SECTION 3: SYSTEMS OF
EQUATIONS

- ESC 440 — Computational Methods for Engineers
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A System of Equations — Example

Unstretched Stretched

Three masses
ke % ky % om;, m,, and my
o

m | x Three springs
“é ™ o ky, ks, ks
kz % Connected in series and
m _,.«L suspended
ks % 2 m Determine the displacement of

| ok each mass from its unstretched
position
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A System of Equations — Example

Three unknown displacements: x;, x,, X5

o Need three equations to find displacements

Apply Newton’s second law to each mass

kX1 ka(x2-x1) ks(x3-x2)

T T | 1 Three equations result:
m; m; ms my¥, = myg + ko (x; — x1) — kyxq
J J L L l Moty = Mg+ kalxs = 22) = ka4, = 21)

MmzX3 = mgg — k3(x3 — x
Mg ka(xo-x1)  M28  ks(x3-Xz) Msg 343 39 3( 3 2)
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A System of Equations — Example
-

Steady-state,so X; = 0, Vi

mig + ky(x; —x1) — kyx; =0

myg + k3(x3 — x3) — ka(x, — %) =0

mzg — k3(x3 —x3) =0

Rearranging

(kq + k2)xq —kyx; +0x3=myg
—koxy + (ky + k3)x; — ksxz =myg

Ox1 — k3X2 + k3x3 — m3g
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A System of Equations — Example
-

Our system of three equations
(kq + k2)xq —kyx, 4+ 0x3 =myg
—kyx1 + (ky +k3)x, —ksxs = myg
0x, —k3x, + kzx3 =ms3g
can be put into matrix form
(ky + ky) —k; 0 |[x11 [mM9]

_kz (kz + k3) _k3 myg
0 —k4 ks | X3l M3

)
N
1
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A System of Equations — Example
-

(kq + ky) —k; 0 |rx11 Mg
—kz (kz + k3) —k3 X2 | = |M2g
0 —k4 ks | X3l M3

We can rewrite this matrix equation as
Ax=Db

Can apply tools of linear algebra to determine the
vector of unknown displacements

X = |X2
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Matrix notation
e

Conventions for matrix notation vary greatly. In
general, the dimensions of a variable are known from

context. These notes will use the following
convention:

Matrices
o Upper-case, bold variables, e.g. A

Vectors
o Lower-case, bold variables, e.g. X

Hand-written matrices and vectors
o Underbar, instead of bold, e.g. A or x
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Solving Systems of Equations with Python

Before getting into the algorithms used to solve
systems of linear equations, we’ll take a look at
how we can use available Python functions to
find a solution.
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System as a Matrix Equation

Our system of equations has the form

a11X1 + A%y + aq3x3 = by
(y1X1 + AppXy + Ap3X3 = by
a31X1 + AzX, + Az3x3 = b;

This can be written in matrix form as

A11 Aq2  A137][X1] by
Az1 Az QAxz3||X2| =|b,
d31 A3z 0a33]1X3] b

or
Ax=Db
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Solving the Matrix Equation

Solving our system of equations amounts to solving
the matrix equation

Ax=Db
for the vector x

To isolate X on the left of the equal sign, left
multiply by the inverse of the coefficient matrix

A 1Ax = A71p
x = A1p
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Solving the Matrix Equation
e

In NumPy’s 1inalg module — left-multiply by A™1

- Use np.linalg.inv() for matrix
4 inversion
3 import numpy as np . . . .
. (s 8 Use @ for matrix multiplication
7 = np.array s 3, .
: E; L i%i} o * performs element-by-element
1a b = np.array[[B,j?_.,E]j mU|t|p||Cat|On
11
2 ¥ = np.linalg.inv(A)@b NOte that b can be d row or CO|Umn
- o vector
14 print{‘in x =", x)
- O Treated as a column vector either way
Matrix inversion works, but is not
i [81: runcell(=olye velne marrix frversel, always the best way to solve

o Inefficient, slow
o Sensitive to numerical error

® = [-8.50359712 -@.28@57554 ©.92886331]

Some systems worse than others
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Solving the Matrix Equation
R
Instead, use NumPy’s 1inalg.solve() function

" If A~1 exists, then

z import numpy as np X =np.linalg.solve(A, b)
IR is equivalent to
e x=A"'b

5 print(ax =1, ) Does not calculate A™1

o Faster, more robust

In [5]: runcell{'solve using np.linalg.solve’,

Notes/Pythan) sectiond/ Linsyssolve. ") Makes use of techniques we’ll

¥ = [-8.58359712 -@.28057554 0.92886331]
explore next
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Example — Solving Using NumPy

Unstretched Stretched

Our linear system is described by the
ks % Ky % matrix equation
o

(k1 + kz) —k; mlg
_k2 (kz + kg) _k3 leI = ng
0 ks

msg

M1 X1

1
i — Find the displacements, X, for the
ks % m; following system parameters

m e nk1:500%, k2=800%, k3=400%
L omy = 3kg, my, = 1kg, mz = 7kg
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Example — Solving Using NumPy

Unstretched Stretched 5 — -
2
3 i t
4 Hpart numpy &= ne In [235]: runfile('C:/Users/webbky/Box
k k 5 & cpring conctante NI Section3/linSysEx.py', wdir="C:/Users/
1 1 " eam : '
6 k1 = 5@ Python/Section3')
7 k2 = zee
8 k3 = d4a8 Solution wusing linalg.inwv():
- 9 ¥ = [9.21582 @.31392 @.485595]
mi X1 18 # masses
My - ml =3 Solution wusing linalg.solve():
¥ = [@.21582 ©.31392 6.485595]

[
o~
I=

I

np.array( [ [k1+kz, -kz, @],
[-k2, k2+k3, -k3],
[al _k3J k-3]]}

=~
5]
3 WS
-~
[, =]
[l e R ]
[ I QR O WY ¥
m o 2 =2
L pa
[
o
LT« ]
[y
=]
=
T
r

[y
(=]

]
[sn]

np.array([ml*g, m2*g, m3*g])

¥1 = np.linalg.inv{A&)@b

=~
LEE]
>
Ped
[ =]
[ = T o D o T )
{10, I S Y [y N Ty =}
o
n
0]

k 26 ¥2 = np.linalg.solve(A, b)
m; 3 27

28 print( ' \nsolution using linalg.inv():\n%tx =", x1)
29 print('\nsolution using linalg.solve():%wn\tx =", x2)
38

e

X3

ms x1 = 21.bcm, x,=31.4cm, x3=48.6cm
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Techniques for Solving Linear Systems
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Solving Systems of Linear Equations

Techniques exist for finding the solution to small
systems of linear equations:

o Graphical method
o Cramer’s rule
o Elimination of unknowns

Not generally useful for numerical solution of larger
systems, but they do provide insight

For numerical solution of larger systems techniques
include:

O Gaussian elimination

o Jacobi method

O Gauss-Seidel
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Graphical Solution
e

A system of two linear equations with two unknown

variables
a11X1 + ayx5 = by

(y1X1 + ApXy = by

can be thought of as equations of two linesinthe x — vy
plane:

a1 by

X, = ——x1 +—
a2 a2
4z b,

X, = ———x; +—

az2 A22
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Graphical Solution
e

a11 by
Xo = ——— X4 +—
2 1

a12 ai2

a1 b,
Xo = ————X1 +—
2 1

Y Y

Solution to this system of equations is the point of
intersection (x4, x,) of the two lines

o May not exist
o May not be unique
0o May exist, but be difficult to determine accurately
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Unigue Solution
-

System of two linear Unique Solution
equations:

O.le + Xo = 5 R

Represented in

¥
N

. f,", (x1,x2) = (2,4)
matrix form of
[O-S 1 ] [x1] —_ [5] N O.IU 0:5 l.IO l.l5 Z.IU 2.|5 3.I0 3.I5 4.I0
3 —1l1x 2 1
Solution at the point of
Ax=Db P

intersection: (x1,x,) = (2,4)
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No Solution
S —

System of two linear

No Solution

equations:
3%1 — X3 = .
3x1 — X, =4 .

Represented in
matrix form

Lines don’t intersect, so
AX = no solution exists
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Infinite Solutions
e
System of two linear

Infinite Number of Solutions

equations: 10]
3x1 — Xy = 2 ®]
—bx1 + 2x, = —4

Represented in matrix
form

56 Slal=LG]
b

AX =

Solutions at all points along
the lines
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Ill-Conditioned System
-

System of two linear
equations:

O.le + Xo = 5 oo
0.48x; + x, = 4.96 ...

4.00 -

llI-Conditioned System

4.75 ~

Represented in matrix _ .
form 350 ]

3.25 ~

(xll xZ) = (2'4)

%)

.00 ~

e 1H ] 406l "

X1

= Solutions exists, but it is
difficult to identify accurately

K. Webb ESC 440



Singularity and the Coefficient Matrix, A

Systems with no solutions or infinite solutions are both
referred to as singular

Coefficient matrix, A, is singular
o A~1 does not exist

o det(A) =0

For the example with no solutions

_ |13 L) _ 4 oy
det(A)—‘B _1‘_ 3 - (=3)=0
For the example with infinite solutions
_|3 “L_._._
det(A)—‘_6 2‘—6 6=0
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lll-Conditioned Systems
-0V
lll-conditioned systems are nearly-singular
odet(A) = 0
o A~1 exists, but may be difficult to determine accurately

o Solution exists, but it may difficult to determine
accurately — either graphically or numerically

For the previous example of an ill-conditioned
system

det(A)—‘O48 1‘_05 0.48 = 0.02

(This example may be ill-conditioned for graphical
solution, but would not be if solving numerically)

K. Webb ESC 440



Rank of the Coefficient Matrix, A

Rank of a matrix — number of linearly-independent
rows (or columns) of the matrix

Full-rank matrix

o All rows and columns are linearly-independent

o Must be square

o det(A) # 0, A1 exists

In both of our singular examples A is rank-deficient

A1=’3 _1 and A2=[_36 _21]

For a 2 X 2, rank-deficient matrix, columns and rows
represent collinear vectors
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Gaussian Elimination
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Gaussian Elimination
e
Two steps in Gaussian elimination:

o Elimination of unknowns
o Solution through back-substitution

Applies to arbitrarily large systems
A{1X1 + ay2x5 + -+ a1,X, = by
aAr1X1 ~+ aArn X~ + .-+ AonXn = bz

The basic algorithm will be introduced using an example
system of three equations with three unknowns
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Gaussian Elimination — the Basic Algorithm
e

The basic algorithm:

1. Forward elimination of unknowns
Reduce to an upper-triangular system

2. Back-substitution to solve for unknowns

Reduction to an upper-triangular system yields the
solution for x,, directly

Back-substitute the solution for x,, to solve for x,,_1
Back-substitute the solution for x,,_; to solve for x,,_,
Continue until all x; have been determined
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Forward Elimination of Unknowns
e

We’ll use a system of three equations with three
unknowns as an example

a1 Q12 4137 [X1 by
Az1 Az Qx3||X2| = |b,
az1 A3z Aaz3]lX3 b3

Create the augmented system matrix

;1 Q2 A3 ¢ by
(1 Ay Gdp3 | by
|d3q d3p dz3 b3_

Each row represents an equation — row operations
are operations on the equations
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Forward Elimination of Unknowns

e
Reduce to an upper-triangular system

Eliminate x; from the (i + 1)t through nt"* equations for
i=1..n

First eliminate x; from the second equation

o Perform row operations to set the first element on the
second row to zero

o Normalize the first equation (row) — divide by the leading
coefficient, a4

o Multiply the first equation (row) by the leading coefficient of
the second equation (row), a,

azq azq . Q1

Ay, — QA —a3 ¢ —Db
aiq aiq a1

az1 Az a3 : b,

_a31 a32 a33 : b3 i
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Forward Elimination of Unknowns
e

Subtract the first row from the second, and replace
the first row with its original values

(a11
0

| d31

aip
azq

Ao ——Aq3

aii
asp

as3

a3
azq

—— Q33

aii
as3

by

a
b, — =2 b,

a1

bs

Use prime notation to indicate a modified
coefficient value

o Add additional prime mark for each modification

K. Webb

aiq
0

|d3q

aiz
4
ass

as;

ais
4
a3

as3

by ]
b,
bs |
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Forward Elimination of Unknowns

Next, eliminate x; from the third equation
o Normalize the first row
o Multiply by the leading coefficient of the third row, a3

asq

0

_a31

aszq

aiq
14

azo

as»

aio

asq a
— a3
aiq
14
azs

a3z

o Subtract the first row from the third and reset the first row to its

original values

(11 aqp
0 as,
0 asq
A3z — —dq2
aiq

K. Webb

as3

aiz

!

azs

asq
aiq

— a3

by — —2b,

by
b,

a1

a1 Aaq2
0 a)
0 aj

ais : b]_
!/ . /
azz i by

! . 4
a33 . b3
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Elimination of Unknowns - Terminology

First row is used for the elimination of x; from
second and third rows

In general, it" row used to eliminate the it"
unknown from the (i + 1)t through n" rows
o This is the pivot row

o (n— 1) rows will be pivot rows at some point

O Leading coefficient in the pivot row, a;;, is the pivot
element

Normalization involves dividing the pivot row by
the pivot element

o Could this be problematic?
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Forward Elimination of Unknowns

Finally, eliminate x, from the third equation
o Normalize the second row (the pivot row)
o Multiply by the leading coefficient of the third row, a3,

(11 Qq2 a3 : b,
14 !/
as; as;

!/ !/ o 14

0 A3z ——0Qz3 — b,

Az, azo
14 / o 14
| O a32 a33 . b3

o Subtract the second row from the third and reset the
second row to its previous values

(a1 Q1 a3 : by a a a L
! ! . ! 11 12 13 1
0 ap az3 - b, “lo 4. d. : b
/ / = 22 23 2
0 0 r as» / . bl . as» b/ 0 0 all bll
ass Q3 3 D2 33 3
Az, Az,
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Back-Substitution

-
System is now upper-triangular

17 Q2 Q3 i by
0 a;, ay; i b,
0 0 ag’g : bé’

Last row represents a single equation with a single
unknown, x3

144
o
33

X3

In general, solve for the nt® unknown as

- b7(1n_1)
- _(n-1)
G

Xn
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Back-Substitution
-

Next, substitute x5 into the second equation

’ / N
Ap,Xy + Ay3X3 = b,

by
/ ! N
Az2X7 + Ay3—- = by
a33
and solve for x,
bll
! ! 3
by — az3 —ir
_ a3
Xy = /
az2
In general:
1 n
_ (i-1) (i-1)
Xi = D b; Gij %
ii j=i+1
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Back-Substitution
-

Finally, substitute x, and x3 into the first equation
ay1X1 + A12x; + A13X3 = by

iz
bs

! !
bz - a23 7 bII
+ 933 3 —p
a11X1 T Aq2 7 13— = b1
az, asz
and solve for x;
bll
/ /4 3
b2 - a23 12 17
dss b3
by —ay; 7 — Q13 71
. az, as3
x1 =
aiq

In practice we’d solve for x; using the general formula

n
1 . .
_ (i-1) (i-1)
Xi = oD b, - 2 ajj —Xj
a;; j=it+1
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Algorithm Summary

-
Form augmented system matrix
Elimination of unknowns —fori=1..n—1
2 Normalize pivot row (i" row)

o) Multiply pivot row by leading coefficient of j** row, a;;
(forj=(+1)..n)

o) Subtract pivot row from j" row

Back-substitution
b 1(111— 1)

a) Determine x, from the last row: x;, = ——5

nn
b)  Solve for remaining x; fori = (n —1) ... 1:

n
1 . .
_ (i-1) (i-1)
Xi = D <bi - E a;j xj)

ii j=i+1
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Partial Pivoting

During forward elimination of unknowns, pivot row

is normalized
o it" row divided by leading coefficient, a;;
o If a;; = 0 = divide-by-zero, algorithm fails

o If a;; = 0 = not fatal, but susceptible to roundoff error

Partial pivoting

o Prior to normalizing the pivot (i) row, search all rows
from i ...n for the one with the largest value in the it"
column

o Move to the current pivot row location and continue
with algorithm
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Gaussian Elimination - Example
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Example — Truss Analysis
-

Simple statically-determinate truss
Determine all internal and external forces

4 kN

¥
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Example — Truss Analysis
-

Force components at each joint must balance

4 kN

B
] \
/ Fac
Fag

FAB
FBC
- ;‘o S, —F,5 cos(55°) + Fgrcos(35°) =0 Euc \Qc
T —4 kN — Fyp sin(55°) — Fge sin(35°) = 0 T
Fay Fey
FAx + FAC + FAB COS(SSO) =0 _FAC — FBC COS(SSO) =0
FAy + FAB Sin(55°) =0 FCy + FBC Sin(350) =0
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Example — Truss Analysis
-

System of six equations with six unknown internal
and external forces

" cos(55°) 1 0 1 0 O1[F;45 0

sin(55°) 0 0 0 1 O||Fac 0

—cos(55°) 0 cos(35°) 0 O Of|Fec| | ©
sin(55°) 0  sin(35°) 0 0 O||Fax| |—4000

0 —1 —cos(35°) 0 0 Of|Fay 0

0 0 sin(35°) 0 0 1llFcy. 0

Python Gaussian elimination demo...
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Example — Truss Analysis

1

3 import numpy as np

4 from gausselim import gausselim

5

B

7 thetal = np.radians(55)

8 theta2 = np.radians(35)

<)

18 A = np.array([[np.cos(thetal), 1, e, 1, a, @],

11 [pp.sin(thetal), @a, e, e, 1, ],

12 [-np.cos(thetal), @, np.cos(theta2), @, &, &],

13 [np.sin(thetal), @&, np.sin{theta2), @, &, @],

14 [, -1, -np.cos(theta2), 8, a, 8],

15 [e, @, np.sin(theta2), 8, @, 11])

16

17 b = np.array([e, &, &, -4e3, @, 8])

18 % = np.linalg.solve(A, b} In [42]: runfile('C:/Users
19 wdir="C:/Users/webbky/Box/
ii x = gausselim(A,b) Reloaded modules: gausseli

[

print{'n x = Wn", %)

J

X =

LA

[[-3276.60817716]

[ 1879.38524157]
0N [-2294.30857454 ]

[ o ]
[ 2684.04028665]

Fye = 1.879 kN F,, = 2.684 kN [ 1315.95971335]]

In [43]:

}§413 — “{3.2277:7 ’C]\I Ii4kf

—2.294 kN Fcy = 1.316 kN
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Gaussian Elimination
X

Gaussian elimination summary:
o Create the augmented system matrix

o Forward elimination
Reduce to an upper-triangular matrix
O Back substitution
Starting with x, solve for x; fori = N ... 1

A direct solution algorithm

o Exact value for each x; arrived at with a single execution of the
algorithm

Alternatively, we can use an iterative algorithm
0 Jacobi method

0 Gauss-Seidel

o Newton-Raphson
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Linear Systems of Equations —

Iterative Solution — Jacobi Method
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Jacobi Method

.
Consider a system of N linear equations

1

Ak 1X1 + Ak 2X2 + -+ Ak kXK + -+ Ax NXN = Yk (1)

A-x=y

lam al,NHX1
A1 =+ Ay Nl LXn

The k" equation (k" row) is

Solve (1) for x;

1
X = — |y — (Ag1x1 + Qg oXo + -+ Qg g1 Xp—1 + (2)

Ak k
+ag p+1Xk+1 T 0+ Qe nxy)]
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Jacobi Method

-
Simplify (2) using summing notation

Xy z A nXn — z A nXn | k=1..N (3)
akk oy 5

+1

An equation for x;
o But, of course, we don’t yet know all other x,, values
Use (3) as an iterative expression

k-1
Xpiz1 = —— A nXni — 2 A nXnil, k=1..N (4)

n=1 n=k+1

O The i subscript indicates iteration number
Xy i+1 is the updated value from the current iteration
Xn,i is a value from the previous iteration
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Jacobi Method

1 k—1 N
Xki+1 — a Yk — z A nXn,i — 2 A nXnil, k=1..N (4)
Je ke I n=1 n=k+1 |

Old values of x,,, on the right-hand side, are used to
update x; on the left-hand side

Start with an initial guess for all unknowns, X,

Iterate until adequate convergence is achieved

o Until a specified stopping criterion is satisfied
o Convergence is not guaranteed
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Convergence

e
An approximation of X is refined on each iteration

Continue to iterate until we’re close to the right answer
for the vector of unknowns, x

o Assume we’ve converged to the right answer when x
changes very little from iteration to iteration

On each iteration, calculate a relative error quantity

) k=1ew

Xki+1 — Xk,i

Xk,i+1

lterate until

where & is a chosen stopping criterion

K. Webb ESC 440



Jacobi Method — Matrix Form
-

The Jacobi method iterative formula, (4), can be rewritten in matrix form:

X;+1 = Mx; + D71y (5)
where D is the diagonal elements of A
'a1’1 O ces 0 .
. 0 a2’2 0 :
D= : 0 0
0 - 0 aypl
and
M=D"'(D-A) (6)
o Recall that the inverse of a diagonal matrix is given by inverting each diagonal
element
_1/a1'1 0 oo 0
_ 0 1/a2 2 0 :
D 1 _ )
: 0 0
0 oo 0 1/aN,N_
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Jacobi Method — Example
-

Consider the following system of equations

—4x, + 7x3 = —5
le — 3x2 + 5x3 = —12
Xo — 3X3 =3

In matrix form:

—4 0 7 1[X1 C —5
2 =3 5 ]|X2]=]-12
L0 1 —31L1X3] L 3

Solve using the Jacobi method
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Jacobi Method — Example
-

The iteration formula is

Xi41 = Mx; + D71y

where
—4 0 0 —0.25 0 0
D=0 -3 0 D1=| o —0.333 0
0 0 -3 0 0 —0.333
0 0 1.75
M=D1D-A) =|0.667 0 1.667
0 0.333 0

To begin iteration, we need a starting point
o Initial guess for unknown values, X

o Often, we have some idea of the answer

o Here, arbitrarily choose

Xo=[10 25 10]7
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Jacobi Method — Example
-

At each iteration, calculate

X;41 = Mx; + D7y

X1,i+1 0 0 1.75 7 [*1,i 1.25
[xz,i+1‘ = [0.667 0 1.667‘ X2il+ 1| 4 ‘
X3i+1 0 0.333 0 X3 —1
Fori = 0:
X1,1 0 0 1.757[10 1.25
X1 = |*X21]| = [0.667 0 1.667| 25|+ | 4
X3,1 0 0.333 0 10 —1

x; = [18.75 27.33 7.33]"
The relative error is

Xrk1 — Xk,0

& = max( > = 0.467

Xk,1
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Jacobi Method — Example
-

Fori = 1:
X1,2 0 0 1.7571118.75 1.25
X, = |X2,2] = 10.667 0 1.667|127.33|+| 4
X3,2 0.333 0 7.33 -1

X, = [14.08 28.72 8.11]"
The relative error is

Xk2 — Xk1

£y = max( ) = 0.331

XK1

Continue to iterate until relative error falls below a specified
stopping condition
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Jacobi Method — Example
2

- Automate with computer code, e.g. Python
-1 Setup the system of equations

7 # coefficient matri

8 A = np.array([[-4, @, 7],
9 [21 _3.1 5]1
10 e, 1, -3]1)
11

12 # vector of knowns

13 ¥ = np.array([-5, -12, 3]}

= Initialize matrices and parameters for iteration

17 reltol = 1=-6

13 eps = 1

15

28 max_iter = 688

21 iter = @

22

23 # initial guess for

24 X = np.array([1@, 25, 18])
25

26 D = np.diag{np.diag(a))
27 invD = np.linalg.inv(D)
28

29 M = invD@(D - A)

K. Webb ESC 440



Jacobi Method — Example

Loop to continue iteration as long as:
o Stopping criterion is not satisfied
o Maximum number of iterations is not exceeded

L

L

while((eps » reltel) and (iter < max_iter)):
xold = x

X = Mixold + invDjy

L

(N1

Ll

eps = np.max({abs(({x - xold)/x))

Ll

Ll
W 00 =] M s

iter = iter + 1

Ll

On each iteration

o Use previous X values to update X
o Calculate relative error

o Increment the number of iterations
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Jacobi Method — Example

-
Set &, = 1 X 107° and iterate:

0 [10 25 10]" -

1 [18.75 27.33 7.33]T 0.467
2 [14.08 28.72 8.11]7 0.331
3 [15.44 2691 8.57]" 0.088
4 [16.25 28.59 7.97]T 0.076
5 [15.20 28.12 8.53]" 0.070
6 [ 17 0.061

371 [20.50 36.00 11.00]7 0.995%x10°6

Convergence achieved in 371 iterations
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Linear Systems of Equations —

Iterative Solution — Gauss-Seidel
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Gauss-Seidel Method

-
The iterative formula for the Jacobi method is

N

1 k-1
Xki+1 = a Yk — z Ax nXnji — 2 Ar nXni| - k=1..N (4)
ki n=1 n=k+1

Note that only old values of x,, (i.e. x, ;) are used to
update the value of x;,

Assume the xy ;11 values are determined in order of
increasing k

o When updating xj ;4+1, all x, ;41 values are already known
forn <k

O We can use those updated values to calculate xj, ;44
O The Gauss-Seidel method
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Gauss-Seidel Method

Now use the x,, values already updated on the
current iteration to update x;,,

o Thatis, x, ;44 forn <k

Gauss-Seidel iterative formula

N

Xki+1 = Z A nXni+1 — z ArnXni|» k=1..N (7)

n=k+1

Note that only the first summation has changed

o For already updated x values

ox, forn<k

o Number of already-updated values used depends on k
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Gauss-Seidel — Matrix Form
-

In matrix form the iterative formula is the same as for the Jacobi
method

Xi41 = Mx; + D7y (5)
where, again

M=D1D-A) (6)
but now D is the lower triangular part of A
e 0 - 0

a a 0 :

D = | %1 2,2 ;
AN AGn2 0 4NN

Otherwise, the algorithm and computer code is identical to that of
the Jacobi method
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Gauss-Seidel — Example
-

Apply Gauss-Seidel to our previous example
o x,=[10 25 10]”
oe=1x10"°

0 [10 25 10]7 -

1 [18.75 33.17 10.06]" 0.875
2 [18.85 33.32 10.11]7 0.005
3 [18.94 33.47 10.16]7 0.005
4 [19.03 33.61 10.20]7 0.005
151 [20.50 36.00 11.00]" 0.995X10°

Convergence achieved in 151 iterations
o Compared to 371 for the Jacobi method
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- Nonlinear Systems of Equations

We have seen how to apply the Newton-Raphson root-
finding algorithm to solve a single nonlinear equation.

We will now extend that algorithm to the solution of a
system of nonlinear equations
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Nonlinear Systems of Equations
-

Consider a system of nonlinear equations
o Can be represented as a vector of N functions
o Each is a function of an N-vector of unknown variables

(V1] (f1(x, x0, 0, X))

y = y2 :f(X): fz(xpxz:,"';x]v)

YN | _fN(xlleI'“;xN)—

As we did when applying Newton-Raphson to find the root of a single
equation, we can again approximate this function as linear (i.e., a first-
order Taylor series approximation)

y = f(x) = f(xo) + f'(x0) (x — X¢) (8)

o Note that all variables are N-vectors
f is an N-vector of known, nonlinear functions
X is an N-vector of unknown values — this is what we want to solve for
y is an N-vector of known values
X is an N-vector of x values for which f(x,) is known
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Newton-Raphson Method
-

Equation (8) is the basis for our Newton-Raphson iterative formula
o Let it be an equality and solve for x

y — f(Xo) = F'(xo)(x — Xp)
[f' (o)1 7y — f(x0)] = x — %
X = Xo + [f'(xo)] [y — £(xo)]
This last expression can be used as an iterative formula
Xip1 = X + [f'(x)] ]y — f(x;)]

The derivative term on the right-hand side of (8) isan N X N matrix
o The Jacobian matrix, |

Xiv1 = X; + )7y — £(x;)] (9)
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The Jacobian Matrix
-

Xiv1 = X; + )7y — £(x;)] (9)
Jacobian matrix

o N X N matrix of partial derivatives for f(x)
o Evaluated at the current value of X, x;

ofi Ofi | Ofi
dx; 0x, 0xy
of O . %
Ji =|ox; ox, 0xy
ofs Ofw . Of
dx; O0x, 0xy

T X=X
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Newton-Raphson Method

e
Xiv1 = X; + )7y — £(x))] (9)

We could iterate (9) until convergence or a maximum
number of iterations is reached

o Requires inversion of the Jacobian matrix
Computationally expensive and error prone

Instead, go back to the Taylor series approximation
y = f(x;) + Ji (X1 — X;)
y — f(x;) = Ji(Xi41 — X;) (10)

O Left side of (21) represents a difference between the known and
approximated outputs

o Right side represents an increment of the approximation for x

Ay; = J;Ax; (11)
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Newton-Raphson Method
-
Ay; = );Ax; (12)

On each iteration:
o Compute Ay; and J;

o Solve for AX; using Gaussian elimination
Matrix inversion not required
Computationally robust

o Update X
(13)
Xi+1 = X; T AX;
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Newton-Raphson — Example
-

Apply Newton-Raphson to solve the following system of
nonlinear equations

f(x) =y
[xlz + 3x2] _ [21
X1X9 12

o Initial condition: x, = [1  2]7
o Stopping criterion: &g = 1 X 107°
O Jacobian matrix

0f1 0f1]
_|0x; Oxy 2% 3
i=lor or|  =la. w
dx; 0x,.

X=X
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Newton-Raphson — Example
-

Ay; = J;Ax; (12)
Xi+1 — X + AXi (13)

For iteration i:

o Compute Ay; and J;
o Solve (12) for Ax;
o Update X using (13)
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Newton-Raphson — Example

-
I =0:

Ay, =y — (%) = 12] [Z] [ ]
s A B R
Ax0=[;}]

% =xo+0% =[]+ [5] =[]

), k=1..N
=[G a-
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Newton-Raphson — Example

-
I =1:

Ay, =y —f(xq) = i%‘ — gg] _ [—_186]

J, = [2x1,1 3 ] _ [10 3

X21 X11 4 5

ax = o]

w=xtan =i+ [ = (3550

82=max<xk'2_xk'1>, k=1..N
Xk,

v = [3.526
27 13,579/

e, = 0.418
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Newton-Raphson — Example
-

| = 2:
o _[21] _[23172] _ [~2.172
Ay, =y —f(x2) = 12] 12.621 [—0.621]
I, = [2x1’2 3 ] _ [7.053 3
2 X22 X12 3.579 3.526
 [—0.410
Ax; _[ 0.240]

2579 * [ 0240 = 3819

), k=1..N

g5 = 0.132

X3=X2+AX2=[

Xk3 — Xk,2

83 = maX<
Xk,2

v = [3.116
37 13.819)
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Newton-Raphson — Example

-
I =6:

o 211 [21.000] _ [—0.527 x 1077
Ays =y — f(Xe) = 12] [12.0001_10.926x10‘7

_ [2x1,6 3 ]_ 6.000 3
Jo = = [

X26 X16 4.000 3.000
— -6
Ax, = [ 0.073 X 10_6]
0.128 x 10
_ _ 13.0007 , [-0.073 x 10-6] _ [3.000
X7 = X6 + AXg = [4.000] T [ 0.128 x 10761 [4.ooo]

Xk7 — Xk6

e7=max( ), k=1..N

Xk,6

000

X, = [i:ooo]' £, =319 x 1079
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Newton-Raphson — Python Code
S 1
-1 Define the system of equations

Li
¥

lambda =: np.array([x[8]**2 + 3*x[1], x[@]*x[1]])
np.array([21, 12])

b G0 =] O

1 Initialize x

11
12 x@ = np.array([1, 2])
13 X = x@

- Set up solution parameters

L

17 reltol = 1e-6
18 max_iter = 198488
19 eps = 1

28 iter = @

21
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Newton-Raphson — Python Code
3
o lterate:

o Compute Ay; and J;
o Solve for Ax;

o Update x
24 while(iter < max_iter) and (eps > reltol):
25
26 1 = np.array([[2*=x[2], 2], [x[1], x[2]]])
27 ®x old = x
28
29 # calculate output error term
38 Dy = y - f{x _old)
31
32 # use Gaussian elimination to solve for increment to x
33 Dx = np.linalg.solve(l, Dy)
34 ®x = x old + Dx
35
36 eps = np.max{abs({(x - x old)/x))
37
38 iter = iter + 1
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