SECTION 4: CURVE FITTING

ESC 440 - Computational Methods for Engineers

Introduction

Curve Fitting

\square Often, we have data, y, that is a function of some independent variable, x,

- Possibly noisy measurement data
\square Underlying relationship is unknown
- Know x 's and y 's (approximately)
- But, don't know $y=f(x)$

Curve Fitting

\square May want to determine a function (i.e., a curve) that 'best' describes relationship between x and y

- An approximation to (the unknown)
$\quad y=f(x)$
\square This is curve fitting

Regression vs. Interpolation

We'll look at two categories of curve fitting:
\square Least-squares regression
\square Noisy data - uncertainty in y value for a given x value

- Want "good" agreement between $f(x)$ and data points

■ Curve (i.e., $f(x)$) may not pass through any data points
\square Polynomial interpolation

- Data points are known exactly - noiseless data
\square Resulting curve passes through all data points

Review of Basic Statistics

Before moving on to discuss least-squares regression, we'll first review a few basic concepts from statistics.

Basic Statistical Quantities

\square Arithmetic mean - the average or expected value

$$
\bar{y}=\frac{\sum y_{i}}{n}
$$

\square Standard deviation (unbiased) - a measure of the spread of the data about the mean

$$
\sigma=\sqrt{\frac{S_{t}}{n-1}}
$$

where S_{t} is the total sum of the squares of the residuals

$$
S_{t}=\sum\left(y_{i}-\bar{y}\right)^{2}
$$

Basic Statistical Quantities

\square Variance - another measure of spread

- The square of the standard deviation
- Useful measure due to relationship with power and power spectral density of a signal or data set

$$
\sigma^{2}=\frac{S_{t}}{n-1}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}
$$

or

$$
\sigma^{2}=\frac{\sum y_{i}^{2}-\frac{\left(\sum y_{i}\right)^{2}}{n}}{n-1}
$$

Normal (Gaussian) Distribution

\square Many naturally-occurring random process are normally-distributed

- Measurement noise
- Very often assume noise in our data is Gaussian
- Probability density function (pdf):

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where σ^{2} is the variance, and μ is the mean of the random variable, x

Random Number Generation - default_rng()

\square Very often useful to generate random numbers
\square Simulating the effect of noise
\square Monte Carlo simulation, etc.
\square First, construct a random-number generator object using NumPy:
rng = np.random.default_rng(seed)

- seed: optional initialization seed for generator
- rng: initialized generator object - will run methods on this object to generate random numbers

Normally-Distributed Random Numbers

\square Generate random values from a normal (Gaussian) distribution

$$
x=\text { rng.normal(loc=0, scale=1, size=1) }
$$

\square rng: generator object created with default_rng()

- loc: optional mean of distribution - default: 0.0
- scale: optional standard deviation - default: 1.0
\square size: optional dimension of resulting array
- x : resulting array of random values

Uniformly-Distributed Random Numbers

\square Generate random values from a uniform distribution on the interval [low, high)
x = rng.uniform(low=0, high=1, size=1)

- rng: generator object created with default_rng()
- low: optional lower bound of interval - default: 0.0
- high: optional upper bound of interval - default: 1.0
a size: optional dimension of resulting array - default: 1
$\square \mathrm{x}$: resulting array of random values
\square Half-open interval:
- Resulting values are \geq low and $<$ high

NumPy Statistical Functions

\square NumPy includes many statistical functions, including:

- np.max()
- np.min()
- np.mean()
- np.std()
- np.median()
- np.var()
- np.cov()

Histogram Plots

\square Histogram plots

- Graphical depiction of the variation of random quantities
- Plots the frequency of occurrence of ranges (bins) of values
- Provides insight into the nature of the distribution
plt.hist(x, bins=20, edgecolor='k')
- X: data to be histogrammed
- bins: optional number of bins
- edgecolor: optional color of bin outlines - default: none

Statistics in NumPy, matplotlib

Histogram


```
# GaussianDemo.m
import numpy as np
from matplotlib import pyplot as plt
u}=0.
s = 0.25
x = np.arange(-0.5, 1.5, 1e-3)
f = 1/np.sqrt(2*np.pi*s**2)*np.exp(-((x-u)**2)/(2*s**2))
N = 1000
```

$\mathrm{rng}=\mathrm{np} \cdot$ random. default_rng()
$y=r n g$.normal (loc=u, scale=s, size=N)
plt.figure(1); plt.clf()
plt.subplot(311)
plt.plot(y, linewidth=0.75)
plt.xlim(0, N)
plt.xlabel('n'); plt.ylabel('x[n]')
plt.title(f'\{N\} Samples of a Random Variable', fontweight='bold'
plt.subplot $(3,1,(2,3))$
plt.hist(y, bins=20, edgecolor=' k ')
plt.plot(x, $80^{* T},-r$, linewidtn=2)
plt.xlabel('x'); plt.ylabel('Frequency')
plt.title('Histogram', fontweight='bold')
plt.text $\left(1,85, f^{\prime} N=\{N\} \backslash n \$ \backslash m u \$=\{u\} \backslash n \$ \backslash\right.$ sigma $\$=\{s\}^{\prime}$, fontsize
${ }^{16}$ Linear Least-Squares Regression

Linear Regression

\square Noisy data, y, values at known x values
\square Suspect relationship between x and y is
linear
\square i.e., assume

$$
y=a_{0}+a_{1} x
$$

\square Determine a_{0} and a_{1} that define the "bestfit" line for the data

\square How do we define the "best fit"?

Measured Data

\square Assumed a linear relationship between x and y :

$$
y=a_{0}+a_{1} x
$$

\square Due to noise, can't measure y exactly at each x

- Can only approximate y values

$$
\hat{y}=y+e
$$

\square Measured values are approximations

- True value of y plus some random error or residual

$$
\hat{y}=a_{0}+a_{1} x+e
$$

Best Fit Criteria

\square Noisy data do not all line on a single line - discrepancy between each point and the line fit to the data

- The error, or residual:

$$
e=\hat{y}-a_{0}-a_{1} x
$$

\square Minimize some measure of this residual:

- Minimize the sum of the residuals
- Positive and negative errors can cancel
- Non-unique fit
- Minimize the sum of the absolute values of the residuals
- Effect of sign of error eliminated, but still not a unique fit
- Minimize the maximum error - minimax criterion
- Excessive influence given to single outlying points

Least-Squares Criterion

\square Better fitting criterion is to minimize the sum of the squares of the residuals

$$
S_{r}=\sum e_{i}^{2}=\sum\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

\square Yields a unique best-fit line for a given set of data
\square The sum of the squares of the residuals is a function of the two fitting parameters, a_{0} and $a_{1}, S_{r}\left(a_{0}, a_{1}\right)$
\square Minimize S_{r} by setting its partial derivatives to zero and solving for a_{0} and a_{1}

Least-Squares Criterion

\square At its minimum point, partial derivatives of S_{r} with respect to a_{0} and a_{1} will be zero

$$
\begin{aligned}
& \frac{\partial S_{r}}{\partial a_{0}}=-2 \sum\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}\right)=0 \\
& \frac{\partial S_{r}}{\partial a_{1}}=-2 \sum\left[\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}\right) x_{i}\right]=0
\end{aligned}
$$

\square Breaking up the summation:

$$
\begin{aligned}
& \sum \hat{y}_{i}-\sum a_{0}-\sum a_{1} x_{i}=0 \\
& \sum x_{i} \hat{y}_{i}-\sum a_{0} x_{i}-\sum a_{1} x_{i}^{2}=0
\end{aligned}
$$

Normal Equations

$\square \partial S_{r} / \partial a_{0}=0$ and $\partial S_{r} / \partial a_{1}=0$ form a system of two equations with two unknowns, a_{0} and a_{1}

$$
\begin{gather*}
n a_{0}+\left(\sum x_{i}\right) a_{1}=\sum \hat{y}_{i} \tag{1}\\
\left(\sum x_{i}\right) a_{0}+\left(\sum x_{i}^{2}\right) a_{1}=\sum x_{i} \hat{y}_{i} \tag{2}
\end{gather*}
$$

\square In matrix form:

$$
\left[\begin{array}{cc}
n & \sum x_{i} \tag{3}\\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{c}
\sum \hat{y}_{i} \\
\sum x_{i} \hat{y}_{i}
\end{array}\right]
$$

\square These are the normal equations

Normal Equations

\square Normal equations can be solved for a_{0} and a_{1} :

$$
\begin{aligned}
& a_{1}=\frac{n \sum x_{i} \hat{y}_{i}-\sum x_{i} \sum \hat{y}_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
& a_{0}=\frac{\sum \hat{y}_{i}-a_{1} \sum x_{i}}{n}=\bar{y}-a_{1} \bar{x}
\end{aligned}
$$

\square Or solve the matrix form of the normal equations, (3), in Python using np.linalg.solve()

Linear Least-Squares - Example

\square Noisy data with suspected linear relationship
\square Calculate summation terms in the normal equations:
$\square n, \Sigma x_{i}, \Sigma \hat{y}_{i}, \Sigma x_{i}^{2}, \Sigma x_{i} \hat{y}_{i}$


```
22
\(\mathrm{n}=\operatorname{len}(\mathrm{yn})\)
\(5 \mathrm{x}=\operatorname{sum}(\mathrm{x})\)
\(5 y=\operatorname{sum}(y n)\)
\(5 x y=\operatorname{sum}\left(x^{*} y n\right)\)
\(5 \times 2=\operatorname{sum}\left(x^{* * 2}\right)\)
```


Linear Least-Squares - Example

\square Assemble normal equation matrices
\square Solve normal equations for vector of coefficients, a, using np.linalg.solve()

```
n = len(yn)
Sx = sum(x)
Sy = sum(yn)
Sxy = sum(x*yn)
Sx2 = sum(x**2)
Z = np.array([[n, Sx], [Sx, Sx2]])
b = np.array([Sy, Sxy])
a = np.linalg.solve(Z, b)
# %% the best-fit line
y1 = a[1]*x + a[0]
```



```
In [141]: a
Out[141]: array([-3.14223852, 1.83066766])
In [142]:
```


Goodness of Fit

\square How well does a function fit the data?
\square Is a linear fit best? A quadratic, higher-order polynomial, or other non-linear function?
\square Want a way to be able to quantify goodness of fit
\square Quantify spread of data about the mean prior to regression:

$$
S_{t}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

\square Following regression, quantify spread of data about the regression line (or curve):

$$
S_{r}=\sum\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

Goodness of Fit

$\square S_{t}$ quantifies the spread of the data about the mean
$\square S_{r}$ quantifies spread about the best-fit line (curve)

- The spread that remains after the trend is explained
- The unexplained sum of the squares
$\square S_{t}-S_{r}$ represents the reduction in data spread after regression explains the underlying trend
\square Normalize to S_{t} - the coefficient of determination

$$
r^{2}=\frac{S_{t}-S_{r}}{S_{t}}
$$

Coefficient of Determination

$$
r^{2}=\frac{S_{t}-S_{r}}{S_{t}}
$$

\square For a perfect fit:

- No variation in data about the regression line
- $S_{r}=0 \quad \rightarrow \quad r^{2}=1$
\square If the fit provides no improvement over simply characterizing data by its mean value:
- $S_{r}=S_{t} \quad \rightarrow \quad r^{2}=0$
\square If the fit is worse at explaining the data than their mean value:
$\square S_{r}>S_{t} \quad \rightarrow \quad r^{2}<0$

Coefficient of Determination

Calculate r^{2} for previous example:

40
4 1
4 2
43
44

```
```

```
39 # calculate the coefficient
```

```
39 # calculate the coefficient
```


of determination

```
# of determination
ybar = np.mean(yn)
ybar = np.mean(yn)
St = sum((yn - ybar)**2)
St = sum((yn - ybar)**2)
Sr = sum((yn - y1)**2)
Sr = sum((yn - y1)**2)
r2 = (St - Sr)/St
```

r2 = (St - Sr)/St

```
```

In [142]: r2
Out[142]: 0.9444329681572226
In [143]: |

```

\section*{Coefficient of Determination}
\(\square\) Don't rely too heavily on the value of \(r^{2}\)
\(\square\) Anscombe's famous data sets:




\(\square\) Same line fit to all four data sets
\(\square r^{2}=0.67\) in each case

\section*{Linearization of Nonlinear Relationships}

\section*{Nonlinear functions}
\(\square\) Not all data can be explained by a linear relationship to an independent variable, e.g.
\(\square\) Exponential model
\[
y=\alpha e^{\beta x}
\]
- Power equation
\[
y=\alpha x^{\beta}
\]
\(\square\) Saturation-growth-rate equation
\[
y=\alpha \frac{x}{\beta+x}
\]

\section*{Nonlinear functions}

Methods for nonlinear curve fitting:
\(\square\) Linearization of the nonlinear relationship
\(\square\) Transform the dependent and/or independent data values
- Apply linear least-squares regression
- Inverse transform the determined coefficients back to those that define the nonlinear functional relationship
\(\square\) Nonlinear regression
- Treat as an optimization problem - more later...

\section*{Linearizing an Exponential Relationship}
\(\square\) Have noisy data that is believed to be best described by an exponential relationship
\[
y=\alpha e^{\beta x}
\]
\(\square\) Linearize the fitting equation:
\[
\ln (y)=\ln (\alpha)+\beta x
\]
or
\[
\ln (y)=a_{0}+a_{1} x
\]
where
\[
a_{0}=\ln (\alpha), a_{1}=\beta
\]


\section*{Linearizing an Exponential Relationship}
\(\square\) Fit a line to the transformed data using linear leastsquares regression

Transformed Data and Best-Fit Line
\(\square\) Determine \(a_{0}\) and \(a_{1}\) : \(\ln (y)=a_{0}+a_{1} x\)
\(\square\) Can calculate \(r^{2}\) for the line fit to the transformed data
\(\square\) Note that original data must be positive


\section*{Linearizing an Exponential Relationship}
\(\square\) Transform the linear fitting parameters, \(a_{0}\) and \(a_{1}\), back to the parameters defining the exponential relationship
\(\square\) Exponential fit:
\[
y=\alpha e^{\beta x}
\]
where
\[
\alpha=e^{a_{0}}, \quad \beta=a_{1}
\]
\(\square\) Note that \(r^{2}\) is different than that for the line fit to the transformed data


\section*{Linearizing an Exponential Relationship}

```


%% transform the data vector, yn

lny = np.log(yn)

%% solve normal equations for

the transformed data set

n = len(yn)
Sx = sum(x)
Sy = sum(lny)
Sxy = sum(x*lny)
Sx2 = sum(x**2)
Z = np.array([[n, Sx], [Sx, Sx2]])
b = np.array([Sy, Sxy])
a = np.linalg.solve(Z, b)

```

\section*{Linearizing a Power Equation}
\(\square\) Have noisy data that is believed to be best described by an power equation
\[
y=\alpha x^{\beta}
\]
\(\square\) Linearize the fitting equation:
\(\log (y)=\log (\alpha)+\beta \log (x)\)
or
\[
\log (y)=a_{0}+a_{1} \log (x)
\]
where
\[
a_{0}=\log (\alpha), a_{1}=\beta
\]


\section*{Linearizing a Power Equation}
\(\square\) Fit a line to the transformed data using linear leastsquares regression

Transformed Data and Best-Fit Line
\(\square\) Determine \(a_{0}\) and \(a_{1}\) : \(\log (y)=a_{0}+a_{1} \log (x)\)
\(\square\) Can calculate \(r^{2}\) for the line fit to the transformed data
\(\square\) Note that original data both \(x\) and \(y\) - must be positive


\section*{Linearizing a Power Equation}
\(\square\) Transform the linear fitting parameters, \(a_{0}\) and \(a_{1}\), back to the parameters defining the power equation
\(\square\) Power equation:
\[
y=\alpha x^{\beta}
\]
where
\[
\alpha=10^{a_{0}}, \quad \beta=a_{1}
\]
\(\square\) Note that \(r^{2}\) is different than that for the line fit to the transformed data


\section*{Linearizing a Power Equation}

\begin{tabular}{|c|c|}
\hline 23 & \# \%\% transform the data vectors, \(y n\) and \(x\) \\
\hline 24 & \(\operatorname{logy~}=\mathrm{np} \cdot \log 10(\mathrm{yn})\) \\
\hline 25 & \(\log x=n p \cdot \log 10(x)\) \\
\hline 26 & \\
\hline 27 & \# \%\% solve normal equations for \\
\hline 28 & \# the transformed data set \\
\hline 29 & \(\mathrm{n}=\operatorname{len}(\mathrm{yn})\) \\
\hline 30 & \(5 \mathrm{x}=\mathrm{sum}(\log \mathrm{x})\) \\
\hline 31 & Sy = sum(logy) \\
\hline 32 & \(5 x y=s u m(l o g x * \operatorname{logy})\) \\
\hline 33 & \(5 \times 2=\operatorname{sum}\left(\log x^{* *} 2\right)\) \\
\hline 34 & \\
\hline 35 & \(Z=n p . a r r a y([[n, ~ S x], ~[S x, ~ S x 2]])\) \\
\hline 36 & \(\mathrm{b}=\mathrm{np}\).array([Sy, Sxy]) \\
\hline 37 &  \\
\hline 38. & \\
\hline
\end{tabular}


\section*{Linearizing a Saturation Growth-Rate Equation}
\(\square\) Have noisy data that is believed to be best described by a saturation growth-rate equation
\[
y=\alpha \frac{x}{\beta+x}
\]
\(\square\) Linearize the fitting equation:
\[
\frac{1}{y}=\frac{1}{\alpha}+\frac{\beta}{\alpha} \frac{1}{x}
\]
or
\[
\frac{1}{y}=a_{0}+a_{1} \frac{1}{x}
\]
where
\[
a_{0}=\frac{1}{\alpha}, \quad a_{1}=\frac{\beta}{\alpha}
\]


\section*{Linearizing a Saturation Growth-Rate Equation}
\(\square\) Fit a line to the transformed data using linear leastsquares regression
\(\square\) Determine \(a_{0}\) and \(a_{1}\) :
\[
\frac{1}{y}=a_{0}+a_{1} \frac{1}{x}
\]
\(\square\) Can calculate \(r^{2}\) for the line fit to the transformed data

Transformed Data and Best-Fit Line


\section*{Linearizing a Saturation Growth-Rate Equation}
\(\square\) Transform the linear fitting parameters, \(a_{0}\) and \(a_{1}\), back to the parameters defining the saturation growth-rate equation
\(\square\) Saturation growth-rate equation:
\[
y=\alpha \frac{x}{\beta+x}
\]
where
\[
\alpha=\frac{1}{a_{0}}, \quad \beta=\frac{a_{1}}{a_{0}}
\]
\(\square\) Note that \(r^{2}\) is different than that for the line fit to the transformed data


\section*{Linearizing a Saturation Growth-Rate Equation}

```


%% transform the data vectors, yn and x

invy = 1/yn
invx = 1/x

%% solve normal equations for

the transformed data set

n=len(yn)
Sx = sum(invx)
Sy = sum(invy)
Sxy = sum(invx*invy)
sx2 = sum(invx**2)
Z = np.array([[n, Sx], [Sx, Sx2]])
b = np.array([Sy, Sxy])
a = np.linalg.solve(Z, b)

```
K. Webb
```


%% inverse transform the linear

fit coefficients to get the

parameters for the sgr equation

alpha = 1/a[0]
beta = a[1]/a[0]

the saturation growth-rate equation fit

xsgr = np.linspace(0,max(x),200)
ysgr = alpha*xsgr/(beta+xsgr)
ysgrr2 = alpha*x/(beta+x)

calculate the coefficient

of determination for sgr fit

ybar = np.mean(yn)
St = sum((yn - ybar)**2)
Sr = sum((yn - ysgrr2)**2)
r2 = (St - Sr)/st

```


\section*{Polynomial Regression}
\(\square\) So far we've looked at fitting straight lines to linear and linearized data sets
\(\square\) Can also fit \(\boldsymbol{m}^{\text {th }}\)-order polynomials directly to data using polynomial regression
\(\square\) Same fitting criterion as linear regression:
- Minimize the sum of the squares of the residuals
- \(m+1\) fitting parameters for an \(\mathrm{m}^{\text {th }}\)-order polynomial
- m+1 normal equations

\section*{Polynomial Regression}
\(\square\) Assume, for example, that we have data we believe to be quadratic in nature
\(\square 2^{\text {nd }}-o r d e r\) polynomial regression
\(\square\) Fitting equation:
\[
\hat{y}=a_{0}+a_{1} x+a_{2} x^{2}+e
\]
\(\square\) Best fit will minimize the sum of the squares of the residuals:
\[
S_{r}=\sum\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)^{2}
\]

\section*{Polynomial Regression - Normal Equations}
\(\square\) Best-fit polynomial coefficients will minimize \(S_{r}\)
- Differentiate \(S_{r}\) w.r.t. each coefficient and set to zero
\[
\begin{aligned}
& \frac{\partial S_{r}}{\partial a_{0}}=-2 \sum\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)=0 \\
& \frac{\partial S_{r}}{\partial a_{1}}=-2 \sum x_{i}\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)=0 \\
& \frac{\partial S_{r}}{\partial a_{2}}=-2 \sum x_{i}^{2}\left(\hat{y}_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}\right)=0
\end{aligned}
\]

\section*{Polynomial Regression - Normal Equations}
\(\square\) Rearranging the normal equations yields
\[
\begin{aligned}
n a_{0}+\left(\Sigma x_{i}\right) a_{1}+\left(\Sigma x_{i}^{2}\right) a_{2} & =\Sigma \hat{y}_{i} \\
\left(\Sigma x_{i}\right) a_{0}+\left(\Sigma x_{i}^{2}\right) a_{1}+\left(\Sigma x_{i}^{3}\right) a_{2} & =\Sigma x_{i} \hat{y}_{i} \\
\left(\Sigma x_{i}^{2}\right) a_{0}+\left(\Sigma x_{i}^{3}\right) a_{1}+\left(\Sigma x_{i}^{4}\right) a_{2} & =\Sigma x_{i}^{2} \hat{y}_{i}
\end{aligned}
\]
\(\square\) Which can be put into matrix form:
\[
\left[\begin{array}{ccc}
n & \Sigma x_{i} & \Sigma x_{i}^{2} \\
\Sigma x_{i} & \Sigma x_{i}^{2} & \Sigma x_{i}^{3} \\
\Sigma x_{i}^{2} & \Sigma x_{i}^{3} & \Sigma x_{i}^{4}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\Sigma \hat{y}_{i} \\
\Sigma x_{i} \hat{y}_{i} \\
\Sigma x_{i}^{2} \hat{y}_{i}
\end{array}\right]
\]
\(\square\) This system of equations can be solved for the vector of unknown coefficients using NumPy's linalg. solve( )

\section*{Polynomial Regression - Normal Equations}
\(\square\) For \(\boldsymbol{m}^{\text {th }}\)-order polynomial regression the normal equations are:
\[
\left[\begin{array}{cccc}
n & \Sigma x_{i} & \cdots & \Sigma x_{i}^{m} \\
\Sigma x_{i} & \Sigma x_{i}^{2} & \cdots & \Sigma x_{i}^{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
\Sigma x_{i}^{m} & \Sigma x_{i}^{m+1} & \cdots & \Sigma x_{i}^{2 m}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{m}
\end{array}\right]=\left[\begin{array}{c}
\Sigma \hat{y}_{i} \\
\Sigma x_{i} \hat{y}_{i} \\
\vdots \\
\Sigma x_{i}^{m} \hat{y}_{i}
\end{array}\right]
\]
\(\square\) Again, this system of \(m+1\) equations can be solved for the vector of \(m+1\) unknown polynomial coefficients using NumPy's linalg.solve()

\section*{Polynomial Regression - Example}
\begin{tabular}{|c|c|}
\hline 6 & \# \%\% noiseless data \\
\hline 7 & \(\mathrm{p}=\mathrm{np} . \operatorname{poly}([1,3,9])\) \\
\hline 8 & \(x=n p . l i n s p a c e(0,10,25)\) \\
\hline 9 & \(y=n p . p o l y v a l(p, x)\) \\
\hline 10 & \\
\hline 11 & \# \%\% add noise to y data \\
\hline 12 & sig \(=8\) \\
\hline 13 & \\
\hline 14 & \# set the random number generator seed \\
\hline 15 & seed \(=4\) \\
\hline 16 & \\
\hline 17 & \(\mathrm{rng}=\mathrm{np}\). random.default_rng(seed) \\
\hline 18 & \(\mathrm{v}=\) rng.normal(scale=sig, size=len(x)) \\
\hline 19 & \(y \mathrm{n}=\mathrm{y}+\mathrm{v}\) \\
\hline
\end{tabular}

\section*{Best-Fit Cubic}


\section*{Polynomial Regression - np.polyfit()}
\[
p=n p \cdot p o l y f i t(x, y, m)
\]
- x: \(n\)-vector of independent variable data values

ㅁ \(y\) : \(n\)-vector of dependent variable data values
- m: order of the polynomial to be fit to the data
- p: \((m+1)\)-vector of best-fit polynomial coefficients
\(\square\) Least-squares polynomial regression if:
- \(n>m+1\)
- i.e., for over-determined systems
\(\square\) Polynomial interpolation if:
- \(n=m+1\)
\(\square\) Resulting fit passes through all ( \(x, y\) ) points - more later

\section*{Polynomial Regression - np.polyfit()}


Note that the result
matches that obtained by
solving normal equations
\begin{tabular}{|c|c|}
\hline 1 & \# polyfit3.py \\
\hline 2 & \\
\hline 3 & import numpy as np \\
\hline 4 & from matplotlib import pyplot as plt \\
\hline 5 & \\
\hline 6 & \\
\hline 7 & \# \%\% noiseless data \\
\hline 8 & \(\mathrm{p}=\mathrm{np} . \operatorname{poly}([1,3,9])\) \\
\hline 9 & \(\mathrm{x}=\mathrm{np} . \operatorname{linspace(0,10,25)}\) \\
\hline 10 & \(y=n p . p o l y v a l(p, x)\) \\
\hline 11 & \\
\hline 12 & \# \%\% add noise to y data \\
\hline 13 & sig \(=8\) \\
\hline 14 & \\
\hline 15 & \# set the random number generator seed \\
\hline 16 & seed \(=4\) \\
\hline 17 & \\
\hline 18 & rng = np.random.default_rng(seed) \\
\hline 19 & \(v=\) rng.normal(scale=sig, size=len(x)) \\
\hline 20 & \(\mathrm{yn}=\mathrm{y}+\mathrm{v}\) \\
\hline 21 & \\
\hline 22 & \# \%\% use np.polyfit to perform the regression pfit \(=\) np.polyfit \((x, y n, 3)\) \\
\hline 4 & \\
\hline 25 & \# \%\% evaluate the best-fit cubic \\
\hline 26 & xfit \(=\) np.linspace ( \(\min (\mathrm{x})\), max (x), 200) \\
\hline 27 & y3 = np.polyval(pfit,xfit) \\
\hline 28 & \(\mathrm{y} 3 \mathrm{r} 2=\mathrm{np} . \operatorname{polyval}(\mathrm{pfit}, \mathrm{x})\) \\
\hline 29 & \\
\hline 30 & \# \%\% calculate the coefficient \\
\hline 31 & \# of determination for the fit \\
\hline 32 & ybar \(=\) np.mean (yn) \\
\hline 33 & St \(=\operatorname{sum}\left(\begin{array}{l}\text { y } \\ \text { - } \\ \text { ybar }\end{array}{ }^{* * 2} 2\right)\) \\
\hline 34 & \(\mathrm{Sr}=\operatorname{sum}\left((\mathrm{yn}-\mathrm{y} 3 \mathrm{r} 2)^{* * 2}\right)\) \\
\hline 35 & \(\mathrm{r} 2=(\mathrm{St}-\mathrm{Sr}) / \mathrm{st}\) \\
\hline
\end{tabular}

\section*{Polynomial Regression Using np.polyfit()}
\(\square\) Determine the \(4^{\text {th }}\)-order polynomial with roots at \(x=\{1,5,16,19\}\)
\(\square\) Generate noiseless data points by evaluating this polynomial at integer values of \(x\) from 0 to 20
\(\square\) Add Gaussian white noise with a standard deviation of \(\sigma=180\) to your data points
\(\square\) Use np.polyfit () to fit a \(4^{\text {th }}\)-order polynomial to the noisy data
\(\square\) Calculate the coefficient of determination, \(r^{2}\)
\(\square\) Plot the noisy data points, along with the best-fit polynomial

\title{
Multiple Linear Regression
}

\section*{Multiple Linear Regression}
\(\square\) We have so far fit lines or curves to data described by functions of a single variable
\(\square\) For functions of multiple variables, fit planes or surfaces to data
\(\square\) Linear function of two independent variables: multiple linear regression
\[
\hat{y}=a_{0}+a_{1} x_{1}+a_{2} x_{2}+e
\]
\(\square\) Sum of the squares of the residuals is now
\[
S_{r}=\sum\left(\hat{y}_{i}-a_{0}-a_{1} x_{1, i}-a_{2} x_{2, i}\right)^{2}
\]

\section*{Multiple Linear Regression - Normal Equations}
\(\square\) Differentiate \(S_{r}\) w.r.t. fitting coefficients and equate to zero
\(\square\) The normal equations:
\[
\left[\begin{array}{ccc}
n & \Sigma x_{1, i} & \Sigma x_{2, i} \\
\Sigma x_{1, i} & \Sigma x_{1, i}^{2} & \Sigma x_{1, i} x_{2, i} \\
\Sigma x_{2, i} & \Sigma x_{1, i} x_{2, i} & \Sigma x_{2, i}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\Sigma \hat{y}_{i} \\
\Sigma x_{1, i} \hat{y}_{i} \\
\Sigma x_{2, i} \hat{y}_{i}
\end{array}\right]
\]
\(\square\) Solve as before - now fitting coefficients, \(a_{i}\), define a plane

\section*{59 \\ General Linear Least-Squares Regression}

\section*{General Linear Least-Squares}
\(\square\) We've seen three types of least-squares regression
\(\square\) Linear regression
\(\square\) Polynomial regression
- Multiple linear regression
\(\square\) All are special cases of general linear least-squares regression
\[
\hat{y}=a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}+e
\]
\(\square\) The \(z_{i}\) 's are \(m+1\) basis functions
\(\square\) Basis functions may be nonlinear
\(\square\) This is linear regression, because dependence on fitting coefficients, \(a_{i}\), is linear

\section*{General Linear Least-Squares}
\[
\hat{y}=a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}+e
\]
\(\square\) For linear regression - simple or multiple:
\[
z_{0}=1, z_{1}=x_{1}, z_{2}=x_{2}, \ldots z_{m}=x_{m}
\]
\(\square\) For polynomial regression:
\[
z_{0}=1, z_{1}=x, z_{2}=x^{2}, \ldots z_{m}=x^{m}
\]
\(\square\) In all cases, this is a linear combination of basis function, which may, themselves, be nonlinear

\section*{General Linear Least-Squares}
\(\square\) The general linear least-squares model:
\[
\hat{y}=a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}+e
\]
\(\square\) Can be expressed in matrix form:
\[
\hat{\mathbf{y}}=\mathbf{Z} \mathbf{a}+\mathbf{e}
\]
where \(\mathbf{Z}\) is an \(n \times(m+1)\) matrix, the design matrix, whose entries are the \((m+1)\) basis functions evaluated at the \(n\) independent variable values corresponding to the \(n\) measurements:
\[
\mathbf{Z}=\left[\begin{array}{cccc}
z_{01} & z_{11} & \cdots & z_{m 1} \\
z_{02} & z_{12} & \cdots & z_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
z_{0 n} & z_{1 n} & \cdots & z_{m n}
\end{array}\right]
\]
where \(z_{i j}\) is the \(i^{t h}\) basis function evaluated at the \(j^{t h}\) independent variable value. (Note: \(i\) is not the row index and \(j\) is not the column index, here.)

\section*{General Linear Least-Squares}
\(\square\) The least-squares model is:
\[
\left[\begin{array}{cccc}
z_{01} & z_{11} & \cdots & z_{m 1} \\
z_{02} & z_{12} & \cdots & z_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
z_{0 n} & z_{1 n} & \cdots & z_{m n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{m}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]=\left[\begin{array}{c}
\hat{y}_{1} \\
\hat{y}_{2} \\
\vdots \\
\hat{y}_{n}
\end{array}\right]
\]
\(\square\) More measurements than coefficients
- \(n>(m+1)\)
\(\square \mathbf{Z}\) is not square - tall and narrow
\(\square\) Over-determined system
\(\square \mathbf{Z}^{\mathbf{1}}\) does not exist

\section*{General Linear Least-Squares - Design Matrix Example}
\(\square\) For example, consider fitting a quadratic to five measured values, \(\hat{\mathbf{y}}\), at \(\mathbf{x}=[1,2,3,4,5]^{T}\)
\(\square\) Model is:
\[
\hat{y}=a_{0}+a_{1} x+a_{2} x^{2}+e
\]
\(\square\) Basis functions are \(z_{0}=1, z_{1}=x\), and \(z_{2}=x^{2}\)
\(\square\) Least-squares equation is
\[
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16 \\
1 & 5 & 25
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{1} \\
\hat{y}_{2} \\
\hat{y}_{3} \\
\hat{y}_{4} \\
\hat{y}_{5}
\end{array}\right]-\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5}
\end{array}\right]
\]

\section*{General Linear Least-Squares - Residuals}
\(\square\) Linear least-squares model is:
\[
\begin{equation*}
\hat{\mathbf{y}}=\mathbf{Z} \mathbf{a}+\mathbf{e} \tag{1}
\end{equation*}
\]
\(\square\) Residual:
\[
\begin{equation*}
\mathbf{e}=\hat{\mathbf{y}}-\mathbf{y}=\hat{\mathbf{y}}-\mathrm{Z} \mathbf{a} \tag{2}
\end{equation*}
\]
\(\square\) Sum of the squares or the residuals:
\[
\begin{equation*}
S_{r}=\sum e_{i}^{2}=\mathbf{e}^{\mathbf{T}} \mathbf{e}=[\hat{\mathbf{y}}-\mathbf{Z} \mathbf{a}]^{\mathbf{T}}[\hat{\mathbf{y}}-\mathbf{Z} \mathbf{a}] \tag{3}
\end{equation*}
\]
\(\square\) Expanding,
\[
\begin{equation*}
S_{r}=\hat{\mathbf{y}}^{\mathrm{T}} \hat{\mathbf{y}}-\mathbf{a}^{\mathrm{T}} \mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}}-\hat{\mathbf{y}}^{\mathrm{T}} \mathbf{Z} \mathbf{a}+\mathbf{a}^{\mathrm{T}} \mathbf{Z}^{\mathrm{T}} \mathbf{Z a} \tag{4}
\end{equation*}
\]

\section*{Deriving the Normal Equations}
\(\square\) Best fit will minimize the sum of the squares of the residuals
- Differentiate \(S_{r}\) with respect to the coefficient vector, \(\mathbf{a}\), and set to zero
\[
\begin{equation*}
\frac{d S_{r}}{d \mathbf{a}}=\frac{d}{d \mathbf{a}}\left(\hat{\mathbf{y}}^{\mathbf{T}} \hat{\mathbf{y}}-\mathbf{a}^{\mathbf{T}} \mathbf{Z}^{\mathbf{T}} \hat{\mathbf{y}}-\hat{\mathbf{y}}^{\mathbf{T}} \mathbf{Z} \mathbf{a}+\mathbf{a}^{\mathbf{T}} \mathbf{Z}^{\mathbf{T}} \mathbf{Z} \mathbf{a}\right)=\mathbf{0} \tag{5}
\end{equation*}
\]
\(\square\) We'll need to use some matrix calculus identities:
\[
\begin{align*}
& \square \frac{d}{d \mathbf{a}}\left(\mathbf{a}^{\mathrm{T}} \mathbf{Z}^{\mathrm{T}} \mathbf{y}\right)=\mathbf{Z}^{\mathrm{T}} \mathbf{y} \\
& \square \frac{d}{d \mathbf{a}}\left(\mathbf{y}^{\mathrm{T}} \mathbf{Z a}\right)=\mathbf{Z}^{\mathrm{T}} \mathbf{y}  \tag{6}\\
& \square \frac{d}{d \mathbf{a}}\left(\mathbf{a}^{\mathrm{T}} \mathbf{Z}^{\mathrm{T}} \mathbf{Z a}\right)=\mathbf{2} \mathbf{Z}^{\mathrm{T}} \mathbf{Z a}
\end{align*}
\]

\section*{Deriving the Normal Equations}
\[
\frac{d S_{r}}{d \mathbf{a}}=\frac{d}{d \mathbf{a}}\left(\hat{\mathbf{y}}^{\mathrm{T}} \hat{\mathbf{y}}-\mathbf{a}^{\mathrm{T}} \mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}}-\hat{\mathbf{y}}^{\mathrm{T}} \mathbf{Z} \mathbf{a}+\mathbf{a}^{\mathrm{T}} \mathbf{Z}^{\mathrm{T}} \mathbf{Z} \mathbf{a}\right)=\mathbf{0}
\]
\(\square\) Using the matrix derivative relationships, (6),
\[
\begin{equation*}
\frac{d S_{r}}{d \mathbf{a}}=-2 \mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}}+2 \mathbf{Z}^{\mathbf{T}} \mathbf{Z a}=\mathbf{0} \tag{7}
\end{equation*}
\]
\(\square\) Equation (7) is the matrix form of the normal equations:
\[
\begin{equation*}
\mathbf{Z}^{\mathrm{T}} \mathbf{Z a}=\mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}} \tag{8}
\end{equation*}
\]
\(\square\) Solution to (8) is the vector of least-squares fitting coefficients:
\[
\begin{equation*}
\mathbf{a}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}} \tag{9}
\end{equation*}
\]

\section*{Solving the Normal Equations}
\[
\begin{equation*}
\mathbf{a}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}} \tag{9}
\end{equation*}
\]
\(\square\) Remember, our starting point was the linear leastsquares model:
\[
\begin{equation*}
\mathbf{y}=\mathbf{Z} \mathbf{a} \tag{10}
\end{equation*}
\]
\(\square\) Couldn't we have solved (10) for fitting coefficients as
\[
\begin{equation*}
\mathbf{a}=\mathbf{Z}^{-1} \mathbf{y} \tag{11}
\end{equation*}
\]
\(\square\) No, must solve using (9), because:
\(\square\) Don't have \(\mathbf{y}\), only noisy approximations, \(\hat{\mathbf{y}}\)
- We have an over-determined system
\(\square \mathbf{Z}\) is not square
\(-\mathbf{Z}^{-1}\) does not exist

\section*{Solving the Normal Equations}
\(\square\) Solution to the linear least-squares problem is:
\[
\begin{equation*}
\mathbf{a}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right)^{-\mathbf{1}} \mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}}=\mathbf{Z}^{\dagger} \hat{\mathbf{y}} \tag{12}
\end{equation*}
\]
where
\[
\begin{equation*}
\mathbf{Z}^{\dagger}=\left(\mathbf{Z}^{\mathbf{T}} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\mathbf{T}} \tag{13}
\end{equation*}
\]
is the Moore-Penrose pseudo-inverse of \(\mathbf{Z}\)
\(\square\) Use the pseudo-inverse to find the least-squares solutions to an over-determined system

\section*{Coefficient of Determination}
\(\square\) Goodness of fit characterized by the coefficient of determination:
\[
r^{2}=\frac{S_{t}-S_{r}}{S_{t}}
\]
where \(S_{r}\) is given by (3)
\[
\begin{equation*}
S_{r}=[\hat{\mathbf{y}}-\mathbf{Z} \mathbf{a}]^{\mathbf{T}}[\hat{\mathbf{y}}-\mathbf{Z} \mathbf{a}] \tag{14}
\end{equation*}
\]
and
\[
\begin{equation*}
S_{t}=[\hat{\mathbf{y}}-\overline{\mathbf{y}}]^{\mathbf{T}}[\hat{\mathbf{y}}-\overline{\mathbf{y}}] \tag{15}
\end{equation*}
\]

\section*{General Least-Squares in Python}
\(\square\) Have \(n\) measurements
\[
\hat{y}=\left[\begin{array}{llll}
\hat{y}_{0} & \hat{y}_{1} & \cdots & \hat{y}_{n-1}
\end{array}\right]^{T}
\]
\(\square\) at \(n\) known independent variable values
\[
x=\left[\begin{array}{llll}
x_{0} & x_{1} & \cdots & x_{n-1}
\end{array}\right]^{T}
\]
\(\square\) and a model, defined by \(m+1\) basis functions
\[
\hat{y}=a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}+e
\]
\(\square\) Generate design matrix by evaluating \(m+1\) basis functions at all \(n\) values of \(x\)
\[
\mathbf{Z}=\left[\begin{array}{cccc}
z_{0}\left(x_{0}\right) & z_{1}\left(x_{0}\right) & \cdots & z_{m}\left(x_{0}\right) \\
z_{0}\left(x_{1}\right) & z_{1}\left(x_{1}\right) & \cdots & z_{m}\left(x_{1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
z_{0}\left(x_{n-1}\right) & z_{1}\left(x_{n-1}\right) & \cdots & z_{m}\left(x_{n-1}\right)
\end{array}\right]
\]

\section*{General Least-Squares in Python}
\(\square\) Solve for vector of fitting coefficients as the solution to the normal equations
\[
\mathbf{a}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\mathrm{T}} \hat{\mathbf{y}}
\]
\(\square\) Or by using np. linalg.lstsq()
a = np.linalg.lstsq(Z, yhat)
\(\square\) Result is the same, though the methods are different

Nonlinear Regression

\section*{Nonlinear Regression - minimize()}
\(\square\) Nonlinear models:
- Have nonlinear dependence on fitting parameters
- E.g., \(y=\alpha x^{\beta}\)
\(\square\) Two options for fitting nonlinear models to data
- Linearize the model first, then use linear regression
- Fit a nonlinear model directly by treating as an optimization problem
\(\square\) Want to minimize a cost function
- Cost function is the sum of the squares of the residuals
\[
J=S_{r}=\sum(\hat{y}-y)^{2}
\]
\(\square\) Find the minimum of \(J\) - a multi-dimensional optimization
- Use SciPy's optimize.minimize()

\section*{Nonlinear Regression - minimize()}
\(\square\) Have noisy data that is believed to be best described by an exponential relationship
\[
y=\alpha e^{\beta x}
\]
\(\square\) Cost function:
\[
J=\sum\left(\hat{y}-\alpha e^{\beta x}\right)^{2}
\]
\(\square\) Find \(\alpha\) and \(\beta\) to minimize \(J\)
- Use SciPy's optimize.minimize()


\section*{Multi-Dimensional Optimization - minimize()}
\(\square\) Find the minimum of a function of two or more variables
opt = minimize(f, x0)
- f: function to be optimized
- x0: array of initial values
- opt: optimizeResult object returned - includes:
- opt . x : the solution of the optimization (i.e., \(x_{o p t}\) )
- opt. fun: value of objective function at the optimum (i.e., \(f\left(x_{o p t}\right)\) )
- opt. nit: number of iterations

\section*{Nonlinear Regression - minimize()}
```


%% noiseless data

x = np.arange(1,26)
y = 1.2*np.exp(0.15*x);

%% add noise to y data

sig = 2.5

set the random number generator seed

seed = 4
rng = np.random.default_rng(seed)
v = rng.normal(scale=sig, size=len(x))
yn}=\textrm{y}+\textrm{v

%% define the cost function

J = lambda a: sum((yn - a[0]*np.exp (a[1]*x))**2)

%% initial guess for parameters

a0 = [10, 1]

%% perform the optimization

a = minimize(J, a0, method='Nelder-Mead')

parameters for the exponential

alpha = a.x[0]
beta = a.x[1]

%% the exponential fit

xfit = np.linspace(0,max(x), 200)
yexp = alpha*np.exp(beta*xfit)
yexpr2 = alpha*np.exp(beta*x)

%% calculate the coefficient

of determination for exp fit

ybar = np.mean(yn)
St = sum((yn - ybar)**2)
Sr = sum((yn - yexpr2)**2)
r2 = (St - Sr)/St

```

\section*{Nonlinear Regression - curve_fit()}
\(\square\) An alternative to minimizing a cost function using scipy.optimize.curve_fit():
popt, pcov = curve_fit(f, \(x, y, p 0=\) None)
- f: handle to the fitting function - independent variable must be listed first
- e.g., \(f=\) lamba \(x, A, B: A^{*} \exp \left(B^{*} x\right)\)
- X : independent variable data
- y: dependent variable data
- p0: initial guess for popt - optional
- popt: best-fit parameters
- pcov: estimated covariance of popt

\section*{Nonlinear Regression - curve_fit()}
```


%% noiseless data

x = np.arange(1,26)
y = 1.2*np.exp(0.15*x);

%% add noise to y data

sig = 2.5

set the random number generator seed

seed = 4
rng = np.random.default_rng(seed)
v = rng.normal(scale=sig, size=len(x))
yn = y + v

%% the fitting function

f = lambda x, alpha, beta: alpha*np.exp(beta*x)

%% perform the fit with lsqcurvefit.m

popt, pcov = curve_fit(f, x, yn)

parameters for the exponential

alpha = popt[0]
beta = popt[1]

%% the exponential fit

xfit = np.linspace(0,max(x),200)
yexp = alpha*np.exp(beta*xfit)
yexpr2 = alpha*np.exp(beta*x)

%% calculate the coefficient

of determination for exp fit

ybar = np.mean(yn)
St = sum((yn - ybar)**2)
Sr = sum((yn - yexpr2)**2)
r2 = (St - Sr)/St

```

Polynomial Interpolation

\section*{Polynomial Interpolation}
\(\square\) Sometimes we know both \(\boldsymbol{x}\) and \(\boldsymbol{y}\) values exactly
- Want a function that describes \(y=f(x)\)
- Allows for interpolation between know data points
- Fit an \(n^{\text {th }}\)-order polynomial to \(n+1\) data points
\[
y=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}
\]
- Polynomial will pass through all points
\(\square\) We'll look at polynomial interpolation using
- Newton's polynomial
- The Lagrange polynomial

\section*{Polynomial Interpolation}
\[
y=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}
\]
\(\square\) Can approach similar to linear least-squares regression
\[
y=a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{n} z_{n}
\]
where
\[
z_{0}=x^{n}, z_{1}=x^{n-1}, \ldots z_{n}=1
\]
\(\square\) For an \(n^{t h}\)-order polynomial, we have \(n+1\) equations with \(n+1\) unknowns
\(\square\) In matrix form
\[
\mathbf{y}=\mathbf{Z} \mathbf{a}
\]

\section*{Polynomial Interpolation}
\(\square\) Now, unlike for linear regression
- All \(n+1\) values in \(y\) are known exactly
- \(n+1\) equations with \(n+1\) unknown coefficients
- \(\mathbf{Z}\) is square \((n+1) \times(n+1)\)
\[
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1}^{n} & x_{1}^{n-1} & \cdots & 1 \\
x_{2}^{n} & x_{2}^{n-1} & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
x_{n+1}^{n} & x_{n+1}^{n-1} & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
\]
\(\square\) Could solve by inverting Z or by using NumPy's linalg. solve()
\[
a=n p . l i n a l g . \operatorname{solve}(Z, y)
\]
\(\square \mathbf{Z}\) is a Vandermonde matrix
- Tend to be ill-conditioned
- The techniques that follow are more numerically robust

Newton Interpolating Polynomial

\section*{Linear Interpolation}
\(\square\) Fit a line ( \(1^{\text {st }}\)-order polynomial) to two data points using a truncated Taylor series (or simple trigonometry):
\[
f_{1}(x)=f\left(x_{1}\right)+\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\left(x-x_{1}\right)
\]
where \(f_{1}(x)\) is the function for the line fit to the data, and \(f\left(x_{i}\right)\) are the known data values
\(\square\) This is the Newton linear-interpolation formula

\section*{Quadratic Interpolation}
\(\square\) To fit a \(2^{\text {nd }}\)-order polynomial to three data points, consider the following form
\[
f_{2}(x)=b_{0}+b_{1}\left(x-x_{1}\right)+b_{2}\left(x-x_{1}\right)\left(x-x_{2}\right)
\]
\(\square\) Evaluate at \(x=x_{1}\) to find \(b_{0}\)
\[
b_{0}=f\left(x_{1}\right)
\]
\(\square\) Back-substitution and evaluation at \(x=x_{2}\) and at \(x=x_{3}\) will yield the other coefficients
\(b_{1}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \quad\) and \(\quad b_{2}=\frac{\frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}-\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}}{x_{3}-x_{1}}\)

\section*{Quadratic Interpolation}
\[
f_{2}(x)=b_{0}+b_{1}\left(x-x_{1}\right)+b_{2}\left(x-x_{1}\right)\left(x-x_{2}\right)
\]
\(\square\) Can still view this as a Taylor series approximation
- \(b_{0}\) represents an offset
- \(b_{1}\) is slope
- \(b_{2}\) is curvature
\(\square\) Choice of initial quadratic form (Newton interpolating polynomial) was made to facilitate the development
- Resulting polynomial would be the same for any initial form of an \(n^{\text {th }}\)-order polynomial
\(\square\) Solution is unique

\section*{\(n^{\text {th }}\)-Order Newton Interpolating Polynomial}
\(\square\) Extending the quadratic example to \(n^{\text {th }}\)-order
\[
f_{n}(x)=b_{0}+b_{1}\left(x-x_{1}\right)+\cdots+b_{n}\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)
\]
\(\square\) Solve for coefficients as before with back-substitution and evaluation of \(f\left(x_{i}\right)\)
\[
\begin{aligned}
b_{0} & =f\left(x_{1}\right) \\
b_{1} & =f\left[x_{2}, x_{1}\right] \\
b_{2} & =f\left[x_{3}, x_{2}, x_{1}\right] \\
\quad & \vdots \\
b_{n} & =f\left[x_{n+1}, x_{n}, \ldots, x_{2}, x_{1}\right]
\end{aligned}
\]
\(\square f[\cdots]\) denotes a finite divided difference

\section*{Finite Divided Differences}
\(\square\) First finite divided difference
\[
f\left[x_{i}, x_{j}\right]=\frac{f\left(x_{i}\right)-f\left(x_{j}\right)}{x_{i}-x_{j}}
\]
\(\square\) Second finite divided difference
\[
f\left[x_{i}, x_{j}, x_{k}\right]=\frac{f\left[x_{i}, x_{j}\right]-f\left[x_{j}, x_{k}\right]}{x_{i}-x_{k}}
\]
\(\square n^{\text {th }}\) finite divided difference
\[
f\left[x_{n+1}, x_{n}, \ldots, x_{2}, x_{1}\right]=\frac{f\left[x_{n+1}, \ldots, x_{2}\right]-f\left[x_{n}, \ldots, x_{1}\right]}{x_{n+1}-x_{1}}
\]
\(\square\) Calculate recursively

\section*{\(n^{t h}\)-Order Newton Interpolating Polynomial}
\(\square n^{\text {th }}\)-order Newton interpolating polynomial in terms of divided differences:
\[
\begin{aligned}
f_{n}(x) & =f\left(x_{1}\right)+f\left[x_{2}, x_{1}\right]\left(x-x_{1}\right)+\cdots \\
& +f\left[x_{n+1}, x_{n}, \ldots, x_{2}, x_{1}\right]\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)
\end{aligned}
\]
\(\square\) Divided difference table for calculation of coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline \(\boldsymbol{x}_{i}\) & \(f\left(x_{i}\right)\) & First & Second & Third \\
\hline \(x_{1}\)
\(x_{2}\)
\(x_{3}\)
\(x_{4}\) & \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

\section*{Newton Interpolating Polynomial - Example}
```


newtpoly_test.py

 import numpy as np
 from matplotlib import pyplot as plt
 from poly_interp import newtpoly
 x = [1,2,3,4]
 y=[20,26,15,-2]
 xint = np.linspace(x[0], x[-1], 500)
yint = newtpoly(x,y,xint)

```

def newtpoly ( \(x, y, x i n t\) ):
Calculates an interpolating polynomial through
points in \(x\) and \(y\), using a Newton polynomial.
Order of the polynomial is \(n=l e n g t h(x)-1\)
Parameters
x : array of independent variable data
\(y\) : array of dependent variable data
xint : array of independent variable values at which interpolation is performed

Returns
yint: array of values of the interpolating polynomial evaluated at xint
\# initialize the finite divided difference matrix
\(n=\operatorname{len}(x) \quad\) \# order of polynomial is \(n-1\)
fdd \(=n p \cdot z \operatorname{zeros}((n, n))\)
fdd[:,0] = y
\# recursively calculate all divided differences
for \(j\) in range \((1, n)\) : \# column index steps from col 1 to col \(n-1\)
for \(\mathbf{i}\) in range( \(0, \mathrm{n}-\mathrm{j})\) : \# row index steps from 1 down to the off diag. fdd[i,j] \(=(f d d[i+1, j-1]-\operatorname{fdd}[i, j-1]) /(x[i+j]-x[i])\)
\# first row of fdd are the \(b\) i coefficients
\# \(b=f d d(0,-1:-1:-1-n)\)
\(b=\operatorname{fdd}[0,:]\)
₹ generate interpolating polynomial
yint \(=n p . z e r o s(l e n(x i n t))\)
yint \([0]=\mathrm{b}[0] \quad\) \# first term in the polynomial sum at \(x=x \operatorname{int}[0]\)
\# loop through all values of xint, interpolating at each
for \(k\) in range(len(xint)):
\(x t=1\)
yint[k] = b[0]
for \(m\) in range \((1, n)\) :
\# xt is product of \((x-x i)\) terms - one more for each incr. of \(m\) xt = (xint[k] - \(x[m-1]) * x t\) yint[k] \(=\) yint \([k]+b[m]^{*} x t\)
return yint

\section*{Linear Lagrange Interpolation}
\(\square\) Fit a first-order polynomial (a line) to two known data points: \(\left(x_{1}, f\left(x_{1}\right)\right)\) and \(\left(x_{2}, f\left(x_{2}\right)\right)\)
\[
f_{1}(x)=L_{1}(x) \cdot f\left(x_{1}\right)+L_{2}(x) \cdot f\left(x_{2}\right)
\]
\(\square L_{1}(x)\) and \(L_{2}(x)\) are weighting functions, where
\[
\begin{aligned}
& L_{1}(x)= \begin{cases}1, & x=x_{1} \\
0, & x=x_{2}\end{cases} \\
& L_{2}(x)= \begin{cases}1, & x=x_{2} \\
0, & x=x_{1}\end{cases}
\end{aligned}
\]
\(\square\) The interpolating polynomial is a weighted sum of the individual data point values

\section*{Linear Lagrange Interpolation}
\(\square\) For linear ( \(1^{\text {st }}\)-order) interpolation, the weighting functions are:
\[
\begin{aligned}
& L_{1}(x)=\frac{x-x_{2}}{x_{1}-x_{2}} \\
& L_{2}(x)=\frac{x-x_{1}}{x_{2}-x_{1}}
\end{aligned}
\]
\(\square\) The linear Lagrange interpolating polynomial is:
\[
f_{1}(x)=\frac{x-x_{2}}{x_{1}-x_{2}} f\left(x_{1}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(x_{2}\right)
\]

\section*{\(n^{\text {th }}\)-Order Lagrange Interpolation}
\(\square\) Lagrange interpolation technique can be extended to \(n^{t h}\)-order polynomials
\[
f_{n}(x)=\sum_{i=1}^{n+1} L_{i}(x) \cdot f\left(x_{i}\right)
\]
where
\[
L_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n+1} \frac{x-x_{j}}{x_{i}-x_{j}}
\]

\section*{Lagrange Interpolating Polynomial - Example}
```


Lagpoly_test.py

import numpy as np
from matplotlib import pyplot as plt
from poly_interp import lagpoly
x = [1,2,3,4]
y = [20,26,15,-2]
xint = np.linspace(x[0],x[-1],500)
yint = lagpoly(x,y,xint)

```
```

