
ESC 440 – Computational Methods for Engineers

SECTION 3: SYSTEMS OF
EQUATIONS

K. Webb ESC 440

Introduction2

K. Webb ESC 440

3

A System of Equations – Example

 Three masses

 m1, m2, and m3

 Three springs

 k1, k2, k3

 Connected in series and
suspended

 Determine the displacement of
each mass from its unstretched
position

K. Webb ESC 440

4

A System of Equations – Example

 Three unknown displacements: x1, x2, x3

 Need three equations to find displacements

 Apply Newton’s second law to each mass

 Three equations result:

𝑚1 ሷ𝑥1 = 𝑚1𝑔 + 𝑘2 𝑥2 − 𝑥1 − 𝑘1𝑥1

𝑚2 ሷ𝑥2 = 𝑚2𝑔 + 𝑘3 𝑥3 − 𝑥2 − 𝑘2 𝑥2 − 𝑥1

𝑚3 ሷ𝑥3 = 𝑚3𝑔 − 𝑘3 𝑥3 − 𝑥2

K. Webb ESC 440

5

A System of Equations – Example

 Steady-state, so ሷ𝑥𝑖 = 0, ∀𝑖

𝑚1𝑔 + 𝑘2 𝑥2 − 𝑥1 − 𝑘1𝑥1 = 0

𝑚2𝑔 + 𝑘3 𝑥3 − 𝑥2 − 𝑘2 𝑥2 − 𝑥1 = 0

𝑚3𝑔 − 𝑘3 𝑥3 − 𝑥2 = 0

 Rearranging

𝑘1 + 𝑘2 𝑥1 − 𝑘2𝑥2 + 0𝑥3 = 𝑚1𝑔

 −𝑘2𝑥1 + 𝑘2 + 𝑘3 𝑥2 − 𝑘3𝑥3 = 𝑚2𝑔

 0𝑥1 − 𝑘3𝑥2 + 𝑘3𝑥3 = 𝑚3𝑔

K. Webb ESC 440

6

A System of Equations – Example

 Our system of three equations

𝑘1 + 𝑘2 𝑥1 − 𝑘2𝑥2 + 0𝑥3 = 𝑚1𝑔

 −𝑘2𝑥1 + 𝑘2 + 𝑘3 𝑥2 − 𝑘3𝑥3 = 𝑚2𝑔

 0𝑥1 − 𝑘3𝑥2 + 𝑘3𝑥3 = 𝑚3𝑔

can be put into matrix form

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

K. Webb ESC 440

7

A System of Equations – Example

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

 We can rewrite this matrix equation as

𝐀𝐱 = 𝐛

 Can apply tools of linear algebra to determine the
vector of unknown displacements

𝐱 =

𝑥1

𝑥2

𝑥3

K. Webb ESC 440

8

Matrix notation

Conventions for matrix notation vary greatly. In
general, the dimensions of a variable are known from
context. These notes will use the following
convention:

 Matrices

 Upper-case, bold variables, e.g. 𝐀

 Vectors

 Lower-case, bold variables, e.g. 𝐱

 Hand-written matrices and vectors

 Underbar, instead of bold, e.g. A or x

K. Webb ESC 440

Before getting into the algorithms used to solve
systems of linear equations, we’ll take a look at
how we can use available Python functions to
find a solution.

Solving Systems of Equations with Python9

K. Webb ESC 440

10

System as a Matrix Equation

 Our system of equations has the form

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

 This can be written in matrix form as

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

or
𝐀𝐱 = 𝐛

K. Webb ESC 440

11

Solving the Matrix Equation

 Solving our system of equations amounts to solving
the matrix equation

𝐀𝐱 = 𝐛
for the vector 𝐱

 To isolate 𝐱 on the left of the equal sign, left
multiply by the inverse of the coefficient matrix

𝐀−𝟏𝐀𝐱 = 𝐀−𝟏𝐛

𝐱 = 𝐀−𝟏𝐛

K. Webb ESC 440

12

Solving the Matrix Equation

 In NumPy’s linalg module – left-multiply by 𝐀−𝟏

 Use np.linalg.inv() for matrix
inversion

 Use @ for matrix multiplication
 * performs element-by-element

multiplication

 Note that 𝐛 can be a row or column
vector
 Treated as a column vector either way

 Matrix inversion works, but is not
always the best way to solve
 Inefficient, slow

 Sensitive to numerical error
◼ Some systems worse than others

K. Webb ESC 440

13

Solving the Matrix Equation

 Instead, use NumPy’s linalg.solve() function

 If 𝐀−𝟏 exists, then
x = np.linalg.solve(A, b)

is equivalent to
𝐱 = 𝐀−𝟏𝐛

 Does not calculate 𝐀−𝟏

 Faster, more robust

 Makes use of techniques we’ll
explore next

K. Webb ESC 440

14

Example – Solving Using NumPy

 Our linear system is described by the
matrix equation

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

𝐀𝐱 = 𝐛

 Find the displacements, 𝐱, for the
following system parameters

 𝑘1 = 500
𝑁

𝑚
, 𝑘2 = 800

𝑁

𝑚
, 𝑘3 = 400

𝑁

𝑚

 𝑚1 = 3𝑘𝑔, 𝑚2 = 1𝑘𝑔, 𝑚3 = 7𝑘𝑔

K. Webb ESC 440

15

Example – Solving Using NumPy

𝑥1 = 21.6𝑐𝑚, 𝑥2 = 31.4𝑐𝑚, 𝑥3 = 48.6𝑐𝑚

K. Webb ESC 440

Techniques for Solving Linear Systems16

K. Webb ESC 440

17

Solving Systems of Linear Equations

 Techniques exist for finding the solution to small
systems of linear equations:
 Graphical method

 Cramer’s rule

 Elimination of unknowns

 Not generally useful for numerical solution of larger
systems, but they do provide insight

 For numerical solution of larger systems techniques
include:
 Gaussian elimination

 Jacobi method

 Gauss-Seidel

K. Webb ESC 440

18

Graphical Solution

 A system of two linear equations with two unknown
variables

𝑎11𝑥1 + 𝑎12𝑥2 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2

can be thought of as equations of two lines in the 𝑥 − 𝑦
plane:

𝑥2 = −
𝑎11

𝑎12
𝑥1 +

𝑏1

𝑎12

𝑥2 = −
𝑎21

𝑎22
𝑥1 +

𝑏2

𝑎22

K. Webb ESC 440

19

Graphical Solution

𝑥2 = −
𝑎11

𝑎12
𝑥1 +

𝑏1

𝑎12

𝑥2 = −
𝑎21

𝑎22
𝑥1 +

𝑏2

𝑎22

 Solution to this system of equations is the point of
intersection (𝑥1, 𝑥2) of the two lines

 May not exist

 May not be unique

 May exist, but be difficult to determine accurately

K. Webb ESC 440

20

Unique Solution

 System of two linear
equations:

0.5𝑥1 + 𝑥2 = 5
 3𝑥1 − 𝑥2 = 2

 Represented in
matrix form

0.5 1
3 −1

𝑥1

𝑥2
=

5
2

𝐀𝐱 = 𝐛

𝑥1, 𝑥2 = (2,4)

 Solution at the point of
intersection: 𝑥1, 𝑥2 = (2,4)

K. Webb ESC 440

21

No Solution

 System of two linear
equations:

3𝑥1 − 𝑥2 = 2
3𝑥1 − 𝑥2 = 4

 Represented in
matrix form

3 −1
3 −1

𝑥1

𝑥2
=

2
4

𝐀𝐱 = 𝐛
 Lines don’t intersect, so

no solution exists

K. Webb ESC 440

22

Infinite Solutions

 System of two linear
equations:

 3𝑥1 − 𝑥2 = 2
−6𝑥1 + 2𝑥2 = −4

 Represented in matrix
form

3 −1
−6 2

𝑥1

𝑥2
=

2
−4

𝐀𝐱 = 𝐛  Solutions at all points along
the lines

K. Webb ESC 440

23

Ill-Conditioned System

 System of two linear
equations:

 0.5𝑥1 + 𝑥2 = 5
0.48𝑥1 + 𝑥2 = 4.96

 Represented in matrix
form

0.5 1
0.48 1

𝑥1

𝑥2
=

5
4.96

𝐀𝐱 = 𝐛

𝑥1, 𝑥2 = (2,4)

 Solutions exists, but it is
difficult to identify accurately

K. Webb ESC 440

24

Singularity and the Coefficient Matrix, 𝐀

 Systems with no solutions or infinite solutions are both
referred to as singular

 Coefficient matrix, 𝐀, is singular
 𝐀−𝟏, does not exist

 det 𝐀 = 0

 For the example with no solutions

det 𝐀 =
3 −1
3 −1

= −3 − −3 = 0

 For the example with infinite solutions

det 𝐀 =
3 −1

−6 2
= 6 − 6 = 0

K. Webb ESC 440

25

Ill-Conditioned Systems

 Ill-conditioned systems are nearly-singular

 det 𝐀 ≈ 0

 𝐀−𝟏 exists, but may be difficult to determine accurately

 Solution exists, but it may difficult to determine
accurately – either graphically or numerically

 For the previous example of an ill-conditioned
system

det 𝐀 =
0.5 1

0.48 1
= 0.5 − 0.48 = 0.02

(This example may be ill-conditioned for graphical
solution, but would not be if solving numerically)

K. Webb ESC 440

26

Rank of the Coefficient Matrix, 𝐀

 Rank of a matrix – number of linearly-independent
rows (or columns) of the matrix

 Full-rank matrix
 All rows and columns are linearly-independent

 Must be square

 det 𝐀 ≠ 0, 𝐀−𝟏 exists

 In both of our singular examples 𝐀 is rank-deficient

𝐀𝟏 =
3 −1
3 −1

 and 𝐀𝟐 =
3 −1

−6 2

 For a 2 × 2, rank-deficient matrix, columns and rows
represent collinear vectors

K. Webb ESC 440

Gaussian Elimination27

K. Webb ESC 440

28

Gaussian Elimination

 Two steps in Gaussian elimination:

 Elimination of unknowns

 Solution through back-substitution

 Applies to arbitrarily large systems

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 The basic algorithm will be introduced using an example
system of three equations with three unknowns

K. Webb ESC 440

29

Gaussian Elimination – the Basic Algorithm

 The basic algorithm:

1. Forward elimination of unknowns

◼ Reduce to an upper-triangular system

2. Back-substitution to solve for unknowns

◼ Reduction to an upper-triangular system yields the
solution for 𝑥𝑛 directly

◼ Back-substitute the solution for 𝑥𝑛 to solve for 𝑥𝑛−1

◼ Back-substitute the solution for 𝑥𝑛−1 to solve for 𝑥𝑛−2

◼ Continue until all 𝑥𝑖 have been determined

K. Webb ESC 440

30

Forward Elimination of Unknowns

 We’ll use a system of three equations with three
unknowns as an example

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

 Create the augmented system matrix

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

𝑎21 𝑎22 𝑎23 ⋮ 𝑏2

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Each row represents an equation – row operations
are operations on the equations

K. Webb ESC 440

31

Forward Elimination of Unknowns

 Reduce to an upper-triangular system
 Eliminate 𝑥𝑖 from the (𝑖 + 1)st through 𝑛𝑡ℎ equations for

𝑖 = 1 … 𝑛

 First eliminate 𝑥1 from the second equation
 Perform row operations to set the first element on the

second row to zero
 Normalize the first equation (row) – divide by the leading

coefficient, 𝑎11
 Multiply the first equation (row) by the leading coefficient of

the second equation (row), 𝑎21

𝑎21

𝑎21

𝑎11
𝑎12

𝑎21

𝑎11
𝑎13 ⋮

𝑎21

𝑎11
𝑏1

𝑎21 𝑎22 𝑎23 ⋮ 𝑏2

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

K. Webb ESC 440

32

Forward Elimination of Unknowns

 Subtract the first row from the second, and replace
the first row with its original values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22 −
𝑎21

𝑎11
𝑎12 𝑎23 −

𝑎21

𝑎11
𝑎13 ⋮ 𝑏2 −

𝑎21

𝑎11
𝑏1

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Use prime notation to indicate a modified
coefficient value

 Add additional prime mark for each modification

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

K. Webb ESC 440

33

Forward Elimination of Unknowns

 Next, eliminate 𝑥1 from the third equation
 Normalize the first row

 Multiply by the leading coefficient of the third row, 𝑎31

𝑎31

𝑎31

𝑎11
𝑎12

𝑎31

𝑎11
𝑎13 ⋮

𝑎31

𝑎11
𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Subtract the first row from the third and reset the first row to its
original values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 𝑎32 −
𝑎31

𝑎11
𝑎12 𝑎33 −

𝑎31

𝑎11
𝑎13 ⋮ 𝑏3 −

𝑎31

𝑎11
𝑏1

=

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 𝑎32
′ 𝑎33

′ ⋮ 𝑏3
′

K. Webb ESC 440

34

Elimination of Unknowns - Terminology

 First row is used for the elimination of 𝑥1 from
second and third rows

 In general, 𝑖𝑡ℎ row used to eliminate the 𝑖𝑡ℎ
unknown from the (𝑖 + 1)st through 𝑛𝑡ℎ rows
 This is the pivot row

 (𝑛 − 1) rows will be pivot rows at some point

 Leading coefficient in the pivot row, 𝑎𝑖𝑖, is the pivot
element

 Normalization involves dividing the pivot row by
the pivot element
 Could this be problematic?

K. Webb ESC 440

35

Forward Elimination of Unknowns

 Finally, eliminate 𝑥2 from the third equation
 Normalize the second row (the pivot row)
 Multiply by the leading coefficient of the third row, 𝑎32

′

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎32
′

𝑎32
′

𝑎22
′ 𝑎23

′ ⋮
𝑎32

′

𝑎22
′ 𝑏2

′

0 𝑎32
′ 𝑎33

′ ⋮ 𝑏3
′

 Subtract the second row from the third and reset the
second row to its previous values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′ −

𝑎32
′

𝑎22
′ 𝑎23

′ ⋮ 𝑏3
′ −

𝑎32
′

𝑎22
′ 𝑏2

′
=

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′′ ⋮ 𝑏3

′′

K. Webb ESC 440

36

Back-Substitution

 System is now upper-triangular

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′′ ⋮ 𝑏3

′′

 Last row represents a single equation with a single
unknown, 𝑥3

𝑥3 =
𝑏3

′′

𝑎33
′′

 In general, solve for the 𝑛𝑡ℎ unknown as

𝑥𝑛 =
𝑏𝑛

𝑛−1

𝑎𝑛𝑛
𝑛−1

K. Webb ESC 440

37

Back-Substitution

 Next, substitute 𝑥3 into the second equation

𝑎22
′ 𝑥2 + 𝑎23

′ 𝑥3 = 𝑏2
′

𝑎22
′ 𝑥2 + 𝑎23

′
𝑏3

′′

𝑎33
′′ = 𝑏2

′

and solve for 𝑥2

𝑥2 =

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′

 In general:

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

− ෍

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗

K. Webb ESC 440

38

Back-Substitution

 Finally, substitute 𝑥2 and 𝑥3 into the first equation

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎11𝑥1 + 𝑎12

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′ + 𝑎13

𝑏3
′′

𝑎33
′′ = 𝑏1

and solve for 𝑥1

𝑥1 =

𝑏1 − 𝑎12

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′ − 𝑎13

𝑏3
′′

𝑎33
′′

𝑎11

 In practice we’d solve for 𝑥1 using the general formula

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

− ෍

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗

K. Webb ESC 440

39

Algorithm Summary

1) Form augmented system matrix
2) Elimination of unknowns – for 𝑖 = 1 … 𝑛 − 1

a) Normalize pivot row (𝑖𝑡ℎ row)

b) Multiply pivot row by leading coefficient of 𝑗𝑡ℎ row, 𝑎𝑗𝑖
(for 𝑗 = 𝑖 + 1 … 𝑛)

c) Subtract pivot row from 𝑗𝑡ℎ row

3) Back-substitution

a) Determine 𝑥𝑛 from the last row: 𝑥𝑛 =
𝑏𝑛

𝑛−1

𝑎𝑛𝑛
𝑛−1

b) Solve for remaining 𝑥𝑖 for 𝑖 = (𝑛 − 1) … 1:

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

− ෍

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗

K. Webb ESC 440

40

Partial Pivoting

 During forward elimination of unknowns, pivot row
is normalized
 𝑖𝑡ℎ row divided by leading coefficient, 𝑎𝑖𝑖

 If 𝑎𝑖𝑖 = 0 → divide-by-zero, algorithm fails

 If 𝑎𝑖𝑖 ≈ 0 → not fatal, but susceptible to roundoff error

 Partial pivoting
 Prior to normalizing the pivot (𝑖𝑡ℎ) row, search all rows

from 𝑖 … 𝑛 for the one with the largest value in the 𝑖𝑡ℎ
column

 Move to the current pivot row location and continue
with algorithm

K. Webb ESC 440

Gaussian Elimination - Example41

K. Webb ESC 440

42

Example – Truss Analysis

 Simple statically-determinate truss

 Determine all internal and external forces

K. Webb ESC 440

43

Example – Truss Analysis

 Force components at each joint must balance

𝐹𝐴𝑥 + 𝐹𝐴𝐶 + 𝐹𝐴𝐵 cos 55° = 0

𝐹𝐴𝑦 + 𝐹𝐴𝐵 sin 55° = 0

−𝐹𝐴𝐵 cos 55° + 𝐹𝐵𝐶 cos 35° = 0

−4 𝑘𝑁 − 𝐹𝐴𝐵 sin 55° − 𝐹𝐵𝐶 sin 35° = 0

−𝐹𝐴𝐶 − 𝐹𝐵𝐶 cos 35° = 0

𝐹𝐶𝑦 + 𝐹𝐵𝐶 sin 35° = 0

K. Webb ESC 440

44

Example – Truss Analysis

 System of six equations with six unknown internal
and external forces

cos 55° 1 0 1 0 0
sin 55° 0 0 0 1 0

− cos 55° 0 cos 35° 0 0 0
sin 55° 0 sin 35° 0 0 0

0 −1 −cos 35° 0 0 0
0 0 sin 35° 0 0 1

𝐹𝐴𝐵

𝐹𝐴𝐶

𝐹𝐵𝐶

𝐹𝐴𝑥

𝐹𝐴𝑦

𝐹𝐶𝑦

=

0
0
0

−4000
0
0

 Python Gaussian elimination demo…

K. Webb ESC 440

45

Example – Truss Analysis

𝐹𝐴𝐵 = −3.277 𝑘𝑁

𝐹𝐴𝐶 = 1.879 𝑘𝑁

𝐹𝐵𝐶 = −2.294 𝑘𝑁

𝐹𝐴𝑥 = 0 𝑁

𝐹𝐴𝑦 = 2.684 𝑘𝑁

𝐹𝐶𝑦 = 1.316 𝑘𝑁

K. Webb ESC 440

Gaussian Elimination

 Gaussian elimination summary:
 Create the augmented system matrix
 Forward elimination

◼ Reduce to an upper-triangular matrix

 Back substitution
◼ Starting with 𝑥𝑁, solve for 𝑥𝑖 for 𝑖 = 𝑁 … 1

 A direct solution algorithm
 Exact value for each 𝑥𝑖 arrived at with a single execution of the

algorithm

 Alternatively, we can use an iterative algorithm
 Jacobi method
 Gauss-Seidel
 Newton-Raphson

46

K. Webb ESC 440

Linear Systems of Equations –
Iterative Solution – Jacobi Method

47

K. Webb ESC 440

Jacobi Method

 Consider a system of 𝑁 linear equations

𝐀 ⋅ 𝐱 = 𝐲

𝑎1,1 ⋯ 𝑎1,𝑁

⋮ ⋱ ⋮
𝑎𝑁,1 ⋯ 𝑎𝑁,𝑁

𝑥1

⋮
𝑥𝑁

=

𝑦1

⋮
𝑦𝑁

 The 𝑘th equation (𝑘th row) is

𝑎𝑘,1𝑥1 + 𝑎𝑘,2𝑥2 + ⋯ + 𝑎𝑘,𝑘𝑥𝑘 + ⋯ + 𝑎𝑘,𝑁𝑥𝑁 = 𝑦𝑘 (1)

 Solve (1) for 𝑥𝑘

𝑥𝑘 =
1

𝑎𝑘,𝑘
[𝑦𝑘 − (𝑎𝑘,1𝑥1 + 𝑎𝑘,2𝑥2 + ⋯ + 𝑎𝑘,𝑘−1𝑥𝑘−1 + (2)

+𝑎𝑘,𝑘+1𝑥𝑘+1 + ⋯ + 𝑎𝑘,𝑁𝑥𝑁)]

48

K. Webb ESC 440

Jacobi Method

 Simplify (2) using summing notation

𝑥𝑘 =
1

𝑎𝑘,𝑘
𝑦𝑘 − ෍

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛 − ෍

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛 , 𝑘 = 1 … 𝑁

 An equation for 𝑥𝑘

 But, of course, we don’t yet know all other 𝑥𝑛 values

 Use (3) as an iterative expression

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − ෍

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 − ෍

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 The 𝑖 subscript indicates iteration number

◼ 𝑥𝑘,𝑖+1 is the updated value from the current iteration

◼ 𝑥𝑛,𝑖 is a value from the previous iteration

(3)

(4)

49

K. Webb ESC 440

Jacobi Method

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − ෍

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 − ෍

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Old values of 𝑥𝑛, on the right-hand side, are used to
update 𝑥𝑘 on the left-hand side

 Start with an initial guess for all unknowns, 𝐱0

 Iterate until adequate convergence is achieved

 Until a specified stopping criterion is satisfied

 Convergence is not guaranteed

(4)

50

K. Webb ESC 440

Convergence

 An approximation of 𝐱 is refined on each iteration
 Continue to iterate until we’re close to the right answer

for the vector of unknowns, 𝐱
 Assume we’ve converged to the right answer when 𝐱

changes very little from iteration to iteration

 On each iteration, calculate a relative error quantity

𝜀𝑖+1 = max
𝑥𝑘,𝑖+1 − 𝑥𝑘,𝑖

𝑥𝑘,𝑖+1
, 𝑘 = 1 … 𝑁

 Iterate until

𝜀𝑖 ≤ 𝜀𝑠

where 𝜀𝑠 is a chosen stopping criterion

51

K. Webb ESC 440

Jacobi Method – Matrix Form

 The Jacobi method iterative formula, (4), can be rewritten in matrix form:

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where 𝐃 is the diagonal elements of A

𝐃 =

𝑎1,1 0 ⋯ 0

0 𝑎2,2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 𝑎𝑁,𝑁

and
𝐌 = 𝐃−1 𝐃 − 𝐀

 Recall that the inverse of a diagonal matrix is given by inverting each diagonal
element

𝐃−𝟏 =

1/𝑎1,1 0 ⋯ 0

0 1/𝑎2,2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 1/𝑎𝑁,𝑁

(5)

(6)

52

K. Webb ESC 440

Jacobi Method – Example

 Consider the following system of equations

−4𝑥1 + 7𝑥3 = −5
2𝑥1 − 3𝑥2 + 5𝑥3 = −12
𝑥2 − 3𝑥3 = 3

 In matrix form:

−4 0 7
2 −3 5
0 1 −3

𝑥1

𝑥2

𝑥3

=
−5

−12
3

 Solve using the Jacobi method

53

K. Webb ESC 440

Jacobi Method – Example

 The iteration formula is

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where

𝐃 =
−4 0 0
0 −3 0
0 0 −3

 𝐃−1 =
−0.25 0 0

0 −0.333 0
0 0 −0.333

𝐌 = 𝐃−1 𝐃 − 𝐀 =
0 0 1.75

0.667 0 1.667
0 0.333 0

 To begin iteration, we need a starting point
 Initial guess for unknown values, 𝐱

 Often, we have some idea of the answer

 Here, arbitrarily choose

𝐱0 = 10 25 10 𝑇

54

K. Webb ESC 440

Jacobi Method – Example

 At each iteration, calculate

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

𝑥1,𝑖+1

𝑥2,𝑖+1

𝑥3,𝑖+1

=
0 0 1.75

0.667 0 1.667
0 0.333 0

𝑥1,𝑖

𝑥2,𝑖

𝑥3,𝑖

+
1.25

4
−1

 For 𝑖 = 0:

𝐱1 =

𝑥1,1

𝑥2,1

𝑥3,1

=
0 0 1.75

0.667 0 1.667
0 0.333 0

10
25
10

+
1.25

4
−1

𝐱1 = 18.75 27.33 7.33 𝑇

 The relative error is

𝜀1 = max
𝑥𝑘,1 − 𝑥𝑘,0

𝑥𝑘,1
= 0.467

55

K. Webb ESC 440

Jacobi Method – Example

 For 𝑖 = 1:

𝐱2 =

𝑥1,2

𝑥2,2

𝑥3,2

=
0 0 1.75

0.667 0 1.667
0 0.333 0

18.75
27.33
7.33

+
1.25

4
−1

𝐱2 = 14.08 28.72 8.11 𝑇

 The relative error is

𝜀2 = max
𝑥𝑘,2 − 𝑥𝑘,1

𝑥𝑘,1
= 0.331

 Continue to iterate until relative error falls below a specified
stopping condition

56

K. Webb ESC 440

Jacobi Method – Example

 Automate with computer code, e.g. Python

 Setup the system of equations

 Initialize matrices and parameters for iteration

57

K. Webb ESC 440

Jacobi Method – Example

 Loop to continue iteration as long as:
 Stopping criterion is not satisfied
 Maximum number of iterations is not exceeded

 On each iteration
 Use previous 𝐱 values to update 𝐱
 Calculate relative error
 Increment the number of iterations

58

K. Webb ESC 440

Jacobi Method – Example

 Set 𝜀𝑠 = 1 × 10−6 and iterate:

𝒊 𝐱𝒊 𝜺𝒊

0 10 25 10 𝑇 -

1 18.75 27.33 7.33 𝑇 0.467

2 14.08 28.72 8.11 𝑇 0.331

3 15.44 26.91 8.57 𝑇 0.088

4 16.25 28.59 7.97 𝑇 0.076

5 15.20 28.12 8.53 𝑇 0.070

6 16.18 28.35 8.37 𝑇 0.061

⋮ ⋮ ⋮

371 20.50 36.00 11.00 𝑇 0.995×10-6

 Convergence achieved in 371 iterations

59

K. Webb ESC 440

Linear Systems of Equations –
Iterative Solution – Gauss-Seidel

60

K. Webb ESC 440

Gauss-Seidel Method

 The iterative formula for the Jacobi method is

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − ෍

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 − ෍

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Note that only old values of 𝑥𝑛 (i.e. 𝑥𝑛,𝑖) are used to
update the value of 𝑥𝑘

 Assume the 𝑥𝑘,𝑖+1 values are determined in order of
increasing 𝑘
 When updating 𝑥𝑘,𝑖+1, all 𝑥𝑛,𝑖+1 values are already known

for 𝑛 < 𝑘

 We can use those updated values to calculate 𝑥𝑘,𝑖+1

 The Gauss-Seidel method

(4)

61

K. Webb ESC 440

Gauss-Seidel Method

 Now use the 𝑥𝑛 values already updated on the
current iteration to update 𝑥𝑘

 That is, 𝑥𝑛,𝑖+1 for 𝑛 < 𝑘

 Gauss-Seidel iterative formula

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 − ෍

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖+1 − ෍

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Note that only the first summation has changed
 For already updated 𝑥 values

 𝑥𝑛 for 𝑛 < 𝑘

 Number of already-updated values used depends on 𝑘

(7)

62

K. Webb ESC 440

Gauss-Seidel – Matrix Form

 In matrix form the iterative formula is the same as for the Jacobi
method

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where, again

𝐌 = 𝐃−1 𝐃 − 𝐀

but now 𝐃 is the lower triangular part of 𝐀

𝐃 =

𝑎1,1 0 ⋯ 0

𝑎2,1 𝑎2,2 0 ⋮

⋮ ⋮ ⋱ 0
𝑎𝑁,1 𝑎𝑁,2 ⋯ 𝑎𝑁,𝑁

 Otherwise, the algorithm and computer code is identical to that of
the Jacobi method

(5)

(6)

63

K. Webb ESC 440

Gauss-Seidel – Example

 Apply Gauss-Seidel to our previous example

 𝑥0 = 10 25 10 𝑇

 𝜀𝑠 = 1 × 10−6

𝒊 𝐱𝒊 𝜺𝒊

0 10 25 10 𝑇 -

1 18.75 33.17 10.06 𝑇 0.875

2 18.85 33.32 10.11 𝑇 0.005

3 18.94 33.47 10.16 𝑇 0.005

4 19.03 33.61 10.20 𝑇 0.005

⋮ ⋮ ⋮

151 20.50 36.00 11.00 𝑇 0.995×10-6

 Convergence achieved in 151 iterations
 Compared to 371 for the Jacobi method

64

K. Webb ESC 440

We have seen how to apply the Newton-Raphson root-
finding algorithm to solve a single nonlinear equation.

We will now extend that algorithm to the solution of a
system of nonlinear equations

Nonlinear Systems of Equations65

K. Webb ESC 440

Nonlinear Systems of Equations

 Consider a system of nonlinear equations
 Can be represented as a vector of 𝑁 functions

 Each is a function of an 𝑁-vector of unknown variables

𝐲 =

𝑦1

𝑦2

⋮
𝑦𝑁

= 𝐟 𝐱 =

𝑓1 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

𝑓2 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

⋮
𝑓𝑁 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

 As we did when applying Newton-Raphson to find the root of a single
equation, we can again approximate this function as linear (i.e., a first-
order Taylor series approximation)

𝐲 = 𝐟 𝐱 ≈ 𝐟 𝐱0 + 𝐟′ 𝐱0 𝐱 − 𝐱0 (8)

 Note that all variables are 𝑁-vectors
◼ 𝐟 is an 𝑁-vector of known, nonlinear functions

◼ 𝐱 is an 𝑁-vector of unknown values – this is what we want to solve for

◼ 𝐲 is an 𝑁-vector of known values

◼ 𝐱𝟎 is an 𝑁-vector of 𝐱 values for which 𝐟 𝐱0 is known

66

K. Webb ESC 440

Newton-Raphson Method

 Equation (8) is the basis for our Newton-Raphson iterative formula
 Let it be an equality and solve for 𝐱

𝐲 − 𝐟 𝐱0 = 𝐟′ 𝐱0 𝐱 − 𝐱0

𝐟′ 𝐱0
−𝟏 𝐲 − 𝐟 𝐱0 = 𝐱 − 𝐱0

𝐱 = 𝐱0 + 𝐟′ 𝐱0
−𝟏 𝐲 − 𝐟 𝐱0

 This last expression can be used as an iterative formula

𝐱𝑖+1 = 𝐱𝑖 + 𝐟′ 𝐱𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖

 The derivative term on the right-hand side of (8) is an 𝑁 × 𝑁 matrix
 The Jacobian matrix, 𝐉

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖 (9)

67

K. Webb ESC 440

The Jacobian Matrix

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖

 Jacobian matrix

 𝑁 × 𝑁 matrix of partial derivatives for 𝐟 𝐱

 Evaluated at the current value of 𝐱, 𝐱𝑖

𝐉𝑖 =

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓1

𝜕𝑥𝑁

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
⋯

𝜕𝑓2

𝜕𝑥𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑁

𝜕𝑥1

𝜕𝑓𝑁

𝜕𝑥2
⋯

𝜕𝑓𝑁

𝜕𝑥𝑁 𝐱=𝐱𝑖

(9)

68

K. Webb ESC 440

Newton-Raphson Method

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖 (9)

 We could iterate (9) until convergence or a maximum
number of iterations is reached
 Requires inversion of the Jacobian matrix

◼ Computationally expensive and error prone

 Instead, go back to the Taylor series approximation

𝐲 = 𝐟 𝐱𝑖 + 𝐉𝑖 𝐱𝑖+1 − 𝐱𝑖

𝐲 − 𝐟 𝐱𝑖 = 𝐉𝑖 𝐱𝑖+1 − 𝐱𝑖 (10)

 Left side of (21) represents a difference between the known and
approximated outputs

 Right side represents an increment of the approximation for 𝐱

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖 (11)

69

K. Webb ESC 440

Newton-Raphson Method

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖

 On each iteration:

 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve for Δ𝐱𝑖 using Gaussian elimination

◼ Matrix inversion not required

◼ Computationally robust

 Update 𝐱

𝐱𝑖+1 = 𝐱𝑖 + Δ𝐱𝑖

(12)

(13)

70

K. Webb ESC 440

Newton-Raphson – Example

 Apply Newton-Raphson to solve the following system of
nonlinear equations

𝐟 𝐱 = 𝐲

𝑥1
2 + 3𝑥2

𝑥1𝑥2
=

21
12

 Initial condition: 𝐱0 = 1 2 𝑇

 Stopping criterion: 𝜀𝑠 = 1 × 10−6

 Jacobian matrix

𝐉𝑖 =

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2 𝐱=𝐱𝑖

=
2𝑥1,𝑖 3
𝑥2,𝑖 𝑥1,𝑖

71

K. Webb ESC 440

Newton-Raphson – Example

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖

𝐱𝑖+1 = 𝐱𝑖 + Δ𝐱𝑖

 For iteration 𝑖:

 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve (12) for Δ𝐱𝑖

 Update 𝐱 using (13)

(12)

(13)

72

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 0:

Δ𝐲0 = 𝐲 − 𝐟 𝐱0 =
21
12

−
7
2

=
14
10

𝐉0 =
2𝑥1,0 3
𝑥2,0 𝑥1,0

=
2 3
2 1

Δ𝐱0 =
4
2

𝐱1 = 𝐱0 + Δ𝐱0 =
1
2

+
4
2

=
5
4

𝜀1 = max
𝑥𝑘,1 − 𝑥𝑘,0

𝑥𝑘,1
, 𝑘 = 1 … 𝑁

𝑥1 =
5
4

, 𝜀1 = 0.8

73

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 1:

Δ𝐲1 = 𝐲 − 𝐟 𝐱1 =
21
12

−
37
20

=
−16
−8

𝐉1 =
2𝑥1,1 3
𝑥2,1 𝑥1,1

=
10 3
4 5

Δ𝐱1 =
−1.474
−0.421

𝐱2 = 𝐱1 + Δ𝐱1 =
5
4

+
−1.474
−0.421

=
3.526
3.579

𝜀2 = max
𝑥𝑘,2 − 𝑥𝑘,1

𝑥𝑘,1
, 𝑘 = 1 … 𝑁

𝑥2 =
3.526
3.579

, 𝜀2 = 0.418

74

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 2:

Δ𝐲2 = 𝐲 − 𝐟 𝐱2 =
21
12

−
23.172
12.621

=
−2.172
−0.621

𝐉2 =
2𝑥1,2 3
𝑥2,2 𝑥1,2

=
7.053 3
3.579 3.526

Δ𝐱2 =
−0.410
 0.240

𝐱3 = 𝐱2 + Δ𝐱2 =
3.526
3.579

+
−0.410
 0.240

=
3.116
3.819

𝜀3 = max
𝑥𝑘,3 − 𝑥𝑘,2

𝑥𝑘,2
, 𝑘 = 1 … 𝑁

𝑥3 =
3.116
3.819

, 𝜀3 = 0.132

75

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 6:

Δ𝐲6 = 𝐲 − 𝐟 𝐱6 =
21
12

−
21.000
12.000

= −0.527 × 10−7

0.926 × 10−7

𝐉6 =
2𝑥1,6 3
𝑥2,6 𝑥1,6

=
6.000 3
4.000 3.000

Δ𝐱6 = −0.073 × 10−6

 0.128 × 10−6

𝐱7 = 𝐱6 + Δ𝐱6 =
3.000
4.000

+ −0.073 × 10−6

 0.128 × 10−6 =
3.000
4.000

𝜀7 = max
𝑥𝑘,7 − 𝑥𝑘,6

𝑥𝑘,6
, 𝑘 = 1 … 𝑁

𝑥7 =
3.000
4.000

, 𝜀7 = 31.9 × 10−9

76

K. Webb ESC 440

Newton-Raphson – Python Code

 Define the system of equations

 Initialize 𝐱

 Set up solution parameters

77

K. Webb ESC 440

Newton-Raphson – Python Code

 Iterate:
 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve for Δ𝐱𝑖

 Update 𝐱

78

	Slide 1: Section 3: Systems of Equations
	Slide 2: Introduction
	Slide 3: A System of Equations – Example
	Slide 4: A System of Equations – Example
	Slide 5: A System of Equations – Example
	Slide 6: A System of Equations – Example
	Slide 7: A System of Equations – Example
	Slide 8: Matrix notation
	Slide 9: Solving Systems of Equations with Python
	Slide 10: System as a Matrix Equation
	Slide 11: Solving the Matrix Equation
	Slide 12: Solving the Matrix Equation
	Slide 13: Solving the Matrix Equation
	Slide 14: Example – Solving Using NumPy
	Slide 15: Example – Solving Using NumPy
	Slide 16: Techniques for Solving Linear Systems
	Slide 17: Solving Systems of Linear Equations
	Slide 18: Graphical Solution
	Slide 19: Graphical Solution
	Slide 20: Unique Solution
	Slide 21: No Solution
	Slide 22: Infinite Solutions
	Slide 23: Ill-Conditioned System
	Slide 24: Singularity and the Coefficient Matrix, bold cap A.
	Slide 25: Ill-Conditioned Systems
	Slide 26: Rank of the Coefficient Matrix, bold cap A.
	Slide 27: Gaussian Elimination
	Slide 28: Gaussian Elimination
	Slide 29: Gaussian Elimination – the Basic Algorithm
	Slide 30: Forward Elimination of Unknowns
	Slide 31: Forward Elimination of Unknowns
	Slide 32: Forward Elimination of Unknowns
	Slide 33: Forward Elimination of Unknowns
	Slide 34: Elimination of Unknowns - Terminology
	Slide 35: Forward Elimination of Unknowns
	Slide 36: Back-Substitution
	Slide 37: Back-Substitution
	Slide 38: Back-Substitution
	Slide 39: Algorithm Summary
	Slide 40: Partial Pivoting
	Slide 41: Gaussian Elimination - Example
	Slide 42: Example – Truss Analysis
	Slide 43: Example – Truss Analysis
	Slide 44: Example – Truss Analysis
	Slide 45: Example – Truss Analysis
	Slide 46: Gaussian Elimination
	Slide 47: Linear Systems of Equations – Iterative Solution – Jacobi Method
	Slide 48: Jacobi Method
	Slide 49: Jacobi Method
	Slide 50: Jacobi Method
	Slide 51: Convergence
	Slide 52: Jacobi Method – Matrix Form
	Slide 53: Jacobi Method – Example
	Slide 54: Jacobi Method – Example
	Slide 55: Jacobi Method – Example
	Slide 56: Jacobi Method – Example
	Slide 57: Jacobi Method – Example
	Slide 58: Jacobi Method – Example
	Slide 59: Jacobi Method – Example
	Slide 60: Linear Systems of Equations – Iterative Solution – Gauss-Seidel
	Slide 61: Gauss-Seidel Method
	Slide 62: Gauss-Seidel Method
	Slide 63: Gauss-Seidel – Matrix Form
	Slide 64: Gauss-Seidel – Example
	Slide 65: Nonlinear Systems of Equations
	Slide 66: Nonlinear Systems of Equations
	Slide 67: Newton-Raphson Method
	Slide 68: The Jacobian Matrix
	Slide 69: Newton-Raphson Method
	Slide 70: Newton-Raphson Method
	Slide 71: Newton-Raphson – Example
	Slide 72: Newton-Raphson – Example
	Slide 73: Newton-Raphson – Example
	Slide 74: Newton-Raphson – Example
	Slide 75: Newton-Raphson – Example
	Slide 76: Newton-Raphson – Example
	Slide 77: Newton-Raphson – Python Code
	Slide 78: Newton-Raphson – Python Code

