SECTION 5: INTEGRATION

- ESC 440 — Computational Methods for Engineers



- Introduction
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Integration
e

Integration, or quadrature, has many engineering applications

A few examples:

o Mean value

b
_Jy f()dx
Y= b—a
o Constitutive physical laws
Ap = f F(t)dt

Av = %f i(t)dt

Ax = fv(t)dt

o Total flux through a surface
Q = ff U(x,y)dx dy
o Etc. ..
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Numerical Integration

The numerical integration algorithms we’ll look at
can be divided into two broad categories:

o Algorithms for integration of data or functions

No flexibility to choose the points, f(x;), used for
calculation of the integral

Points, f(x;), may or may not be uniformly-spaced
Newton-Cotes formulas

o Algorithms for the integration of functions
Exploit the ability to calculate f(x) at any value of x
Improved accuracy and efficiency

Adaptive quadrature, Romberg integration, Gauss
guadrature
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- Newton-Cotes Formulas

This first category of numerical integration
algorithms can be applied either to functions or
to discrete data sets.
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Newton-Cotes Formulas
S —

Want to approximate the integral of a function or data set

I = jbf(x)dx

Approximate f(x) with something that is easy to integrate

o An n!"-order polynomial
f(x) = f,(x) =ay +ayx + -+ a,x"

Integral approximation:

b
f=] £, () dx =~ I

Unless otherwise noted, Newton-Cotes formulas assume evenly-
spaced data points
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Closed Forms vs. Open Formulas
-

Two different versions of the Newton-Cotes integral
formulas:

fx)

o Closed forms

Values of the function at the limits of
integration, f(a) and f(b), are known

o Open forms a b

fx)

f(a) and f(b) are unknown \

We’ll focus on closed forms of the
Newton-Cotes formulas

aaaaaa a b
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Single-Segment vs. Composite

Newton-Cotes formulas may be applied in two
diffe rent WayS: Single-Segment Application

o Single-segment
Entire integration interval, [a, b],

approximated with a single
polynomial

ix)

Composite Application

o Composite x
Integration interval divided into /

multiple segments

Integral approximated for each
segment — results summed

f(x)
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- Trapezoidal Rule

In the following sections, we’ll look at three
different Newton-Cotes integration formulas:

- Trapezoid rule
- Simpson’s 1/3 rule
- Simpson’s 3/8 rule
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Trapezoidal Rule

.
Approximate f (x) as a first-order polynomial

fl) = f1(x) = ag+ayx

b) —
fi0 = £y + TO D (g

Integral approximation:

I—ffl(x)dx— [f()+f() D )| ax~1

Trapezoidal rule formula:

fla) + f(b)

[=0b-a) >

K. Webb ESC 440



Trapezoidal Rule
-

The trapezoidal rule formula 120
. a)+ f(b 1007
= - @D |

60 1

fix)

can be interpreted as

[ = (width) x (avg.value) “

201 width = (b — a)
All Newton-Cotes formulas can =
be expressed th|s way ° 0.75 0.20 0.35 0.30 0.|35
o Only the approximation of the a b

average value of f(x) varies ) .
Integral approximation is the
o More accurate approx. of avg.

value yields more accurate integral ~ 9f€d uerer Fhe polynomial
estimate approximation of f(x)
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Trapezoidal Rule — Error
-

The error of the trapezoidal rule estimate is

E T . 1 Il 3
=T 1= "0 -a

where € is some unknown value of x on [a, b]

Since ¢ is unknown, approximate the error as

E — 1 _Il(b )3
«a =12 ¢

where f'’ is the mean curvature of f(x) on [a, b]
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Trapezoidal Rule — Error

-
The error of the trapezoidal rule estimate is

1
Ee=—f"(§)b - a)3

If the curvature of f(x) is zero on [a, b]

f'(x)=0, fora<x<bh

Then the trapezoidal rule approximation is exact
Et —_ O

First-order polynomial is an exact representation of
a linear f(x)
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f(x)

Trapezoidal Rule — Example

Trapezoidal rule may provide
an accurate integral estimate
o Over regions with low curvature

o Where f(x) is reasonably
approximated as linear

Trapezoidal Rule Integration
120

100 +

80 -
1=18.4642
Er=0.86%
60 -

40 -

20 A

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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120

100 A
80
X 60
40

20 A

0

Trapezoidal Rule Integration

1=30.5882
£ = 38.65%

T T T T T
0.0 0.2 0.4 0.6 0.8

Or, large errors may result

o Over regions with large
curvature

0o Where a linear approximation is
unacceptable

T
1.0
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Composite Trapezoidal Rule
e

Accuracy can be improved by dividing the interval
|a, b] into n segments

120

Composite Trapezoidal Rule

on + 1 evenly-spaced
sample points of f(x):
Xg - X 80 -

100 ~

flx)

o Segment width:

b—a 01

n 20 4
width = (b — a)

Now approximating f(x) o~ F—-1— L 1 1

as piece-wise linear | ' |
Xo = a Xn =D
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Composite Trapezoidal Rule
e

Divide the integral into n segments

I = fxlf(x)dx+szf(x)dx+-~+jxn f(x)dx

Xn

Approximate each term using the trapezoidal rule

JE) G L fO) ) | O +f )

I'= 2 2 2

Using summation notation

. h n-1
[ = E [f(xo) + Zzi=1f(xi) + f(xn)]

Or, in (width) X (avg.value) form

[ (x0) + 2305 £ (o) + £ ()]
2n

I=0B-a)
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Composite Trapezoidal Rule — Error
-

Total error is the sum of the individual errors

n 1 5 n — )3
B=Y Bi=ghy €)= )

Again, approximate using f’/, the mean curvature
(b — a)’

Ea = 12n3 - f
where
Z f_'ll — Tlf”
=1

SO

b —a)3

E, ( )
12n?
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(x)

Composite Trapezoidal Rule — Example

120

100 A

80 1

60 A

40 1

20 A

120

Accuracy improves as the
number of segments
Increases

O Average curvature over each ~
segment decreases

o f(x) better approximated as
linear over smaller regions °

Trapezoidal Rule Integration

120

fx)

K. Webb

Trapezoidal Rule Integration

100 A

80 A

X 60

40 1

20 7

n=3
1=56.2896
£=12.90%

100 ~

80 1

60 1

40 A

20+

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Trapezoidal Rule Integration

n=16
1=49.8108
£=0.10%

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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Trapezoidal Rule — Unequally-Spaced Data
e

Trapezoidal rule can be easily modified to
accommodate unequally-spaced data points

o Account for the width of each of the n individual
segments explicitly

hlf(xo)‘2|'f(x1)+h2f(x1)‘;f(x2)+m

(xn—l) + f(xn)

+hnf >

[ =

Useful for measured data, where uneven spacing is
not uncommon
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Trapezoidal Rule in Python —trapezoid()
e

The integrate module from the SciPy package includes
several integration functions, including trapezoid rule

o Import it first:
from scipy import integrate

I = integrate.trapezoid(y, Xx)

O y: vector of dependent variable data
o X: vector of independent variable data

o I:trapezoidal rule approximation to the integral of y with respect
to x (a scalar)

Data need not be equally-spaced
o Segment widths calculated from x values
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Cumulative Integral — cumulative trapezoid()
-

I = integrate.cumulative trapezoid(y, X,
initial=0)

O y: n-vector of dependent variable data
O X: n-vector of independent variable data

o initial: optional initial value inserted as the first value in I —if
not given, I is an (n-1)-vector

o I:trapezoidal rule approximation to the cumulative
integral of v with respect to x (an n-vector)

Result is a vector — equivalent to:

[(x) =f y(X) dx

X1
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trapezoid() and cumulative trapezoid()
25 1

Integrating with

trapezoid() and cumulative_trapezoid() 1 # tropz test
120 2
3 import numpy as np
100 4 4 from matplotlib import pyplot as plt
5 from scipy import integrate
B
—. 801 7 x = np.linspace(®,1,28@8)
é 8 T = lambda x: 1 / ((x-8.3)%*2 + .01) + 1 / ((x-8.9)%*2 + 8.84) + 14
60 - 5
18 y = F(x)
40 - o _ _
12 I = integrate.trapezoid(y, x)
13 Ic = integrate.cumulative_trapezoid(y, x)
T T T T T T 14
0.0 0.2 0.4 0.6 0.8 1.0 15 plt.figure(1); plt.clf()
50 16 plt.subplot{211)
17 plt.plot(x,y, -b",linewidth=2)
18 plt.ylabel( ' f(x)")
40 7 19 plt.title( Integrating with\ntrapezoid() and cumulative_ trapezoid()}’,
28 fontweight="bold")
__ 304 21
= 22 plt.subplot(212)
20 A I = 49.858 23 plt.plot(x[1:],Ic, -b',linewidth=2)
- " 24 plt.xlabel('x"}; plt.ylabel( 'I(x)")
10 25 plt.text(®.65,15,f'I = {I:1.3f}",
26 fontsize=12,fontname="Tahoma")
0 27
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
x
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- Simpson’s 1/3 Rule
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Simpson’s 1/3 Rule
-0V
Approximate f (x) with a second-order polynomial

fx) = f2(x)
where f,(x) can be expressed as a Lagrange
polynomial:
fy o GG G o G )ema)

(x1 — x0)(x1 — x3) flx (x2 — x0) (X3 — x1) fx

(x9 — x1)(xg — x2)

Approximate the integral of f(x) as the integral of the
guadratic approximation

b
Ixizf f>(x) dx
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Simpson’s 1/3 Rule

-0V
Now fitting a
parabola to f(x)

Simpson’'s 1/3 Rule Integration
120

100 -

Three points
required: xq, X1,
and x,

f{x)

Integration interval, ..
|a, b] divided into

two segments width =|(b — a)

0 ! T
Points must be o | 05
evenly spaced ¥o=a ‘ Xz = b
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Simpson’s 1/3 Rule
e

Evaluating the integral of the quadratic
approximation, f,(x), yields Simpson’s 1/3 rule:

. h
['=21f(x0) +4f (1) + f(x2)]

Or,in I = (width) X (avg.value) form:

fQxo) +4f(x1) + fx2)
6

[=(b-a)
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Simpson’s 1/3 Rule — Error
.

The error associated with Simpson’s 1/3 rule is

(b —a)
2880

1 5
Fe =5 hS () = FO@

Error is proportional to the fourth derivative of f(x)

o For third- and lower-order polynomials, f(4) =0

O The Simpson’s 1/3 rule integral estimate is exact for
cubic and lower-order polynomials

o An interesting result, given that f(x) is approximated
with only a quadratic
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Composite Simpson’s 1/3 Rule
e

Accuracy can be improved
|a, b] into n segments

120

Each application of

Simpson’s 1/3 rule requires ..

three points, and two
segments

o Total number of segments z
must be even

o Total number of points
must be odd

20~

f (x) approximated as a ,
quadratic over each pair of
adjacent segments

K. Webb

by dividing the interval

Composite Simpson's 1/3 Rule

80

60

40 1

width = (b — a)

D.IS
| |
Xn=D>

1.0
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Composite Simpson’s 1/3 Rule
e

Divide [a, b] into n segments, and the integral into n/2 segments

I—f f(x)dx+] fx)dx + - +J f(x)dx

Approximate each term using Simpson’s 1/3 rule

. h
=3 [f(x0) +4f Cer) + f )] + [f(x2) +4f(xz) + fx)] + 43 [f(xn 2) +4f (xn-1) + f ()]

Using summation notation

n-—2
=3 [f(xo)+4zl e SEF2) f() + fO)

Or, in (width) X (avg.value) form

[f(x0)+42l 135, f () + 2252 246 (xj)+f(xn)]

[=(-a 3n
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Composite Simpson’s 1/3 Rule — Example
e

120 Simpson's 1/3 Rule Integration

Accuracy improves as the

100 A

number of segments increases
—_ 80 4
o f™ over each segment i
decreases 2 °0]
o f(x) better approximated as 0
qguadratic over smaller regions -
" oo 02 04 05 05 10
120 Simpson's 1/3 Rule Integration 10 Simpson's 1/3 Rule Integration
100 100 4
=16
507 80 = 49.9707
E=023%
60 5 60 4

(x)

40 40

20 A 20

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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Simpson’s 3/8 Rule
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Simpson’s 3/8 Rule
-0V
Approximate f (x) with a third-order polynomial

f(x) = f3(x)

where f3(x) can, again, be expressed as a Lagrange
polynomial

Approximate the integral of f(x) as the integral of
the cubic approximation

b
szzf f5(x) dx
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Simpson’s 3/8 Rule

Now fitting a cubic
to f(x)

Four points
required: xg, X1,
X5, and x3 s
Integration interval,
|a, b] divided into
three segments

Points must be
evenly spaced

K. Webb

120

100 +

80 ~

= B0

Simpson's 3/8 Rule Integration

CI.IS 1.0
| X |
X3 = b
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Simpson’s 3/8 Rule
e

Evaluating the integral of the cubic approximation,
f3(x), yields Simpson’s 3/8 rule:

3h
8

I =—1[f(xg) +3f(x1) + 3f (xz) + f(x3)]

Or,in I = (width) X (avg.value) form:

f(xg) +3f(xg) +3f(xz) + f(x3)
3

[=(b-a)
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Simpson’s 3/8 Rule — Error
e

The error associated with Simpson’s 3/8 rule is

(b —a)
6480

3 5
E, = —h5f®(&) = fH©)
80
Error is proportional to the fourth derivative of f(x)

o Third-order accuracy
Same as Simpson’s 1/3 rule

o For nonzero f(4), error is slightly lower than Simpson’s
1/3 rule
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Composite Simpson’s 3/8 Rule
.

Accuracy can be improved by dividing the interval
|a, b] into n segments

Composite Simpson's 3/8 Rule

Each application of Simpson’s ™
3/8 rule requires four points,
and three segments

100

o Total number of segments 80+
must be divisible by three

o Can be used in conjunction 2
with Simpson’s 1/3 rule to
accommodate an odd number

60 1

5

D_

of segments
207 width = (b|— a)
f (x) approximated as a cubic
over each group of three o 00 02 04 06 05 10
adjacent segments | " |
Xo = a Xn =Db
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Composite Simpson’s 3/8 Rule
.

Divide [a, b] into n segments, and the integral into n/3 segments

I—f f(x)dx+f f)dx + - +f f(x)dx

Xn-3

Approximate each term using Simpson’s 3/8 rule
I
3h 3h
= g[f(xo) +3f(x1) +3f(xz) + fx3)] + E[f(x3) + 3f(x4) + 3f(xs5) + f(x)] + -
h
+ 2 [ Cnea) + 3 Conea) + 3 Cons) + i)

Using summation notation

o 3h n—2 n-1 n-3
I=— [f(xo) +3 Zi=1,4,7...f(xi) +3 Zj:z,s,s.,.f(xj) +2 zk=3,6,9___f(x"") + f(xy)

Or, in (width) X (avg.value) form

3[f(x0)+3 CiaT. f(xz)+321 =2,538.. f(x])+2 Z3609. fOa) + )]
8n
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Composite Simpson’s 3/8 Rule — Example

120

Accuracy improves as the
number of segments
Increases

fix)

u| f(4) over each segment
decreases

o f(x) better approximated as
a cubic over smaller regions

Simpson's 3/8 Rule Integration
120

120

100 A

n=9
1=48.8048
£=2.11%

80 4

60

fix)
fix)

40 4

20 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

K. Webb

100 ~

80 4

60 4

40 4

207

Simpson's 3/8 Rule Integration

U U U 1 U T
0.0 0.2 0.4 0.6 0.8 1.0

X

Simpson's 3/8 Rule Integration

100 ~

80 4

60

40 4

204

n=18
1=49.8075
£=0.10%

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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Order Formulas
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Higher-Order Formulas
-

Typically, Simpson’s 1/3 rule, used in conjunction
with Simpson’s 3/8 rule (for odd n), is sufficient

Possible to use higher-order polynomials to
approximate f(x)

on segments and n + 1 points needed for nt"*-order
polynomial approximation

Closed and open integration formulas exist

Boole’s rule will show up in a different form later
when we cover adaptive quadrature
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Higher-Order Newton-Cotes Formulas — Closed
-

Formula

Trapezoidal A f(xy) + f(xy) ’"
L | rule =3 2 @)
Simpson’s . h @)
2 e 1=3lfG)+afG) + 1G] e
Simpson’s . 3h @)
3 3/8 Fr)ule I'= 5 [f (xo) + 3f (x1) + 3f (x2) + f(x3)] f
, . 2h @)
4 Boole'srule J[= = [7f(x0) + 32f(x1) + 12f (x3) + 32f (x3) + 7f (x)]
R h
5 - = - [19f (x0) + 75f (1) + 50f () + 50 (x3) + 75 (x) + 19f(x)]  f(©)(€)
The step size in the above formulasis: h = (b;a)
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Open Integration Formulas

Function values not f)h
know at the limits of
Integration

O n segments
o(n — 1) points
o (n — 2)"-order
polynomial
approximation /// =

aaaaaa ‘I [) -r
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Higher-Order Newton-Cotes Formulas — Open
-

Segments e Formula Error prop.
(n) to

2 1 I=0-a)f(n) )
(4)

3 2 i:(b_a)f(xﬂ‘;f(xz) f (f)
(4)

A 5 | =@ b )
(6)

5 3 | s g LR e ) )

6 5 f: (b _ a) 11f(X1) - 14f(x2) + 262%353) - 14f(X4_) + 11f(x5) f(6) (é—)
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Integration of Functions

-
Newton-Cotes formulas can be used to integrate
functions or discrete data points
o Evenly-spaced data points are assumed
If f(x) is known, spacing of x-values can be chosen
to improve accuracy
o Spacing need not be uniform

o Can locate points specific distances from limits of
integration or segment edges to improve accuracy

o Can use larger step size where acceptable, reduced step
size where necessary

Effectively trade off accuracy and efficiency
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Methods for integrating functions
-

Romberg integration

o Combine two trapezoidal rule estimates with different step
sizes to yield a third, more accurate estimate

Gauss quadrature

o Spacing of points within the integration segments chosen to
improve accuracy of Newton-Cotes formulas

Adaptive Quadrature

o Adaptively refine step size to achieve desired accuracy

o Smaller step size in some regions, larger in others

o Uses some of the techniques used by Romberg integration
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Adaptive Quadrature
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Adaptive Quadrature

Vary step size to
achieve desired
accuracy over each
segment

o Smaller step size
where f(x) varies

100 +

Adaptive Quadrature Integration

120 A

1=86.3685
Er=2.73e—02%

T T T T T
—-0.5 0.0 0.5 1.0 1.5 2.0

rapidly o
. Step Size

O Larger step size

where f(x) varies

gradually o125
Integration method oo
used is Simpson’s .
1/3 rule -1.0 -0.5 0.0 0;;5 1.0 15 2.0
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Adaptive Quadrature

Apply Simpson’s 1/3 rule to approximate the integral at two different step
sizes, [(h,) and [(h,), where h, = h,/2

Simpson's 1/3 Rule Integration Simpson's 1/3 Rule Integration
120 120

100 ~ 100 ~

n=2 80
1=36.1961
g=27.40%

80 A

60

fi{x)

60

fi{x)

40 A 40

20 20

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

. h . h
I(h) =2 @ +4F@ + D] [(h) =2 [£(@) +4F(d) + 2 () + 4£() + fB)]
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Adaptive Quadrature

e
Use [(hy) and I (h,) to approximate the error:

E, = I(hy) — I[(hy) (1)

Two possible ways to proceed:

olf £, < abstol

Using an agproach similar to Romberg integration, combine
I(h,) and I(h,) to yield a third, more accurate estimate of
the integral

olf E;, > abstol
Divide [a,b] into two segments: [a, c| and [c, b]

Calculate I(h,) and I(h,) for each segment
Single- and double-segment Simpson’s 1/3 approximations

Use (1) to approximate the error for each sub-interval
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Adaptive Quadrature— E, < abstol
-

If E, as calculated by (1) is acceptable (i.e. < abstol) we can use
I(hy) and I (h,) to calculate a third, more accurate approximation

o This is the basic principal used in Romberg integration

o We'll now derive the formula used to combine [(h;) and [(h,)

Each estimate is the true integral plus some error
I =1(hy) — E(hy) = I(hy) — E(hy) (2)

We've seen that Simpson’s 1/3 rule error can be approximated as

(b—a)h*
180

E,(h) = f@ (3)

where f(4) is the average value off(4) (x) over the integration
interval
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Adaptive Quadrature— E, < abstol

Equation (3) gives approximate error at each step
size:

Ea(hy) = M 7 (@
Eq(hy) = L2010 (5)
Divide (4) by (5)
4
Fath = i y

Solve for E,(hq)
Eq(hy) = Eq(hy) 3 ”
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Adaptive Quadrature— E, < abstol
-

Restate (2) as an approximation

[(hy) — Eq(hy) = [(hy) — E4(hy) (8)
Substitute (7) into (8)
[(hy) = Ea(h) 1% ~ 1(h) = Eq(hy) ©

Solve (9) for the error of the more accurate
approximation

Eq(hy) = - [I(hl):l('?)] (10)
1-(5)
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Adaptive Quadrature— E, < abstol

-0V
According to (2)

I =1(hy) — E(hy) (11)
SO
I =1 =1(hy) — Eq(hy) (12)

Substituting (10) into (12)

I(hy) = I(hy)

And, since hy = 2 - h,, the integral approximation is

[ = 1(hy) + = [I(hg) — I(hy)] (13)

Which can be shown to be equivalent to Boole’s rule
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Adaptive Quadrature— E, < abstol
e
Summarizing.
o Want to numerically integrate f (x) over |a, D]
o Calculate I(hy) and I(h,)
o Approximate the error as

Eq = i(hz) — i(h1)

olf £, < abstol, calculate the integral using Boole’s rule

= I(h;) ‘|‘ [I(hz) — 1(h1)]

o Next, we’ll look at what to do if E; > abstol
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Adaptive Quadrature — E, > abstol

.,
If E, > abstol, reduce the step size and try again

o Subdivide the integration interval, [a, b], into two sub-
intervals, [a, c] and [c, D]

o For each subinterval:
Calculate [ (hy) and I(h5)

Calculate E,

If E; < abstol, calculate [ for that sub-interval using Boole’s rule

If E, > abstol, further subdivide the sub-interval into two smaller
sub-intervals

Calculate I(hy) and [(h,), then E,,...

o Eventually, total integral approximation is the sum of all
individual sub-interval integral approximations
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Adaptive Quadrature — Recursive Algorithm

Adaptive quadrature (eqmiiopirt ooz
uses a recursive v
algorithm

o A function that calls itself !
Integration interval is e

continually subdivided
until approximate error is
acceptable

I.=quadadapt (f,a,c,abstol)

Iy=quadadapt (f,c,b,abstol)

|Ea| € abstol?

I returned by function is I
the sum of the individual g
I values I

K. Webb ESU 44U
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Adaptive Quadrature — quadadapt ()
e

import numpy as np

4
5 def quadadapt(f,a,b,abstol): <&

6

7 Integrates f(x) over [a, b] using adaptive gquadrature.
8

) Parameters

e -

11 f : function to be integrated

12 a : lower limit of integration

13 b : upper limit of integration

14 abstol : stopping criterion - absolute (not relative) walue
15

16 Return

v -

18 I : approximation of the integral
19

28

21

22 hl = (b-a)/2

23 h2 = hl/2

24 c = (ath)/2

25 d = (a+c)/2

26 e = (ctb)/2

27

28

29 Ihl = h1/3*(f(a) + 4%f(c) + (b))
38

31

32 Ih2 = h2/3*(f(a) + 4%f(d) + 2%f(c) + 4*%F(e) + T(b))
33

34

is Ea = abs(Ih2 - Ihl)

36

37

38

39

48 if Ea <= abstol:

41 I = Ih2 + 1/15%(Th2 - Thl)

42 else:

43 Ia = quadadapt(f,a,c,ahstol)}

44 Ik = quadadapt(f,c,b,abstol)
45 I=1Ia+1Ib <

46

47 return I

K. Webb

Inputs: function handle, limits of
integration, and tolerance

o On subsequent recursive calls, a
and b will be sub-interval limits

Step sizes and x-values for two
Simpson’s 1/3 rule estimates

Integral estimates at two different
step sizes

Approximate error
Boole’s rule estimate
Recursive function calls

Sum the sub-interval integral
estimates
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Adaptive Quadrature — Examples

Adaptive Quadrature Integration
abstol = 5.0e+00

100 -
1=85.8933
_ £§=523e-01%
& 504
0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Step Size
0.15 |
0.10 |
0.05 |
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X
Adaptive Quadrature Integration
abstol = 5.0e-02
100
/=86.3486
_ §=427e—-03%
& 50 -
0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Step Size
0.15 |
< 0.10
0.05
-1.0 05 0.0 05 10 15 2.0

K. Webb

fix)

fix)

Adaptive Quadrature Integration
abstol = 5.0e-01

100
1=86.3901
£§=523e-02%
50
0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Step Size
0.15 |
0.10
0.05 |
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X
Adaptive Quadrature Integration
abstol = 5.0e-03
100
/=286.3458
£=9.35e - 04%
50 -
0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Step Size
0.08 |
_ 0.06
0.04
0.02 /
-1.0 05 0.0 05 10 15 2.0
X
ESC 440






Integrating Functions — integrate.quad()
-

When we have an expression for the function to be
integrated, we can use SciPy's integrate.quad()
function:

I, err = integrate.quad(f,a,b)

o f: the function to be integrated

o a: lower integration limit

o b: upper integration limit

o I: numerical approximation of the integral
O err: approximate absolute error

Calculates I = fff(x)dx

K. Webb ESC 440



Exercise — Integration in Python
e

The impulse response of a certain 2"4-order system is given by

h(t) = 5.2414e~* sin(wg4t)
where a = 1.5 and wy = 4.7697rad/sec

A system’s step response is the integral of its impulse response. For this
system, the step response is

g(t) =1—e * cos(wyt) — 0.3145e " *t sin(w,t)

Plot g(t) for 0 < t < 10sec using a small sampling interval (e.g. 1msec)

For a variety of step sizes (e.g. 500, 200, 100, 10, 1msec)

o Calculate g(t) using cumulative trapezoid() and superimpose on the plot
of g(t)

o Calculate the steady-state value of the step response using trapezoid()

o Notice the effect of step size on the accuracy of the integral

< Webb Also, calculate the steady-state step response value using quad()  tc a0
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