
ESC 440 – Computational Methods for Engineers

SECTION 4: CURVE FITTING

K. Webb ESC 440

Introduction2

K. Webb ESC 440

3

Curve Fitting

 Often, we have data, 𝑦, that is a function of some
independent variable, 𝑥,
 Possibly noisy measurement data

 Underlying
relationship is
unknown
 Know 𝑥’s and 𝑦’s

(approximately)
 But, don’t know

𝑦 = 𝑓 𝑥

K. Webb ESC 440

4

Curve Fitting

 May want to determine a function (i.e., a curve)
that ‘best’ describes relationship between 𝑥 and 𝑦

 An approximation
to (the unknown)
𝑦 = 𝑓 𝑥

 This is curve fitting

K. Webb ESC 440

5

Regression vs. Interpolation

We’ll look at two categories of curve fitting:

 Least-squares regression

 Noisy data – uncertainty in 𝑦 value for a given 𝑥 value

 Want “good” agreement between 𝑓(𝑥) and data points

◼ Curve (i.e., 𝑓 𝑥) may not pass through any data points

 Polynomial interpolation

 Data points are known exactly – noiseless data

 Resulting curve passes through all data points

K. Webb ESC 440

Before moving on to discuss least-squares
regression, we’ll first review a few basic
concepts from statistics.

Review of Basic Statistics6

K. Webb ESC 440

7

Basic Statistical Quantities

 Arithmetic mean – the average or expected value

ത𝑦 =
σ 𝑦𝑖

𝑛

 Standard deviation (unbiased) – a measure of the spread of the data
about the mean

𝜎 =
𝑆𝑡

𝑛 − 1

where 𝑆𝑡 is the total sum of the squares of the residuals

𝑆𝑡 = ෍ 𝑦𝑖 − ത𝑦 2

K. Webb ESC 440

8

Basic Statistical Quantities

 Variance – another measure of spread

 The square of the standard deviation

 Useful measure due to relationship with power and
power spectral density of a signal or data set

𝜎2 =
𝑆𝑡

𝑛 − 1
=

σ 𝑦𝑖 − ത𝑦 2

𝑛 − 1
or

𝜎2 =
σ 𝑦𝑖

2 −
σ 𝑦𝑖

2

𝑛
𝑛 − 1

K. Webb ESC 440

9

Normal (Gaussian) Distribution

 Many naturally-occurring random process are
normally-distributed

 Measurement noise

 Very often assume noise in our data is Gaussian

 Probability density function (pdf):

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2

where 𝜎2 is the variance, and 𝜇 is the mean of the
random variable, 𝑥

K. Webb ESC 440

10

Random Number Generation – default_rng()

 Very often useful to generate random numbers

 Simulating the effect of noise

 Monte Carlo simulation, etc.

 First, construct a random-number generator object
using NumPy:

rng = np.random.default_rng(seed)

 seed: optional initialization seed for generator

 rng: initialized generator object – will run methods on
this object to generate random numbers

K. Webb ESC 440

11

Normally-Distributed Random Numbers

 Generate random values from a normal (Gaussian)
distribution

x = rng.normal(loc=0, scale=1, size=1)

 rng: generator object created with default_rng()

 loc: optional mean of distribution – default: 0.0

 scale: optional standard deviation – default: 1.0

 size: optional dimension of resulting array

 x: resulting array of random values

K. Webb ESC 440

12

Uniformly-Distributed Random Numbers

 Generate random values from a uniform distribution on
the interval [low, high)

x = rng.uniform(low=0, high=1, size=1)

 rng: generator object created with default_rng()

 low: optional lower bound of interval – default: 0.0

 high: optional upper bound of interval – default: 1.0

 size: optional dimension of resulting array – default: 1

 x: resulting array of random values

 Half-open interval:
 Resulting values are ≥ low and < high

K. Webb ESC 440

13

NumPy Statistical Functions

 NumPy includes many statistical functions,
including:

 np.max()

 np.min()

 np.mean()

 np.std()

 np.median()

 np.var()

 np.cov()

K. Webb ESC 440

14

Histogram Plots

 Histogram plots

 Graphical depiction of the variation of random quantities
◼ Plots the frequency of occurrence of ranges (bins) of values

 Provides insight into the nature of the distribution

plt.hist(x, bins=20, edgecolor='k’)

 x: data to be histogrammed

 bins: optional number of bins

 edgecolor: optional color of bin outlines – default: none

K. Webb ESC 440

15

Statistics in NumPy, matplotlib

K. Webb ESC 440

Linear Least-Squares Regression16

K. Webb ESC 440

17

Linear Regression

 Noisy data, 𝑦, values
at known 𝑥 values

 Suspect relationship
between 𝑥 and 𝑦 is
linear

 i.e., assume
𝑦 = 𝑎0 + 𝑎1𝑥

 Determine 𝑎0 and 𝑎1
that define the “best-
fit” line for the data

 How do we define the
“best fit”?

K. Webb ESC 440

18

Measured Data

 Assumed a linear relationship between 𝑥 and 𝑦:

𝑦 = 𝑎0 + 𝑎1𝑥

 Due to noise, can’t measure 𝒚 exactly at each 𝒙

 Can only approximate 𝑦 values

ො𝑦 = 𝑦 + 𝑒

 Measured values are approximations

 True value of 𝑦 plus some random error or residual

ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑒

K. Webb ESC 440

19

Best Fit Criteria

 Noisy data do not all line on a single line – discrepancy
between each point and the line fit to the data
 The error, or residual:

𝑒 = ො𝑦 − 𝑎0 − 𝑎1𝑥

 Minimize some measure of this residual:

 Minimize the sum of the residuals
◼ Positive and negative errors can cancel
◼ Non-unique fit

 Minimize the sum of the absolute values of the residuals
◼ Effect of sign of error eliminated, but still not a unique fit

 Minimize the maximum error – minimax criterion
◼ Excessive influence given to single outlying points

K. Webb ESC 440

20

Least-Squares Criterion

 Better fitting criterion is to minimize the sum of the
squares of the residuals

𝑆𝑟 = ෍ 𝑒𝑖
2 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖

2

 Yields a unique best-fit line for a given set of data

 The sum of the squares of the residuals is a function
of the two fitting parameters, 𝑎0 and 𝑎1, 𝑆𝑟 𝑎0, 𝑎1

 Minimize 𝑆𝑟 by setting its partial derivatives to zero
and solving for 𝑎0 and 𝑎1

K. Webb ESC 440

21

Least-Squares Criterion

 At its minimum point, partial derivatives of 𝑆𝑟 with respect to 𝑎0 and
𝑎1 will be zero

𝜕𝑆𝑟

𝜕𝑎0
= −2 ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 = 0

𝜕𝑆𝑟

𝜕𝑎1
= −2 ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 𝑥𝑖 = 0

 Breaking up the summation:

෍ ො𝑦𝑖 − ෍ 𝑎0 − ෍ 𝑎1𝑥𝑖 = 0

෍ 𝑥𝑖 ො𝑦𝑖 − ෍ 𝑎0𝑥𝑖 − ෍ 𝑎1𝑥𝑖
2 = 0

K. Webb ESC 440

22

Normal Equations

 𝜕𝑆𝑟/𝜕𝑎0 = 0 and 𝜕𝑆𝑟/𝜕𝑎1 = 0 form a system of two
equations with two unknowns, 𝑎0 and 𝑎1

 𝑛 𝑎0 + ෍ 𝑥𝑖 𝑎1 = ෍ ො𝑦𝑖 (1)

෍ 𝑥𝑖 𝑎0 + ෍ 𝑥𝑖
2 𝑎1 = ෍ 𝑥𝑖 ො𝑦𝑖 (2)

 In matrix form:

𝑛 ෍ 𝑥𝑖

෍ 𝑥𝑖 ෍ 𝑥𝑖
2

𝑎0

𝑎1
=

෍ ො𝑦𝑖

෍ 𝑥𝑖 ො𝑦𝑖

 (3)

 These are the normal equations

K. Webb ESC 440

23

Normal Equations

 Normal equations can be solved for 𝑎0 and 𝑎1:

𝑎1 =
𝑛 σ 𝑥𝑖 ො𝑦𝑖 − σ 𝑥𝑖 σ ො𝑦𝑖

𝑛 σ 𝑥𝑖
2 − σ 𝑥𝑖

2

𝑎0 =
σ ො𝑦𝑖 − 𝑎1 σ 𝑥𝑖

𝑛
= ത𝑦 − 𝑎1 ҧ𝑥

 Or solve the matrix form of the normal equations, (3),
in Python using np.linalg.solve()

K. Webb ESC 440

24

Linear Least-Squares - Example

 Noisy data with
suspected linear
relationship

 Calculate summation
terms in the normal
equations:

 𝑛, Σ𝑥𝑖, Σ ො𝑦𝑖, Σ𝑥𝑖
2, Σ𝑥𝑖 ො𝑦𝑖

K. Webb ESC 440

25

Linear Least-Squares - Example

 Assemble normal
equation matrices

 Solve normal
equations for vector of
coefficients, 𝐚, using
np.linalg.solve()

K. Webb ESC 440

26

Goodness of Fit

 How well does a function fit the data?
 Is a linear fit best? A quadratic, higher-order polynomial, or

other non-linear function?
 Want a way to be able to quantify goodness of fit

 Quantify spread of data about the mean prior to regression:

𝑆𝑡 = ෍ ො𝑦𝑖 − ത𝑦 2

 Following regression, quantify spread of data about the
regression line (or curve):

𝑆𝑟 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖
2

K. Webb ESC 440

27

Goodness of Fit

 𝑆𝑡 quantifies the spread of the data about the mean

 𝑆𝑟 quantifies spread about the best-fit line (curve)

 The spread that remains after the trend is explained

 The unexplained sum of the squares

 𝑆𝑡 − 𝑆𝑟 represents the reduction in data spread
after regression explains the underlying trend

 Normalize to 𝑆𝑡 - the coefficient of determination

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡

K. Webb ESC 440

28

Coefficient of Determination

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡

 For a perfect fit:
 No variation in data about the regression line

 𝑆𝑟 = 0 → 𝑟2 = 1

 If the fit provides no improvement over simply
characterizing data by its mean value:

 𝑆𝑟 = 𝑆𝑡 → 𝑟2 = 0

 If the fit is worse at explaining the data than their mean
value:

 𝑆𝑟 > 𝑆𝑡 → 𝑟2 < 0

K. Webb ESC 440

29

Coefficient of Determination

 Calculate 𝑟2 for
previous example:

K. Webb ESC 440

30

Coefficient of Determination

 Don’t rely too heavily on the value of 𝑟2

 Anscombe’s famous data sets:

 Same line fit to all four data sets
 𝑟2 = 0.67 in each case

Chapra

K. Webb ESC 440

Linearization of Nonlinear Relationships31

K. Webb ESC 440

32

Nonlinear functions

 Not all data can be explained by a linear
relationship to an independent variable, e.g.

 Exponential model

𝑦 = 𝛼𝑒𝛽𝑥

 Power equation

𝑦 = 𝛼𝑥𝛽

 Saturation-growth-rate equation

𝑦 = 𝛼
𝑥

𝛽 + 𝑥

K. Webb ESC 440

33

Nonlinear functions

Methods for nonlinear curve fitting:

 Linearization of the nonlinear relationship

 Transform the dependent and/or independent data
values

 Apply linear least-squares regression

 Inverse transform the determined coefficients back to
those that define the nonlinear functional relationship

 Nonlinear regression

 Treat as an optimization problem – more later…

K. Webb ESC 440

34

Linearizing an Exponential Relationship

 Linearize the fitting
equation:

ln 𝑦 = ln 𝛼 + 𝛽𝑥
or

ln 𝑦 = 𝑎0 + 𝑎1𝑥

where

𝑎0 = ln 𝛼 , 𝑎1 = 𝛽

 Have noisy data that is believed to be best described
by an exponential relationship

𝑦 = 𝛼𝑒𝛽𝑥

K. Webb ESC 440

35

Linearizing an Exponential Relationship

 Determine 𝑎0 and 𝑎1:

ln 𝑦 = 𝑎0 + 𝑎1𝑥

 Can calculate 𝑟2 for
the line fit to the
transformed data

 Note that original
data must be positive

 Fit a line to the transformed data using linear least-
squares regression

K. Webb ESC 440

36

Linearizing an Exponential Relationship

 Exponential fit:

𝑦 = 𝛼𝑒𝛽𝑥

where
𝛼 = 𝑒𝑎0 , 𝛽 = 𝑎1

 Note that 𝑟2 is
different than that for
the line fit to the
transformed data

 Transform the linear fitting parameters, 𝑎0 and 𝑎1, back
to the parameters defining the exponential relationship

K. Webb ESC 440

37

Linearizing an Exponential Relationship

K. Webb ESC 440

38

Linearizing a Power Equation

 Linearize the fitting
equation:

log 𝑦 = log 𝛼 + 𝛽 log 𝑥

or

log 𝑦 = 𝑎0 + 𝑎1 log 𝑥

where

𝑎0 = log 𝛼 , 𝑎1 = 𝛽

 Have noisy data that is believed to be best described
by an power equation

𝑦 = 𝛼𝑥𝛽

K. Webb ESC 440

39

Linearizing a Power Equation

 Determine 𝑎0 and 𝑎1:

log 𝑦 = 𝑎0 + 𝑎1 log 𝑥

 Can calculate 𝑟2 for the
line fit to the
transformed data

 Note that original data –
both 𝑥 and 𝑦 – must be
positive

 Fit a line to the transformed data using linear least-
squares regression

K. Webb ESC 440

40

Linearizing a Power Equation

 Power equation:

𝑦 = 𝛼𝑥𝛽

where

𝛼 = 10𝑎0 , 𝛽 = 𝑎1

 Note that 𝑟2 is
different than that for
the line fit to the
transformed data

 Transform the linear fitting parameters, 𝑎0 and 𝑎1, back
to the parameters defining the power equation

K. Webb ESC 440

41

Linearizing a Power Equation

K. Webb ESC 440

42

Linearizing a Saturation Growth-Rate Equation

 Linearize the fitting equation:

1

𝑦
=

1

𝛼
+

𝛽

𝛼

1

𝑥

or

1

𝑦
= 𝑎0 + 𝑎1

1

𝑥

where

𝑎0 =
1

𝛼
 , 𝑎1 =

𝛽

𝛼

 Have noisy data that is believed to be best described by a
saturation growth-rate equation

𝑦 = 𝛼
𝑥

𝛽 + 𝑥

K. Webb ESC 440

43

Linearizing a Saturation Growth-Rate Equation

 Determine 𝑎0 and 𝑎1:

1

𝑦
= 𝑎0 + 𝑎1

1

𝑥

 Can calculate 𝑟2 for
the line fit to the
transformed data

 Fit a line to the transformed data using linear least-
squares regression

K. Webb ESC 440

44

Linearizing a Saturation Growth-Rate Equation

 Saturation growth-rate
equation:

𝑦 = 𝛼
𝑥

𝛽 + 𝑥

where

𝛼 =
1

𝑎0
, 𝛽 =

𝑎1

𝑎0

 Note that 𝑟2 is different
than that for the line fit
to the transformed data

 Transform the linear fitting parameters, 𝑎0 and 𝑎1, back to the
parameters defining the saturation growth-rate equation

K. Webb ESC 440

45

Linearizing a Saturation Growth-Rate Equation

K. Webb ESC 440

Polynomial Regression46

K. Webb ESC 440

47

Polynomial Regression

 So far we’ve looked at fitting straight lines to linear
and linearized data sets

 Can also fit mth-order polynomials directly to data
using polynomial regression

 Same fitting criterion as linear regression:

 Minimize the sum of the squares of the residuals

◼ m+1 fitting parameters for an mth-order polynomial

◼ m+1 normal equations

K. Webb ESC 440

48

Polynomial Regression

 Assume, for example, that we have data we believe
to be quadratic in nature

 2nd-order polynomial regression

 Fitting equation:

ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑒

 Best fit will minimize the sum of the squares of the
residuals:

𝑆𝑟 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 2

K. Webb ESC 440

49

Polynomial Regression – Normal Equations

 Best-fit polynomial coefficients will minimize 𝑆𝑟

 Differentiate 𝑆𝑟 w.r.t. each coefficient and set to zero

𝜕𝑆𝑟

𝜕𝑎0
= −2 ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2 = 0

𝜕𝑆𝑟

𝜕𝑎1
= −2 ෍ 𝑥𝑖 ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖

2 = 0

𝜕𝑆𝑟

𝜕𝑎2
= −2 ෍ 𝑥𝑖

2 ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 = 0

K. Webb ESC 440

50

Polynomial Regression – Normal Equations

 Rearranging the normal equations yields

 𝑛 𝑎0 + Σ𝑥𝑖 𝑎1 + Σ𝑥𝑖
2 𝑎2 = Σ ො𝑦𝑖

Σ𝑥𝑖 𝑎0 + Σ𝑥𝑖
2 𝑎1 + Σ𝑥𝑖

3 𝑎2 = Σ𝑥𝑖 ො𝑦𝑖

Σ𝑥𝑖
2 𝑎0 + Σ𝑥𝑖

3 𝑎1 + Σ𝑥𝑖
4 𝑎2 = Σ𝑥𝑖

2 ො𝑦𝑖

 Which can be put into matrix form:

𝑛 Σ𝑥𝑖 Σ𝑥𝑖
2

Σ𝑥𝑖 Σ𝑥𝑖
2 Σ𝑥𝑖

3

Σ𝑥𝑖
2 Σ𝑥𝑖

3 Σ𝑥𝑖
4

𝑎0

𝑎1

𝑎2

=

Σ ො𝑦𝑖

Σ𝑥𝑖 ො𝑦𝑖

Σ𝑥𝑖
2 ො𝑦𝑖

 This system of equations can be solved for the vector of
unknown coefficients using NumPy’s linalg.solve()

K. Webb ESC 440

51

Polynomial Regression – Normal Equations

 For mth-order polynomial regression the normal
equations are:

𝑛 Σ𝑥𝑖 ⋯ Σ𝑥𝑖
𝑚

Σ𝑥𝑖 Σ𝑥𝑖
2 ⋯ Σ𝑥𝑖

𝑚+1

⋮ ⋮ ⋱ ⋮
Σ𝑥𝑖

𝑚 Σ𝑥𝑖
𝑚+1 ⋯ Σ𝑥𝑖

2𝑚

𝑎0

𝑎1

⋮
𝑎𝑚

=

Σ ො𝑦𝑖

Σ𝑥𝑖 ො𝑦𝑖

⋮
Σ𝑥𝑖

𝑚 ො𝑦𝑖

 Again, this system of 𝑚 + 1 equations can be solved for the
vector of 𝑚 + 1 unknown polynomial coefficients using
NumPy’s linalg.solve()

K. Webb ESC 440

52

Polynomial Regression – Example

K. Webb ESC 440

53

Polynomial Regression – np.polyfit()

p = np.polyfit(x,y,m)

 x: 𝑛-vector of independent variable data values
 y: 𝑛-vector of dependent variable data values
 m: order of the polynomial to be fit to the data
 p: (𝑚 + 1)-vector of best-fit polynomial coefficients

 Least-squares polynomial regression if:

 𝑛 > 𝑚 + 1
 i.e., for over-determined systems

 Polynomial interpolation if:

 𝑛 = 𝑚 + 1
 Resulting fit passes through all (x,y) points – more later

K. Webb ESC 440

54

Polynomial Regression – np.polyfit()

 Note that the result
matches that obtained by
solving normal equations

K. Webb ESC 440

55
Ex

er
ci

se
 Determine the 4th-order polynomial with roots

at 𝑥 = {1, 5, 16, 19}

 Generate noiseless data points by evaluating this
polynomial at integer values of 𝑥 from 0 to 20

 Add Gaussian white noise with a standard
deviation of 𝜎 = 180 to your data points

 Use np.polyfit() to fit a 4th-order polynomial
to the noisy data

 Calculate the coefficient of determination, 𝑟2

 Plot the noisy data points, along with the best-fit
polynomial

Polynomial Regression Using np.polyfit()

K. Webb ESC 440

Multiple Linear Regression56

K. Webb ESC 440

57

Multiple Linear Regression

 We have so far fit lines or curves to data described by
functions of a single variable

 For functions of multiple variables, fit planes or
surfaces to data

 Linear function of two independent variables: multiple
linear regression

ො𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑒

 Sum of the squares of the residuals is now

𝑆𝑟 = ෍ ො𝑦𝑖 − 𝑎0 − 𝑎1𝑥1,𝑖 − 𝑎2𝑥2,𝑖
2

K. Webb ESC 440

58

Multiple Linear Regression – Normal Equations

 Differentiate 𝑆𝑟 w.r.t. fitting coefficients and equate
to zero

 The normal equations:

𝑛 Σ𝑥1,𝑖 Σ𝑥2,𝑖

Σ𝑥1,𝑖 Σ𝑥1,𝑖
2 Σ𝑥1,𝑖𝑥2,𝑖

Σ𝑥2,𝑖 Σ𝑥1,𝑖𝑥2,𝑖 Σ𝑥2,𝑖
2

𝑎0

𝑎1

𝑎2

=

Σ ො𝑦𝑖

Σ𝑥1,𝑖 ො𝑦𝑖

Σ𝑥2,𝑖 ො𝑦𝑖

 Solve as before – now fitting coefficients, 𝑎𝑖, define
a plane

K. Webb ESC 440

General Linear Least-Squares Regression59

K. Webb ESC 440

60

General Linear Least-Squares

 We’ve seen three types of least-squares regression
 Linear regression

 Polynomial regression

 Multiple linear regression

 All are special cases of general linear least-squares
regression

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 The 𝑧𝑖’s are 𝑚 + 1 basis functions
 Basis functions may be nonlinear

 This is linear regression, because dependence on fitting
coefficients, 𝑎𝑖, is linear

K. Webb ESC 440

61

General Linear Least-Squares

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 For linear regression – simple or multiple:

𝑧0 = 1, 𝑧1 = 𝑥1, 𝑧2 = 𝑥2, … 𝑧𝑚 = 𝑥𝑚

 For polynomial regression:

𝑧0 = 1, 𝑧1 = 𝑥, 𝑧2 = 𝑥2, … 𝑧𝑚 = 𝑥𝑚

 In all cases, this is a linear combination of basis
function, which may, themselves, be nonlinear

K. Webb ESC 440

62

General Linear Least-Squares

 The general linear least-squares model:

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 Can be expressed in matrix form:

ො𝐲 = 𝐙 𝐚 + 𝐞

where 𝐙 is an 𝑛 × 𝑚 + 1 matrix, the design matrix, whose entries are
the 𝑚 + 1 basis functions evaluated at the 𝑛 independent variable
values corresponding to the 𝑛 measurements:

𝐙 =

𝑧01 𝑧11 ⋯ 𝑧𝑚1
𝑧02 𝑧12 ⋯ 𝑧𝑚2

⋮ ⋮ ⋱ ⋮
𝑧0𝑛 𝑧1𝑛 ⋯ 𝑧𝑚𝑛

where 𝑧𝑖𝑗 is the 𝑖𝑡ℎ basis function evaluated at the 𝑗𝑡ℎ independent
variable value. (Note: 𝑖 is not the row index and 𝑗 is not the column index,
here.)

K. Webb ESC 440

63

General Linear Least-Squares

 The least-squares model is:

𝑧01 𝑧11 ⋯ 𝑧𝑚1

𝑧02 𝑧12 ⋯ 𝑧𝑚2

⋮ ⋮ ⋱ ⋮
𝑧0𝑛 𝑧1𝑛 ⋯ 𝑧𝑚𝑛

𝑎0

𝑎1

⋮
𝑎𝑚

+

𝑒1

𝑒2

⋮
𝑒𝑛

=

ො𝑦1

ො𝑦2

⋮
ො𝑦𝑛

 More measurements than coefficients

 𝑛 > 𝑚 + 1

 𝐙 is not square – tall and narrow

 Over-determined system

 𝐙−𝟏 does not exist

K. Webb ESC 440

64

General Linear Least-Squares – Design Matrix Example

 For example, consider fitting a quadratic to five
measured values, ො𝐲, at 𝐱 = 1, 2, 3, 4, 5 𝑇

 Model is:
ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑒

 Basis functions are 𝑧0 = 1, 𝑧1 = 𝑥, and 𝑧2 = 𝑥2

 Least-squares equation is

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

𝑎0

𝑎1

𝑎2

=

ො𝑦1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦5

−

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

K. Webb ESC 440

65

General Linear Least-Squares – Residuals

 Linear least-squares model is:

ො𝐲 = 𝐙 𝐚 + 𝐞 (1)

 Residual:

𝐞 = ො𝐲 − 𝐲 = ො𝐲 − 𝐙 𝐚 (2)

 Sum of the squares or the residuals:

𝑆𝑟 = σ 𝑒𝑖
2 = 𝐞𝐓𝐞 = ො𝐲 − 𝐙 𝐚 𝐓 ො𝐲 − 𝐙 𝐚 (3)

 Expanding,

𝑆𝑟 = ො𝐲𝐓 ො𝐲 − 𝐚𝐓𝐙𝐓 ො𝐲 − ො𝐲𝐓𝐙𝐚 + 𝐚𝐓𝐙𝐓𝐙𝐚 (4)

K. Webb ESC 440

66

Deriving the Normal Equations

 Best fit will minimize the sum of the squares of the
residuals
 Differentiate 𝑆𝑟 with respect to the coefficient vector, 𝐚, and

set to zero

𝑑𝑆𝑟

𝑑𝐚
=

𝑑

𝑑𝐚
ො𝐲𝐓 ො𝐲 − 𝐚𝐓𝐙𝐓 ො𝐲 − ො𝐲𝐓𝐙𝐚 + 𝐚𝐓𝐙𝐓𝐙𝐚 = 𝟎 (5)

 We’ll need to use some matrix calculus identities:



𝑑

𝑑𝐚
𝐚𝐓𝐙𝐓𝐲 = 𝐙𝐓𝐲



𝑑

𝑑𝐚
𝐲𝐓𝐙𝐚 = 𝐙𝐓𝐲 (6)



𝑑

𝑑𝐚
𝐚𝐓𝐙𝐓𝐙𝐚 = 𝟐𝐙𝐓𝐙𝐚

K. Webb ESC 440

67

Deriving the Normal Equations

𝑑𝑆𝑟

𝑑𝐚
=

𝑑

𝑑𝐚
ො𝐲𝐓 ො𝐲 − 𝐚𝐓𝐙𝐓 ො𝐲 − ො𝐲𝐓𝐙𝐚 + 𝐚𝐓𝐙𝐓𝐙𝐚 = 𝟎

 Using the matrix derivative relationships, (6),
𝑑𝑆𝑟

𝑑𝐚
= −2𝐙𝐓 ො𝐲 + 2𝐙𝐓𝐙𝐚 = 𝟎 (7)

 Equation (7) is the matrix form of the normal
equations:

𝐙𝐓𝐙𝐚 = 𝐙𝐓 ො𝐲 (8)

 Solution to (8) is the vector of least-squares fitting
coefficients:

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲 (9)

K. Webb ESC 440

68

Solving the Normal Equations

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲 (9)

 Remember, our starting point was the linear least-
squares model:

𝐲 = 𝐙 𝐚 (10)

 Couldn’t we have solved (10) for fitting coefficients as

𝐚 = 𝐙−𝟏𝐲 (11)

 No, must solve using (9), because:
 Don’t have 𝐲, only noisy approximations, ො𝐲
 We have an over-determined system

◼ 𝐙 is not square
◼ 𝐙−𝟏 does not exist

K. Webb ESC 440

69

Solving the Normal Equations

 Solution to the linear least-squares problem is:

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲 = 𝐙† ො𝐲 (12)

where

𝐙† = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 (13)

is the Moore-Penrose pseudo-inverse of 𝐙

 Use the pseudo-inverse to find the least-squares
solutions to an over-determined system

K. Webb ESC 440

70

Coefficient of Determination

 Goodness of fit characterized by the coefficient of
determination:

𝑟2 =
𝑆𝑡 − 𝑆𝑟

𝑆𝑡

where 𝑆𝑟 is given by (3)

𝑆𝑟 = ො𝐲 − 𝐙 𝐚 𝐓 ො𝐲 − 𝐙 𝐚 (14)

and

𝑆𝑡 = ො𝐲 − ത𝐲 𝐓 ො𝐲 − ത𝐲 (15)

K. Webb ESC 440

71

General Least-Squares in Python

 Have 𝑛 measurements

ො𝑦 = ො𝑦0 ො𝑦1 ⋯ ො𝑦𝑛−1
𝑇

 at 𝑛 known independent variable values

𝑥 = 𝑥0 𝑥1 ⋯ 𝑥𝑛−1
𝑇

 and a model, defined by 𝑚 + 1 basis functions

ො𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑚𝑧𝑚 + 𝑒

 Generate design matrix by evaluating 𝑚 + 1 basis functions at all 𝑛
values of 𝑥

𝐙 =

𝑧0 𝑥0 𝑧1 𝑥0 ⋯ 𝑧𝑚 𝑥0

𝑧0 𝑥1 𝑧1 𝑥1 ⋯ 𝑧𝑚 𝑥1

⋮ ⋮ ⋱ ⋮
𝑧0 𝑥𝑛−1 𝑧1 𝑥𝑛−1 ⋯ 𝑧𝑚 𝑥𝑛−1

K. Webb ESC 440

72

General Least-Squares in Python

 Solve for vector of fitting coefficients as the solution
to the normal equations

𝐚 = 𝐙𝐓𝐙
−𝟏

 𝐙𝐓 ො𝐲

 Or by using np.linalg.lstsq()

a = np.linalg.lstsq(Z, yhat)

 Result is the same, though the methods are
different

K. Webb ESC 440

Nonlinear Regression73

K. Webb ESC 440

74

Nonlinear Regression – minimize()

 Nonlinear models:
 Have nonlinear dependence on fitting parameters

 E.g., 𝑦 = 𝛼𝑥𝛽

 Two options for fitting nonlinear models to data
 Linearize the model first, then use linear regression
 Fit a nonlinear model directly by treating as an optimization

problem

 Want to minimize a cost function
 Cost function is the sum of the squares of the residuals

𝐽 = 𝑆𝑟 = ෍ ො𝑦 − 𝑦 2

 Find the minimum of 𝐽 – a multi-dimensional optimization
 Use SciPy’s optimize.minimize()

K. Webb ESC 440

75

Nonlinear Regression – minimize()

 Cost function:

𝐽 = ෍ ො𝑦 − 𝛼𝑒𝛽𝑥 2

 Find 𝛼 and 𝛽 to
minimize 𝐽
 Use SciPy’s
optimize.minimize()

 Have noisy data that is believed to be best described
by an exponential relationship

𝑦 = 𝛼𝑒𝛽𝑥

K. Webb ESC 440

76

Multi-Dimensional Optimization – minimize()

 Find the minimum of a function of two or more
variables

opt = minimize(f, x0)

 f: function to be optimized

 x0: array of initial values

 opt: optimizeResult object returned – includes:

◼ opt.x: the solution of the optimization (i.e., 𝑥𝑜𝑝𝑡)

◼ opt.fun: value of objective function at the optimum (i.e., 𝑓 𝑥𝑜𝑝𝑡)

◼ opt.nit: number of iterations

K. Webb ESC 440

77

Nonlinear Regression – minimize()

K. Webb ESC 440

78

Nonlinear Regression – curve_fit()

 An alternative to minimizing a cost function using
scipy.optimize.curve_fit():

popt, pcov = curve_fit(f, x, y, p0=None)

 f: handle to the fitting function – independent variable
must be listed first
◼ e.g., f = lamba x, A, B: A*exp(B*x)

 x: independent variable data

 y: dependent variable data

 p0: initial guess for popt - optional

 popt: best-fit parameters

 pcov: estimated covariance of popt

K. Webb ESC 440

79

Nonlinear Regression – curve_fit()

K. Webb ESC 440

Polynomial Interpolation80

K. Webb ESC 440

81

Polynomial Interpolation

 Sometimes we know both 𝒙 and 𝒚 values exactly

 Want a function that describes 𝑦 = 𝑓(𝑥)

◼ Allows for interpolation between know data points

 Fit an 𝑛𝑡ℎ-order polynomial to 𝑛 + 1 data points

𝑦 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ + 𝑎𝑛

 Polynomial will pass through all points

 We’ll look at polynomial interpolation using

 Newton’s polynomial

 The Lagrange polynomial

K. Webb ESC 440

82

Polynomial Interpolation

𝑦 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ + 𝑎𝑛

 Can approach similar to linear least-squares regression
𝑦 = 𝑎0𝑧0 + 𝑎1𝑧1 + ⋯ + 𝑎𝑛𝑧𝑛

where
𝑧0 = 𝑥𝑛, 𝑧1 = 𝑥𝑛−1, … 𝑧𝑛 = 1

 For an 𝑛𝑡ℎ-order polynomial, we have 𝑛 + 1 equations
with 𝑛 + 1 unknowns

 In matrix form
𝐲 = 𝐙 𝐚

K. Webb ESC 440

83

Polynomial Interpolation

 Now, unlike for linear regression
 All 𝑛 + 1 values in 𝐲 are known exactly

 𝑛 + 1 equations with 𝑛 + 1 unknown coefficients

 𝐙 is square 𝑛 + 1 × 𝑛 + 1

𝑦1

𝑦2

⋮
𝑦𝑛+1

=

𝑥1
𝑛 𝑥1

𝑛−1 ⋯ 1

𝑥2
𝑛 𝑥2

𝑛−1 ⋯ 1
⋮ ⋮ ⋱ ⋮

𝑥𝑛+1
𝑛 𝑥𝑛+1

𝑛−1 ⋯ 1

𝑎0

𝑎1

⋮
𝑎𝑛

 Could solve by inverting 𝐙 or by using NumPy’s linalg.solve()

a = np.linalg.solve(Z, y)

 𝐙 is a Vandermonde matrix
 Tend to be ill-conditioned

 The techniques that follow are more numerically robust

K. Webb ESC 440

Newton Interpolating Polynomial84

K. Webb ESC 440

85

Linear Interpolation

 Fit a line (1st-order polynomial) to two data points
using a truncated Taylor series (or simple
trigonometry):

𝑓1 𝑥 = 𝑓 𝑥1 +
𝑓 𝑥2 − 𝑓 𝑥1

𝑥2 − 𝑥1
𝑥 − 𝑥1

where 𝑓1(𝑥) is the function for the line fit to the
data, and 𝑓 𝑥𝑖 are the known data values

 This is the Newton linear-interpolation formula

K. Webb ESC 440

86

Quadratic Interpolation

 To fit a 2nd-order polynomial to three data points,
consider the following form

𝑓2 𝑥 = 𝑏0 + 𝑏1 𝑥 − 𝑥1 + 𝑏2 𝑥 − 𝑥1 𝑥 − 𝑥2

 Evaluate at 𝑥 = 𝑥1 to find 𝑏0

𝑏0 = 𝑓 𝑥1

 Back-substitution and evaluation at 𝑥 = 𝑥2 and at
𝑥 = 𝑥3 will yield the other coefficients

𝑏1 =
𝑓 𝑥2 −𝑓 𝑥1

𝑥2−𝑥1
 and 𝑏2 =

𝑓 𝑥3 −𝑓 𝑥2
𝑥3−𝑥2

−
𝑓 𝑥2 −𝑓 𝑥1

𝑥2−𝑥1

𝑥3−𝑥1

K. Webb ESC 440

87

Quadratic Interpolation

𝑓2 𝑥 = 𝑏0 + 𝑏1 𝑥 − 𝑥1 + 𝑏2 𝑥 − 𝑥1 𝑥 − 𝑥2

 Can still view this as a Taylor series approximation

 𝑏0 represents an offset

 𝑏1 is slope

 𝑏2 is curvature

 Choice of initial quadratic form (Newton interpolating
polynomial) was made to facilitate the development

 Resulting polynomial would be the same for any initial form
of an 𝑛𝑡ℎ-order polynomial

 Solution is unique

K. Webb ESC 440

88

𝑛𝑡ℎ-Order Newton Interpolating Polynomial

 Extending the quadratic example to 𝑛𝑡ℎ-order

𝑓𝑛 𝑥 = 𝑏0 + 𝑏1 𝑥 − 𝑥1 + ⋯ + 𝑏𝑛 𝑥 − 𝑥1 𝑥 − 𝑥2 ⋯ 𝑥 − 𝑥𝑛

 Solve for coefficients as before with back-substitution
and evaluation of 𝑓 𝑥𝑖

𝑏0 = 𝑓 𝑥1

𝑏1 = 𝑓 𝑥2, 𝑥1

𝑏2 = 𝑓 𝑥3, 𝑥2, 𝑥1

⋮
𝑏𝑛 = 𝑓 𝑥𝑛+1, 𝑥𝑛, … , 𝑥2, 𝑥1

 𝑓 ⋯ denotes a finite divided difference

K. Webb ESC 440

89

Finite Divided Differences

 First finite divided difference

𝑓 𝑥𝑖 , 𝑥𝑗 =
𝑓 𝑥𝑖 − 𝑓 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

 Second finite divided difference

𝑓 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 =
𝑓 𝑥𝑖 , 𝑥𝑗 − 𝑓 𝑥𝑗 , 𝑥𝑘

𝑥𝑖 − 𝑥𝑘

 𝑛𝑡ℎ finite divided difference

𝑓 𝑥𝑛+1, 𝑥𝑛, … , 𝑥2, 𝑥1 =
𝑓 𝑥𝑛+1, … , 𝑥2 − 𝑓 𝑥𝑛, … , 𝑥1

𝑥𝑛+1 − 𝑥1

 Calculate recursively

K. Webb ESC 440

90

𝑛𝑡ℎ-Order Newton Interpolating Polynomial

 𝑛𝑡ℎ-order Newton interpolating polynomial in
terms of divided differences:

𝑓𝑛 𝑥 = 𝑓 𝑥1 + 𝑓 𝑥2, 𝑥1 𝑥 − 𝑥1 + ⋯

+𝑓 𝑥𝑛+1, 𝑥𝑛, … , 𝑥2, 𝑥1 𝑥 − 𝑥1 𝑥 − 𝑥2 ⋯ 𝑥 − 𝑥𝑛

 Divided difference table for calculation of
coefficients:

Chapra

K. Webb ESC 440

91

Newton Interpolating Polynomial – Example

K. Webb ESC 440

Lagrange Interpolating Polynomial92

K. Webb ESC 440

93

Linear Lagrange Interpolation

 Fit a first-order polynomial (a line) to two known data
points: 𝑥1, 𝑓 𝑥1 and 𝑥2, 𝑓 𝑥2

𝑓1 𝑥 = 𝐿1 𝑥 ∙ 𝑓 𝑥1 + 𝐿2 𝑥 ∙ 𝑓 𝑥2

 𝐿1 𝑥 and 𝐿2 𝑥 are weighting functions, where

𝐿1 𝑥 = ቊ
1, 𝑥 = 𝑥1

0, 𝑥 = 𝑥2

𝐿2 𝑥 = ቊ
1, 𝑥 = 𝑥2

0, 𝑥 = 𝑥1

 The interpolating polynomial is a weighted sum of the
individual data point values

K. Webb ESC 440

94

Linear Lagrange Interpolation

 For linear (1st-order) interpolation, the weighting
functions are:

𝐿1 𝑥 =
𝑥 − 𝑥2

𝑥1 − 𝑥2

𝐿2 𝑥 =
𝑥 − 𝑥1

𝑥2 − 𝑥1

 The linear Lagrange interpolating polynomial is:

𝑓1 𝑥 =
𝑥 − 𝑥2

𝑥1 − 𝑥2
𝑓 𝑥1 +

𝑥 − 𝑥1

𝑥2 − 𝑥1
𝑓 𝑥2

K. Webb ESC 440

95

𝑛𝑡ℎ-Order Lagrange Interpolation

 Lagrange interpolation technique can be extended
to 𝑛𝑡ℎ-order polynomials

𝑓𝑛 𝑥 = ෍

𝑖=1

𝑛+1

𝐿𝑖 𝑥 ∙ 𝑓 𝑥𝑖

where

𝐿𝑖 𝑥 = ෑ
𝑗=1
𝑗≠𝑖

𝑛+1
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

K. Webb ESC 440

96

Lagrange Interpolating Polynomial – Example

	Slide 1: Section 4: Curve Fitting
	Slide 2: Introduction
	Slide 3: Curve Fitting
	Slide 4: Curve Fitting
	Slide 5: Regression vs. Interpolation
	Slide 6: Review of Basic Statistics
	Slide 7: Basic Statistical Quantities
	Slide 8: Basic Statistical Quantities
	Slide 9: Normal (Gaussian) Distribution
	Slide 10: Random Number Generation – default_rng()
	Slide 11: Normally-Distributed Random Numbers
	Slide 12: Uniformly-Distributed Random Numbers
	Slide 13: NumPy Statistical Functions
	Slide 14: Histogram Plots
	Slide 15: Statistics in NumPy, matplotlib
	Slide 16: Linear Least-Squares Regression
	Slide 17: Linear Regression
	Slide 18: Measured Data
	Slide 19: Best Fit Criteria
	Slide 20: Least-Squares Criterion
	Slide 21: Least-Squares Criterion
	Slide 22: Normal Equations
	Slide 23: Normal Equations
	Slide 24: Linear Least-Squares - Example
	Slide 25: Linear Least-Squares - Example
	Slide 26: Goodness of Fit
	Slide 27: Goodness of Fit
	Slide 28: Coefficient of Determination
	Slide 29: Coefficient of Determination
	Slide 30: Coefficient of Determination
	Slide 31: Linearization of Nonlinear Relationships
	Slide 32: Nonlinear functions
	Slide 33: Nonlinear functions
	Slide 34: Linearizing an Exponential Relationship
	Slide 35: Linearizing an Exponential Relationship
	Slide 36: Linearizing an Exponential Relationship
	Slide 37: Linearizing an Exponential Relationship
	Slide 38: Linearizing a Power Equation
	Slide 39: Linearizing a Power Equation
	Slide 40: Linearizing a Power Equation
	Slide 41: Linearizing a Power Equation
	Slide 42: Linearizing a Saturation Growth-Rate Equation
	Slide 43: Linearizing a Saturation Growth-Rate Equation
	Slide 44: Linearizing a Saturation Growth-Rate Equation
	Slide 45: Linearizing a Saturation Growth-Rate Equation
	Slide 46: Polynomial Regression
	Slide 47: Polynomial Regression
	Slide 48: Polynomial Regression
	Slide 49: Polynomial Regression – Normal Equations
	Slide 50: Polynomial Regression – Normal Equations
	Slide 51: Polynomial Regression – Normal Equations
	Slide 52: Polynomial Regression – Example
	Slide 53: Polynomial Regression – np.polyfit()
	Slide 54: Polynomial Regression – np.polyfit()
	Slide 55: Polynomial Regression Using np.polyfit()
	Slide 56: Multiple Linear Regression
	Slide 57: Multiple Linear Regression
	Slide 58: Multiple Linear Regression – Normal Equations
	Slide 59: General Linear Least-Squares Regression
	Slide 60: General Linear Least-Squares
	Slide 61: General Linear Least-Squares
	Slide 62: General Linear Least-Squares
	Slide 63: General Linear Least-Squares
	Slide 64: General Linear Least-Squares – Design Matrix Example
	Slide 65: General Linear Least-Squares – Residuals
	Slide 66: Deriving the Normal Equations
	Slide 67: Deriving the Normal Equations
	Slide 68: Solving the Normal Equations
	Slide 69: Solving the Normal Equations
	Slide 70: Coefficient of Determination
	Slide 71: General Least-Squares in Python
	Slide 72: General Least-Squares in Python
	Slide 73: Nonlinear Regression
	Slide 74: Nonlinear Regression – minimize()
	Slide 75: Nonlinear Regression – minimize()
	Slide 76: Multi-Dimensional Optimization – minimize()
	Slide 77: Nonlinear Regression – minimize()
	Slide 78: Nonlinear Regression – curve_fit()
	Slide 79: Nonlinear Regression – curve_fit()
	Slide 80: Polynomial Interpolation
	Slide 81: Polynomial Interpolation
	Slide 82: Polynomial Interpolation
	Slide 83: Polynomial Interpolation
	Slide 84: Newton Interpolating Polynomial
	Slide 85: Linear Interpolation
	Slide 86: Quadratic Interpolation
	Slide 87: Quadratic Interpolation
	Slide 88: n to the t h -Order Newton Interpolating Polynomial
	Slide 89: Finite Divided Differences
	Slide 90: n to the t h -Order Newton Interpolating Polynomial
	Slide 91: Newton Interpolating Polynomial – Example
	Slide 92: Lagrange Interpolating Polynomial
	Slide 93: Linear Lagrange Interpolation
	Slide 94: Linear Lagrange Interpolation
	Slide 95: n to the t h -Order Lagrange Interpolation
	Slide 96: Lagrange Interpolating Polynomial – Example

