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Curve Fitting

 Often, we have data, 𝑦, that is a function of some 
independent variable, 𝑥, 
 Possibly noisy measurement data

 Underlying 
relationship is 
unknown
 Know 𝑥’s and 𝑦’s 

(approximately)
 But, don’t know 

𝑦 = 𝑓 𝑥



K. Webb ESC 440

4

Curve Fitting

 May want to determine a function (i.e., a curve) 
that ‘best’ describes relationship between 𝑥 and 𝑦

 An approximation 
to (the unknown) 
𝑦 = 𝑓 𝑥

 This is curve fitting
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Regression vs. Interpolation

We’ll look at two categories of curve fitting:

 Least-squares regression

 Noisy data – uncertainty in 𝑦 value for a given 𝑥 value

 Want “good” agreement between 𝑓(𝑥) and data points

◼ Curve (i.e., 𝑓 𝑥 ) may not pass through any data points

 Polynomial interpolation

 Data points are known exactly – noiseless data

 Resulting curve passes through all data points
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Before moving on to discuss least-squares 
regression, we’ll first review a few basic 
concepts from statistics.

Review of Basic Statistics6
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Basic Statistical Quantities

 Arithmetic mean – the average or expected value

ത𝑦 =
σ 𝑦𝑖

𝑛

 Standard deviation (unbiased) – a measure of the spread of the data 
about the mean

𝜎 =
𝑆𝑡

𝑛 − 1

where 𝑆𝑡 is the total sum of the squares of the residuals

𝑆𝑡 = ෍ 𝑦𝑖 − ത𝑦 2



K. Webb ESC 440

8

Basic Statistical Quantities

 Variance – another measure of spread

 The square of the standard deviation

 Useful measure due to relationship with power and 
power spectral density of a signal or data set

𝜎2 =
𝑆𝑡

𝑛 − 1
=

σ 𝑦𝑖 − ത𝑦 2

𝑛 − 1
or

𝜎2 =
σ 𝑦𝑖

2 −
σ 𝑦𝑖

2

𝑛
𝑛 − 1
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Normal (Gaussian) Distribution

 Many naturally-occurring random process are 
normally-distributed

 Measurement noise

 Very often assume noise in our data is Gaussian

 Probability density function (pdf):

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2

where 𝜎2 is the variance, and 𝜇 is the mean of the 
random variable, 𝑥
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Random Number Generation – default_rng()

 Very often useful to generate random numbers

 Simulating the effect of noise

 Monte Carlo simulation, etc.

 First, construct a random-number generator object 
using NumPy:

rng = np.random.default_rng(seed)

 seed: optional initialization seed for generator

 rng: initialized generator object – will run methods on 
this object to generate random numbers
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Normally-Distributed Random Numbers

 Generate random values from a normal (Gaussian) 
distribution

x = rng.normal(loc=0, scale=1, size=1)

 rng: generator object created with default_rng()

 loc: optional mean of distribution – default: 0.0

 scale: optional standard deviation – default: 1.0

 size: optional dimension of resulting array

 x: resulting array of random values
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Uniformly-Distributed Random Numbers

 Generate random values from a uniform distribution on 
the interval [low, high)

x = rng.uniform(low=0, high=1, size=1)

 rng: generator object created with default_rng()

 low: optional lower bound of interval – default: 0.0

 high: optional upper bound of interval – default: 1.0

 size: optional dimension of resulting array – default: 1

 x: resulting array of random values

 Half-open interval:
 Resulting values are ≥ low and < high
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NumPy Statistical Functions

 NumPy includes many statistical functions, 
including:

 np.max()

 np.min()

 np.mean()

 np.std()

 np.median()

 np.var()

 np.cov()
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Histogram Plots

 Histogram plots

 Graphical depiction of the variation of random quantities
◼ Plots the frequency of occurrence of ranges (bins) of values

 Provides insight into the nature of the distribution

plt.hist(x, bins=20, edgecolor='k’)

 x: data to be histogrammed 

 bins: optional number of bins

 edgecolor: optional color of bin outlines – default: none
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Statistics in NumPy, matplotlib
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Linear Least-Squares Regression16
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Linear Regression

 Noisy data, 𝑦, values 
at known 𝑥 values

 Suspect relationship 
between 𝑥 and 𝑦 is 
linear

 i.e., assume
𝑦 = 𝑎0 + 𝑎1𝑥

 Determine 𝑎0 and 𝑎1 
that define the “best-
fit” line for the data

 How do we define the 
“best fit”? 
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Measured Data

 Assumed a linear relationship between 𝑥 and 𝑦:

𝑦 = 𝑎0 + 𝑎1𝑥

 Due to noise, can’t measure 𝒚 exactly at each 𝒙

 Can only approximate 𝑦 values

ො𝑦 = 𝑦 + 𝑒

 Measured values are approximations

 True value of 𝑦 plus some random error or residual

ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒
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Best Fit Criteria

 Noisy data do not all line on a single line – discrepancy 
between each point and the line fit to the data
 The error, or residual:

𝑒 = ො𝑦 − 𝑎0 − 𝑎1𝑥

 Minimize some measure of this residual:

 Minimize the sum of the residuals
◼ Positive and negative errors can cancel
◼ Non-unique fit

 Minimize the sum of the absolute values of the residuals
◼ Effect of sign of error eliminated, but still not a unique fit

 Minimize the maximum error – minimax criterion
◼ Excessive influence given to single outlying points
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Least-Squares Criterion

 Better fitting criterion is to minimize the sum of the 
squares of the residuals

𝑆𝑟 = ෍ 𝑒𝑖
2 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖

2

 Yields a unique best-fit line for a given set of data

 The sum of the squares of the residuals is a function 
of the two fitting parameters, 𝑎0 and 𝑎1, 𝑆𝑟 𝑎0, 𝑎1

 Minimize 𝑆𝑟 by setting its partial derivatives to zero 
and solving for 𝑎0 and 𝑎1
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Least-Squares Criterion

 At its minimum point, partial derivatives of 𝑆𝑟 with respect to 𝑎0 and 
𝑎1 will be zero

𝜕𝑆𝑟

𝜕𝑎0
= −2 ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 = 0

𝜕𝑆𝑟

𝜕𝑎1
= −2 ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 𝑥𝑖 = 0

 Breaking up the summation:

෍ ො𝑦𝑖 − ෍ 𝑎0 − ෍ 𝑎1𝑥𝑖 = 0

෍ 𝑥𝑖 ො𝑦𝑖 − ෍ 𝑎0𝑥𝑖 − ෍ 𝑎1𝑥𝑖
2 = 0
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Normal Equations

 𝜕𝑆𝑟/𝜕𝑎0 = 0 and 𝜕𝑆𝑟/𝜕𝑎1 = 0 form a system of two 
equations with two unknowns, 𝑎0 and 𝑎1

 𝑛 𝑎0 + ෍ 𝑥𝑖 𝑎1 = ෍ ො𝑦𝑖  (1)

෍ 𝑥𝑖 𝑎0 + ෍ 𝑥𝑖
2 𝑎1 = ෍ 𝑥𝑖 ො𝑦𝑖  (2)

 In matrix form:

𝑛 ෍ 𝑥𝑖

෍ 𝑥𝑖 ෍ 𝑥𝑖
2

𝑎0

𝑎1
=

෍ ො𝑦𝑖

෍ 𝑥𝑖 ො𝑦𝑖

 (3)

 These are the normal equations
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Normal Equations

 Normal equations can be solved for 𝑎0 and 𝑎1:

𝑎1 =
𝑛 σ 𝑥𝑖 ො𝑦𝑖 − σ 𝑥𝑖 σ ො𝑦𝑖

𝑛 σ 𝑥𝑖
2 − σ 𝑥𝑖

2

𝑎0 =
σ ො𝑦𝑖 − 𝑎1 σ 𝑥𝑖

𝑛
= ത𝑦 − 𝑎1 ҧ𝑥

 Or solve the matrix form of the normal equations, (3), 
in Python using np.linalg.solve()
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Linear Least-Squares - Example

 Noisy data with 
suspected linear 
relationship

 Calculate summation 
terms in the normal 
equations:

 𝑛, Σ𝑥𝑖, Σ ො𝑦𝑖, Σ𝑥𝑖
2, Σ𝑥𝑖 ො𝑦𝑖
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Linear Least-Squares - Example

 Assemble normal 
equation matrices

 Solve normal 
equations for vector of 
coefficients, 𝐚, using 
np.linalg.solve()
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Goodness of Fit

 How well does a function fit the data?
 Is a linear fit best? A quadratic, higher-order polynomial, or 

other non-linear function?
 Want a way to be able to quantify goodness of fit

 Quantify spread of data about the mean prior to regression:

𝑆𝑡 = ෍ ො𝑦𝑖 − ത𝑦 2

 Following regression, quantify spread of data about the 
regression line (or curve):

𝑆𝑟 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖
2
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Goodness of Fit

 𝑆𝑡 quantifies the spread of the data about the mean

 𝑆𝑟 quantifies spread about the best-fit line (curve)

 The spread that remains after the trend is explained

 The unexplained sum of the squares

 𝑆𝑡 − 𝑆𝑟 represents the reduction in data spread 
after regression explains the underlying trend

 Normalize to 𝑆𝑡 - the coefficient of determination

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡
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Coefficient of Determination

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡

 For a perfect fit:
 No variation in data about the regression line

 𝑆𝑟 = 0 →  𝑟2 = 1

 If the fit provides no improvement over simply 
characterizing data by its mean value:

 𝑆𝑟 = 𝑆𝑡  →  𝑟2 = 0

 If the fit is worse at explaining the data than their mean 
value:

 𝑆𝑟 > 𝑆𝑡  →  𝑟2 < 0
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Coefficient of Determination

 Calculate 𝑟2 for 
previous example:



K. Webb ESC 440

30

Coefficient of Determination

 Don’t rely too heavily on the value of  𝑟2

 Anscombe’s famous data sets:

 Same line fit to all four data sets
 𝑟2 = 0.67 in each case

Chapra
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Nonlinear functions

 Not all data can be explained by a linear 
relationship to an independent variable, e.g.

 Exponential model

𝑦 = 𝛼𝑒𝛽𝑥

 Power equation

𝑦 = 𝛼𝑥𝛽

 Saturation-growth-rate equation

𝑦 = 𝛼
𝑥

𝛽 + 𝑥
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Nonlinear functions

Methods for nonlinear curve fitting:

 Linearization of the nonlinear relationship

 Transform the dependent and/or independent data 
values

 Apply linear least-squares regression

 Inverse transform the determined coefficients back to 
those that define the nonlinear functional relationship

 Nonlinear regression

 Treat as an optimization problem – more later…
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Linearizing an Exponential Relationship

 Linearize the fitting 
equation:

ln 𝑦 = ln 𝛼 + 𝛽𝑥
or

ln 𝑦 = 𝑎0 + 𝑎1𝑥

where

𝑎0 = ln 𝛼 ,  𝑎1 = 𝛽

 Have noisy data that is believed to be best described 
by an exponential relationship

𝑦 = 𝛼𝑒𝛽𝑥
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Linearizing an Exponential Relationship

 Determine 𝑎0 and 𝑎1:

ln 𝑦 = 𝑎0 + 𝑎1𝑥

 Can calculate 𝑟2 for 
the line fit to the 
transformed data

 Note that original 
data must be positive

 Fit a line to the transformed data using linear least-
squares regression
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Linearizing an Exponential Relationship

 Exponential fit:

𝑦 = 𝛼𝑒𝛽𝑥

where
𝛼 = 𝑒𝑎0  ,     𝛽 = 𝑎1

 Note that 𝑟2 is 
different than that for 
the line fit to the 
transformed data

 Transform the linear fitting parameters, 𝑎0 and 𝑎1, back 
to the parameters defining the exponential relationship
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Linearizing an Exponential Relationship
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Linearizing a Power Equation

 Linearize the fitting 
equation:

log 𝑦 = log 𝛼 + 𝛽 log 𝑥

or

log 𝑦 = 𝑎0 + 𝑎1 log 𝑥

where

𝑎0 = log 𝛼 ,  𝑎1 = 𝛽

 Have noisy data that is believed to be best described 
by an power equation

𝑦 = 𝛼𝑥𝛽
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Linearizing a Power Equation

 Determine 𝑎0 and 𝑎1:

log 𝑦 = 𝑎0 + 𝑎1 log 𝑥

 Can calculate 𝑟2 for the 
line fit to the 
transformed data

 Note that original data – 
both 𝑥 and 𝑦 – must be 
positive

 Fit a line to the transformed data using linear least-
squares regression
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Linearizing a Power Equation

 Power equation:

𝑦 = 𝛼𝑥𝛽

where

𝛼 = 10𝑎0  ,     𝛽 = 𝑎1

 Note that 𝑟2 is 
different than that for 
the line fit to the 
transformed data

 Transform the linear fitting parameters, 𝑎0 and 𝑎1, back 
to the parameters defining the power equation
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Linearizing a Power Equation
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Linearizing a Saturation Growth-Rate Equation

 Linearize the fitting equation:

1

𝑦
=

1

𝛼
+

𝛽

𝛼

1

𝑥

or

1

𝑦
= 𝑎0 + 𝑎1

1

𝑥

where

𝑎0 =
1

𝛼
 ,     𝑎1 =

𝛽

𝛼

 Have noisy data that is believed to be best described by a 
saturation growth-rate equation

𝑦 = 𝛼
𝑥

𝛽 + 𝑥
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Linearizing a Saturation Growth-Rate Equation

 Determine 𝑎0 and 𝑎1:

1

𝑦
= 𝑎0 + 𝑎1

1

𝑥

 Can calculate 𝑟2 for 
the line fit to the 
transformed data

 

 Fit a line to the transformed data using linear least-
squares regression
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Linearizing a Saturation Growth-Rate Equation

 Saturation growth-rate 
equation:

𝑦 = 𝛼
𝑥

𝛽 + 𝑥

where

𝛼 =
1

𝑎0
,     𝛽 =

𝑎1

𝑎0

 Note that 𝑟2 is different 
than that for the line fit 
to the transformed data

 Transform the linear fitting parameters, 𝑎0 and 𝑎1, back to the 
parameters defining the saturation growth-rate equation
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Linearizing a Saturation Growth-Rate Equation
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Polynomial Regression46
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Polynomial Regression

 So far we’ve looked at fitting straight lines to linear 
and linearized data sets

 Can also fit mth-order polynomials directly to data 
using polynomial regression

 Same fitting criterion as linear regression:

 Minimize the sum of the squares of the residuals

◼ m+1 fitting parameters for an mth-order polynomial

◼ m+1 normal equations
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Polynomial Regression

 Assume, for example, that we have data we believe 
to be quadratic in nature

 2nd-order polynomial regression

 Fitting equation:

ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑒

 Best fit will minimize the sum of the squares of the 
residuals:

𝑆𝑟 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 2
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Polynomial Regression – Normal Equations

 Best-fit polynomial coefficients will minimize 𝑆𝑟

 Differentiate 𝑆𝑟 w.r.t. each coefficient and set to zero

𝜕𝑆𝑟

𝜕𝑎0
= −2 ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2 = 0

𝜕𝑆𝑟

𝜕𝑎1
= −2 ෍ 𝑥𝑖 ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2 = 0

𝜕𝑆𝑟

𝜕𝑎2
= −2 ෍ 𝑥𝑖

2 ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 = 0
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Polynomial Regression – Normal Equations

 Rearranging the normal equations yields

 𝑛 𝑎0 + Σ𝑥𝑖 𝑎1 + Σ𝑥𝑖
2 𝑎2 = Σ ො𝑦𝑖

Σ𝑥𝑖 𝑎0 + Σ𝑥𝑖
2 𝑎1 + Σ𝑥𝑖

3 𝑎2 = Σ𝑥𝑖 ො𝑦𝑖

Σ𝑥𝑖
2 𝑎0 + Σ𝑥𝑖

3 𝑎1 + Σ𝑥𝑖
4 𝑎2 = Σ𝑥𝑖

2 ො𝑦𝑖

 Which can be put into matrix form:

𝑛 Σ𝑥𝑖 Σ𝑥𝑖
2

Σ𝑥𝑖 Σ𝑥𝑖
2 Σ𝑥𝑖

3

Σ𝑥𝑖
2 Σ𝑥𝑖

3 Σ𝑥𝑖
4

𝑎0

𝑎1

𝑎2

=

Σ ො𝑦𝑖

Σ𝑥𝑖 ො𝑦𝑖

Σ𝑥𝑖
2 ො𝑦𝑖

 This system of equations can be solved for the vector of 
unknown coefficients using NumPy’s linalg.solve()



K. Webb ESC 440

51

Polynomial Regression – Normal Equations

 For mth-order polynomial regression the normal 
equations are:

𝑛 Σ𝑥𝑖 ⋯ Σ𝑥𝑖
𝑚

Σ𝑥𝑖 Σ𝑥𝑖
2 ⋯ Σ𝑥𝑖

𝑚+1

⋮ ⋮ ⋱ ⋮
Σ𝑥𝑖

𝑚 Σ𝑥𝑖
𝑚+1 ⋯ Σ𝑥𝑖

2𝑚

𝑎0

𝑎1

⋮
𝑎𝑚

=

Σ ො𝑦𝑖

Σ𝑥𝑖 ො𝑦𝑖

⋮
Σ𝑥𝑖

𝑚 ො𝑦𝑖

 Again, this system of 𝑚 + 1 equations can be solved for the 
vector of 𝑚 + 1 unknown polynomial coefficients using 
NumPy’s linalg.solve()
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Polynomial Regression – Example 
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Polynomial Regression – np.polyfit()

p = np.polyfit(x,y,m)

 x: 𝑛-vector of independent variable data values
 y: 𝑛-vector of dependent variable data values 
 m: order of the polynomial to be fit to the data
 p: (𝑚 + 1)-vector of best-fit polynomial coefficients

 Least-squares polynomial regression if:

 𝑛 > 𝑚 + 1
 i.e., for over-determined systems

 Polynomial interpolation if:

 𝑛 = 𝑚 + 1
 Resulting fit passes through all (x,y) points – more later
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Polynomial Regression – np.polyfit()

 Note that the result 
matches that obtained by 
solving normal equations
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 Determine the 4th-order polynomial with roots 

at 𝑥 = {1, 5, 16, 19}

 Generate noiseless data points by evaluating this 
polynomial at integer values of 𝑥 from 0 to 20

 Add Gaussian white noise with a standard 
deviation of 𝜎 = 180 to your data points

 Use np.polyfit() to fit a 4th-order polynomial 
to the noisy data

 Calculate the coefficient of determination, 𝑟2

 Plot the noisy data points, along with the best-fit 
polynomial

Polynomial Regression Using np.polyfit()
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Multiple Linear Regression56
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Multiple Linear Regression

 We have so far fit lines or curves to data described by 
functions of a single variable

 For functions of multiple variables, fit planes or 
surfaces to data

 Linear function of two independent variables: multiple 
linear regression

ො𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑒

 Sum of the squares of the residuals is now

𝑆𝑟 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥1,𝑖 − 𝑎2𝑥2,𝑖
2
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Multiple Linear Regression – Normal Equations

 Differentiate 𝑆𝑟 w.r.t. fitting coefficients and equate 
to zero

 The normal equations:

𝑛 Σ𝑥1,𝑖 Σ𝑥2,𝑖

Σ𝑥1,𝑖 Σ𝑥1,𝑖
2 Σ𝑥1,𝑖𝑥2,𝑖

Σ𝑥2,𝑖 Σ𝑥1,𝑖𝑥2,𝑖 Σ𝑥2,𝑖
2

𝑎0

𝑎1

𝑎2

=

Σ ො𝑦𝑖

Σ𝑥1,𝑖 ො𝑦𝑖

Σ𝑥2,𝑖 ො𝑦𝑖

 Solve as before – now fitting coefficients, 𝑎𝑖, define 
a plane



K. Webb ESC 440

General Linear Least-Squares Regression59



K. Webb ESC 440

60

General Linear Least-Squares

 We’ve seen three types of least-squares regression
 Linear regression

 Polynomial regression

 Multiple linear regression

 All are special cases of general linear least-squares 
regression 

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 The 𝑧𝑖’s are 𝑚 + 1 basis functions
 Basis functions may be nonlinear

 This is linear regression, because dependence on fitting 
coefficients, 𝑎𝑖, is linear
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General Linear Least-Squares

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 For linear regression – simple or multiple:

𝑧0 = 1,  𝑧1 = 𝑥1,  𝑧2 = 𝑥2,  …  𝑧𝑚 = 𝑥𝑚

 For polynomial regression:

𝑧0 = 1,  𝑧1 = 𝑥,  𝑧2 = 𝑥2,  …  𝑧𝑚 = 𝑥𝑚

 In all cases, this is a linear combination of basis 
function, which may, themselves, be nonlinear
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General Linear Least-Squares

 The general linear least-squares model:

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 Can be expressed in matrix form:

ො𝐲 = 𝐙 𝐚 + 𝐞

where 𝐙 is an 𝑛 × 𝑚 + 1  matrix, the design matrix, whose entries are 
the 𝑚 + 1  basis functions evaluated at the 𝑛 independent variable 
values corresponding to the 𝑛 measurements:

𝐙 =

𝑧01 𝑧11 ⋯ 𝑧𝑚1
𝑧02 𝑧12 ⋯ 𝑧𝑚2

⋮ ⋮ ⋱ ⋮
𝑧0𝑛 𝑧1𝑛 ⋯ 𝑧𝑚𝑛

where 𝑧𝑖𝑗 is the 𝑖𝑡ℎ basis function evaluated at the 𝑗𝑡ℎ independent 
variable value. (Note: 𝑖 is not the row index and 𝑗 is not the column index, 
here.)
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General Linear Least-Squares

 The least-squares model is:

𝑧01 𝑧11 ⋯ 𝑧𝑚1

𝑧02 𝑧12 ⋯ 𝑧𝑚2

⋮ ⋮ ⋱ ⋮
𝑧0𝑛 𝑧1𝑛 ⋯ 𝑧𝑚𝑛

𝑎0

𝑎1

⋮
𝑎𝑚

+

𝑒1

𝑒2

⋮
𝑒𝑛

=

ො𝑦1

ො𝑦2

⋮
ො𝑦𝑛

 More measurements than coefficients

 𝑛 > 𝑚 + 1

 𝐙 is not square – tall and narrow

 Over-determined system

 𝐙−𝟏 does not exist
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General Linear Least-Squares – Design Matrix Example

 For example, consider fitting a quadratic to five 
measured values, ො𝐲, at 𝐱 = 1, 2, 3, 4, 5 𝑇

 Model is:
ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑒

 Basis functions are 𝑧0 = 1, 𝑧1 = 𝑥, and 𝑧2 = 𝑥2

 Least-squares equation is 

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

𝑎0

𝑎1

𝑎2

=

ො𝑦1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦5

−

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5
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General Linear Least-Squares – Residuals

 Linear least-squares model is:

ො𝐲 = 𝐙 𝐚 + 𝐞  (1)

 Residual:

𝐞 = ො𝐲 − 𝐲 = ො𝐲 − 𝐙 𝐚  (2)

 Sum of the squares or the residuals:

𝑆𝑟 = σ 𝑒𝑖
2 = 𝐞𝐓𝐞 = ො𝐲 − 𝐙 𝐚 𝐓 ො𝐲 − 𝐙 𝐚   (3)

 Expanding,

𝑆𝑟 = ො𝐲𝐓 ො𝐲 − 𝐚𝐓𝐙𝐓 ො𝐲 − ො𝐲𝐓𝐙𝐚 + 𝐚𝐓𝐙𝐓𝐙𝐚         (4)
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Deriving the Normal Equations

 Best fit will minimize the sum of the squares of the 
residuals
 Differentiate 𝑆𝑟 with respect to the coefficient vector, 𝐚, and 

set to zero

𝑑𝑆𝑟

𝑑𝐚
=

𝑑

𝑑𝐚
ො𝐲𝐓 ො𝐲 − 𝐚𝐓𝐙𝐓 ො𝐲 − ො𝐲𝐓𝐙𝐚 + 𝐚𝐓𝐙𝐓𝐙𝐚 = 𝟎 (5)

 We’ll need to use some matrix calculus identities:



𝑑

𝑑𝐚
𝐚𝐓𝐙𝐓𝐲 = 𝐙𝐓𝐲 



𝑑

𝑑𝐚
𝐲𝐓𝐙𝐚 = 𝐙𝐓𝐲               (6)



𝑑

𝑑𝐚
𝐚𝐓𝐙𝐓𝐙𝐚 = 𝟐𝐙𝐓𝐙𝐚
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Deriving the Normal Equations

𝑑𝑆𝑟

𝑑𝐚
=

𝑑

𝑑𝐚
ො𝐲𝐓 ො𝐲 − 𝐚𝐓𝐙𝐓 ො𝐲 − ො𝐲𝐓𝐙𝐚 + 𝐚𝐓𝐙𝐓𝐙𝐚 = 𝟎

 Using the matrix derivative relationships, (6), 
𝑑𝑆𝑟

𝑑𝐚
= −2𝐙𝐓 ො𝐲 + 2𝐙𝐓𝐙𝐚 = 𝟎 (7)

 Equation (7) is the matrix form of the normal 
equations:

𝐙𝐓𝐙𝐚 = 𝐙𝐓 ො𝐲 (8)

 Solution to (8) is the vector of least-squares fitting 
coefficients:

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲 (9)
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Solving the Normal Equations

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲 (9)

 Remember, our starting point was the linear least-
squares model:

𝐲 = 𝐙 𝐚 (10)

 Couldn’t we have solved (10) for fitting coefficients as

𝐚 = 𝐙−𝟏𝐲 (11)

 No, must solve using (9), because: 
 Don’t have 𝐲, only noisy approximations, ො𝐲 
 We have an over-determined system 

◼ 𝐙 is not square 
◼ 𝐙−𝟏 does not exist



K. Webb ESC 440

69

Solving the Normal Equations

 Solution to the linear least-squares problem is:

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲 = 𝐙† ො𝐲 (12)

where

𝐙† = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 (13)

is the Moore-Penrose pseudo-inverse of 𝐙

 Use the pseudo-inverse to find the least-squares 
solutions to an over-determined system
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Coefficient of Determination

 Goodness of fit characterized by the coefficient of 
determination:

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡

where 𝑆𝑟 is given by (3)

𝑆𝑟 = ො𝐲 − 𝐙 𝐚 𝐓 ො𝐲 − 𝐙 𝐚   (14)

and

𝑆𝑡 = ො𝐲 − ത𝐲 𝐓 ො𝐲 − ത𝐲   (15)
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General Least-Squares in Python

 Have 𝑛 measurements

ො𝑦 = ො𝑦0 ො𝑦1 ⋯ ො𝑦𝑛−1
𝑇

 at 𝑛 known independent variable values

𝑥 = 𝑥0 𝑥1 ⋯ 𝑥𝑛−1
𝑇

 and a model, defined by 𝑚 + 1 basis functions

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 Generate design matrix by evaluating 𝑚 + 1 basis functions at all 𝑛 
values of 𝑥 

𝐙 =

𝑧0 𝑥0 𝑧1 𝑥0 ⋯ 𝑧𝑚 𝑥0

𝑧0 𝑥1 𝑧1 𝑥1 ⋯ 𝑧𝑚 𝑥1

⋮ ⋮ ⋱ ⋮
𝑧0 𝑥𝑛−1 𝑧1 𝑥𝑛−1 ⋯ 𝑧𝑚 𝑥𝑛−1
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General Least-Squares in Python

 Solve for vector of fitting coefficients as the solution 
to the normal equations

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲

 Or by using np.linalg.lstsq()

a = np.linalg.lstsq(Z, yhat)

 Result is the same, though the methods are 
different
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Nonlinear Regression – minimize()

 Nonlinear models:
 Have nonlinear dependence on fitting parameters

 E.g., 𝑦 = 𝛼𝑥𝛽

 Two options for fitting nonlinear models to data
 Linearize the model first, then use linear regression
 Fit a nonlinear model directly by treating as an optimization 

problem

 Want to minimize a cost function
 Cost function is the sum of the squares of the residuals

𝐽 = 𝑆𝑟 = ෍ ො𝑦 − 𝑦 2

 Find the minimum of 𝐽 – a multi-dimensional optimization
 Use SciPy’s optimize.minimize()
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Nonlinear Regression – minimize()

 Cost function:

𝐽 = ෍ ො𝑦 − 𝛼𝑒𝛽𝑥 2

 Find 𝛼 and 𝛽 to 
minimize 𝐽
 Use SciPy’s 
optimize.minimize()

 Have noisy data that is believed to be best described 
by an exponential relationship

𝑦 = 𝛼𝑒𝛽𝑥
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Multi-Dimensional Optimization – minimize()

 Find the minimum of a function of two or more 
variables

opt = minimize(f, x0)

 f: function to be optimized

 x0: array of initial values

 opt: optimizeResult object returned – includes:

◼ opt.x: the solution of the optimization (i.e., 𝑥𝑜𝑝𝑡)

◼ opt.fun: value of objective function at the optimum (i.e., 𝑓 𝑥𝑜𝑝𝑡 )

◼ opt.nit: number of iterations
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Nonlinear Regression – minimize()
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Nonlinear Regression – curve_fit()

 An alternative to minimizing a cost function using 
scipy.optimize.curve_fit():

popt, pcov = curve_fit(f, x, y, p0=None)

 f: handle to the fitting function – independent variable 
must be listed first
◼ e.g.,    f = lamba x, A, B: A*exp(B*x)

 x: independent variable data

 y: dependent variable data

 p0: initial guess for popt - optional

 popt: best-fit parameters

 pcov: estimated covariance of popt
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Nonlinear Regression – curve_fit()



K. Webb ESC 440

Polynomial Interpolation80



K. Webb ESC 440

81

Polynomial Interpolation

 Sometimes we know both 𝒙 and 𝒚 values exactly

 Want a function that describes 𝑦 = 𝑓(𝑥)

◼ Allows for interpolation between know data points

 Fit an 𝑛𝑡ℎ-order polynomial to 𝑛 + 1 data points

𝑦 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ + 𝑎𝑛

 Polynomial will pass through all points

 We’ll look at polynomial interpolation using

 Newton’s polynomial

 The Lagrange polynomial
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Polynomial Interpolation

𝑦 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ + 𝑎𝑛

 Can approach similar to linear least-squares regression
𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑛𝑧𝑛

where
𝑧0 = 𝑥𝑛, 𝑧1 = 𝑥𝑛−1, … 𝑧𝑛 = 1

 For an 𝑛𝑡ℎ-order polynomial, we have 𝑛 + 1 equations 
with 𝑛 + 1 unknowns

 In matrix form
𝐲 = 𝐙 𝐚
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Polynomial Interpolation

 Now, unlike for linear regression
 All 𝑛 + 1 values in 𝐲 are known exactly

 𝑛 + 1 equations with 𝑛 + 1 unknown coefficients

 𝐙 is square 𝑛 + 1 × 𝑛 + 1

𝑦1

𝑦2

⋮
𝑦𝑛+1

=

𝑥1
𝑛 𝑥1

𝑛−1 ⋯ 1

𝑥2
𝑛 𝑥2

𝑛−1 ⋯ 1
⋮ ⋮ ⋱ ⋮

𝑥𝑛+1
𝑛 𝑥𝑛+1

𝑛−1 ⋯ 1

𝑎0

𝑎1

⋮
𝑎𝑛

 Could solve by inverting 𝐙 or by using NumPy’s linalg.solve()

a = np.linalg.solve(Z, y)

 𝐙 is a Vandermonde matrix
 Tend to be ill-conditioned

 The techniques that follow are more numerically robust
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Linear Interpolation

 Fit a line (1st-order polynomial) to two data points 
using a truncated Taylor series (or simple 
trigonometry):

𝑓1 𝑥 = 𝑓 𝑥1 +
𝑓 𝑥2 − 𝑓 𝑥1

𝑥2 − 𝑥1
𝑥 − 𝑥1

where 𝑓1(𝑥) is the function for the line fit to the 
data, and 𝑓 𝑥𝑖  are the known data values

 This is the Newton linear-interpolation formula
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Quadratic Interpolation

 To fit a 2nd-order polynomial to three data points, 
consider the following form

𝑓2 𝑥 = 𝑏0 + 𝑏1 𝑥 − 𝑥1 + 𝑏2 𝑥 − 𝑥1 𝑥 − 𝑥2

 Evaluate at 𝑥 = 𝑥1 to find 𝑏0

𝑏0 = 𝑓 𝑥1

 Back-substitution and evaluation at 𝑥 = 𝑥2 and at 
𝑥 = 𝑥3 will yield the other coefficients

𝑏1 =
𝑓 𝑥2 −𝑓 𝑥1

𝑥2−𝑥1
       and      𝑏2 =

𝑓 𝑥3 −𝑓 𝑥2
𝑥3−𝑥2

−
𝑓 𝑥2 −𝑓 𝑥1

𝑥2−𝑥1

𝑥3−𝑥1
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Quadratic Interpolation

𝑓2 𝑥 = 𝑏0 + 𝑏1 𝑥 − 𝑥1 + 𝑏2 𝑥 − 𝑥1 𝑥 − 𝑥2

 Can still view this as a Taylor series approximation

 𝑏0 represents an offset

 𝑏1 is slope 

 𝑏2 is curvature

 Choice of initial quadratic form (Newton interpolating 
polynomial) was made to facilitate the development 

 Resulting polynomial would be the same for any initial form 
of an 𝑛𝑡ℎ-order polynomial

 Solution is unique
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𝑛𝑡ℎ-Order Newton Interpolating Polynomial

 Extending the quadratic example to 𝑛𝑡ℎ-order

𝑓𝑛 𝑥 = 𝑏0 + 𝑏1 𝑥 − 𝑥1 + ⋯ + 𝑏𝑛 𝑥 − 𝑥1 𝑥 − 𝑥2 ⋯ 𝑥 − 𝑥𝑛

 Solve for coefficients as before with back-substitution 
and evaluation of 𝑓 𝑥𝑖

𝑏0 = 𝑓 𝑥1

𝑏1 = 𝑓 𝑥2, 𝑥1

𝑏2 = 𝑓 𝑥3, 𝑥2, 𝑥1

⋮
𝑏𝑛 = 𝑓 𝑥𝑛+1, 𝑥𝑛, … , 𝑥2, 𝑥1

 𝑓 ⋯  denotes a finite divided difference
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Finite Divided Differences

 First finite divided difference

𝑓 𝑥𝑖 , 𝑥𝑗 =
𝑓 𝑥𝑖 − 𝑓 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

 Second finite divided difference

𝑓 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 =
𝑓 𝑥𝑖 , 𝑥𝑗 − 𝑓 𝑥𝑗 , 𝑥𝑘

𝑥𝑖 − 𝑥𝑘

 𝑛𝑡ℎ finite divided difference

𝑓 𝑥𝑛+1, 𝑥𝑛, … , 𝑥2, 𝑥1 =
𝑓 𝑥𝑛+1, … , 𝑥2 − 𝑓 𝑥𝑛, … , 𝑥1

𝑥𝑛+1 − 𝑥1

 Calculate recursively
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𝑛𝑡ℎ-Order Newton Interpolating Polynomial

 𝑛𝑡ℎ-order Newton interpolating polynomial in 
terms of divided differences:

𝑓𝑛 𝑥 = 𝑓 𝑥1 + 𝑓 𝑥2, 𝑥1 𝑥 − 𝑥1 + ⋯

+𝑓 𝑥𝑛+1, 𝑥𝑛, … , 𝑥2, 𝑥1 𝑥 − 𝑥1 𝑥 − 𝑥2 ⋯ 𝑥 − 𝑥𝑛

 Divided difference table for calculation of 
coefficients:

Chapra
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Newton Interpolating Polynomial – Example 
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Linear Lagrange Interpolation

 Fit a first-order polynomial (a line) to two known data 
points: 𝑥1, 𝑓 𝑥1  and 𝑥2, 𝑓 𝑥2

𝑓1 𝑥 = 𝐿1 𝑥 ∙ 𝑓 𝑥1 + 𝐿2 𝑥 ∙ 𝑓 𝑥2

 𝐿1 𝑥  and 𝐿2 𝑥  are weighting functions, where

𝐿1 𝑥 = ቊ
1, 𝑥 = 𝑥1

0, 𝑥 = 𝑥2

𝐿2 𝑥 = ቊ
1, 𝑥 = 𝑥2

0, 𝑥 = 𝑥1

 The interpolating polynomial is a weighted sum of the 
individual data point values
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Linear Lagrange Interpolation

 For linear (1st-order) interpolation, the weighting 
functions are:

𝐿1 𝑥 =
𝑥 − 𝑥2

𝑥1 − 𝑥2

𝐿2 𝑥 =
𝑥 − 𝑥1

𝑥2 − 𝑥1

 The linear Lagrange interpolating polynomial is:

𝑓1 𝑥 =
𝑥 − 𝑥2

𝑥1 − 𝑥2
𝑓 𝑥1 +

𝑥 − 𝑥1

𝑥2 − 𝑥1
𝑓 𝑥2
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𝑛𝑡ℎ-Order Lagrange Interpolation

 Lagrange interpolation technique can be extended 
to 𝑛𝑡ℎ-order polynomials

𝑓𝑛 𝑥 = ෍

𝑖=1

𝑛+1

𝐿𝑖 𝑥 ∙ 𝑓 𝑥𝑖

where 

𝐿𝑖 𝑥 = ෑ
𝑗=1
𝑗≠𝑖

𝑛+1
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
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Lagrange Interpolating Polynomial – Example 
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