0, 0, 0, -4e3, 0, 0])
17
      x = np.linalg.solve(A, b)
18
19
      x = gausselim(A,b)
20
21
      print('n x = n', x)
22
22
```

$$F_{AB} = -3.277 \ kN$$
 $F_{Ax} = 0 \ N$ $F_{AC} = 1.879 \ kN$ $F_{Ay} = 2.684 \ kN$ $F_{BC} = -2.294 \ kN$ $F_{Cy} = 1.316 \ kN$

K. Webb

Gaussian Elimination

- Gaussian elimination summary:
 - Create the augmented system matrix
 - Forward elimination
 - Reduce to an upper-triangular matrix
 - Back substitution
 - Starting with x_N , solve for x_i for $i = N \dots 1$
- A direct solution algorithm
 - Exact value for each x_i arrived at with a single execution of the algorithm
- □ Alternatively, we can use an *iterative* algorithm
 - Jacobi method
 - Gauss-Seidel
 - Newton-Raphson

⁴⁷ Linear Systems of Equations – Iterative Solution – Jacobi Method

Jacobi Method

□ Consider a system of *N* linear equations

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$$

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,N} \\ \vdots & \ddots & \vdots \\ a_{N,1} & \cdots & a_{N,N} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

 \Box The k^{th} equation (k^{th} row) is

$$a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,k}x_k + \dots + a_{k,N}x_N = y_k$$
(1)

$$\Box \text{ Solve (1) for } x_k$$

$$x_{k} = \frac{1}{a_{k,k}} [y_{k} - (a_{k,1}x_{1} + a_{k,2}x_{2} + \dots + a_{k,k-1}x_{k-1} + a_{k,N}x_{N})] + a_{k,k+1}x_{k+1} + \dots + a_{k,N}x_{N})]$$
(2)

Jacobi Method

Simplify (2) using summing notation

$$x_{k} = \frac{1}{a_{k,k}} \left[y_{k} - \sum_{n=1}^{k-1} a_{k,n} x_{n} - \sum_{n=k+1}^{N} a_{k,n} x_{n} \right], \qquad k = 1 \dots N$$
(3)

 \Box An equation for x_k

D But, of course, we don't yet know all other x_n values

Use (3) as an *iterative expression*

$$x_{k,i+1} = \frac{1}{a_{k,k}} \left[y_k - \sum_{n=1}^{k-1} a_{k,n} x_{n,i} - \sum_{n=k+1}^{N} a_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
(4)

D The *i* subscript indicates iteration number

- $x_{k,i+1}$ is the updated value from the current iteration
- $x_{n,i}$ is a value from the previous iteration

Jacobi Method

50

$$x_{k,i+1} = \frac{1}{a_{k,k}} \left[y_k - \sum_{n=1}^{k-1} a_{k,n} x_{n,i} - \sum_{n=k+1}^{N} a_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
 (4)

- Old values of x_n, on the right-hand side, are used to update x_k on the left-hand side
- \square Start with an *initial guess* for all unknowns, \mathbf{x}_0
- Iterate until adequate *convergence* is achieved
 Until a specified *stopping criterion* is satisfied
 Convergence is not guaranteed

Convergence

- \square An approximation of **x** is refined on each iteration
- Continue to iterate until we're *close* to the right answer for the vector of unknowns, x
 - Assume we've converged to the right answer when x changes very little from iteration to iteration
- On each iteration, calculate a *relative error* quantity

$$\varepsilon_{i+1} = \max\left(\left|\frac{x_{k,i+1} - x_{k,i}}{x_{k,i+1}}\right|\right), \qquad k = 1 \dots N$$

Iterate until

$$\varepsilon_i \leq \varepsilon_s$$

where ε_s is a chosen *stopping criterion*

Jacobi Method – Matrix Form

52

The Jacobi method iterative formula, (4), can be rewritten in matrix form:

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y}$$
 (5)

where **D** is the diagonal elements of **A**

$$\mathbf{D} = \begin{bmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & a_{N,N} \end{bmatrix}$$

and

$$\mathbf{M} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A}) \tag{6}$$

 Recall that the inverse of a diagonal matrix is given by inverting each diagonal element

$$\mathbf{D}^{-1} = \begin{bmatrix} 1/a_{1,1} & 0 & \cdots & 0 \\ 0 & 1/a_{2,2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & 1/a_{N,N} \end{bmatrix}$$

53

Consider the following system of equations

$$-4x_1 + 7x_3 = -5$$

$$2x_1 - 3x_2 + 5x_3 = -12$$

$$x_2 - 3x_3 = 3$$

In matrix form:

$$\begin{bmatrix} -4 & 0 & 7 \\ 2 & -3 & 5 \\ 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -12 \\ 3 \end{bmatrix}$$

Solve using the Jacobi method

54

The iteration formula is

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y}$$

where

$$\mathbf{D} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix} \qquad \mathbf{D}^{-1} = \begin{bmatrix} -0.25 & 0 & 0 \\ 0 & -0.333 & 0 \\ 0 & 0 & -0.333 \end{bmatrix}$$

$$\mathbf{M} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A}) = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix}$$

- □ To begin iteration, we need a starting point
 - Initial guess for unknown values, x
 - Often, we have some idea of the answer
 - Here, arbitrarily choose

$$\mathbf{x}_0 = [10 \quad 25 \quad 10]^T$$

55

□ At each iteration, calculate

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y}$$
$$\begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \\ x_{3,i+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix} \begin{bmatrix} x_{1,i} \\ x_{2,i} \\ x_{3,i} \end{bmatrix} + \begin{bmatrix} 1.25 \\ 4 \\ -1 \end{bmatrix}$$

For i = 0:

$$\mathbf{x}_{1} = \begin{bmatrix} x_{1,1} \\ x_{2,1} \\ x_{3,1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix} \begin{bmatrix} 10 \\ 25 \\ 10 \end{bmatrix} + \begin{bmatrix} 1.25 \\ 4 \\ -1 \end{bmatrix}$$

 $\mathbf{x}_1 = [18.75 \quad 27.33 \quad 7.33]^T$

□ The relative error is

$$\varepsilon_1 = \max\left(\left|\frac{x_{k,1} - x_{k,0}}{x_{k,1}}\right|\right) = 0.467$$

56

• For i = 1:

$$\mathbf{x}_{2} = \begin{bmatrix} x_{1,2} \\ x_{2,2} \\ x_{3,2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1.75 \\ 0.667 & 0 & 1.667 \\ 0 & 0.333 & 0 \end{bmatrix} \begin{bmatrix} 18.75 \\ 27.33 \\ 7.33 \end{bmatrix} + \begin{bmatrix} 1.25 \\ 4 \\ -1 \end{bmatrix}$$

 $\mathbf{x}_2 = [14.08 \quad 28.72 \quad 8.11]^T$

□ The relative error is

$$\varepsilon_2 = \max\left(\left|\frac{x_{k,2} - x_{k,1}}{x_{k,1}}\right|\right) = 0.331$$

 Continue to iterate until relative error falls below a specified stopping condition

- 57
- Automate with computer code, e.g. Python
- Setup the system of equations

```
7 # coefficient matrix
8 A = np.array([[-4, 0, 7],
9 [2, -3, 5],
10 [0, 1, -3]])
11
12 # vector of knowns
13 y = np.array([-5, -12, 3])
```

Initialize matrices and parameters for iteration

```
17
       reltol = 1e-6
18
       eps = 1
19
20
      max iter = 600
      iter = 0
21
22
23
      # initial guess for x
24
      x = np.array([10, 25, 10])
25
26
       D = np.diag(np.diag(A))
      invD = np.linalg.inv(D)
27
28
29
      M = invD@(D - A)
```

- 58
- Loop to continue iteration as long as:
 - Stopping criterion is not satisfied
 - Maximum number of iterations is not exceeded

- On each iteration
 - Use previous x values to update x
 - Calculate relative error
 - Increment the number of iterations

59

□ Set $\varepsilon_s = 1 \times 10^{-6}$ and iterate:

i	X _i	$\boldsymbol{\mathcal{E}}_{i}$
0	$[10 \ 25 \ 10]^T$	-
1	[18.75 27.33 7.3	3] ^{<i>T</i>} 0.467
2	[14.08 28.72 8.1	1] ^{<i>T</i>} 0.331
3	[15.44 26.91 8.5	$[7]^T$ 0.088
4	[16.25 28.59 7.9	7] ^{<i>T</i>} 0.076
5	[15.20 28.12 8.5	3] ^{<i>T</i>} 0.070
6	[16.18 28.35 8.3	7] ^{<i>T</i>} 0.061
:	:	:
371	[20.50 36.00 11.	$[00]^T$ 0.995×10 ⁻⁶

Convergence achieved in 371 iterations

⁶⁰ Linear Systems of Equations – Iterative Solution – Gauss-Seidel

The iterative formula for the Jacobi method is

$$x_{k,i+1} = \frac{1}{a_{k,k}} \left[y_k - \sum_{n=1}^{k-1} a_{k,n} x_{n,i} - \sum_{n=k+1}^{N} a_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
(4)

- Note that only old values of x_n (i.e. $x_{n,i}$) are used to update the value of x_k
- Assume the x_{k,i+1} values are determined in order of increasing k
 - When updating $x_{k,i+1}$, all $x_{n,i+1}$ values are already known for n < k
 - We can use those updated values to calculate $x_{k,i+1}$
 - The Gauss-Seidel method

Gauss-Seidel Method

Now use the x_n values already updated on the current iteration to update x_k

D That is, $x_{n,i+1}$ for n < k

Gauss-Seidel iterative formula

$$x_{k,i+1} = \frac{1}{a_{k,k}} \left[y_k - \sum_{n=1}^{k-1} a_{k,n} x_{n,i+1} - \sum_{n=k+1}^N a_{k,n} x_{n,i} \right], \qquad k = 1 \dots N$$
(7)

- Note that only the first summation has changed
 For already updated x values
 x_n for n < k
 - \blacksquare Number of already-updated values used depends on k

Gauss-Seidel – Matrix Form

- 63
- In matrix form the iterative formula is the same as for the Jacobi method

$$\mathbf{x}_{i+1} = \mathbf{M}\mathbf{x}_i + \mathbf{D}^{-1}\mathbf{y}$$
(5)

where, again

$$\mathbf{M} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A}) \tag{6}$$

but now **D** is the lower triangular part of **A**

$$\mathbf{D} = \begin{bmatrix} a_{1,1} & 0 & \cdots & 0 \\ a_{2,1} & a_{2,2} & 0 & \vdots \\ \vdots & \vdots & \ddots & 0 \\ a_{N,1} & a_{N,2} & \cdots & a_{N,N} \end{bmatrix}$$

 Otherwise, the algorithm and computer code is identical to that of the Jacobi method

Gauss-Seidel – Example

- 64
- □ Apply Gauss-Seidel to our previous example
 x₀ = [10 25 10]^T
 - $\bullet \ \varepsilon_s = 1 \times 10^{-6}$

i	Xi	$oldsymbol{arepsilon}_{oldsymbol{i}}$
0	$[10 \ 25 \ 10]^T$	-
1	$[18.75 33.17 10.06]^T$	0.875
2	$[18.85 33.32 10.11]^T$	0.005
3	$[18.94 33.47 10.16]^T$	0.005
4	$[19.03 33.61 10.20]^T$	0.005
:	:	:
151	$[20.50 36.00 11.00]^T$	0.995×10 ⁻⁶

- Convergence achieved in 151 iterations
 - Compared to 371 for the Jacobi method

⁶⁵ Nonlinear Systems of Equations

We have seen how to apply the Newton-Raphson rootfinding algorithm to solve a single nonlinear equation. We will now extend that algorithm to the solution of a system of nonlinear equations

Nonlinear Systems of Equations

66

- Consider a system of nonlinear equations
 - Can be represented as a vector of *N* functions
 - **Each** is a function of an *N*-vector of unknown variables

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(x_1, x_2, \cdots, x_N) \\ f_2(x_1, x_2, \cdots, x_N) \\ \vdots \\ f_N(x_1, x_2, \cdots, x_N) \end{bmatrix}$$

 As we did when applying Newton-Raphson to find the root of a single equation, we can again approximate this function as linear (i.e., a firstorder Taylor series approximation)

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{x}_0) + \mathbf{f}'(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$$
(8)

- Note that all variables are N-vectors
 - **f** is an *N*-vector of known, nonlinear functions
 - **x** is an *N*-vector of unknown values this is what we want to solve for
 - **y** is an *N*-vector of known values
 - x₀ is an N-vector of x values for which f(x₀) is known

Newton-Raphson Method

67

Equation (8) is the basis for our Newton-Raphson iterative formula
 Let it be an equality and solve for x

 $y - f(x_0) = f'(x_0)(x - x_0)$ $[f'(x_0)]^{-1}[y - f(x_0)] = x - x_0$ $x = x_0 + [f'(x_0)]^{-1}[y - f(x_0)]$

□ This last expression can be used as an iterative formula

$$\mathbf{x}_{i+1} = \mathbf{x}_i + [\mathbf{f}'(\mathbf{x}_i)]^{-1}[\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$

The derivative term on the right-hand side of (8) is an N × N matrix
 The *Jacobian* matrix, J

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{J}_i^{-1}[\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$
(9)

The Jacobian Matrix

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{J}_i^{-1}[\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$
(9)

Jacobian matrix

\square *N* × *N* matrix of partial derivatives for **f**(**x**)

\square Evaluated at the current value of **x**, **x**_{*i*}

$$\mathbf{J}_{i} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\ \frac{\partial f_{2}}{\partial f_{2}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{N}}{\partial x_{1}} & \frac{\partial f_{N}}{\partial x_{2}} & \cdots & \frac{\partial f_{N}}{\partial x_{N}} \end{bmatrix}_{\mathbf{x}=\mathbf{x}_{i}}$$

Newton-Raphson Method

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{J}_i^{-1}[\mathbf{y} - \mathbf{f}(\mathbf{x}_i)]$$
(9)

- We could iterate (9) until convergence or a maximum number of iterations is reached
 - Requires *inversion* of the Jacobian matrix
 - Computationally expensive and error prone
- Instead, go back to the Taylor series approximation

$$\mathbf{y} = \mathbf{f}(\mathbf{x}_i) + \mathbf{J}_i(\mathbf{x}_{i+1} - \mathbf{x}_i)$$

$$\mathbf{y} - \mathbf{f}(\mathbf{x}_i) = \mathbf{J}_i(\mathbf{x}_{i+1} - \mathbf{x}_i)$$
 (10)

- Left side of (21) represents a difference between the known and approximated outputs
- $\hfill\square$ Right side represents an increment of the approximation for x

$$\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i \tag{11}$$

Newton-Raphson Method

 $\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i \tag{12}$

On each iteration:

\Box Compute $\Delta \mathbf{y}_i$ and \mathbf{J}_i

\square Solve for $\Delta \mathbf{x}_i$ using *Gaussian elimination*

Matrix inversion not required

Computationally robust

D Update **x**

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}_i$$

70

(13)

Newton-Raphson – Example

- 71
- Apply Newton-Raphson to solve the following system of nonlinear equations

$$\mathbf{f}(\mathbf{x}) = \mathbf{y}$$
$$\begin{bmatrix} x_1^2 + 3x_2 \\ x_1 x_2 \end{bmatrix} = \begin{bmatrix} 21 \\ 12 \end{bmatrix}$$

- **\square** Initial condition: $\mathbf{x}_0 = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$
- Stopping criterion: $\varepsilon_s = 1 \times 10^{-6}$
- Jacobian matrix

$$\mathbf{J}_{i} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \end{bmatrix}_{\mathbf{x}=\mathbf{x}_{i}} = \begin{bmatrix} 2x_{1,i} & 3 \\ x_{2,i} & x_{1,i} \end{bmatrix}$$

Newton-Raphson – Example

 $\Delta \mathbf{y}_i = \mathbf{J}_i \Delta \mathbf{x}_i \tag{12}$

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \Delta \mathbf{x}_i \tag{13}$$

\Box For iteration *i*:

\Box Compute $\Delta \mathbf{y}_i$ and \mathbf{J}_i

- **\square** Solve (12) for $\Delta \mathbf{x}_i$
- Update x using (13)

72
73

 $\Box \quad \underline{i=0}:$

$$\Delta \mathbf{y}_{0} = \mathbf{y} - \mathbf{f}(\mathbf{x}_{0}) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 7\\2 \end{bmatrix} = \begin{bmatrix} 14\\10 \end{bmatrix}$$
$$\mathbf{J}_{0} = \begin{bmatrix} 2x_{1,0} & 3\\x_{2,0} & x_{1,0} \end{bmatrix} = \begin{bmatrix} 2 & 3\\2 & 1 \end{bmatrix}$$
$$\Delta \mathbf{x}_{0} = \begin{bmatrix} 4\\2 \end{bmatrix}$$
$$\mathbf{x}_{1} = \mathbf{x}_{0} + \Delta \mathbf{x}_{0} = \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 4\\2 \end{bmatrix} = \begin{bmatrix} 5\\4 \end{bmatrix}$$
$$\varepsilon_{1} = \max\left(\left|\frac{x_{k,1} - x_{k,0}}{x_{k,1}}\right|\right), \quad k = 1 \dots$$

$$x_1 = \begin{bmatrix} 5\\4 \end{bmatrix}, \quad \varepsilon_1 = 0.8$$

Ν

74

 $\Box \quad \underline{i=1}:$

$$\Delta \mathbf{y}_{1} = \mathbf{y} - \mathbf{f}(\mathbf{x}_{1}) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 37\\20 \end{bmatrix} = \begin{bmatrix} -16\\-8 \end{bmatrix}$$
$$\mathbf{J}_{1} = \begin{bmatrix} 2x_{1,1} & 3\\x_{2,1} & x_{1,1} \end{bmatrix} = \begin{bmatrix} 10 & 3\\4 & 5 \end{bmatrix}$$
$$\Delta \mathbf{x}_{1} = \begin{bmatrix} -1.474\\-0.421 \end{bmatrix}$$
$$\mathbf{x}_{2} = \mathbf{x}_{1} + \Delta \mathbf{x}_{1} = \begin{bmatrix} 5\\4 \end{bmatrix} + \begin{bmatrix} -1.474\\-0.421 \end{bmatrix} = \begin{bmatrix} 3.526\\3.579 \end{bmatrix}$$
$$\varepsilon_{2} = \max\left(\left| \frac{x_{k,2} - x_{k,1}}{x_{k,1}} \right| \right), \quad k = 1 \dots N$$
$$\begin{bmatrix} x_{2} = \begin{bmatrix} 3.526\\3.579 \end{bmatrix}, \quad \varepsilon_{2} = 0.418 \end{bmatrix}$$

75

 $\Box \quad \underline{i=2}:$

$$\Delta \mathbf{y}_{2} = \mathbf{y} - \mathbf{f}(\mathbf{x}_{2}) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 23.172\\12.621 \end{bmatrix} = \begin{bmatrix} -2.172\\-0.621 \end{bmatrix}$$
$$\mathbf{J}_{2} = \begin{bmatrix} 2x_{1,2} & 3\\x_{2,2} & x_{1,2} \end{bmatrix} = \begin{bmatrix} 7.053 & 3\\3.579 & 3.526 \end{bmatrix}$$
$$\Delta \mathbf{x}_{2} = \begin{bmatrix} -0.410\\0.240 \end{bmatrix}$$
$$\mathbf{x}_{3} = \mathbf{x}_{2} + \Delta \mathbf{x}_{2} = \begin{bmatrix} 3.526\\3.579 \end{bmatrix} + \begin{bmatrix} -0.410\\0.240 \end{bmatrix} = \begin{bmatrix} 3.116\\3.819 \end{bmatrix}$$
$$\varepsilon_{3} = \max\left(\left| \frac{x_{k,3} - x_{k,2}}{x_{k,2}} \right| \right), \quad k = 1 \dots N$$
$$\begin{bmatrix} x_{3} = \begin{bmatrix} 3.116\\3.819 \end{bmatrix}, \quad \varepsilon_{3} = 0.132 \end{bmatrix}$$

76

 $\Box \quad \underline{i=6}:$

$$\Delta \mathbf{y}_{6} = \mathbf{y} - \mathbf{f}(\mathbf{x}_{6}) = \begin{bmatrix} 21\\12 \end{bmatrix} - \begin{bmatrix} 21.000\\12.000 \end{bmatrix} = \begin{bmatrix} -0.527 \times 10^{-7}\\0.926 \times 10^{-7} \end{bmatrix}$$
$$\mathbf{J}_{6} = \begin{bmatrix} 2x_{1,6} & 3\\x_{2,6} & x_{1,6} \end{bmatrix} = \begin{bmatrix} 6.000 & 3\\4.000 & 3.000 \end{bmatrix}$$
$$\Delta \mathbf{x}_{6} = \begin{bmatrix} -0.073 \times 10^{-6}\\0.128 \times 10^{-6} \end{bmatrix}$$
$$\mathbf{x}_{7} = \mathbf{x}_{6} + \Delta \mathbf{x}_{6} = \begin{bmatrix} 3.000\\4.000 \end{bmatrix} + \begin{bmatrix} -0.073 \times 10^{-6}\\0.128 \times 10^{-6} \end{bmatrix} = \begin{bmatrix} 3.000\\4.000 \end{bmatrix}$$
$$\varepsilon_{7} = \max\left(\left| \frac{x_{k,7} - x_{k,6}}{x_{k,6}} \right| \right), \qquad k = 1 \dots N$$

$$x_7 = \begin{bmatrix} 3.000\\ 4.000 \end{bmatrix}, \quad \varepsilon_7 = 31.9 \times 10^{-9}$$

Newton-Raphson – Python Code

Define the system of equations

```
f = lambda x: np.array([x[0]**2 + 3*x[1], x[0]*x[1]])
y = np.array([21, 12])
```

Initialize x

6

7

8

11

10

12 x0 = np.array([1, 2]) 13 x = x0

Set up solution parameters

```
17 reltol = 1e-6
18 max_iter = 1000
19 eps = 1
20 iter = 0
21
```

Newton-Raphson – Python Code

- Iterate:
 - **\Box** Compute $\Delta \mathbf{y}_i$ and \mathbf{J}_i
 - **\square** Solve for $\Delta \mathbf{x}_i$
 - Update x

```
24
       while(iter < max iter) and (eps > reltol):
25
26
            J = np.array([[2*x[0], 3], [x[1], x[0]]])
27
           x \text{ old} = x
28
29
           # calculate output error term
30
            Dy = y - f(x \text{ old})
31
32
           # use Gaussian elimination to solve for increment to x
33
           Dx = np.linalg.solve(J, Dy)
34
            x = x \text{ old} + Dx
35
36
            eps = np.max(abs((x - x old)/x))
37
38
            iter = iter + 1
```