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A System of Equations – Example 

 Three masses

 m1, m2, and m3

 Three springs

 k1, k2, k3

 Connected in series and 
suspended

 Determine the displacement of 
each mass from its unstretched 
position
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A System of Equations – Example 

 Three unknown displacements: x1, x2, x3

 Need three equations to find displacements

 Apply Newton’s second law to each mass

 Three equations result:

𝑚1 ሷ𝑥1 = 𝑚1𝑔 + 𝑘2 𝑥2 − 𝑥1 − 𝑘1𝑥1

𝑚2 ሷ𝑥2 = 𝑚2𝑔 + 𝑘3 𝑥3 − 𝑥2 − 𝑘2 𝑥2 − 𝑥1

𝑚3 ሷ𝑥3 = 𝑚3𝑔 − 𝑘3 𝑥3 − 𝑥2
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A System of Equations – Example 

 Steady-state, so     ሷ𝑥𝑖 = 0, ∀𝑖

𝑚1𝑔 + 𝑘2 𝑥2 − 𝑥1 − 𝑘1𝑥1 = 0

𝑚2𝑔 + 𝑘3 𝑥3 − 𝑥2 − 𝑘2 𝑥2 − 𝑥1 = 0

𝑚3𝑔 − 𝑘3 𝑥3 − 𝑥2 = 0

 Rearranging

𝑘1 + 𝑘2 𝑥1  − 𝑘2𝑥2  + 0𝑥3 = 𝑚1𝑔

 −𝑘2𝑥1  + 𝑘2 + 𝑘3 𝑥2  − 𝑘3𝑥3 = 𝑚2𝑔

 0𝑥1  − 𝑘3𝑥2  + 𝑘3𝑥3 = 𝑚3𝑔
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A System of Equations – Example 

 Our system of three equations

𝑘1 + 𝑘2 𝑥1  − 𝑘2𝑥2  + 0𝑥3 = 𝑚1𝑔

 −𝑘2𝑥1  + 𝑘2 + 𝑘3 𝑥2  − 𝑘3𝑥3 = 𝑚2𝑔

 0𝑥1  − 𝑘3𝑥2  + 𝑘3𝑥3 = 𝑚3𝑔

can be put into matrix form

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔
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A System of Equations – Example 

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

 We can rewrite this matrix equation as

𝐀𝐱 = 𝐛 

 Can apply tools of linear algebra to determine the 
vector of unknown displacements

𝐱 =

𝑥1

𝑥2

𝑥3
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Matrix notation

Conventions for matrix notation vary greatly. In 
general, the dimensions of a variable are known from 
context. These notes will use the following 
convention:

 Matrices

 Upper-case, bold variables, e.g. 𝐀

 Vectors

 Lower-case, bold variables, e.g. 𝐱

 Hand-written matrices and vectors

 Underbar, instead of bold, e.g. A or x
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Before getting into the algorithms used to solve 
systems of linear equations, we’ll take a look at 
how we can use available Python functions to 
find a solution.

Solving Systems of Equations with Python9
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System as a Matrix Equation

 Our system of equations has the form

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

 This can be written in matrix form as

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

or
𝐀𝐱 = 𝐛
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Solving the Matrix Equation

 Solving our system of equations amounts to solving 
the matrix equation

𝐀𝐱 = 𝐛
for the vector 𝐱

 To isolate 𝐱 on the left of the equal sign, left 
multiply by the inverse of the coefficient matrix

𝐀−𝟏𝐀𝐱 = 𝐀−𝟏𝐛

𝐱 = 𝐀−𝟏𝐛
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Solving the Matrix Equation

 In NumPy’s linalg module – left-multiply by 𝐀−𝟏

 Use np.linalg.inv() for matrix 
inversion

 Use @ for matrix multiplication
 * performs element-by-element 

multiplication

 Note that 𝐛 can be a row or column 
vector
 Treated as a column vector either way

 Matrix inversion works, but is not 
always the best way to solve
 Inefficient, slow

 Sensitive to numerical error 
◼ Some systems worse than others
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Solving the Matrix Equation

 Instead, use NumPy’s linalg.solve() function

 If 𝐀−𝟏 exists, then
x = np.linalg.solve(A, b)

is equivalent to
𝐱 = 𝐀−𝟏𝐛

 Does not calculate 𝐀−𝟏

 Faster, more robust

 Makes use of techniques we’ll 
explore next
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Example – Solving Using NumPy

 Our linear system is described by the 
matrix equation

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

𝐀𝐱 = 𝐛

 Find the displacements, 𝐱, for the 
following system parameters

 𝑘1 = 500
𝑁

𝑚
, 𝑘2 = 800

𝑁

𝑚
, 𝑘3 = 400

𝑁

𝑚

 𝑚1 = 3𝑘𝑔, 𝑚2 = 1𝑘𝑔, 𝑚3 = 7𝑘𝑔
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Example – Solving Using NumPy

𝑥1 = 21.6𝑐𝑚, 𝑥2 = 31.4𝑐𝑚, 𝑥3 = 48.6𝑐𝑚
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Solving Systems of Linear Equations

 Techniques exist for finding the solution to small 
systems of linear equations:
 Graphical method

 Cramer’s rule

 Elimination of unknowns

 Not generally useful for numerical solution of larger 
systems, but they do provide insight

 For numerical solution of larger systems techniques 
include:
 Gaussian elimination

 Jacobi method

 Gauss-Seidel
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Graphical Solution

 A system of two linear equations with two unknown 
variables 

𝑎11𝑥1 + 𝑎12𝑥2 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2

can be thought of as equations of two lines in the 𝑥 − 𝑦 
plane:

𝑥2 = −
𝑎11

𝑎12
𝑥1 +

𝑏1

𝑎12

𝑥2 = −
𝑎21

𝑎22
𝑥1 +

𝑏2

𝑎22
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Graphical Solution

𝑥2 = −
𝑎11

𝑎12
𝑥1 +

𝑏1

𝑎12

𝑥2 = −
𝑎21

𝑎22
𝑥1 +

𝑏2

𝑎22

 Solution to this system of equations is the point of 
intersection (𝑥1, 𝑥2) of the two lines

 May not exist

 May not be unique

 May exist, but be difficult to determine accurately
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Unique Solution

 System of two linear 
equations:

0.5𝑥1 + 𝑥2 = 5
 3𝑥1 − 𝑥2 = 2

 Represented in 
matrix form

0.5 1
3 −1

𝑥1

𝑥2
=

5
2

𝐀𝐱 = 𝐛

𝑥1, 𝑥2 = (2,4)

 Solution at the point of 
intersection: 𝑥1, 𝑥2 = (2,4)
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No Solution

 System of two linear 
equations:

3𝑥1 − 𝑥2 = 2
3𝑥1 − 𝑥2 = 4

 Represented in 
matrix form

3 −1
3 −1

𝑥1

𝑥2
=

2
4

𝐀𝐱 = 𝐛
 Lines don’t intersect, so 

no solution exists
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Infinite Solutions

 System of two linear 
equations:

 3𝑥1  − 𝑥2 = 2
−6𝑥1 + 2𝑥2 = −4

 Represented in matrix 
form

3 −1
−6 2

𝑥1

𝑥2
=

2
−4

𝐀𝐱 = 𝐛  Solutions at all points along 
the lines
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Ill-Conditioned System

 System of two linear 
equations:

 0.5𝑥1 + 𝑥2 = 5
0.48𝑥1 + 𝑥2 = 4.96

 Represented in matrix 
form

0.5 1
0.48 1

𝑥1

𝑥2
=

5
4.96

𝐀𝐱 = 𝐛

𝑥1, 𝑥2 = (2,4)

 Solutions exists, but it is 
difficult to identify accurately
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Singularity and the Coefficient Matrix, 𝐀

 Systems with no solutions or infinite solutions are both 
referred to as singular

 Coefficient matrix, 𝐀,  is singular
 𝐀−𝟏, does not exist

 det 𝐀 = 0

 For the example with no solutions

det 𝐀 =
3 −1
3 −1

= −3 − −3 = 0

 For the example with infinite solutions

det 𝐀 =
3 −1

−6 2
= 6 − 6 = 0
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Ill-Conditioned Systems

 Ill-conditioned systems are nearly-singular

 det 𝐀 ≈ 0

 𝐀−𝟏 exists, but may be difficult to determine accurately

 Solution exists, but it may difficult to determine 
accurately – either graphically or numerically

 For the previous example of an ill-conditioned 
system

det 𝐀 =
0.5 1

0.48 1
= 0.5 − 0.48 = 0.02

(This example may be ill-conditioned for graphical 
solution, but would not be if solving numerically)
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Rank of the Coefficient Matrix, 𝐀

 Rank of a matrix – number of linearly-independent 
rows (or columns) of the matrix

 Full-rank matrix
 All rows and columns are linearly-independent

 Must be square

 det 𝐀 ≠ 0, 𝐀−𝟏 exists

 In both of our singular examples 𝐀 is rank-deficient

𝐀𝟏 =
3 −1
3 −1

    and    𝐀𝟐 =
3 −1

−6 2

 For a 2 × 2, rank-deficient matrix, columns and rows 
represent collinear vectors
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Gaussian Elimination

 Two steps in Gaussian elimination:

 Elimination of unknowns

 Solution through back-substitution

 Applies to arbitrarily large systems

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 The basic algorithm will be introduced using an example 
system of three equations with three unknowns
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Gaussian Elimination – the Basic Algorithm

 The basic algorithm:

1. Forward elimination of unknowns

◼ Reduce to an upper-triangular system

2. Back-substitution to solve for unknowns

◼ Reduction to an upper-triangular system yields the 
solution for 𝑥𝑛 directly

◼ Back-substitute the solution for 𝑥𝑛 to solve for 𝑥𝑛−1

◼ Back-substitute the solution for 𝑥𝑛−1 to solve for 𝑥𝑛−2

◼ Continue until all 𝑥𝑖 have been determined
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Forward Elimination of Unknowns

 We’ll use a system of three equations with three 
unknowns as an example

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

 Create the augmented system matrix

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

𝑎21 𝑎22 𝑎23 ⋮ 𝑏2

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Each row represents an equation – row operations 
are operations on the equations
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Forward Elimination of Unknowns

 Reduce to an upper-triangular system
 Eliminate 𝑥𝑖  from the (𝑖 + 1)st through 𝑛𝑡ℎ equations for 

𝑖 = 1 … 𝑛

 First eliminate 𝑥1 from the second equation
 Perform row operations to set the first element on the 

second row to zero
 Normalize the first equation (row) – divide by the leading 

coefficient, 𝑎11 
 Multiply the first equation (row) by the leading coefficient of 

the second equation (row), 𝑎21

𝑎21

𝑎21

𝑎11
𝑎12

𝑎21

𝑎11
𝑎13 ⋮

𝑎21

𝑎11
𝑏1

𝑎21 𝑎22 𝑎23 ⋮ 𝑏2

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3



K. Webb ESC 440

32

Forward Elimination of Unknowns

 Subtract the first row from the second, and replace 
the first row with its original values 

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22 −
𝑎21

𝑎11
𝑎12 𝑎23 −

𝑎21

𝑎11
𝑎13 ⋮ 𝑏2 −

𝑎21

𝑎11
𝑏1

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Use prime notation to indicate a modified 
coefficient value

 Add additional prime mark for each modification

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3
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Forward Elimination of Unknowns

 Next, eliminate 𝑥1 from the third equation
 Normalize the first row

 Multiply by the leading coefficient of the third row, 𝑎31

𝑎31

𝑎31

𝑎11
𝑎12

𝑎31

𝑎11
𝑎13 ⋮

𝑎31

𝑎11
𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Subtract the first row from the third and reset the first row to its 
original values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 𝑎32 −
𝑎31

𝑎11
𝑎12 𝑎33 −

𝑎31

𝑎11
𝑎13 ⋮ 𝑏3 −

𝑎31

𝑎11
𝑏1

=

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 𝑎32
′ 𝑎33

′ ⋮ 𝑏3
′
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Elimination of Unknowns - Terminology

 First row is used for the elimination of 𝑥1 from 
second and third rows

 In general, 𝑖𝑡ℎ row used to eliminate the 𝑖𝑡ℎ 
unknown from the (𝑖 + 1)st through 𝑛𝑡ℎ rows
 This is the pivot row 

 (𝑛 − 1) rows will be pivot rows at some point

 Leading coefficient in the pivot row, 𝑎𝑖𝑖, is the pivot 
element

 Normalization involves dividing the pivot row by 
the pivot element
 Could this be problematic?
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Forward Elimination of Unknowns

 Finally, eliminate 𝑥2 from the third equation
 Normalize the second row (the pivot row)
 Multiply by the leading coefficient of the third row, 𝑎32

′

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎32
′

𝑎32
′

𝑎22
′ 𝑎23

′ ⋮
𝑎32

′

𝑎22
′ 𝑏2

′

0 𝑎32
′ 𝑎33

′ ⋮ 𝑏3
′

 Subtract the second row from the third and reset the 
second row to its previous values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′ −

𝑎32
′

𝑎22
′ 𝑎23

′ ⋮ 𝑏3
′ −

𝑎32
′

𝑎22
′ 𝑏2

′
=

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′′ ⋮ 𝑏3

′′
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Back-Substitution

 System is now upper-triangular

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′′ ⋮ 𝑏3

′′

 Last row represents a single equation with a single 
unknown, 𝑥3

𝑥3 =
𝑏3

′′

𝑎33
′′

 In general, solve for the 𝑛𝑡ℎ unknown as

𝑥𝑛 =
𝑏𝑛

𝑛−1

𝑎𝑛𝑛
𝑛−1
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Back-Substitution

 Next, substitute 𝑥3 into the second equation

𝑎22
′ 𝑥2 + 𝑎23

′ 𝑥3 = 𝑏2
′

𝑎22
′ 𝑥2 + 𝑎23

′
𝑏3

′′

𝑎33
′′ = 𝑏2

′

and solve for 𝑥2

𝑥2 =

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′

 In general:

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

− 

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗
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Back-Substitution

 Finally, substitute 𝑥2 and 𝑥3 into the first equation

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎11𝑥1 + 𝑎12

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′ + 𝑎13

𝑏3
′′

𝑎33
′′ = 𝑏1

and solve for 𝑥1

𝑥1 =

𝑏1 − 𝑎12

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′ − 𝑎13

𝑏3
′′

𝑎33
′′

𝑎11

 In practice we’d solve for 𝑥1 using the general formula

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

− 

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗
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Algorithm Summary

1) Form augmented system matrix
2)  Elimination of unknowns – for 𝑖 = 1 … 𝑛 − 1

a) Normalize pivot row (𝑖𝑡ℎ row)

b) Multiply pivot row by leading coefficient of 𝑗𝑡ℎ row, 𝑎𝑗𝑖           
(for 𝑗 = 𝑖 + 1 … 𝑛)

c) Subtract pivot row from 𝑗𝑡ℎ row

3)  Back-substitution 

a) Determine 𝑥𝑛 from the last row: 𝑥𝑛 =
𝑏𝑛

𝑛−1

𝑎𝑛𝑛
𝑛−1

b) Solve for remaining 𝑥𝑖  for 𝑖 = (𝑛 − 1) … 1:

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

− 

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗
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Partial Pivoting

 During forward elimination of unknowns, pivot row 
is normalized
 𝑖𝑡ℎ row divided by leading coefficient, 𝑎𝑖𝑖

 If 𝑎𝑖𝑖 = 0 → divide-by-zero, algorithm fails

 If 𝑎𝑖𝑖 ≈ 0 → not fatal, but susceptible to roundoff error

 Partial pivoting
 Prior to normalizing the pivot (𝑖𝑡ℎ) row, search all rows 

from 𝑖 … 𝑛 for the one with the largest value in the 𝑖𝑡ℎ 
column

 Move to the current pivot row location and continue 
with algorithm
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Gaussian Elimination - Example41
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Example – Truss Analysis

 Simple statically-determinate truss

 Determine all internal and external forces
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Example – Truss Analysis

 Force components at each joint must balance

𝐹𝐴𝑥 + 𝐹𝐴𝐶 + 𝐹𝐴𝐵 cos 55° = 0

𝐹𝐴𝑦 + 𝐹𝐴𝐵 sin 55° = 0

−𝐹𝐴𝐵 cos 55° + 𝐹𝐵𝐶 cos 35° = 0

−4 𝑘𝑁 − 𝐹𝐴𝐵 sin 55° − 𝐹𝐵𝐶 sin 35° = 0

−𝐹𝐴𝐶 − 𝐹𝐵𝐶 cos 35° = 0

𝐹𝐶𝑦 + 𝐹𝐵𝐶 sin 35° = 0
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Example – Truss Analysis

 System of six equations with six unknown internal 
and external forces

cos 55° 1 0 1 0 0
sin 55° 0 0 0 1 0

− cos 55° 0 cos 35° 0 0 0
sin 55° 0 sin 35° 0 0 0

0 −1 −cos 35° 0 0 0
0 0 sin 35° 0 0 1

𝐹𝐴𝐵

𝐹𝐴𝐶

𝐹𝐵𝐶

𝐹𝐴𝑥

𝐹𝐴𝑦

𝐹𝐶𝑦

=

0
0
0

−4000
0
0

 Python Gaussian elimination demo…
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Example – Truss Analysis

𝐹𝐴𝐵 = −3.277 𝑘𝑁

𝐹𝐴𝐶 = 1.879 𝑘𝑁

𝐹𝐵𝐶 = −2.294 𝑘𝑁

𝐹𝐴𝑥 = 0 𝑁

𝐹𝐴𝑦 = 2.684 𝑘𝑁

𝐹𝐶𝑦 = 1.316 𝑘𝑁
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Gaussian Elimination

 Gaussian elimination summary:
 Create the augmented system matrix
 Forward elimination

◼ Reduce to an upper-triangular matrix

 Back substitution
◼ Starting with 𝑥𝑁, solve for 𝑥𝑖 for 𝑖 = 𝑁 … 1

 A direct solution algorithm
 Exact value for each 𝑥𝑖 arrived at with a single execution of the 

algorithm

 Alternatively, we can use an iterative algorithm
 Jacobi method
 Gauss-Seidel
 Newton-Raphson
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Linear Systems of Equations – 
Iterative Solution – Jacobi Method
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Jacobi Method

 Consider a system of 𝑁 linear equations

𝐀 ⋅ 𝐱 = 𝐲

𝑎1,1 ⋯ 𝑎1,𝑁

⋮ ⋱ ⋮
𝑎𝑁,1 ⋯ 𝑎𝑁,𝑁

𝑥1

⋮
𝑥𝑁

=

𝑦1

⋮
𝑦𝑁

 The 𝑘th equation (𝑘th row) is

𝑎𝑘,1𝑥1 + 𝑎𝑘,2𝑥2 + ⋯ + 𝑎𝑘,𝑘𝑥𝑘 + ⋯ + 𝑎𝑘,𝑁𝑥𝑁 = 𝑦𝑘  (1)

 Solve (1) for 𝑥𝑘

𝑥𝑘 =
1

𝑎𝑘,𝑘
[𝑦𝑘 − (𝑎𝑘,1𝑥1 + 𝑎𝑘,2𝑥2 + ⋯ + 𝑎𝑘,𝑘−1𝑥𝑘−1 +  (2)

+𝑎𝑘,𝑘+1𝑥𝑘+1 + ⋯ + 𝑎𝑘,𝑁𝑥𝑁)]
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Jacobi Method

 Simplify (2) using summing notation

𝑥𝑘 =
1

𝑎𝑘,𝑘
𝑦𝑘 − 

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛 − 

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛 , 𝑘 = 1 … 𝑁

 An equation for 𝑥𝑘

 But, of course, we don’t yet know all other 𝑥𝑛 values

 Use (3) as an iterative expression

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − 

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 − 

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 The 𝑖 subscript indicates iteration number

◼ 𝑥𝑘,𝑖+1 is the updated value from the current iteration

◼ 𝑥𝑛,𝑖 is a value from the previous iteration

(3)

(4)
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Jacobi Method

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − 

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 − 

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Old values of 𝑥𝑛, on the right-hand side, are used to 
update 𝑥𝑘 on the left-hand side

 Start with an initial guess for all unknowns, 𝐱0

 Iterate until adequate convergence is achieved

 Until a specified stopping criterion is satisfied

 Convergence is not guaranteed

(4)
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Convergence

 An approximation of 𝐱 is refined on each iteration
 Continue to iterate until we’re close to the right answer 

for the vector of unknowns, 𝐱 
 Assume we’ve converged to the right answer when 𝐱 

changes very little from iteration to iteration

 On each iteration, calculate a relative error quantity

𝜀𝑖+1 = max
𝑥𝑘,𝑖+1 − 𝑥𝑘,𝑖

𝑥𝑘,𝑖+1
,  𝑘 = 1 … 𝑁

 Iterate until 

𝜀𝑖 ≤ 𝜀𝑠

where 𝜀𝑠 is a chosen stopping criterion
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Jacobi Method – Matrix Form

 The Jacobi method iterative formula, (4), can be rewritten in matrix form:

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where 𝐃 is the diagonal elements of A

𝐃 =

𝑎1,1 0 ⋯ 0

0 𝑎2,2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 𝑎𝑁,𝑁

and 
𝐌 = 𝐃−1 𝐃 − 𝐀

 Recall that the inverse of a diagonal matrix is given by inverting each diagonal 
element

𝐃−𝟏 =

1/𝑎1,1 0 ⋯ 0

0 1/𝑎2,2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 1/𝑎𝑁,𝑁

(5)

(6)
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Jacobi Method – Example

 Consider the following system of equations

−4𝑥1 + 7𝑥3 = −5
2𝑥1 − 3𝑥2 + 5𝑥3 = −12
𝑥2 − 3𝑥3 = 3

 In matrix form:

−4 0 7
2 −3 5
0 1 −3

𝑥1

𝑥2

𝑥3

=
−5

−12
3

 Solve using the Jacobi method
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Jacobi Method – Example

 The iteration formula is

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where

𝐃 =
−4 0 0
0 −3 0
0 0 −3

        𝐃−1 =
−0.25 0 0

0 −0.333 0
0 0 −0.333

𝐌 = 𝐃−1 𝐃 − 𝐀 =
0 0 1.75

0.667 0 1.667
0 0.333 0

 To begin iteration, we need a starting point
 Initial guess for unknown values, 𝐱 

 Often, we have some idea of the answer

 Here, arbitrarily choose

𝐱0 = 10 25 10 𝑇
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Jacobi Method – Example

 At each iteration, calculate

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

𝑥1,𝑖+1

𝑥2,𝑖+1

𝑥3,𝑖+1

=
0 0 1.75

0.667 0 1.667
0 0.333 0

𝑥1,𝑖

𝑥2,𝑖

𝑥3,𝑖

+
1.25

4
−1

 For 𝑖 = 0:

𝐱1 =

𝑥1,1

𝑥2,1

𝑥3,1

=
0 0 1.75

0.667 0 1.667
0 0.333 0

10
25
10

+
1.25

4
−1

𝐱1 = 18.75 27.33 7.33 𝑇

 The relative error is

𝜀1 = max
𝑥𝑘,1 − 𝑥𝑘,0

𝑥𝑘,1
= 0.467
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Jacobi Method – Example

 For 𝑖 = 1:

𝐱2 =

𝑥1,2

𝑥2,2

𝑥3,2

=
0 0 1.75

0.667 0 1.667
0 0.333 0

18.75
27.33
7.33

+
1.25

4
−1

𝐱2 = 14.08 28.72 8.11 𝑇

 The relative error is

𝜀2 = max
𝑥𝑘,2 − 𝑥𝑘,1

𝑥𝑘,1
= 0.331

 Continue to iterate until relative error falls below a specified 
stopping condition
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Jacobi Method – Example

 Automate with computer code, e.g. Python

 Setup the system of equations

 Initialize matrices and parameters for iteration
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Jacobi Method – Example

 Loop to continue iteration as long as:
 Stopping criterion is not satisfied 
 Maximum number of iterations is not exceeded

 On each iteration
 Use previous 𝐱 values to update 𝐱
 Calculate relative error
 Increment the number of iterations
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Jacobi Method – Example

 Set 𝜀𝑠 = 1 × 10−6 and iterate:

𝒊 𝐱𝒊 𝜺𝒊

0 10 25 10 𝑇 -

1 18.75 27.33 7.33 𝑇 0.467

2 14.08 28.72 8.11 𝑇 0.331

3 15.44 26.91 8.57 𝑇 0.088

4 16.25 28.59 7.97 𝑇 0.076

5 15.20 28.12 8.53 𝑇 0.070

6 16.18 28.35 8.37 𝑇 0.061

⋮ ⋮ ⋮

371 20.50 36.00 11.00 𝑇 0.995×10-6

 Convergence achieved in 371 iterations
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Linear Systems of Equations – 
Iterative Solution – Gauss-Seidel
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Gauss-Seidel Method

 The iterative formula for the Jacobi method is

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − 

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 − 

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Note that only old values of 𝑥𝑛 (i.e. 𝑥𝑛,𝑖) are used to 
update the value of 𝑥𝑘

 Assume the 𝑥𝑘,𝑖+1 values are determined in order of 
increasing 𝑘
 When updating 𝑥𝑘,𝑖+1, all 𝑥𝑛,𝑖+1 values are already known 

for 𝑛 < 𝑘

 We can use those updated values to calculate 𝑥𝑘,𝑖+1

 The Gauss-Seidel method

(4)
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Gauss-Seidel Method

 Now use the 𝑥𝑛 values already updated on the 
current iteration to update 𝑥𝑘

 That is, 𝑥𝑛,𝑖+1 for 𝑛 < 𝑘 

 Gauss-Seidel iterative formula

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − 

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖+1 − 

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Note that only the first summation has changed
 For already updated 𝑥 values

 𝑥𝑛 for 𝑛 < 𝑘

 Number of already-updated values used depends on 𝑘

(7)
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Gauss-Seidel – Matrix Form

 In matrix form the iterative formula is the same as for the Jacobi 
method

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where, again

𝐌 = 𝐃−1 𝐃 − 𝐀

but now 𝐃 is the lower triangular part of 𝐀

𝐃 =

𝑎1,1 0 ⋯ 0

𝑎2,1 𝑎2,2 0 ⋮

⋮ ⋮ ⋱ 0
𝑎𝑁,1 𝑎𝑁,2 ⋯ 𝑎𝑁,𝑁

 Otherwise, the algorithm and computer code is identical to that of 
the Jacobi method

(5)

(6)
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Gauss-Seidel – Example 

 Apply Gauss-Seidel to our previous example

 𝑥0 = 10 25 10 𝑇

 𝜀𝑠 = 1 × 10−6

𝒊 𝐱𝒊 𝜺𝒊

0 10 25 10 𝑇 -

1 18.75 33.17 10.06 𝑇 0.875

2 18.85 33.32 10.11 𝑇 0.005

3 18.94 33.47 10.16 𝑇 0.005

4 19.03 33.61 10.20 𝑇 0.005

⋮ ⋮ ⋮

151 20.50 36.00 11.00 𝑇 0.995×10-6

 Convergence achieved in 151 iterations 
 Compared to 371 for the Jacobi method
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We have seen how to apply the Newton-Raphson root-
finding algorithm to solve a single nonlinear equation.

We will now extend that algorithm to the solution of a 
system of nonlinear equations

Nonlinear Systems of Equations65
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Nonlinear Systems of Equations

 Consider a system of nonlinear equations
 Can be represented as a vector of 𝑁 functions 

 Each is a function of an 𝑁-vector of unknown variables

𝐲 =

𝑦1

𝑦2

⋮
𝑦𝑁

= 𝐟 𝐱 =

𝑓1 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

𝑓2 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

⋮
𝑓𝑁 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

 As we did when applying Newton-Raphson to find the root of a single 
equation, we can again approximate this function as linear (i.e., a first-
order Taylor series approximation)

𝐲 = 𝐟 𝐱 ≈ 𝐟 𝐱0 + 𝐟′ 𝐱0 𝐱 − 𝐱0  (8)

 Note that all variables are 𝑁-vectors
◼ 𝐟 is an 𝑁-vector of known, nonlinear functions

◼ 𝐱 is an 𝑁-vector of unknown values – this is what we want to solve for

◼ 𝐲 is an 𝑁-vector of known values

◼ 𝐱𝟎 is an 𝑁-vector of 𝐱 values for which 𝐟 𝐱0  is known
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Newton-Raphson Method

 Equation (8) is the basis for our Newton-Raphson iterative formula
 Let it be an equality and solve for 𝐱

𝐲 − 𝐟 𝐱0 = 𝐟′ 𝐱0 𝐱 − 𝐱0

𝐟′ 𝐱0
−𝟏 𝐲 − 𝐟 𝐱0 = 𝐱 − 𝐱0

𝐱 = 𝐱0 + 𝐟′ 𝐱0
−𝟏 𝐲 − 𝐟 𝐱0

 This last expression can be used as an iterative formula

𝐱𝑖+1 = 𝐱𝑖 + 𝐟′ 𝐱𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖

 The derivative term on the right-hand side of (8) is an 𝑁 × 𝑁 matrix
 The Jacobian matrix, 𝐉

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖  (9)

67



K. Webb ESC 440

The Jacobian Matrix

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖

 Jacobian matrix

 𝑁 × 𝑁 matrix of partial derivatives for 𝐟 𝐱

 Evaluated at the current value of 𝐱, 𝐱𝑖  

𝐉𝑖 =

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓1

𝜕𝑥𝑁

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
⋯

𝜕𝑓2

𝜕𝑥𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑁

𝜕𝑥1

𝜕𝑓𝑁

𝜕𝑥2
⋯

𝜕𝑓𝑁

𝜕𝑥𝑁  𝐱=𝐱𝑖

(9)
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Newton-Raphson Method

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖  (9)

 We could iterate (9) until convergence or a maximum 
number of iterations is reached
 Requires inversion of the Jacobian matrix

◼ Computationally expensive and error prone

 Instead, go back to the Taylor series approximation

𝐲 = 𝐟 𝐱𝑖 + 𝐉𝑖 𝐱𝑖+1 − 𝐱𝑖

𝐲 − 𝐟 𝐱𝑖 = 𝐉𝑖 𝐱𝑖+1 − 𝐱𝑖  (10)

 Left side of (21) represents a difference between the known and 
approximated outputs

 Right side represents an increment of the approximation for 𝐱

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖 (11)
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Newton-Raphson Method

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖

 On each iteration: 

 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve for Δ𝐱𝑖 using Gaussian elimination

◼ Matrix inversion not required

◼ Computationally robust

 Update 𝐱

𝐱𝑖+1 = 𝐱𝑖 + Δ𝐱𝑖

(12)

(13)
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Newton-Raphson – Example 

 Apply Newton-Raphson to solve the following system of 
nonlinear equations

𝐟 𝐱 = 𝐲

𝑥1
2 + 3𝑥2

𝑥1𝑥2
=

21
12

 Initial condition: 𝐱0 = 1 2 𝑇

 Stopping criterion: 𝜀𝑠 = 1 × 10−6

 Jacobian matrix

𝐉𝑖 =

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2  𝐱=𝐱𝑖

=
2𝑥1,𝑖 3
𝑥2,𝑖 𝑥1,𝑖
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Newton-Raphson – Example 

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖

𝐱𝑖+1 = 𝐱𝑖 + Δ𝐱𝑖

 For iteration 𝑖:

 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve (12) for Δ𝐱𝑖

 Update 𝐱 using (13) 

(12)

(13)
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Newton-Raphson – Example 

 𝑖 = 0:

Δ𝐲0 = 𝐲 − 𝐟 𝐱0 =
21
12

−
7
2

=
14
10

𝐉0 =
2𝑥1,0 3
𝑥2,0 𝑥1,0

=
2 3
2 1

Δ𝐱0 =
4
2

𝐱1 = 𝐱0 + Δ𝐱0 =
1
2

+
4
2

=
5
4

𝜀1 = max
𝑥𝑘,1 − 𝑥𝑘,0

𝑥𝑘,1
, 𝑘 = 1 … 𝑁

𝑥1 =
5
4

,     𝜀1 = 0.8
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Newton-Raphson – Example 

 𝑖 = 1:

Δ𝐲1 = 𝐲 − 𝐟 𝐱1 =
21
12

−
37
20

=
−16
−8

𝐉1 =
2𝑥1,1 3
𝑥2,1 𝑥1,1

=
10 3
4 5

Δ𝐱1 =
−1.474
−0.421

𝐱2 = 𝐱1 + Δ𝐱1 =
5
4

+
−1.474
−0.421

=
3.526
3.579

𝜀2 = max
𝑥𝑘,2 − 𝑥𝑘,1

𝑥𝑘,1
, 𝑘 = 1 … 𝑁

𝑥2 =
3.526
3.579

,     𝜀2 = 0.418
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Newton-Raphson – Example 

 𝑖 = 2:

Δ𝐲2 = 𝐲 − 𝐟 𝐱2 =
21
12

−
23.172
12.621

=
−2.172
−0.621

𝐉2 =
2𝑥1,2 3
𝑥2,2 𝑥1,2

=
7.053 3
3.579 3.526

Δ𝐱2 =
−0.410
 0.240

𝐱3 = 𝐱2 + Δ𝐱2 =
3.526
3.579

+
−0.410
 0.240

=
3.116
3.819

𝜀3 = max
𝑥𝑘,3 − 𝑥𝑘,2

𝑥𝑘,2
, 𝑘 = 1 … 𝑁

𝑥3 =
3.116
3.819

,     𝜀3 = 0.132
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Newton-Raphson – Example 

 𝑖 = 6:

Δ𝐲6 = 𝐲 − 𝐟 𝐱6 =
21
12

−
21.000
12.000

= −0.527 × 10−7

0.926 × 10−7

𝐉6 =
2𝑥1,6 3
𝑥2,6 𝑥1,6

=
6.000 3
4.000 3.000

Δ𝐱6 = −0.073 × 10−6

 0.128 × 10−6

𝐱7 = 𝐱6 + Δ𝐱6 =
3.000
4.000

+ −0.073 × 10−6

 0.128 × 10−6 =
3.000
4.000

𝜀7 = max
𝑥𝑘,7 − 𝑥𝑘,6

𝑥𝑘,6
, 𝑘 = 1 … 𝑁

𝑥7 =
3.000
4.000

,     𝜀7 = 31.9 × 10−9
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Newton-Raphson – Python Code

 Define the system of equations

 Initialize 𝐱 

 Set up solution parameters
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Newton-Raphson – Python Code

 Iterate:
 Compute Δ𝐲𝑖  and 𝐉𝑖

 Solve for Δ𝐱𝑖

 Update 𝐱
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