
ESC 440 – Computational Methods for Engineers

SECTION 3: SYSTEMS OF
EQUATIONS

K. Webb ESC 440

Introduction2

K. Webb ESC 440

3

A System of Equations – Example

 Three masses

 m1, m2, and m3

 Three springs

 k1, k2, k3

 Connected in series and
suspended

 Determine the displacement of
each mass from its unstretched
position

K. Webb ESC 440

4

A System of Equations – Example

 Three unknown displacements: x1, x2, x3

 Need three equations to find displacements

 Apply Newton’s second law to each mass

 Three equations result:

𝑚1 ሷ𝑥1 = 𝑚1𝑔 + 𝑘2 𝑥2 − 𝑥1 − 𝑘1𝑥1

𝑚2 ሷ𝑥2 = 𝑚2𝑔 + 𝑘3 𝑥3 − 𝑥2 − 𝑘2 𝑥2 − 𝑥1

𝑚3 ሷ𝑥3 = 𝑚3𝑔 − 𝑘3 𝑥3 − 𝑥2

K. Webb ESC 440

5

A System of Equations – Example

 Steady-state, so ሷ𝑥𝑖 = 0, ∀𝑖

𝑚1𝑔 + 𝑘2 𝑥2 − 𝑥1 − 𝑘1𝑥1 = 0

𝑚2𝑔 + 𝑘3 𝑥3 − 𝑥2 − 𝑘2 𝑥2 − 𝑥1 = 0

𝑚3𝑔 − 𝑘3 𝑥3 − 𝑥2 = 0

 Rearranging

𝑘1 + 𝑘2 𝑥1 − 𝑘2𝑥2 + 0𝑥3 = 𝑚1𝑔

 −𝑘2𝑥1 + 𝑘2 + 𝑘3 𝑥2 − 𝑘3𝑥3 = 𝑚2𝑔

 0𝑥1 − 𝑘3𝑥2 + 𝑘3𝑥3 = 𝑚3𝑔

K. Webb ESC 440

6

A System of Equations – Example

 Our system of three equations

𝑘1 + 𝑘2 𝑥1 − 𝑘2𝑥2 + 0𝑥3 = 𝑚1𝑔

 −𝑘2𝑥1 + 𝑘2 + 𝑘3 𝑥2 − 𝑘3𝑥3 = 𝑚2𝑔

 0𝑥1 − 𝑘3𝑥2 + 𝑘3𝑥3 = 𝑚3𝑔

can be put into matrix form

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

K. Webb ESC 440

7

A System of Equations – Example

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

 We can rewrite this matrix equation as

𝐀𝐱 = 𝐛

 Can apply tools of linear algebra to determine the
vector of unknown displacements

𝐱 =

𝑥1

𝑥2

𝑥3

K. Webb ESC 440

8

Matrix notation

Conventions for matrix notation vary greatly. In
general, the dimensions of a variable are known from
context. These notes will use the following
convention:

 Matrices

 Upper-case, bold variables, e.g. 𝐀

 Vectors

 Lower-case, bold variables, e.g. 𝐱

 Hand-written matrices and vectors

 Underbar, instead of bold, e.g. A or x

K. Webb ESC 440

Before getting into the algorithms used to solve
systems of linear equations, we’ll take a look at
how we can use available Python functions to
find a solution.

Solving Systems of Equations with Python9

K. Webb ESC 440

10

System as a Matrix Equation

 Our system of equations has the form

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

 This can be written in matrix form as

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

or
𝐀𝐱 = 𝐛

K. Webb ESC 440

11

Solving the Matrix Equation

 Solving our system of equations amounts to solving
the matrix equation

𝐀𝐱 = 𝐛
for the vector 𝐱

 To isolate 𝐱 on the left of the equal sign, left
multiply by the inverse of the coefficient matrix

𝐀−𝟏𝐀𝐱 = 𝐀−𝟏𝐛

𝐱 = 𝐀−𝟏𝐛

K. Webb ESC 440

12

Solving the Matrix Equation

 In NumPy’s linalg module – left-multiply by 𝐀−𝟏

 Use np.linalg.inv() for matrix
inversion

 Use @ for matrix multiplication
 * performs element-by-element

multiplication

 Note that 𝐛 can be a row or column
vector
 Treated as a column vector either way

 Matrix inversion works, but is not
always the best way to solve
 Inefficient, slow

 Sensitive to numerical error
◼ Some systems worse than others

K. Webb ESC 440

13

Solving the Matrix Equation

 Instead, use NumPy’s linalg.solve() function

 If 𝐀−𝟏 exists, then
x = np.linalg.solve(A, b)

is equivalent to
𝐱 = 𝐀−𝟏𝐛

 Does not calculate 𝐀−𝟏

 Faster, more robust

 Makes use of techniques we’ll
explore next

K. Webb ESC 440

14

Example – Solving Using NumPy

 Our linear system is described by the
matrix equation

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

𝑥1

𝑥2

𝑥3

=

𝑚1𝑔
𝑚2𝑔
𝑚3𝑔

𝐀𝐱 = 𝐛

 Find the displacements, 𝐱, for the
following system parameters

 𝑘1 = 500
𝑁

𝑚
, 𝑘2 = 800

𝑁

𝑚
, 𝑘3 = 400

𝑁

𝑚

 𝑚1 = 3𝑘𝑔, 𝑚2 = 1𝑘𝑔, 𝑚3 = 7𝑘𝑔

K. Webb ESC 440

15

Example – Solving Using NumPy

𝑥1 = 21.6𝑐𝑚, 𝑥2 = 31.4𝑐𝑚, 𝑥3 = 48.6𝑐𝑚

K. Webb ESC 440

Techniques for Solving Linear Systems16

K. Webb ESC 440

17

Solving Systems of Linear Equations

 Techniques exist for finding the solution to small
systems of linear equations:
 Graphical method

 Cramer’s rule

 Elimination of unknowns

 Not generally useful for numerical solution of larger
systems, but they do provide insight

 For numerical solution of larger systems techniques
include:
 Gaussian elimination

 Jacobi method

 Gauss-Seidel

K. Webb ESC 440

18

Graphical Solution

 A system of two linear equations with two unknown
variables

𝑎11𝑥1 + 𝑎12𝑥2 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2

can be thought of as equations of two lines in the 𝑥 − 𝑦
plane:

𝑥2 = −
𝑎11

𝑎12
𝑥1 +

𝑏1

𝑎12

𝑥2 = −
𝑎21

𝑎22
𝑥1 +

𝑏2

𝑎22

K. Webb ESC 440

19

Graphical Solution

𝑥2 = −
𝑎11

𝑎12
𝑥1 +

𝑏1

𝑎12

𝑥2 = −
𝑎21

𝑎22
𝑥1 +

𝑏2

𝑎22

 Solution to this system of equations is the point of
intersection (𝑥1, 𝑥2) of the two lines

 May not exist

 May not be unique

 May exist, but be difficult to determine accurately

K. Webb ESC 440

20

Unique Solution

 System of two linear
equations:

0.5𝑥1 + 𝑥2 = 5
 3𝑥1 − 𝑥2 = 2

 Represented in
matrix form

0.5 1
3 −1

𝑥1

𝑥2
=

5
2

𝐀𝐱 = 𝐛

𝑥1, 𝑥2 = (2,4)

 Solution at the point of
intersection: 𝑥1, 𝑥2 = (2,4)

K. Webb ESC 440

21

No Solution

 System of two linear
equations:

3𝑥1 − 𝑥2 = 2
3𝑥1 − 𝑥2 = 4

 Represented in
matrix form

3 −1
3 −1

𝑥1

𝑥2
=

2
4

𝐀𝐱 = 𝐛
 Lines don’t intersect, so

no solution exists

K. Webb ESC 440

22

Infinite Solutions

 System of two linear
equations:

 3𝑥1 − 𝑥2 = 2
−6𝑥1 + 2𝑥2 = −4

 Represented in matrix
form

3 −1
−6 2

𝑥1

𝑥2
=

2
−4

𝐀𝐱 = 𝐛 Solutions at all points along
the lines

K. Webb ESC 440

23

Ill-Conditioned System

 System of two linear
equations:

 0.5𝑥1 + 𝑥2 = 5
0.48𝑥1 + 𝑥2 = 4.96

 Represented in matrix
form

0.5 1
0.48 1

𝑥1

𝑥2
=

5
4.96

𝐀𝐱 = 𝐛

𝑥1, 𝑥2 = (2,4)

 Solutions exists, but it is
difficult to identify accurately

K. Webb ESC 440

24

Singularity and the Coefficient Matrix, 𝐀

 Systems with no solutions or infinite solutions are both
referred to as singular

 Coefficient matrix, 𝐀, is singular
 𝐀−𝟏, does not exist

 det 𝐀 = 0

 For the example with no solutions

det 𝐀 =
3 −1
3 −1

= −3 − −3 = 0

 For the example with infinite solutions

det 𝐀 =
3 −1

−6 2
= 6 − 6 = 0

K. Webb ESC 440

25

Ill-Conditioned Systems

 Ill-conditioned systems are nearly-singular

 det 𝐀 ≈ 0

 𝐀−𝟏 exists, but may be difficult to determine accurately

 Solution exists, but it may difficult to determine
accurately – either graphically or numerically

 For the previous example of an ill-conditioned
system

det 𝐀 =
0.5 1

0.48 1
= 0.5 − 0.48 = 0.02

(This example may be ill-conditioned for graphical
solution, but would not be if solving numerically)

K. Webb ESC 440

26

Rank of the Coefficient Matrix, 𝐀

 Rank of a matrix – number of linearly-independent
rows (or columns) of the matrix

 Full-rank matrix
 All rows and columns are linearly-independent

 Must be square

 det 𝐀 ≠ 0, 𝐀−𝟏 exists

 In both of our singular examples 𝐀 is rank-deficient

𝐀𝟏 =
3 −1
3 −1

 and 𝐀𝟐 =
3 −1

−6 2

 For a 2 × 2, rank-deficient matrix, columns and rows
represent collinear vectors

K. Webb ESC 440

Gaussian Elimination27

K. Webb ESC 440

28

Gaussian Elimination

 Two steps in Gaussian elimination:

 Elimination of unknowns

 Solution through back-substitution

 Applies to arbitrarily large systems

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 The basic algorithm will be introduced using an example
system of three equations with three unknowns

K. Webb ESC 440

29

Gaussian Elimination – the Basic Algorithm

 The basic algorithm:

1. Forward elimination of unknowns

◼ Reduce to an upper-triangular system

2. Back-substitution to solve for unknowns

◼ Reduction to an upper-triangular system yields the
solution for 𝑥𝑛 directly

◼ Back-substitute the solution for 𝑥𝑛 to solve for 𝑥𝑛−1

◼ Back-substitute the solution for 𝑥𝑛−1 to solve for 𝑥𝑛−2

◼ Continue until all 𝑥𝑖 have been determined

K. Webb ESC 440

30

Forward Elimination of Unknowns

 We’ll use a system of three equations with three
unknowns as an example

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

 Create the augmented system matrix

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

𝑎21 𝑎22 𝑎23 ⋮ 𝑏2

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Each row represents an equation – row operations
are operations on the equations

K. Webb ESC 440

31

Forward Elimination of Unknowns

 Reduce to an upper-triangular system
 Eliminate 𝑥𝑖 from the (𝑖 + 1)st through 𝑛𝑡ℎ equations for

𝑖 = 1 … 𝑛

 First eliminate 𝑥1 from the second equation
 Perform row operations to set the first element on the

second row to zero
 Normalize the first equation (row) – divide by the leading

coefficient, 𝑎11
 Multiply the first equation (row) by the leading coefficient of

the second equation (row), 𝑎21

𝑎21

𝑎21

𝑎11
𝑎12

𝑎21

𝑎11
𝑎13 ⋮

𝑎21

𝑎11
𝑏1

𝑎21 𝑎22 𝑎23 ⋮ 𝑏2

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

K. Webb ESC 440

32

Forward Elimination of Unknowns

 Subtract the first row from the second, and replace
the first row with its original values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22 −
𝑎21

𝑎11
𝑎12 𝑎23 −

𝑎21

𝑎11
𝑎13 ⋮ 𝑏2 −

𝑎21

𝑎11
𝑏1

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Use prime notation to indicate a modified
coefficient value

 Add additional prime mark for each modification

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

K. Webb ESC 440

33

Forward Elimination of Unknowns

 Next, eliminate 𝑥1 from the third equation
 Normalize the first row

 Multiply by the leading coefficient of the third row, 𝑎31

𝑎31

𝑎31

𝑎11
𝑎12

𝑎31

𝑎11
𝑎13 ⋮

𝑎31

𝑎11
𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

𝑎31 𝑎32 𝑎33 ⋮ 𝑏3

 Subtract the first row from the third and reset the first row to its
original values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 𝑎32 −
𝑎31

𝑎11
𝑎12 𝑎33 −

𝑎31

𝑎11
𝑎13 ⋮ 𝑏3 −

𝑎31

𝑎11
𝑏1

=

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 𝑎32
′ 𝑎33

′ ⋮ 𝑏3
′

K. Webb ESC 440

34

Elimination of Unknowns - Terminology

 First row is used for the elimination of 𝑥1 from
second and third rows

 In general, 𝑖𝑡ℎ row used to eliminate the 𝑖𝑡ℎ
unknown from the (𝑖 + 1)st through 𝑛𝑡ℎ rows
 This is the pivot row

 (𝑛 − 1) rows will be pivot rows at some point

 Leading coefficient in the pivot row, 𝑎𝑖𝑖, is the pivot
element

 Normalization involves dividing the pivot row by
the pivot element
 Could this be problematic?

K. Webb ESC 440

35

Forward Elimination of Unknowns

 Finally, eliminate 𝑥2 from the third equation
 Normalize the second row (the pivot row)
 Multiply by the leading coefficient of the third row, 𝑎32

′

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎32
′

𝑎32
′

𝑎22
′ 𝑎23

′ ⋮
𝑎32

′

𝑎22
′ 𝑏2

′

0 𝑎32
′ 𝑎33

′ ⋮ 𝑏3
′

 Subtract the second row from the third and reset the
second row to its previous values

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′ −

𝑎32
′

𝑎22
′ 𝑎23

′ ⋮ 𝑏3
′ −

𝑎32
′

𝑎22
′ 𝑏2

′
=

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′′ ⋮ 𝑏3

′′

K. Webb ESC 440

36

Back-Substitution

 System is now upper-triangular

𝑎11 𝑎12 𝑎13 ⋮ 𝑏1

0 𝑎22
′ 𝑎23

′ ⋮ 𝑏2
′

0 0 𝑎33
′′ ⋮ 𝑏3

′′

 Last row represents a single equation with a single
unknown, 𝑥3

𝑥3 =
𝑏3

′′

𝑎33
′′

 In general, solve for the 𝑛𝑡ℎ unknown as

𝑥𝑛 =
𝑏𝑛

𝑛−1

𝑎𝑛𝑛
𝑛−1

K. Webb ESC 440

37

Back-Substitution

 Next, substitute 𝑥3 into the second equation

𝑎22
′ 𝑥2 + 𝑎23

′ 𝑥3 = 𝑏2
′

𝑎22
′ 𝑥2 + 𝑎23

′
𝑏3

′′

𝑎33
′′ = 𝑏2

′

and solve for 𝑥2

𝑥2 =

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′

 In general:

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

−

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗

K. Webb ESC 440

38

Back-Substitution

 Finally, substitute 𝑥2 and 𝑥3 into the first equation

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎11𝑥1 + 𝑎12

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′ + 𝑎13

𝑏3
′′

𝑎33
′′ = 𝑏1

and solve for 𝑥1

𝑥1 =

𝑏1 − 𝑎12

𝑏2
′ − 𝑎23

′ 𝑏3
′′

𝑎33
′′

𝑎22
′ − 𝑎13

𝑏3
′′

𝑎33
′′

𝑎11

 In practice we’d solve for 𝑥1 using the general formula

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

−

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗

K. Webb ESC 440

39

Algorithm Summary

1) Form augmented system matrix
2) Elimination of unknowns – for 𝑖 = 1 … 𝑛 − 1

a) Normalize pivot row (𝑖𝑡ℎ row)

b) Multiply pivot row by leading coefficient of 𝑗𝑡ℎ row, 𝑎𝑗𝑖
(for 𝑗 = 𝑖 + 1 … 𝑛)

c) Subtract pivot row from 𝑗𝑡ℎ row

3) Back-substitution

a) Determine 𝑥𝑛 from the last row: 𝑥𝑛 =
𝑏𝑛

𝑛−1

𝑎𝑛𝑛
𝑛−1

b) Solve for remaining 𝑥𝑖 for 𝑖 = (𝑛 − 1) … 1:

𝑥𝑖 =
1

𝑎𝑖𝑖
𝑖−1

𝑏𝑖
𝑖−1

−

𝑗=𝑖+1

𝑛

𝑎𝑖𝑗
𝑖−1

𝑥𝑗

K. Webb ESC 440

40

Partial Pivoting

 During forward elimination of unknowns, pivot row
is normalized
 𝑖𝑡ℎ row divided by leading coefficient, 𝑎𝑖𝑖

 If 𝑎𝑖𝑖 = 0 → divide-by-zero, algorithm fails

 If 𝑎𝑖𝑖 ≈ 0 → not fatal, but susceptible to roundoff error

 Partial pivoting
 Prior to normalizing the pivot (𝑖𝑡ℎ) row, search all rows

from 𝑖 … 𝑛 for the one with the largest value in the 𝑖𝑡ℎ
column

 Move to the current pivot row location and continue
with algorithm

K. Webb ESC 440

Gaussian Elimination - Example41

K. Webb ESC 440

42

Example – Truss Analysis

 Simple statically-determinate truss

 Determine all internal and external forces

K. Webb ESC 440

43

Example – Truss Analysis

 Force components at each joint must balance

𝐹𝐴𝑥 + 𝐹𝐴𝐶 + 𝐹𝐴𝐵 cos 55° = 0

𝐹𝐴𝑦 + 𝐹𝐴𝐵 sin 55° = 0

−𝐹𝐴𝐵 cos 55° + 𝐹𝐵𝐶 cos 35° = 0

−4 𝑘𝑁 − 𝐹𝐴𝐵 sin 55° − 𝐹𝐵𝐶 sin 35° = 0

−𝐹𝐴𝐶 − 𝐹𝐵𝐶 cos 35° = 0

𝐹𝐶𝑦 + 𝐹𝐵𝐶 sin 35° = 0

K. Webb ESC 440

44

Example – Truss Analysis

 System of six equations with six unknown internal
and external forces

cos 55° 1 0 1 0 0
sin 55° 0 0 0 1 0

− cos 55° 0 cos 35° 0 0 0
sin 55° 0 sin 35° 0 0 0

0 −1 −cos 35° 0 0 0
0 0 sin 35° 0 0 1

𝐹𝐴𝐵

𝐹𝐴𝐶

𝐹𝐵𝐶

𝐹𝐴𝑥

𝐹𝐴𝑦

𝐹𝐶𝑦

=

0
0
0

−4000
0
0

 Python Gaussian elimination demo…

K. Webb ESC 440

45

Example – Truss Analysis

𝐹𝐴𝐵 = −3.277 𝑘𝑁

𝐹𝐴𝐶 = 1.879 𝑘𝑁

𝐹𝐵𝐶 = −2.294 𝑘𝑁

𝐹𝐴𝑥 = 0 𝑁

𝐹𝐴𝑦 = 2.684 𝑘𝑁

𝐹𝐶𝑦 = 1.316 𝑘𝑁

K. Webb ESC 440

Gaussian Elimination

 Gaussian elimination summary:
 Create the augmented system matrix
 Forward elimination

◼ Reduce to an upper-triangular matrix

 Back substitution
◼ Starting with 𝑥𝑁, solve for 𝑥𝑖 for 𝑖 = 𝑁 … 1

 A direct solution algorithm
 Exact value for each 𝑥𝑖 arrived at with a single execution of the

algorithm

 Alternatively, we can use an iterative algorithm
 Jacobi method
 Gauss-Seidel
 Newton-Raphson

46

K. Webb ESC 440

Linear Systems of Equations –
Iterative Solution – Jacobi Method

47

K. Webb ESC 440

Jacobi Method

 Consider a system of 𝑁 linear equations

𝐀 ⋅ 𝐱 = 𝐲

𝑎1,1 ⋯ 𝑎1,𝑁

⋮ ⋱ ⋮
𝑎𝑁,1 ⋯ 𝑎𝑁,𝑁

𝑥1

⋮
𝑥𝑁

=

𝑦1

⋮
𝑦𝑁

 The 𝑘th equation (𝑘th row) is

𝑎𝑘,1𝑥1 + 𝑎𝑘,2𝑥2 + ⋯ + 𝑎𝑘,𝑘𝑥𝑘 + ⋯ + 𝑎𝑘,𝑁𝑥𝑁 = 𝑦𝑘 (1)

 Solve (1) for 𝑥𝑘

𝑥𝑘 =
1

𝑎𝑘,𝑘
[𝑦𝑘 − (𝑎𝑘,1𝑥1 + 𝑎𝑘,2𝑥2 + ⋯ + 𝑎𝑘,𝑘−1𝑥𝑘−1 + (2)

+𝑎𝑘,𝑘+1𝑥𝑘+1 + ⋯ + 𝑎𝑘,𝑁𝑥𝑁)]

48

K. Webb ESC 440

Jacobi Method

 Simplify (2) using summing notation

𝑥𝑘 =
1

𝑎𝑘,𝑘
𝑦𝑘 −

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛 −

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛 , 𝑘 = 1 … 𝑁

 An equation for 𝑥𝑘

 But, of course, we don’t yet know all other 𝑥𝑛 values

 Use (3) as an iterative expression

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 −

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 −

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 The 𝑖 subscript indicates iteration number

◼ 𝑥𝑘,𝑖+1 is the updated value from the current iteration

◼ 𝑥𝑛,𝑖 is a value from the previous iteration

(3)

(4)

49

K. Webb ESC 440

Jacobi Method

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 −

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 −

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Old values of 𝑥𝑛, on the right-hand side, are used to
update 𝑥𝑘 on the left-hand side

 Start with an initial guess for all unknowns, 𝐱0

 Iterate until adequate convergence is achieved

 Until a specified stopping criterion is satisfied

 Convergence is not guaranteed

(4)

50

K. Webb ESC 440

Convergence

 An approximation of 𝐱 is refined on each iteration
 Continue to iterate until we’re close to the right answer

for the vector of unknowns, 𝐱
 Assume we’ve converged to the right answer when 𝐱

changes very little from iteration to iteration

 On each iteration, calculate a relative error quantity

𝜀𝑖+1 = max
𝑥𝑘,𝑖+1 − 𝑥𝑘,𝑖

𝑥𝑘,𝑖+1
, 𝑘 = 1 … 𝑁

 Iterate until

𝜀𝑖 ≤ 𝜀𝑠

where 𝜀𝑠 is a chosen stopping criterion

51

K. Webb ESC 440

Jacobi Method – Matrix Form

 The Jacobi method iterative formula, (4), can be rewritten in matrix form:

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where 𝐃 is the diagonal elements of A

𝐃 =

𝑎1,1 0 ⋯ 0

0 𝑎2,2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 𝑎𝑁,𝑁

and
𝐌 = 𝐃−1 𝐃 − 𝐀

 Recall that the inverse of a diagonal matrix is given by inverting each diagonal
element

𝐃−𝟏 =

1/𝑎1,1 0 ⋯ 0

0 1/𝑎2,2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 1/𝑎𝑁,𝑁

(5)

(6)

52

K. Webb ESC 440

Jacobi Method – Example

 Consider the following system of equations

−4𝑥1 + 7𝑥3 = −5
2𝑥1 − 3𝑥2 + 5𝑥3 = −12
𝑥2 − 3𝑥3 = 3

 In matrix form:

−4 0 7
2 −3 5
0 1 −3

𝑥1

𝑥2

𝑥3

=
−5

−12
3

 Solve using the Jacobi method

53

K. Webb ESC 440

Jacobi Method – Example

 The iteration formula is

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where

𝐃 =
−4 0 0
0 −3 0
0 0 −3

 𝐃−1 =
−0.25 0 0

0 −0.333 0
0 0 −0.333

𝐌 = 𝐃−1 𝐃 − 𝐀 =
0 0 1.75

0.667 0 1.667
0 0.333 0

 To begin iteration, we need a starting point
 Initial guess for unknown values, 𝐱

 Often, we have some idea of the answer

 Here, arbitrarily choose

𝐱0 = 10 25 10 𝑇

54

K. Webb ESC 440

Jacobi Method – Example

 At each iteration, calculate

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

𝑥1,𝑖+1

𝑥2,𝑖+1

𝑥3,𝑖+1

=
0 0 1.75

0.667 0 1.667
0 0.333 0

𝑥1,𝑖

𝑥2,𝑖

𝑥3,𝑖

+
1.25

4
−1

 For 𝑖 = 0:

𝐱1 =

𝑥1,1

𝑥2,1

𝑥3,1

=
0 0 1.75

0.667 0 1.667
0 0.333 0

10
25
10

+
1.25

4
−1

𝐱1 = 18.75 27.33 7.33 𝑇

 The relative error is

𝜀1 = max
𝑥𝑘,1 − 𝑥𝑘,0

𝑥𝑘,1
= 0.467

55

K. Webb ESC 440

Jacobi Method – Example

 For 𝑖 = 1:

𝐱2 =

𝑥1,2

𝑥2,2

𝑥3,2

=
0 0 1.75

0.667 0 1.667
0 0.333 0

18.75
27.33
7.33

+
1.25

4
−1

𝐱2 = 14.08 28.72 8.11 𝑇

 The relative error is

𝜀2 = max
𝑥𝑘,2 − 𝑥𝑘,1

𝑥𝑘,1
= 0.331

 Continue to iterate until relative error falls below a specified
stopping condition

56

K. Webb ESC 440

Jacobi Method – Example

 Automate with computer code, e.g. Python

 Setup the system of equations

 Initialize matrices and parameters for iteration

57

K. Webb ESC 440

Jacobi Method – Example

 Loop to continue iteration as long as:
 Stopping criterion is not satisfied
 Maximum number of iterations is not exceeded

 On each iteration
 Use previous 𝐱 values to update 𝐱
 Calculate relative error
 Increment the number of iterations

58

K. Webb ESC 440

Jacobi Method – Example

 Set 𝜀𝑠 = 1 × 10−6 and iterate:

𝒊 𝐱𝒊 𝜺𝒊

0 10 25 10 𝑇 -

1 18.75 27.33 7.33 𝑇 0.467

2 14.08 28.72 8.11 𝑇 0.331

3 15.44 26.91 8.57 𝑇 0.088

4 16.25 28.59 7.97 𝑇 0.076

5 15.20 28.12 8.53 𝑇 0.070

6 16.18 28.35 8.37 𝑇 0.061

⋮ ⋮ ⋮

371 20.50 36.00 11.00 𝑇 0.995×10-6

 Convergence achieved in 371 iterations

59

K. Webb ESC 440

Linear Systems of Equations –
Iterative Solution – Gauss-Seidel

60

K. Webb ESC 440

Gauss-Seidel Method

 The iterative formula for the Jacobi method is

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 −

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖 −

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Note that only old values of 𝑥𝑛 (i.e. 𝑥𝑛,𝑖) are used to
update the value of 𝑥𝑘

 Assume the 𝑥𝑘,𝑖+1 values are determined in order of
increasing 𝑘
 When updating 𝑥𝑘,𝑖+1, all 𝑥𝑛,𝑖+1 values are already known

for 𝑛 < 𝑘

 We can use those updated values to calculate 𝑥𝑘,𝑖+1

 The Gauss-Seidel method

(4)

61

K. Webb ESC 440

Gauss-Seidel Method

 Now use the 𝑥𝑛 values already updated on the
current iteration to update 𝑥𝑘

 That is, 𝑥𝑛,𝑖+1 for 𝑛 < 𝑘

 Gauss-Seidel iterative formula

𝑥𝑘,𝑖+1 =
1

𝑎𝑘,𝑘
𝑦𝑘 −

𝑛=1

𝑘−1

𝑎𝑘,𝑛𝑥𝑛,𝑖+1 −

𝑛=𝑘+1

𝑁

𝑎𝑘,𝑛𝑥𝑛,𝑖 , 𝑘 = 1 … 𝑁

 Note that only the first summation has changed
 For already updated 𝑥 values

 𝑥𝑛 for 𝑛 < 𝑘

 Number of already-updated values used depends on 𝑘

(7)

62

K. Webb ESC 440

Gauss-Seidel – Matrix Form

 In matrix form the iterative formula is the same as for the Jacobi
method

𝐱𝑖+1 = 𝐌𝐱𝑖 + 𝐃−1𝐲

where, again

𝐌 = 𝐃−1 𝐃 − 𝐀

but now 𝐃 is the lower triangular part of 𝐀

𝐃 =

𝑎1,1 0 ⋯ 0

𝑎2,1 𝑎2,2 0 ⋮

⋮ ⋮ ⋱ 0
𝑎𝑁,1 𝑎𝑁,2 ⋯ 𝑎𝑁,𝑁

 Otherwise, the algorithm and computer code is identical to that of
the Jacobi method

(5)

(6)

63

K. Webb ESC 440

Gauss-Seidel – Example

 Apply Gauss-Seidel to our previous example

 𝑥0 = 10 25 10 𝑇

 𝜀𝑠 = 1 × 10−6

𝒊 𝐱𝒊 𝜺𝒊

0 10 25 10 𝑇 -

1 18.75 33.17 10.06 𝑇 0.875

2 18.85 33.32 10.11 𝑇 0.005

3 18.94 33.47 10.16 𝑇 0.005

4 19.03 33.61 10.20 𝑇 0.005

⋮ ⋮ ⋮

151 20.50 36.00 11.00 𝑇 0.995×10-6

 Convergence achieved in 151 iterations
 Compared to 371 for the Jacobi method

64

K. Webb ESC 440

We have seen how to apply the Newton-Raphson root-
finding algorithm to solve a single nonlinear equation.

We will now extend that algorithm to the solution of a
system of nonlinear equations

Nonlinear Systems of Equations65

K. Webb ESC 440

Nonlinear Systems of Equations

 Consider a system of nonlinear equations
 Can be represented as a vector of 𝑁 functions

 Each is a function of an 𝑁-vector of unknown variables

𝐲 =

𝑦1

𝑦2

⋮
𝑦𝑁

= 𝐟 𝐱 =

𝑓1 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

𝑓2 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

⋮
𝑓𝑁 𝑥1, 𝑥2, ⋯ , 𝑥𝑁

 As we did when applying Newton-Raphson to find the root of a single
equation, we can again approximate this function as linear (i.e., a first-
order Taylor series approximation)

𝐲 = 𝐟 𝐱 ≈ 𝐟 𝐱0 + 𝐟′ 𝐱0 𝐱 − 𝐱0 (8)

 Note that all variables are 𝑁-vectors
◼ 𝐟 is an 𝑁-vector of known, nonlinear functions

◼ 𝐱 is an 𝑁-vector of unknown values – this is what we want to solve for

◼ 𝐲 is an 𝑁-vector of known values

◼ 𝐱𝟎 is an 𝑁-vector of 𝐱 values for which 𝐟 𝐱0 is known

66

K. Webb ESC 440

Newton-Raphson Method

 Equation (8) is the basis for our Newton-Raphson iterative formula
 Let it be an equality and solve for 𝐱

𝐲 − 𝐟 𝐱0 = 𝐟′ 𝐱0 𝐱 − 𝐱0

𝐟′ 𝐱0
−𝟏 𝐲 − 𝐟 𝐱0 = 𝐱 − 𝐱0

𝐱 = 𝐱0 + 𝐟′ 𝐱0
−𝟏 𝐲 − 𝐟 𝐱0

 This last expression can be used as an iterative formula

𝐱𝑖+1 = 𝐱𝑖 + 𝐟′ 𝐱𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖

 The derivative term on the right-hand side of (8) is an 𝑁 × 𝑁 matrix
 The Jacobian matrix, 𝐉

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖 (9)

67

K. Webb ESC 440

The Jacobian Matrix

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖

 Jacobian matrix

 𝑁 × 𝑁 matrix of partial derivatives for 𝐟 𝐱

 Evaluated at the current value of 𝐱, 𝐱𝑖

𝐉𝑖 =

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓1

𝜕𝑥𝑁

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
⋯

𝜕𝑓2

𝜕𝑥𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑁

𝜕𝑥1

𝜕𝑓𝑁

𝜕𝑥2
⋯

𝜕𝑓𝑁

𝜕𝑥𝑁 𝐱=𝐱𝑖

(9)

68

K. Webb ESC 440

Newton-Raphson Method

𝐱𝑖+1 = 𝐱𝑖 + 𝐉𝑖
−𝟏 𝐲 − 𝐟 𝐱𝑖 (9)

 We could iterate (9) until convergence or a maximum
number of iterations is reached
 Requires inversion of the Jacobian matrix

◼ Computationally expensive and error prone

 Instead, go back to the Taylor series approximation

𝐲 = 𝐟 𝐱𝑖 + 𝐉𝑖 𝐱𝑖+1 − 𝐱𝑖

𝐲 − 𝐟 𝐱𝑖 = 𝐉𝑖 𝐱𝑖+1 − 𝐱𝑖 (10)

 Left side of (21) represents a difference between the known and
approximated outputs

 Right side represents an increment of the approximation for 𝐱

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖 (11)

69

K. Webb ESC 440

Newton-Raphson Method

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖

 On each iteration:

 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve for Δ𝐱𝑖 using Gaussian elimination

◼ Matrix inversion not required

◼ Computationally robust

 Update 𝐱

𝐱𝑖+1 = 𝐱𝑖 + Δ𝐱𝑖

(12)

(13)

70

K. Webb ESC 440

Newton-Raphson – Example

 Apply Newton-Raphson to solve the following system of
nonlinear equations

𝐟 𝐱 = 𝐲

𝑥1
2 + 3𝑥2

𝑥1𝑥2
=

21
12

 Initial condition: 𝐱0 = 1 2 𝑇

 Stopping criterion: 𝜀𝑠 = 1 × 10−6

 Jacobian matrix

𝐉𝑖 =

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2 𝐱=𝐱𝑖

=
2𝑥1,𝑖 3
𝑥2,𝑖 𝑥1,𝑖

71

K. Webb ESC 440

Newton-Raphson – Example

Δ𝐲𝑖 = 𝐉𝑖Δ𝐱𝑖

𝐱𝑖+1 = 𝐱𝑖 + Δ𝐱𝑖

 For iteration 𝑖:

 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve (12) for Δ𝐱𝑖

 Update 𝐱 using (13)

(12)

(13)

72

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 0:

Δ𝐲0 = 𝐲 − 𝐟 𝐱0 =
21
12

−
7
2

=
14
10

𝐉0 =
2𝑥1,0 3
𝑥2,0 𝑥1,0

=
2 3
2 1

Δ𝐱0 =
4
2

𝐱1 = 𝐱0 + Δ𝐱0 =
1
2

+
4
2

=
5
4

𝜀1 = max
𝑥𝑘,1 − 𝑥𝑘,0

𝑥𝑘,1
, 𝑘 = 1 … 𝑁

𝑥1 =
5
4

, 𝜀1 = 0.8

73

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 1:

Δ𝐲1 = 𝐲 − 𝐟 𝐱1 =
21
12

−
37
20

=
−16
−8

𝐉1 =
2𝑥1,1 3
𝑥2,1 𝑥1,1

=
10 3
4 5

Δ𝐱1 =
−1.474
−0.421

𝐱2 = 𝐱1 + Δ𝐱1 =
5
4

+
−1.474
−0.421

=
3.526
3.579

𝜀2 = max
𝑥𝑘,2 − 𝑥𝑘,1

𝑥𝑘,1
, 𝑘 = 1 … 𝑁

𝑥2 =
3.526
3.579

, 𝜀2 = 0.418

74

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 2:

Δ𝐲2 = 𝐲 − 𝐟 𝐱2 =
21
12

−
23.172
12.621

=
−2.172
−0.621

𝐉2 =
2𝑥1,2 3
𝑥2,2 𝑥1,2

=
7.053 3
3.579 3.526

Δ𝐱2 =
−0.410
 0.240

𝐱3 = 𝐱2 + Δ𝐱2 =
3.526
3.579

+
−0.410
 0.240

=
3.116
3.819

𝜀3 = max
𝑥𝑘,3 − 𝑥𝑘,2

𝑥𝑘,2
, 𝑘 = 1 … 𝑁

𝑥3 =
3.116
3.819

, 𝜀3 = 0.132

75

K. Webb ESC 440

Newton-Raphson – Example

 𝑖 = 6:

Δ𝐲6 = 𝐲 − 𝐟 𝐱6 =
21
12

−
21.000
12.000

= −0.527 × 10−7

0.926 × 10−7

𝐉6 =
2𝑥1,6 3
𝑥2,6 𝑥1,6

=
6.000 3
4.000 3.000

Δ𝐱6 = −0.073 × 10−6

 0.128 × 10−6

𝐱7 = 𝐱6 + Δ𝐱6 =
3.000
4.000

+ −0.073 × 10−6

 0.128 × 10−6 =
3.000
4.000

𝜀7 = max
𝑥𝑘,7 − 𝑥𝑘,6

𝑥𝑘,6
, 𝑘 = 1 … 𝑁

𝑥7 =
3.000
4.000

, 𝜀7 = 31.9 × 10−9

76

K. Webb ESC 440

Newton-Raphson – Python Code

 Define the system of equations

 Initialize 𝐱

 Set up solution parameters

77

K. Webb ESC 440

Newton-Raphson – Python Code

 Iterate:
 Compute Δ𝐲𝑖 and 𝐉𝑖

 Solve for Δ𝐱𝑖

 Update 𝐱

78

	Slide 1: Section 3: Systems of Equations
	Slide 2: Introduction
	Slide 3: A System of Equations – Example
	Slide 4: A System of Equations – Example
	Slide 5: A System of Equations – Example
	Slide 6: A System of Equations – Example
	Slide 7: A System of Equations – Example
	Slide 8: Matrix notation
	Slide 9: Solving Systems of Equations with Python
	Slide 10: System as a Matrix Equation
	Slide 11: Solving the Matrix Equation
	Slide 12: Solving the Matrix Equation
	Slide 13: Solving the Matrix Equation
	Slide 14: Example – Solving Using NumPy
	Slide 15: Example – Solving Using NumPy
	Slide 16: Techniques for Solving Linear Systems
	Slide 17: Solving Systems of Linear Equations
	Slide 18: Graphical Solution
	Slide 19: Graphical Solution
	Slide 20: Unique Solution
	Slide 21: No Solution
	Slide 22: Infinite Solutions
	Slide 23: Ill-Conditioned System
	Slide 24: Singularity and the Coefficient Matrix, bold cap A.
	Slide 25: Ill-Conditioned Systems
	Slide 26: Rank of the Coefficient Matrix, bold cap A.
	Slide 27: Gaussian Elimination
	Slide 28: Gaussian Elimination
	Slide 29: Gaussian Elimination – the Basic Algorithm
	Slide 30: Forward Elimination of Unknowns
	Slide 31: Forward Elimination of Unknowns
	Slide 32: Forward Elimination of Unknowns
	Slide 33: Forward Elimination of Unknowns
	Slide 34: Elimination of Unknowns - Terminology
	Slide 35: Forward Elimination of Unknowns
	Slide 36: Back-Substitution
	Slide 37: Back-Substitution
	Slide 38: Back-Substitution
	Slide 39: Algorithm Summary
	Slide 40: Partial Pivoting
	Slide 41: Gaussian Elimination - Example
	Slide 42: Example – Truss Analysis
	Slide 43: Example – Truss Analysis
	Slide 44: Example – Truss Analysis
	Slide 45: Example – Truss Analysis
	Slide 46: Gaussian Elimination
	Slide 47: Linear Systems of Equations – Iterative Solution – Jacobi Method
	Slide 48: Jacobi Method
	Slide 49: Jacobi Method
	Slide 50: Jacobi Method
	Slide 51: Convergence
	Slide 52: Jacobi Method – Matrix Form
	Slide 53: Jacobi Method – Example
	Slide 54: Jacobi Method – Example
	Slide 55: Jacobi Method – Example
	Slide 56: Jacobi Method – Example
	Slide 57: Jacobi Method – Example
	Slide 58: Jacobi Method – Example
	Slide 59: Jacobi Method – Example
	Slide 60: Linear Systems of Equations – Iterative Solution – Gauss-Seidel
	Slide 61: Gauss-Seidel Method
	Slide 62: Gauss-Seidel Method
	Slide 63: Gauss-Seidel – Matrix Form
	Slide 64: Gauss-Seidel – Example
	Slide 65: Nonlinear Systems of Equations
	Slide 66: Nonlinear Systems of Equations
	Slide 67: Newton-Raphson Method
	Slide 68: The Jacobian Matrix
	Slide 69: Newton-Raphson Method
	Slide 70: Newton-Raphson Method
	Slide 71: Newton-Raphson – Example
	Slide 72: Newton-Raphson – Example
	Slide 73: Newton-Raphson – Example
	Slide 74: Newton-Raphson – Example
	Slide 75: Newton-Raphson – Example
	Slide 76: Newton-Raphson – Example
	Slide 77: Newton-Raphson – Python Code
	Slide 78: Newton-Raphson – Python Code

