SECTION 3: SYSTEMS OF
EQUATIONS

- ESC 440 — Computational Methods for Engineers

- Introduction

K. Webb ESC 440

A System of Equations — Example

Unstretched Stretched

Three masses
ke % ky % om;, m,, and my
o

m | x Three springs
“é ™ o ky, ks, ks
kz % Connected in series and
m _,.«L suspended
ks % 2 m Determine the displacement of

| ok each mass from its unstretched
position

K. Webb ESC 440

A System of Equations — Example

Three unknown displacements: x;, x,, X5

o Need three equations to find displacements

Apply Newton’s second law to each mass

kX1 ka(x2-x1) ks(x3-x2)

T T | 1 Three equations result:
m; m; ms my¥, = myg + ko (x; — x1) — kyxq
J J L L l Moty = Mg+ kalxs = 22) = ka4, = 21)

MmzX3 = mgg — k3(x3 — x
Mg ka(xo-x1) M28 ks(x3-Xz) Msg 343 39 3(3 2)

K. Webb ESC 440

A System of Equations — Example
-

Steady-state,so X; = 0, Vi

mig + ky(x; —x1) — kyx; =0

myg + k3(x3 — x3) — ka(x, — %) =0

mzg — k3(x3 —x3) =0

Rearranging

(kq + k2)xq —kyx; +0x3=myg
—koxy + (ky + k3)x; — ksxz =myg

Ox1 — k3X2 + k3x3 — m3g

K. Webb ESC 440

A System of Equations — Example
-

Our system of three equations
(kq + k2)xq —kyx, 4+ 0x3 =myg
—kyx1 + (ky +k3)x, —ksxs = myg
0x, —k3x, + kzx3 =ms3g
can be put into matrix form
(ky + ky) —k; 0 |[x11 [mM9]

_kz (kz + k3) _k3 myg
0 —k4 ks | X3l M3

)
N
1

K. Webb ESC 440

A System of Equations — Example
-

(kq + ky) —k; 0 |rx11 Mg
—kz (kz + k3) —k3 X2 | = |M2g
0 —k4 ks | X3l M3

We can rewrite this matrix equation as
Ax=Db

Can apply tools of linear algebra to determine the
vector of unknown displacements

X = |X2

K. Webb ESC 440

Matrix notation
e

Conventions for matrix notation vary greatly. In
general, the dimensions of a variable are known from

context. These notes will use the following
convention:

Matrices
o Upper-case, bold variables, e.g. A

Vectors
o Lower-case, bold variables, e.g. X

Hand-written matrices and vectors
o Underbar, instead of bold, e.g. A or x

K. Webb ESC 440

Solving Systems of Equations with Python

Before getting into the algorithms used to solve
systems of linear equations, we’ll take a look at
how we can use available Python functions to
find a solution.

K. Webb ESC 440

System as a Matrix Equation

Our system of equations has the form

a11X1 + A%y + aq3x3 = by
(y1X1 + AppXy + Ap3X3 = by
a31X1 + AzX, + Az3x3 = b;

This can be written in matrix form as

A11 Aq2 A137][X1] by
Az1 Az QAxz3||X2| =|b,
d31 A3z 0a33]1X3] b

or
Ax=Db

K. Webb ESC 440

Solving the Matrix Equation

Solving our system of equations amounts to solving
the matrix equation

Ax=Db
for the vector x

To isolate X on the left of the equal sign, left
multiply by the inverse of the coefficient matrix

A 1Ax = A71p
x = A1p

K. Webb ESC 440

Solving the Matrix Equation
e

In NumPy’s 1inalg module — left-multiply by A™1

- Use np.linalg.inv() for matrix
4 inversion
3 import numpy as np
. (s 8 Use @ for matrix multiplication
7 = np.array s 3, .
: E; L i%i} o * performs element-by-element
1a b = np.array[[B,j?_.,E]j mU|t|p||Cat|On
11
2 ¥ = np.linalg.inv(A)@b NOte that b can be d row or CO|Umn
- o vector
14 print{‘in x =", x)
- O Treated as a column vector either way
Matrix inversion works, but is not
i [81: runcell(=olye velne marrix frversel, always the best way to solve

o Inefficient, slow
o Sensitive to numerical error

® = [-8.50359712 -@.28@57554 ©.92886331]

Some systems worse than others

K. Webb ESC 440

Solving the Matrix Equation
R
Instead, use NumPy’s 1inalg.solve() function

" If A~1 exists, then

z import numpy as np X =np.linalg.solve(A, b)
IR is equivalent to
e x=A"'b

5 print(ax =1,) Does not calculate A™1

o Faster, more robust

In [5]: runcell{'solve using np.linalg.solve’,

Notes/Pythan) sectiond/ Linsyssolve. ") Makes use of techniques we’ll

¥ = [-8.58359712 -@.28057554 0.92886331]
explore next

K. Webb ESC 440

Example — Solving Using NumPy

Unstretched Stretched

Our linear system is described by the
ks % Ky % matrix equation
o

(k1 + kz) —k; mlg
_k2 (kz + kg) _k3 leI = ng
0 ks

msg

M1 X1

1
i — Find the displacements, X, for the
ks % m; following system parameters

m e nk1:500%, k2=800%, k3=400%
L omy = 3kg, my, = 1kg, mz = 7kg

K. Webb ESC 440

Example — Solving Using NumPy

Unstretched Stretched 5 — -
2
3 i t
4 Hpart numpy &= ne In [235]: runfile('C:/Users/webbky/Box
k k 5 & cpring conctante NI Section3/linSysEx.py', wdir="C:/Users/
1 1 " eam : '
6 k1 = 5@ Python/Section3')
7 k2 = zee
8 k3 = d4a8 Solution wusing linalg.inwv():
- 9 ¥ = [9.21582 @.31392 @.485595]
mi X1 18 # masses
My - ml =3 Solution wusing linalg.solve():
¥ = [@.21582 ©.31392 6.485595]

[
o~
I=

I

np.array([[k1+kz, -kz, @],
[-k2, k2+k3, -k3],
[al _k3J k-3]]}

=~
5]
3 WS
-~
[, =]
[l e R]
[I QR O WY ¥
m o 2 =2
L pa
[
o
LT«]
[y
=]
=
T
r

[y
(=]

]
[sn]

np.array([ml*g, m2*g, m3*g])

¥1 = np.linalg.inv{A&)@b

=~
LEE]
>
Ped
[=]
[= T o D o T)
{10, I S Y [y N Ty =}
o
n
0]

k 26 ¥2 = np.linalg.solve(A, b)
m; 3 27

28 print(' \nsolution using linalg.inv():\n%tx =", x1)
29 print('\nsolution using linalg.solve():%wn\tx =", x2)
38

e

X3

ms x1 = 21.bcm, x,=31.4cm, x3=48.6cm

K. Webb ESC 440

Techniques for Solving Linear Systems

K. Webb ESC 440

Solving Systems of Linear Equations

Techniques exist for finding the solution to small
systems of linear equations:

o Graphical method
o Cramer’s rule
o Elimination of unknowns

Not generally useful for numerical solution of larger
systems, but they do provide insight

For numerical solution of larger systems techniques
include:

O Gaussian elimination

o Jacobi method

O Gauss-Seidel

K. Webb ESC 440

Graphical Solution
e

A system of two linear equations with two unknown

variables
a11X1 + ayx5 = by

(y1X1 + ApXy = by

can be thought of as equations of two linesinthe x — vy
plane:

a1 by

X, = ——x1 +—
a2 a2
4z b,

X, = ———x; +—

az2 A22

K. Webb ESC 440

Graphical Solution
e

a11 by
Xo = ——— X4 +—
2 1

a12 ai2

a1 b,
Xo = ————X1 +—
2 1

Y Y

Solution to this system of equations is the point of
intersection (x4, x,) of the two lines

o May not exist
o May not be unique
0o May exist, but be difficult to determine accurately

K. Webb ESC 440

Unigue Solution
-

System of two linear Unique Solution
equations:

O.le + Xo = 5 R

Represented in

¥
N

. f,", (x1,x2) = (2,4)
matrix form of
[O-S 1] [x1] —_ [5] N O.IU 0:5 l.IO l.l5 Z.IU 2.|5 3.I0 3.I5 4.I0
3 —1l1x 2 1
Solution at the point of
Ax=Db P

intersection: (x1,x,) = (2,4)

K. Webb ESC 440

No Solution
S —

System of two linear

No Solution

equations:
3%1 — X3 = .
3x1 — X, =4 .

Represented in
matrix form

Lines don’t intersect, so
AX = no solution exists

K. Webb ESC 440

Infinite Solutions
e
System of two linear

Infinite Number of Solutions

equations: 10]
3x1 — Xy = 2 ®]
—bx1 + 2x, = —4

Represented in matrix
form

56 Slal=LG]
b

AX =

Solutions at all points along
the lines

K. Webb ESC 440

Ill-Conditioned System
-

System of two linear
equations:

O.le + Xo = 5 oo
0.48x; + x, = 4.96 ...

4.00 -

llI-Conditioned System

4.75 ~

Represented in matrix _ .
form 350]

3.25 ~

(xll xZ) = (2'4)

%)

.00 ~

e 1H] 406l "

X1

= Solutions exists, but it is
difficult to identify accurately

K. Webb ESC 440

Singularity and the Coefficient Matrix, A

Systems with no solutions or infinite solutions are both
referred to as singular

Coefficient matrix, A, is singular
o A~1 does not exist

o det(A) =0

For the example with no solutions

_ |13 L) _ 4 oy
det(A)—‘B _1‘_ 3 - (=3)=0
For the example with infinite solutions
|3 “L._._
det(A)—‘_6 2‘—6 6=0

K. Webb ESC 440

lll-Conditioned Systems
-0V
lll-conditioned systems are nearly-singular
odet(A) = 0
o A~1 exists, but may be difficult to determine accurately

o Solution exists, but it may difficult to determine
accurately — either graphically or numerically

For the previous example of an ill-conditioned
system

det(A)—‘O48 1‘_05 0.48 = 0.02

(This example may be ill-conditioned for graphical
solution, but would not be if solving numerically)

K. Webb ESC 440

Rank of the Coefficient Matrix, A

Rank of a matrix — number of linearly-independent
rows (or columns) of the matrix

Full-rank matrix

o All rows and columns are linearly-independent

o Must be square

o det(A) # 0, A1 exists

In both of our singular examples A is rank-deficient

A1=’3 _1 and A2=[_36 _21]

For a 2 X 2, rank-deficient matrix, columns and rows
represent collinear vectors

K. Webb ESC 440

Gaussian Elimination

K. Webb ESC 440

Gaussian Elimination
e
Two steps in Gaussian elimination:

o Elimination of unknowns
o Solution through back-substitution

Applies to arbitrarily large systems
A{1X1 + ay2x5 + -+ a1,X, = by
aAr1X1 ~+ aArn X~ + .-+ AonXn = bz

The basic algorithm will be introduced using an example
system of three equations with three unknowns

K. Webb ESC 440

Gaussian Elimination — the Basic Algorithm
e

The basic algorithm:

1. Forward elimination of unknowns
Reduce to an upper-triangular system

2. Back-substitution to solve for unknowns

Reduction to an upper-triangular system yields the
solution for x,, directly

Back-substitute the solution for x,, to solve for x,,_1
Back-substitute the solution for x,,_; to solve for x,,_,
Continue until all x; have been determined

K. Webb ESC 440

Forward Elimination of Unknowns
e

We’ll use a system of three equations with three
unknowns as an example

a1 Q12 4137 [X1 by
Az1 Az Qx3||X2| = |b,
az1 A3z Aaz3]lX3 b3

Create the augmented system matrix

;1 Q2 A3 ¢ by
(1 Ay Gdp3 | by
|d3q d3p dz3 b3_

Each row represents an equation — row operations
are operations on the equations

K. Webb ESC 440

Forward Elimination of Unknowns

e
Reduce to an upper-triangular system

Eliminate x; from the (i + 1)t through nt"* equations for
i=1..n

First eliminate x; from the second equation

o Perform row operations to set the first element on the
second row to zero

o Normalize the first equation (row) — divide by the leading
coefficient, a4

o Multiply the first equation (row) by the leading coefficient of
the second equation (row), a,

azq azq . Q1

Ay, — QA —a3 ¢ —Db
aiq aiq a1

az1 Az a3 : b,

_a31 a32 a33 : b3 i

K. Webb ESC 440

Forward Elimination of Unknowns
e

Subtract the first row from the second, and replace
the first row with its original values

(a11
0

| d31

aip
azq

Ao ——Aq3

aii
asp

as3

a3
azq

—— Q33

aii
as3

by

a
b, — =2 b,

a1

bs

Use prime notation to indicate a modified
coefficient value

o Add additional prime mark for each modification

K. Webb

aiq
0

|d3q

aiz
4
ass

as;

ais
4
a3

as3

by]
b,
bs |

ESC 440

Forward Elimination of Unknowns

Next, eliminate x; from the third equation
o Normalize the first row
o Multiply by the leading coefficient of the third row, a3

asq

0

_a31

aszq

aiq
14

azo

as»

aio

asq a
— a3
aiq
14
azs

a3z

o Subtract the first row from the third and reset the first row to its

original values

(11 aqp
0 as,
0 asq
A3z — —dq2
aiq

K. Webb

as3

aiz

!

azs

asq
aiq

— a3

by — —2b,

by
b,

a1

a1 Aaq2
0 a)
0 aj

ais : b]_
!/ . /
azz i by

! . 4
a33 . b3

ESC 440

Elimination of Unknowns - Terminology

First row is used for the elimination of x; from
second and third rows

In general, it" row used to eliminate the it"
unknown from the (i + 1)t through n" rows
o This is the pivot row

o (n— 1) rows will be pivot rows at some point

O Leading coefficient in the pivot row, a;;, is the pivot
element

Normalization involves dividing the pivot row by
the pivot element

o Could this be problematic?

K. Webb ESC 440

Forward Elimination of Unknowns

Finally, eliminate x, from the third equation
o Normalize the second row (the pivot row)
o Multiply by the leading coefficient of the third row, a3,

(11 Qq2 a3 : b,
14 !/
as; as;

!/ !/ o 14

0 A3z ——0Qz3 — b,

Az, azo
14 / o 14
| O a32 a33 . b3

o Subtract the second row from the third and reset the
second row to its previous values

(a1 Q1 a3 : by a a a L
! ! . ! 11 12 13 1
0 ap az3 - b, “lo 4. d. : b
/ / = 22 23 2
0 0 r as» / . bl . as» b/ 0 0 all bll
ass Q3 3 D2 33 3
Az, Az,

K. Webb ESC 440

Back-Substitution

-
System is now upper-triangular

17 Q2 Q3 i by
0 a;, ay; i b,
0 0 ag’g : bé’

Last row represents a single equation with a single
unknown, x3

144
o
33

X3

In general, solve for the nt® unknown as

- b7(1n_1)
- _(n-1)
G

Xn

K. Webb ESC 440

Back-Substitution
-

Next, substitute x5 into the second equation

’ / N
Ap,Xy + Ay3X3 = b,

by
/ ! N
Az2X7 + Ay3—- = by
a33
and solve for x,
bll
! ! 3
by — az3 —ir
_ a3
Xy = /
az2
In general:
1 n
_ (i-1) (i-1)
Xi = D b; Gij %
ii j=i+1

K. Webb ESC 440

Back-Substitution
-

Finally, substitute x, and x3 into the first equation
ay1X1 + A12x; + A13X3 = by

iz
bs

! !
bz - a23 7 bII
+ 933 3 —p
a11X1 T Aq2 7 13— = b1
az, asz
and solve for x;
bll
/ /4 3
b2 - a23 12 17
dss b3
by —ay; 7 — Q13 71
. az, as3
x1 =
aiq

In practice we’d solve for x; using the general formula

n
1 . .
_ (i-1) (i-1)
Xi = oD b, - 2 ajj —Xj
a;; j=it+1

K. Webb ESC 440

Algorithm Summary

-
Form augmented system matrix
Elimination of unknowns —fori=1..n—1
2 Normalize pivot row (i" row)

o) Multiply pivot row by leading coefficient of j** row, a;;
(forj=(+1)..n)

o) Subtract pivot row from j" row

Back-substitution
b 1(111— 1)

a) Determine x, from the last row: x;, = ——5

nn
b) Solve for remaining x; fori = (n —1) ... 1:

n
1 . .
_ (i-1) (i-1)
Xi = D <bi - E a;j xj)

ii j=i+1

K. Webb ESC 440

Partial Pivoting

During forward elimination of unknowns, pivot row

is normalized
o it" row divided by leading coefficient, a;;
o If a;; = 0 = divide-by-zero, algorithm fails

o If a;; = 0 = not fatal, but susceptible to roundoff error

Partial pivoting

o Prior to normalizing the pivot (i) row, search all rows
from i ...n for the one with the largest value in the it"
column

o Move to the current pivot row location and continue
with algorithm

K. Webb ESC 440

Gaussian Elimination - Example

K. Webb ESC 440

Example — Truss Analysis
-

Simple statically-determinate truss
Determine all internal and external forces

4 kN

¥

K. Webb ESC 440

Example — Truss Analysis
-

Force components at each joint must balance

4 kN

B
] \
/ Fac
Fag

FAB
FBC
- ;‘o S, —F,5 cos(55°) + Fgrcos(35°) =0 Euc \Qc
T —4 kN — Fyp sin(55°) — Fge sin(35°) = 0 T
Fay Fey
FAx + FAC + FAB COS(SSO) =0 _FAC — FBC COS(SSO) =0
FAy + FAB Sin(55°) =0 FCy + FBC Sin(350) =0

K. Webb ESC 440

Example — Truss Analysis
-

System of six equations with six unknown internal
and external forces

" cos(55°) 1 0 1 0 O1[F;45 0

sin(55°) 0 0 0 1 O||Fac 0

—cos(55°) 0 cos(35°) 0 O Of|Fec| | ©
sin(55°) 0 sin(35°) 0 0 O||Fax| |—4000

0 —1 —cos(35°) 0 0 Of|Fay 0

0 0 sin(35°) 0 0 1llFcy. 0

Python Gaussian elimination demo...

K. Webb ESC 440

Example — Truss Analysis

1

3 import numpy as np

4 from gausselim import gausselim

5

B

7 thetal = np.radians(55)

8 theta2 = np.radians(35)

<)

18 A = np.array([[np.cos(thetal), 1, e, 1, a, @],

11 [pp.sin(thetal), @a, e, e, 1,],

12 [-np.cos(thetal), @, np.cos(theta2), @, &, &],

13 [np.sin(thetal), @&, np.sin{theta2), @, &, @],

14 [, -1, -np.cos(theta2), 8, a, 8],

15 [e, @, np.sin(theta2), 8, @, 11])

16

17 b = np.array([e, &, &, -4e3, @, 8])

18 % = np.linalg.solve(A, b} In [42]: runfile('C:/Users
19 wdir="C:/Users/webbky/Box/
ii x = gausselim(A,b) Reloaded modules: gausseli

[

print{'n x = Wn", %)

J

X =

LA

[[-3276.60817716]

[1879.38524157]
0N [-2294.30857454]

[o]
[2684.04028665]

Fye = 1.879 kN F,, = 2.684 kN [1315.95971335]]

In [43]:

}§413 — “{3.2277:7 ’C]\I Ii4kf

—2.294 kN Fcy = 1.316 kN

K. Webb ESC 440

Gaussian Elimination
X

Gaussian elimination summary:
o Create the augmented system matrix

o Forward elimination
Reduce to an upper-triangular matrix
O Back substitution
Starting with x, solve for x; fori = N ... 1

A direct solution algorithm

o Exact value for each x; arrived at with a single execution of the
algorithm

Alternatively, we can use an iterative algorithm
0 Jacobi method

0 Gauss-Seidel

o Newton-Raphson

K. Webb ESC 440

Linear Systems of Equations —

Iterative Solution — Jacobi Method

K. Webb ESC 440

Jacobi Method

.
Consider a system of N linear equations

1

Ak 1X1 + Ak 2X2 + -+ Ak kXK + -+ Ax NXN = Yk (1)

A-x=y

lam al,NHX1
A1 =+ Ay Nl LXn

The k" equation (k" row) is

Solve (1) for x;

1
X = — |y — (Ag1x1 + Qg oXo + -+ Qg g1 Xp—1 + (2)

Ak k
+ag p+1Xk+1 T 0+ Qe nxy)]

K. Webb ESC 440

Jacobi Method

-
Simplify (2) using summing notation

Xy z A nXn — z A nXn | k=1..N (3)
akk oy 5

+1

An equation for x;
o But, of course, we don’t yet know all other x,, values
Use (3) as an iterative expression

k-1
Xpiz1 = —— A nXni — 2 A nXnil, k=1..N (4)

n=1 n=k+1

O The i subscript indicates iteration number
Xy i+1 is the updated value from the current iteration
Xn,i is a value from the previous iteration

K. Webb ESC 440

Jacobi Method

1 k—1 N
Xki+1 — a Yk — z A nXn,i — 2 A nXnil, k=1..N (4)
Je ke I n=1 n=k+1 |

Old values of x,,, on the right-hand side, are used to
update x; on the left-hand side

Start with an initial guess for all unknowns, X,

Iterate until adequate convergence is achieved

o Until a specified stopping criterion is satisfied
o Convergence is not guaranteed

K. Webb ESC 440

Convergence

e
An approximation of X is refined on each iteration

Continue to iterate until we’re close to the right answer
for the vector of unknowns, x

o Assume we’ve converged to the right answer when x
changes very little from iteration to iteration

On each iteration, calculate a relative error quantity

) k=1ew

Xki+1 — Xk,i

Xk,i+1

lterate until

where & is a chosen stopping criterion

K. Webb ESC 440

Jacobi Method — Matrix Form
-

The Jacobi method iterative formula, (4), can be rewritten in matrix form:

X;+1 = Mx; + D71y (5)
where D is the diagonal elements of A
'a1’1 O ces 0 .
. 0 a2’2 0 :
D= : 0 0
0 - 0 aypl
and
M=D"'(D-A) (6)
o Recall that the inverse of a diagonal matrix is given by inverting each diagonal
element
_1/a1'1 0 oo 0
_ 0 1/a2 2 0 :
D 1 _)
: 0 0
0 oo 0 1/aN,N_

K. Webb ESC 440

Jacobi Method — Example
-

Consider the following system of equations

—4x, + 7x3 = —5
le — 3x2 + 5x3 = —12
Xo — 3X3 =3

In matrix form:

—4 0 7 1[X1 C —5
2 =3 5]|X2]=]-12
L0 1 —31L1X3] L 3

Solve using the Jacobi method

K. Webb ESC 440

Jacobi Method — Example
-

The iteration formula is

Xi41 = Mx; + D71y

where
—4 0 0 —0.25 0 0
D=0 -3 0 D1=| o —0.333 0
0 0 -3 0 0 —0.333
0 0 1.75
M=D1D-A) =|0.667 0 1.667
0 0.333 0

To begin iteration, we need a starting point
o Initial guess for unknown values, X

o Often, we have some idea of the answer

o Here, arbitrarily choose

Xo=[10 25 10]7

K. Webb ESC 440

Jacobi Method — Example
-

At each iteration, calculate

X;41 = Mx; + D7y

X1,i+1 0 0 1.75 7 [*1,i 1.25
[xz,i+1‘ = [0.667 0 1.667‘ X2il+ 1| 4 ‘
X3i+1 0 0.333 0 X3 —1
Fori = 0:
X1,1 0 0 1.757[10 1.25
X1 = |*X21]| = [0.667 0 1.667| 25|+ | 4
X3,1 0 0.333 0 10 —1

x; = [18.75 27.33 7.33]"
The relative error is

Xrk1 — Xk,0

& = max(> = 0.467

Xk,1

K. Webb ESC 440

Jacobi Method — Example
-

Fori = 1:
X1,2 0 0 1.7571118.75 1.25
X, = |X2,2] = 10.667 0 1.667|127.33|+| 4
X3,2 0.333 0 7.33 -1

X, = [14.08 28.72 8.11]"
The relative error is

Xk2 — Xk1

£y = max() = 0.331

XK1

Continue to iterate until relative error falls below a specified
stopping condition

K. Webb ESC 440

Jacobi Method — Example
2

- Automate with computer code, e.g. Python
-1 Setup the system of equations

7 # coefficient matri

8 A = np.array([[-4, @, 7],
9 [21 _3.1 5]1
10 e, 1, -3]1)
11

12 # vector of knowns

13 ¥ = np.array([-5, -12, 3]}

= Initialize matrices and parameters for iteration

17 reltol = 1=-6

13 eps = 1

15

28 max_iter = 688

21 iter = @

22

23 # initial guess for

24 X = np.array([1@, 25, 18])
25

26 D = np.diag{np.diag(a))
27 invD = np.linalg.inv(D)
28

29 M = invD@(D - A)

K. Webb ESC 440

Jacobi Method — Example

Loop to continue iteration as long as:
o Stopping criterion is not satisfied
o Maximum number of iterations is not exceeded

L

L

while((eps » reltel) and (iter < max_iter)):
xold = x

X = Mixold + invDjy

L

(N1

Ll

eps = np.max({abs(({x - xold)/x))

Ll

Ll
W 00 =] M s

iter = iter + 1

Ll

On each iteration

o Use previous X values to update X
o Calculate relative error

o Increment the number of iterations

K. Webb ESC 440

Jacobi Method — Example

-
Set &, = 1 X 107° and iterate:

0 [10 25 10]" -

1 [18.75 27.33 7.33]T 0.467
2 [14.08 28.72 8.11]7 0.331
3 [15.44 2691 8.57]" 0.088
4 [16.25 28.59 7.97]T 0.076
5 [15.20 28.12 8.53]" 0.070
6 [17 0.061

371 [20.50 36.00 11.00]7 0.995%x10°6

Convergence achieved in 371 iterations

K. Webb ESC 440

Linear Systems of Equations —

Iterative Solution — Gauss-Seidel

K. Webb ESC 440

Gauss-Seidel Method

-
The iterative formula for the Jacobi method is

N

1 k-1
Xki+1 = a Yk — z Ax nXnji — 2 Ar nXni| - k=1..N (4)
ki n=1 n=k+1

Note that only old values of x,, (i.e. x, ;) are used to
update the value of x;,

Assume the xy ;11 values are determined in order of
increasing k

o When updating xj ;4+1, all x, ;41 values are already known
forn <k

O We can use those updated values to calculate xj, ;44
O The Gauss-Seidel method

K. Webb ESC 440

Gauss-Seidel Method

Now use the x,, values already updated on the
current iteration to update x;,,

o Thatis, x, ;44 forn <k

Gauss-Seidel iterative formula

N

Xki+1 = Z A nXni+1 — z ArnXni|» k=1..N (7)

n=k+1

Note that only the first summation has changed

o For already updated x values

ox, forn<k

o Number of already-updated values used depends on k

K. Webb ESC 440

Gauss-Seidel — Matrix Form
-

In matrix form the iterative formula is the same as for the Jacobi
method

Xi41 = Mx; + D7y (5)
where, again

M=D1D-A) (6)
but now D is the lower triangular part of A
e 0 - 0

a a 0 :

D = | %1 2,2 ;
AN AGn2 0 4NN

Otherwise, the algorithm and computer code is identical to that of
the Jacobi method

K. Webb ESC 440

Gauss-Seidel — Example
-

Apply Gauss-Seidel to our previous example
o x,=[10 25 10]”
oe=1x10"°

0 [10 25 10]7 -

1 [18.75 33.17 10.06]" 0.875
2 [18.85 33.32 10.11]7 0.005
3 [18.94 33.47 10.16]7 0.005
4 [19.03 33.61 10.20]7 0.005
151 [20.50 36.00 11.00]" 0.995X10°

Convergence achieved in 151 iterations
o Compared to 371 for the Jacobi method

K. Webb ESC 440

- Nonlinear Systems of Equations

We have seen how to apply the Newton-Raphson root-
finding algorithm to solve a single nonlinear equation.

We will now extend that algorithm to the solution of a
system of nonlinear equations

K. Webb ESC 440

Nonlinear Systems of Equations
-

Consider a system of nonlinear equations
o Can be represented as a vector of N functions
o Each is a function of an N-vector of unknown variables

(V1] (f1(x, x0, 0, X))

y = y2 :f(X): fz(xpxz:,"';x]v)

YN | _fN(xlleI'“;xN)—

As we did when applying Newton-Raphson to find the root of a single
equation, we can again approximate this function as linear (i.e., a first-
order Taylor series approximation)

y = f(x) = f(xo) + f'(x0) (x — X¢) (8)

o Note that all variables are N-vectors
f is an N-vector of known, nonlinear functions
X is an N-vector of unknown values — this is what we want to solve for
y is an N-vector of known values
X is an N-vector of x values for which f(x,) is known

K. Webb ESC 440

Newton-Raphson Method
-

Equation (8) is the basis for our Newton-Raphson iterative formula
o Let it be an equality and solve for x

y — f(Xo) = F'(xo)(x — Xp)
[f' (o)1 7y — f(x0)] = x — %
X = Xo + [f'(xo)] [y — £(xo)]
This last expression can be used as an iterative formula
Xip1 = X + [f'(x)]]y — f(x;)]

The derivative term on the right-hand side of (8) isan N X N matrix
o The Jacobian matrix, |

Xiv1 = X; +)7y — £(x;)] (9)

K. Webb ESC 440

The Jacobian Matrix
-

Xiv1 = X; +)7y — £(x;)] (9)
Jacobian matrix

o N X N matrix of partial derivatives for f(x)
o Evaluated at the current value of X, x;

ofi Ofi | Ofi
dx; 0x, 0xy
of O . %
Ji =|ox; ox, 0xy
ofs Ofw . Of
dx; O0x, 0xy

T X=X

K. Webb ESC 440

Newton-Raphson Method

e
Xiv1 = X; +)7y — £(x))] (9)

We could iterate (9) until convergence or a maximum
number of iterations is reached

o Requires inversion of the Jacobian matrix
Computationally expensive and error prone

Instead, go back to the Taylor series approximation
y = f(x;) + Ji (X1 — X;)
y — f(x;) = Ji(Xi41 — X;) (10)

O Left side of (21) represents a difference between the known and
approximated outputs

o Right side represents an increment of the approximation for x

Ay; = J;Ax; (11)

K. Webb ESC 440

Newton-Raphson Method
-
Ay; =);Ax; (12)

On each iteration:
o Compute Ay; and J;

o Solve for AX; using Gaussian elimination
Matrix inversion not required
Computationally robust

o Update X
(13)
Xi+1 = X; T AX;

K. Webb ESC 440

Newton-Raphson — Example
-

Apply Newton-Raphson to solve the following system of
nonlinear equations

f(x) =y
[xlz + 3x2] _ [21
X1X9 12

o Initial condition: x, = [1 2]7
o Stopping criterion: &g = 1 X 107°
O Jacobian matrix

0f1 0f1]
_|0x; Oxy 2% 3
i=lor or| =la. w
dx; 0x,.

X=X

K. Webb ESC 440

Newton-Raphson — Example
-

Ay; = J;Ax; (12)
Xi+1 — X + AXi (13)

For iteration i:

o Compute Ay; and J;
o Solve (12) for Ax;
o Update X using (13)

K. Webb ESC 440

Newton-Raphson — Example

-
I =0:

Ay, =y — (%) = 12] [Z] []
s A B R
Ax0=[;}]

% =xo+0% =[]+ [5] =[]

), k=1..N
=[G a-

K. Webb ESC 440

Xk,1 — Xk,0

£ = max(
Xk,1

Newton-Raphson — Example

-
I =1:

Ay, =y —f(xq) = i%‘ — gg] _ [—_186]

J, = [2x1,1 3] _ [10 3

X21 X11 4 5

ax = o]

w=xtan =i+ [= (3550

82=max<xk'2_xk'1>, k=1..N
Xk,

v = [3.526
27 13,579/

e, = 0.418

K. Webb ESC 440

Newton-Raphson — Example
-

| = 2:
o _[21] _[23172] _ [~2.172
Ay, =y —f(x2) = 12] 12.621 [—0.621]
I, = [2x1’2 3] _ [7.053 3
2 X22 X12 3.579 3.526
 [—0.410
Ax; _[0.240]

2579 * [0240 = 3819

), k=1..N

g5 = 0.132

X3=X2+AX2=[

Xk3 — Xk,2

83 = maX<
Xk,2

v = [3.116
37 13.819)

K. Webb ESC 440

Newton-Raphson — Example

-
I =6:

o 211 [21.000] _ [—0.527 x 1077
Ays =y — f(Xe) = 12] [12.0001_10.926x10‘7

_ [2x1,6 3]_ 6.000 3
Jo = = [

X26 X16 4.000 3.000
— -6
Ax, = [0.073 X 10_6]
0.128 x 10
_ _ 13.0007 , [-0.073 x 10-6] _ [3.000
X7 = X6 + AXg = [4.000] T [0.128 x 10761 [4.ooo]

Xk7 — Xk6

e7=max(), k=1..N

Xk,6

000

X, = [i:ooo]' £, =319 x 1079

K. Webb ESC 440

Newton-Raphson — Python Code
S 1
-1 Define the system of equations

Li
¥

lambda =: np.array([x[8]**2 + 3*x[1], x[@]*x[1]])
np.array([21, 12])

b G0 =] O

1 Initialize x

11
12 x@ = np.array([1, 2])
13 X = x@

- Set up solution parameters

L

17 reltol = 1e-6
18 max_iter = 198488
19 eps = 1

28 iter = @

21

K. Webb ESC 440

Newton-Raphson — Python Code
3
o lterate:

o Compute Ay; and J;
o Solve for Ax;

o Update x
24 while(iter < max_iter) and (eps > reltol):
25
26 1 = np.array([[2*=x[2], 2], [x[1], x[2]]])
27 ®x old = x
28
29 # calculate output error term
38 Dy = y - f{x _old)
31
32 # use Gaussian elimination to solve for increment to x
33 Dx = np.linalg.solve(l, Dy)
34 ®x = x old + Dx
35
36 eps = np.max{abs({(x - x old)/x))
37
38 iter = iter + 1

K. Webb ESC 440

	Slide 1: Section 3: Systems of Equations
	Slide 2: Introduction
	Slide 3: A System of Equations – Example
	Slide 4: A System of Equations – Example
	Slide 5: A System of Equations – Example
	Slide 6: A System of Equations – Example
	Slide 7: A System of Equations – Example
	Slide 8: Matrix notation
	Slide 9: Solving Systems of Equations with Python
	Slide 10: System as a Matrix Equation
	Slide 11: Solving the Matrix Equation
	Slide 12: Solving the Matrix Equation
	Slide 13: Solving the Matrix Equation
	Slide 14: Example – Solving Using NumPy
	Slide 15: Example – Solving Using NumPy
	Slide 16: Techniques for Solving Linear Systems
	Slide 17: Solving Systems of Linear Equations
	Slide 18: Graphical Solution
	Slide 19: Graphical Solution
	Slide 20: Unique Solution
	Slide 21: No Solution
	Slide 22: Infinite Solutions
	Slide 23: Ill-Conditioned System
	Slide 24: Singularity and the Coefficient Matrix, bold cap A.
	Slide 25: Ill-Conditioned Systems
	Slide 26: Rank of the Coefficient Matrix, bold cap A.
	Slide 27: Gaussian Elimination
	Slide 28: Gaussian Elimination
	Slide 29: Gaussian Elimination – the Basic Algorithm
	Slide 30: Forward Elimination of Unknowns
	Slide 31: Forward Elimination of Unknowns
	Slide 32: Forward Elimination of Unknowns
	Slide 33: Forward Elimination of Unknowns
	Slide 34: Elimination of Unknowns - Terminology
	Slide 35: Forward Elimination of Unknowns
	Slide 36: Back-Substitution
	Slide 37: Back-Substitution
	Slide 38: Back-Substitution
	Slide 39: Algorithm Summary
	Slide 40: Partial Pivoting
	Slide 41: Gaussian Elimination - Example
	Slide 42: Example – Truss Analysis
	Slide 43: Example – Truss Analysis
	Slide 44: Example – Truss Analysis
	Slide 45: Example – Truss Analysis
	Slide 46: Gaussian Elimination
	Slide 47: Linear Systems of Equations – Iterative Solution – Jacobi Method
	Slide 48: Jacobi Method
	Slide 49: Jacobi Method
	Slide 50: Jacobi Method
	Slide 51: Convergence
	Slide 52: Jacobi Method – Matrix Form
	Slide 53: Jacobi Method – Example
	Slide 54: Jacobi Method – Example
	Slide 55: Jacobi Method – Example
	Slide 56: Jacobi Method – Example
	Slide 57: Jacobi Method – Example
	Slide 58: Jacobi Method – Example
	Slide 59: Jacobi Method – Example
	Slide 60: Linear Systems of Equations – Iterative Solution – Gauss-Seidel
	Slide 61: Gauss-Seidel Method
	Slide 62: Gauss-Seidel Method
	Slide 63: Gauss-Seidel – Matrix Form
	Slide 64: Gauss-Seidel – Example
	Slide 65: Nonlinear Systems of Equations
	Slide 66: Nonlinear Systems of Equations
	Slide 67: Newton-Raphson Method
	Slide 68: The Jacobian Matrix
	Slide 69: Newton-Raphson Method
	Slide 70: Newton-Raphson Method
	Slide 71: Newton-Raphson – Example
	Slide 72: Newton-Raphson – Example
	Slide 73: Newton-Raphson – Example
	Slide 74: Newton-Raphson – Example
	Slide 75: Newton-Raphson – Example
	Slide 76: Newton-Raphson – Example
	Slide 77: Newton-Raphson – Python Code
	Slide 78: Newton-Raphson – Python Code

