
ESC 440 – Computational Methods for Engineers

SECTION 5: INTEGRATION

K. Webb ESC 440

Introduction2

K. Webb ESC 440

3

Integration

 Integration, or quadrature, has many engineering applications

 A few examples:

 Mean value

ത𝑦 =
𝑎׬

𝑏
𝑓 𝑥 𝑑𝑥

𝑏 − 𝑎

 Constitutive physical laws

Δ𝑝 = න 𝐹 𝑡 𝑑𝑡

Δ𝑣 =
1

𝐶
න 𝑖 𝑡 𝑑𝑡

Δ𝑥 = න 𝑣 𝑡 𝑑𝑡

 Total flux through a surface

𝑄 = ඵ 𝑈 𝑥, 𝑦 𝑑𝑥 𝑑𝑦

 Etc. …

K. Webb ESC 440

4

Numerical Integration

 The numerical integration algorithms we’ll look at
can be divided into two broad categories:

 Algorithms for integration of data or functions
◼ No flexibility to choose the points, 𝑓 𝑥𝑖 , used for

calculation of the integral

◼ Points, 𝑓 𝑥𝑖 , may or may not be uniformly-spaced

◼ Newton-Cotes formulas

 Algorithms for the integration of functions
◼ Exploit the ability to calculate 𝑓 𝑥 at any value of 𝑥

◼ Improved accuracy and efficiency

◼ Adaptive quadrature, Romberg integration, Gauss
quadrature

K. Webb ESC 440

This first category of numerical integration
algorithms can be applied either to functions or
to discrete data sets.

Newton-Cotes Formulas5

K. Webb ESC 440

6

Newton-Cotes Formulas

 Want to approximate the integral of a function or data set

𝐼 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

 Approximate 𝒇(𝒙) with something that is easy to integrate

 An 𝑛𝑡ℎ-order polynomial

𝑓 𝑥 ≈ 𝑓𝑛 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛

 Integral approximation:

መ𝐼 = න
𝑎

𝑏

𝑓𝑛 𝑥 𝑑𝑥 ≈ 𝐼

 Unless otherwise noted, Newton-Cotes formulas assume evenly-
spaced data points

K. Webb ESC 440

7

Closed Forms vs. Open Formulas

 Two different versions of the Newton-Cotes integral
formulas:

 Closed forms
◼ Values of the function at the limits of

integration, 𝑓 𝑎 and 𝑓 𝑏 , are known

 Open forms
◼ 𝑓 𝑎 and 𝑓 𝑏 are unknown

 We’ll focus on closed forms of the
Newton-Cotes formulas

Chapra

K. Webb ESC 440

8

Single-Segment vs. Composite

 Newton-Cotes formulas may be applied in two
different ways:

 Single-segment
◼ Entire integration interval, 𝑎, 𝑏 ,

approximated with a single
polynomial

 Composite
◼ Integration interval divided into

multiple segments

◼ Integral approximated for each
segment – results summed

K. Webb ESC 440

In the following sections, we’ll look at three
different Newton-Cotes integration formulas:

▪ Trapezoid rule

▪ Simpson’s 1/3 rule

▪ Simpson’s 3/8 rule

Trapezoidal Rule9

K. Webb ESC 440

10

Trapezoidal Rule

 Approximate 𝑓 𝑥 as a first-order polynomial

𝑓 𝑥 ≈ 𝑓1 𝑥 = 𝑎0 + 𝑎1𝑥

𝑓1 𝑥 = 𝑓 𝑎 +
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎

 Integral approximation:

መ𝐼 = න
𝑎

𝑏

𝑓1 𝑥 𝑑𝑥 = න
𝑎

𝑏

𝑓 𝑎 +
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎 𝑑𝑥 ≈ 𝐼

 Trapezoidal rule formula:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2

K. Webb ESC 440

11

Trapezoidal Rule

 The trapezoidal rule formula

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2

can be interpreted as

መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒

 All Newton-Cotes formulas can
be expressed this way

 Only the approximation of the
average value of 𝑓 𝑥 varies

 More accurate approx. of avg.
value yields more accurate integral
estimate

𝑎 𝑏

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑎𝑣𝑔.
𝑣𝑎𝑙𝑢𝑒

𝑓 𝑏

𝑓 𝑎

 Integral approximation is the
area under the polynomial
approximation of 𝑓 𝑥

K. Webb ESC 440

12

Trapezoidal Rule – Error

 The error of the trapezoidal rule estimate is

𝐸𝑡 = መ𝐼 − 𝐼 =
1

12
𝑓′′ 𝜉 𝑏 − 𝑎 3

where 𝜉 is some unknown value of 𝑥 on [𝑎, 𝑏]

 Since 𝜉 is unknown, approximate the error as

𝐸𝑎 =
1

12
ҧ𝑓′′ 𝑏 − 𝑎 3

where ҧ𝑓′′ is the mean curvature of 𝑓 𝑥 on [𝑎, 𝑏]

K. Webb ESC 440

13

Trapezoidal Rule – Error

 The error of the trapezoidal rule estimate is

𝐸𝑡 =
1

12
𝑓′′ 𝜉 𝑏 − 𝑎 3

 If the curvature of 𝑓 𝑥 is zero on [𝑎, 𝑏]

𝑓′′ 𝑥 = 0, for 𝑎 ≤ 𝑥 ≤ 𝑏

 Then the trapezoidal rule approximation is exact

𝐸𝑡 = 0

 First-order polynomial is an exact representation of
a linear 𝑓 𝑥

K. Webb ESC 440

14

Trapezoidal Rule – Example

 Trapezoidal rule may provide
an accurate integral estimate
 Over regions with low curvature
 Where 𝑓 𝑥 is reasonably

approximated as linear

 Or, large errors may result
 Over regions with large

curvature
 Where a linear approximation is

unacceptable

K. Webb ESC 440

15

Composite Trapezoidal Rule

 Accuracy can be improved by dividing the interval
[𝑎, 𝑏] into 𝑛 segments

 𝑛 + 1 evenly-spaced
sample points of 𝑓 𝑥 :
𝑥0 … 𝑥𝑛

 Segment width:

ℎ =
𝑏 − 𝑎

𝑛

 Now approximating 𝑓 𝑥
as piece-wise linear

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏

K. Webb ESC 440

16

Composite Trapezoidal Rule

 Divide the integral into 𝑛 segments

𝐼 = න
𝑥0

𝑥1

𝑓 𝑥 𝑑𝑥 + න
𝑥1

𝑥2

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−1

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using the trapezoidal rule

መ𝐼 = ℎ
𝑓 𝑥0 + 𝑓 𝑥1

2
+ ℎ

𝑓 𝑥1 + 𝑓 𝑥2

2
+ ⋯ + ℎ

𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

2

 Using summation notation

መ𝐼 =
ℎ

2
𝑓 𝑥0 + 2 ෍

𝑖=1

𝑛−1

𝑓 𝑥𝑖 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 2 σ𝑖=1

𝑛−1 𝑓 𝑥𝑖 + 𝑓 𝑥𝑛

2𝑛

K. Webb ESC 440

17

Composite Trapezoidal Rule – Error

 Total error is the sum of the individual errors

𝐸𝑡 = ෍
𝑖=1

𝑛

𝐸𝑡,𝑖 =
1

12
ℎ3 ෍

𝑖=1

𝑛

𝑓′′ 𝜉𝑖 =
𝑏 − 𝑎 3

12𝑛3
෍

𝑖=1

𝑛

𝑓′′ 𝜉𝑖

 Again, approximate using ҧ𝑓′′, the mean curvature

𝐸𝑎 =
𝑏 − 𝑎 3

12𝑛3
෍

𝑖=1

𝑛
ҧ𝑓′′

where

෍
𝑖=1

𝑛
ҧ𝑓′′ = 𝑛 ҧ𝑓′′

so

𝐸𝑎 =
𝑏 − 𝑎 3

12𝑛2
ҧ𝑓′′

K. Webb ESC 440

18

Composite Trapezoidal Rule – Example

 Accuracy improves as the
number of segments
increases
 Average curvature over each

segment decreases

 𝑓 𝑥 better approximated as
linear over smaller regions

K. Webb ESC 440

19

Trapezoidal Rule – Unequally-Spaced Data

 Trapezoidal rule can be easily modified to
accommodate unequally-spaced data points

 Account for the width of each of the 𝑛 individual
segments explicitly

መ𝐼 = ℎ1

𝑓 𝑥0 + 𝑓 𝑥1

2
+ ℎ2

𝑓 𝑥1 + 𝑓 𝑥2

2
+ ⋯ + ℎ𝑛

𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

2

 Useful for measured data, where uneven spacing is
not uncommon

K. Webb ESC 440

20

Trapezoidal Rule in Python – trapezoid()

 The integrate module from the SciPy package includes
several integration functions, including trapezoid rule
 Import it first:

from scipy import integrate

I = integrate.trapezoid(y, x)

 y: vector of dependent variable data
 x: vector of independent variable data
 I: trapezoidal rule approximation to the integral of y with respect

to x (a scalar)

 Data need not be equally-spaced
 Segment widths calculated from x values

K. Webb ESC 440

21

Cumulative Integral – cumulative_trapezoid()

I = integrate.cumulative_trapezoid(y, x,
initial=0)

 y: n-vector of dependent variable data
 x: n-vector of independent variable data
 initial: optional initial value inserted as the first value in I – if

not given, I is an (n-1)-vector
 I: trapezoidal rule approximation to the cumulative

 integral of y with respect to x (an n-vector)

 Result is a vector – equivalent to:

𝐼 𝑥 = න
𝑥1

𝑥

𝑦 ෤𝑥 𝑑 ෤𝑥

K. Webb ESC 440

22

trapezoid() and cumulative_trapezoid()

K. Webb ESC 440

Simpson’s 1/3 Rule23

K. Webb ESC 440

24

Simpson’s 1/3 Rule

 Approximate 𝑓 𝑥 with a second-order polynomial

𝑓 𝑥 ≈ 𝑓2 𝑥

where 𝑓2 𝑥 can be expressed as a Lagrange
polynomial:

𝑓2 𝑥 =
𝑥 − 𝑥1 𝑥 − 𝑥2

𝑥0 − 𝑥1 𝑥0 − 𝑥2
𝑓 𝑥0 +

𝑥 − 𝑥0 𝑥 − 𝑥2

𝑥1 − 𝑥0 𝑥1 − 𝑥2
𝑓 𝑥1 +

𝑥 − 𝑥0 𝑥 − 𝑥1

𝑥2 − 𝑥0 𝑥2 − 𝑥1
𝑓 𝑥2

 Approximate the integral of 𝑓 𝑥 as the integral of the
quadratic approximation

𝐼 ≈ መ𝐼 = න
𝑎

𝑏

𝑓2 𝑥 𝑑𝑥

K. Webb ESC 440

25

Simpson’s 1/3 Rule

 Now fitting a
parabola to 𝑓 𝑥

 Three points
required: 𝑥0, 𝑥1,
and 𝑥2

 Integration interval,
[𝑎, 𝑏] divided into
two segments

 Points must be
evenly spaced 𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑓 𝑥0

𝑓 𝑥2

𝑓 𝑥1

ℎ =
𝑏 − 𝑎

2

𝑥2 = 𝑏
𝑥1

K. Webb ESC 440

26

Simpson’s 1/3 Rule

 Evaluating the integral of the quadratic
approximation, 𝑓2 𝑥 , yields Simpson’s 1/3 rule:

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

 Or, in መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

6

K. Webb ESC 440

27

Simpson’s 1/3 Rule – Error

 The error associated with Simpson’s 1/3 rule is

𝐸𝑡 =
1

90
ℎ5𝑓 4 𝜉 =

𝑏 − 𝑎 5

2880
𝑓 4 𝜉

 Error is proportional to the fourth derivative of 𝑓 𝑥

 For third- and lower-order polynomials, 𝑓 4 = 0

 The Simpson’s 1/3 rule integral estimate is exact for
cubic and lower-order polynomials

 An interesting result, given that 𝑓 𝑥 is approximated
with only a quadratic

K. Webb ESC 440

28

Composite Simpson’s 1/3 Rule

 Accuracy can be improved by dividing the interval
[𝑎, 𝑏] into 𝑛 segments

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏

 Each application of
Simpson’s 1/3 rule requires
three points, and two
segments

 Total number of segments
must be even

 Total number of points
must be odd

 𝑓 𝑥 approximated as a
quadratic over each pair of
adjacent segments

K. Webb ESC 440

29

Composite Simpson’s 1/3 Rule

 Divide [𝑎, 𝑏] into 𝑛 segments, and the integral into 𝑛/2 segments

𝐼 = න
𝑥0

𝑥2

𝑓 𝑥 𝑑𝑥 + න
𝑥2

𝑥4

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−2

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using Simpson’s 1/3 rule

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2 +

ℎ

3
𝑓 𝑥2 + 4𝑓 𝑥3 + 𝑓 𝑥4 + ⋯ +

ℎ

3
𝑓 𝑥𝑛−2 + 4𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

 Using summation notation

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4 ෍

𝑖=1,3,5…

𝑛−1

𝑓 𝑥𝑖 + 2 ෍
𝑗=2,4,6…

𝑛−2

𝑓 𝑥𝑗 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 4 σ𝑖=1,3,5…

𝑛−1 𝑓 𝑥𝑖 + 2 σ𝑗=2,4,6…
𝑛−2 𝑓 𝑥𝑗 + 𝑓 𝑥𝑛

3𝑛

K. Webb ESC 440

30

Composite Simpson’s 1/3 Rule – Example

 Accuracy improves as the
number of segments increases


ҧ𝑓 4 over each segment
decreases

 𝑓 𝑥 better approximated as
quadratic over smaller regions

K. Webb ESC 440

Simpson’s 3/8 Rule31

K. Webb ESC 440

32

Simpson’s 3/8 Rule

 Approximate 𝑓 𝑥 with a third-order polynomial

𝑓 𝑥 ≈ 𝑓3 𝑥

where 𝑓3 𝑥 can, again, be expressed as a Lagrange
polynomial

 Approximate the integral of 𝑓 𝑥 as the integral of
the cubic approximation

𝐼 ≈ መ𝐼 = න
𝑎

𝑏

𝑓3 𝑥 𝑑𝑥

K. Webb ESC 440

33

Simpson’s 3/8 Rule

 Now fitting a cubic
to 𝑓 𝑥

 Four points
required: 𝑥0, 𝑥1,
𝑥2, and 𝑥3

 Integration interval,
[𝑎, 𝑏] divided into
three segments

 Points must be
evenly spaced 𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑥3 = 𝑏
𝑥1 𝑥2

ℎ =
𝑏 − 𝑎

3

K. Webb ESC 440

34

Simpson’s 3/8 Rule

 Evaluating the integral of the cubic approximation,
𝑓3 𝑥 , yields Simpson’s 3/8 rule:

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

 Or, in መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

8

K. Webb ESC 440

35

Simpson’s 3/8 Rule – Error

 The error associated with Simpson’s 3/8 rule is

𝐸𝑡 =
3

80
ℎ5𝑓 4 𝜉 =

𝑏 − 𝑎 5

6480
𝑓 4 𝜉

 Error is proportional to the fourth derivative of 𝑓 𝑥

 Third-order accuracy

◼ Same as Simpson’s 1/3 rule

 For nonzero 𝑓 4 , error is slightly lower than Simpson’s
1/3 rule

K. Webb ESC 440

36

Composite Simpson’s 3/8 Rule

 Accuracy can be improved by dividing the interval
[𝑎, 𝑏] into 𝑛 segments

 Each application of Simpson’s
3/8 rule requires four points,
and three segments

 Total number of segments
must be divisible by three

 Can be used in conjunction
with Simpson’s 1/3 rule to
accommodate an odd number
of segments

 𝑓 𝑥 approximated as a cubic
over each group of three
adjacent segments

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏

K. Webb ESC 440

37

Composite Simpson’s 3/8 Rule

 Divide 𝑎, 𝑏 into 𝑛 segments, and the integral into 𝑛/3 segments

𝐼 = න
𝑥0

𝑥3

𝑓 𝑥 𝑑𝑥 + න
𝑥3

𝑥6

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−3

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using Simpson’s 3/8 rule

መ𝐼

=
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3 +

3ℎ

8
𝑓 𝑥3 + 3𝑓 𝑥4 + 3𝑓 𝑥5 + 𝑓 𝑥6 + ⋯

+
3ℎ

8
𝑓 𝑥𝑛−3 + 3𝑓 𝑥𝑛−2 + 3𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

 Using summation notation

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3 ෍

𝑖=1,4,7…

𝑛−2

𝑓 𝑥𝑖 + 3 ෍
𝑗=2,5,8…

𝑛−1

𝑓 𝑥𝑗 + 2 ෍
𝑘=3,6,9…

𝑛−3

𝑓 𝑥𝑘 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form

መ𝐼 = 𝑏 − 𝑎
3 𝑓 𝑥0 + 3 σ𝑖=1,4,7…

𝑛−2 𝑓 𝑥𝑖 + 3 σ𝑗=2,5,8…
𝑛−1 𝑓 𝑥𝑗 + 2 σ𝑘=3,6,9…

𝑛−3 𝑓 𝑥𝑘 + 𝑓 𝑥𝑛

8𝑛

K. Webb ESC 440

38

Composite Simpson’s 3/8 Rule – Example

 Accuracy improves as the
number of segments
increases


ҧ𝑓 4 over each segment

decreases

 𝑓 𝑥 better approximated as
a cubic over smaller regions

K. Webb ESC 440

Higher-Order Formulas39

K. Webb ESC 440

40

Higher-Order Formulas

 Typically, Simpson’s 1/3 rule, used in conjunction
with Simpson’s 3/8 rule (for odd 𝑛), is sufficient

 Possible to use higher-order polynomials to
approximate 𝑓 𝑥

 𝑛 segments and 𝑛 + 1 points needed for 𝑛𝑡ℎ-order
polynomial approximation

 Closed and open integration formulas exist

 Boole’s rule will show up in a different form later
when we cover adaptive quadrature

K. Webb ESC 440

41

Higher-Order Newton-Cotes Formulas – Closed

𝑛 Name Formula
Error
prop.
to

1
Trapezoidal
rule

መ𝐼 =
ℎ

2

𝑓 𝑥0 + 𝑓 𝑥1

2
𝑓′′ 𝜉

2
Simpson’s
1/3 rule

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

𝑓 4 𝜉

3
Simpson’s
3/8 rule

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

𝑓 4 𝜉

4 Boole’s rule መ𝐼 =
2ℎ

45
7𝑓 𝑥0 + 32𝑓 𝑥1 + 12𝑓 𝑥2 + 32𝑓 𝑥3 + 7𝑓 𝑥4

𝑓 6 𝜉

5 - መ𝐼 =
5ℎ

288
19𝑓 𝑥0 + 75𝑓 𝑥1 + 50𝑓 𝑥2 + 50𝑓 𝑥3 + 75𝑓 𝑥4 + 19𝑓 𝑥5 𝑓 6 𝜉

The step size in the above formulas is: ℎ =
𝑏−𝑎

𝑛

K. Webb ESC 440

42

Open Integration Formulas

 Function values not
know at the limits of
integration

 𝑛 segments

 𝑛 − 1 points

 𝑛 − 2 𝑛𝑑-order
polynomial
approximation

Chapra

K. Webb ESC 440

43

Higher-Order Newton-Cotes Formulas – Open

Segments

(𝑛)
Points Formula

Error prop.
to

2 1 መ𝐼 = 𝑏 − 𝑎 𝑓 𝑥1 𝑓′′ 𝜉

3 2 መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥1 + 𝑓 𝑥2

2

𝑓 4 𝜉

4 3 መ𝐼 = 𝑏 − 𝑎
2𝑓 𝑥1 + 𝑓 𝑥2 + 2𝑓 𝑥3

3

𝑓 4 𝜉

5 4 መ𝐼 = 𝑏 − 𝑎
11𝑓 𝑥1 + 𝑓 𝑥2 + 𝑓 𝑥3 + 11𝑓 𝑥4

24

𝑓 6 𝜉

6 5 መ𝐼 = 𝑏 − 𝑎
11𝑓 𝑥1 − 14𝑓 𝑥2 + 26𝑓 𝑥3 − 14𝑓 𝑥4 + 11𝑓 𝑥5

20
𝑓 6 𝜉

K. Webb ESC 440

Integration of Functions44

K. Webb ESC 440

45

Integration of Functions

 Newton-Cotes formulas can be used to integrate
functions or discrete data points
 Evenly-spaced data points are assumed

 If 𝒇 𝒙 is known, spacing of 𝒙-values can be chosen
to improve accuracy
 Spacing need not be uniform

 Can locate points specific distances from limits of
integration or segment edges to improve accuracy

 Can use larger step size where acceptable, reduced step
size where necessary
◼ Effectively trade off accuracy and efficiency

K. Webb ESC 440

46

Methods for integrating functions

 Romberg integration

 Combine two trapezoidal rule estimates with different step
sizes to yield a third, more accurate estimate

 Gauss quadrature

 Spacing of points within the integration segments chosen to
improve accuracy of Newton-Cotes formulas

 Adaptive Quadrature

 Adaptively refine step size to achieve desired accuracy

 Smaller step size in some regions, larger in others

 Uses some of the techniques used by Romberg integration

K. Webb ESC 440

Adaptive Quadrature47

K. Webb ESC 440

48

Adaptive Quadrature

 Vary step size to
achieve desired
accuracy over each
segment
 Smaller step size

where 𝑓 𝑥 varies
rapidly

 Larger step size
where 𝑓 𝑥 varies
gradually

 Integration method
used is Simpson’s
1/3 rule

K. Webb ESC 440

49

Adaptive Quadrature

 Apply Simpson’s 1/3 rule to approximate the integral at two different step
sizes, መ𝐼 ℎ1 and መ𝐼 ℎ2 , where ℎ2 = ℎ1/2

መ𝐼 ℎ1 =
ℎ1

3
𝑓 𝑎 + 4𝑓 𝑐 + 𝑓 𝑏 መ𝐼 ℎ2 =

ℎ2

3
𝑓 𝑎 + 4𝑓 𝑑 + 2𝑓 𝑐 + 4𝑓 𝑒 + 𝑓 𝑏

𝑎 𝑐 𝑏 𝑑 𝑒𝑎 𝑐 𝑏

K. Webb ESC 440

50

Adaptive Quadrature

 Use መ𝐼 ℎ1 and መ𝐼 ℎ2 to approximate the error:

𝐸𝑎 = መ𝐼 ℎ2 − መ𝐼 ℎ1 (1)

 Two possible ways to proceed:

 If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙
◼ Using an approach similar to Romberg integration, combine

መ𝐼 ℎ1 and መ𝐼 ℎ2 to yield a third, more accurate estimate of
the integral

 If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙
◼ Divide [a,b] into two segments: [𝑎, 𝑐] and [𝑐, 𝑏]

◼ Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2 for each segment
◼ Single- and double-segment Simpson’s 1/3 approximations

◼ Use (1) to approximate the error for each sub-interval

K. Webb ESC 440

51

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 If 𝐸𝑎 as calculated by (1) is acceptable (i.e. < 𝑎𝑏𝑠𝑡𝑜𝑙) we can use
መ𝐼 ℎ1 and መ𝐼 ℎ2 to calculate a third, more accurate approximation

 This is the basic principal used in Romberg integration

 We’ll now derive the formula used to combine መ𝐼 ℎ1 and መ𝐼 ℎ2

 Each estimate is the true integral plus some error

𝐼 = መ𝐼 ℎ1 − 𝐸 ℎ1 = መ𝐼 ℎ2 − 𝐸 ℎ2 (2)

 We’ve seen that Simpson’s 1/3 rule error can be approximated as

𝐸𝑎 ℎ =
𝑏−𝑎 ℎ4

180
ҧ𝑓 4 (3)

where ҧ𝑓 4 is the average value of 𝑓 4 𝑥 over the integration
interval

K. Webb ESC 440

52

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 Equation (3) gives approximate error at each step
size:

𝐸𝑎 ℎ1 =
𝑏−𝑎 ℎ1

4

180
ҧ𝑓 4 (4)

𝐸𝑎 ℎ2 =
𝑏−𝑎 ℎ2

4

180
ҧ𝑓 4 (5)

 Divide (4) by (5)
𝐸𝑎 ℎ1

𝐸𝑎 ℎ2
=

ℎ1
4

ℎ2
4 (6)

 Solve for 𝐸𝑎 ℎ1

𝐸𝑎 ℎ1 = 𝐸𝑎 ℎ2
ℎ1

4

ℎ2
4 (7)

K. Webb ESC 440

53

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 Restate (2) as an approximation

መ𝐼 ℎ1 − 𝐸𝑎 ℎ1 ≈ መ𝐼 ℎ2 − 𝐸𝑎 ℎ2 (8)

 Substitute (7) into (8)

መ𝐼 ℎ1 − 𝐸𝑎 ℎ2
ℎ1

4

ℎ2
4 ≈ መ𝐼 ℎ2 − 𝐸𝑎 ℎ2 (9)

 Solve (9) for the error of the more accurate
approximation

𝐸𝑎 ℎ2 = −
መ𝐼 ℎ1 − መ𝐼 ℎ2

1−
ℎ1
ℎ2

4 (10)

K. Webb ESC 440

54

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 According to (2)

𝐼 = መ𝐼 ℎ2 − 𝐸 ℎ2 (11)

so

𝐼 ≈ መ𝐼 = መ𝐼 ℎ2 − 𝐸𝑎 ℎ2 (12)

 Substituting (10) into (12)

መ𝐼 = መ𝐼 ℎ2 +
መ𝐼 ℎ1 − መ𝐼 ℎ2

1 −
ℎ1
ℎ2

4

 And, since ℎ1 = 2 ∙ ℎ2, the integral approximation is

መ𝐼 = መ𝐼 ℎ2 +
1

15
መ𝐼 ℎ2 − መ𝐼 ℎ1 (13)

 Which can be shown to be equivalent to Boole’s rule

K. Webb ESC 440

55

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 Summarizing:

 Want to numerically integrate 𝑓(𝑥) over [𝑎, 𝑏]

 Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2

 Approximate the error as

𝐸𝑎 = መ𝐼 ℎ2 − መ𝐼 ℎ1

 If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙, calculate the integral using Boole’s rule

መ𝐼 = መ𝐼 ℎ2 +
1

15
መ𝐼 ℎ2 − መ𝐼 ℎ1

 Next, we’ll look at what to do if 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙

K. Webb ESC 440

56

Adaptive Quadrature – 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙

 If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙, reduce the step size and try again

 Subdivide the integration interval, [𝑎, 𝑏], into two sub-
intervals, [𝑎, 𝑐] and [𝑐, 𝑏]

 For each subinterval:

◼ Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2

◼ Calculate 𝐸𝑎

◼ If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙, calculate መ𝐼 for that sub-interval using Boole’s rule

◼ If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙, further subdivide the sub-interval into two smaller
sub-intervals
◼ Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2 , then 𝐸𝑎…

 Eventually, total integral approximation is the sum of all
individual sub-interval integral approximations

K. Webb ESC 440

57

Adaptive Quadrature – Recursive Algorithm

 Adaptive quadrature
uses a recursive
algorithm

 A function that calls itself

 Integration interval is
continually subdivided
until approximate error is
acceptable


መ𝐼 returned by function is
the sum of the individual
መ𝐼 values

K. Webb ESC 440

58

Adaptive Quadrature – quadadapt()

 Inputs: function handle, limits of
integration, and tolerance

 On subsequent recursive calls, a
and b will be sub-interval limits

 Step sizes and 𝑥-values for two
Simpson’s 1/3 rule estimates

 Integral estimates at two different
step sizes

 Approximate error

 Boole’s rule estimate

 Recursive function calls

 Sum the sub-interval integral
estimates

K. Webb ESC 440

59

Adaptive Quadrature – Examples

K. Webb ESC 440

Integrating Functions in Python60

K. Webb ESC 440

61

Integrating Functions – integrate.quad()

 When we have an expression for the function to be
integrated, we can use SciPy's integrate.quad()
function:

I, err = integrate.quad(f,a,b)

 f: the function to be integrated

 a: lower integration limit

 b: upper integration limit

 I: numerical approximation of the integral

 err: approximate absolute error

 Calculates 𝐼 = 𝑎׬

𝑏
𝑓 𝑥 𝑑𝑥

K. Webb ESC 440

62
Ex

er
ci

se
 The impulse response of a certain 2nd-order system is given by

ℎ 𝑡 = 5.2414𝑒−𝛼𝑡 sin 𝜔𝑑𝑡

where 𝛼 = 1.5 and 𝜔𝑑 = 4.7697𝑟𝑎𝑑/𝑠𝑒𝑐

 A system’s step response is the integral of its impulse response. For this
system, the step response is

𝑔 𝑡 = 1 − 𝑒−𝛼𝑡 cos 𝜔𝑑𝑡 − 0.3145𝑒−𝛼𝑡 sin 𝜔𝑑𝑡

 Plot 𝑔 𝑡 for 0 ≤ 𝑡 ≤ 10𝑠𝑒𝑐 using a small sampling interval (e.g. 1𝑚𝑠𝑒𝑐)

 For a variety of step sizes (e.g. 500, 200, 100, 10, 1𝑚𝑠𝑒𝑐)

 Calculate ො𝑔 𝑡 using cumulative_trapezoid() and superimpose on the plot
of 𝑔 𝑡

 Calculate the steady-state value of the step response using trapezoid()

 Notice the effect of step size on the accuracy of the integral

 Also, calculate the steady-state step response value using quad()

Exercise – Integration in Python

	Slide 1: Section 5: Integration
	Slide 2: Introduction
	Slide 3: Integration
	Slide 4: Numerical Integration
	Slide 5: Newton-Cotes Formulas
	Slide 6: Newton-Cotes Formulas
	Slide 7: Closed Forms vs. Open Formulas
	Slide 8: Single-Segment vs. Composite
	Slide 9: Trapezoidal Rule
	Slide 10: Trapezoidal Rule
	Slide 11: Trapezoidal Rule
	Slide 12: Trapezoidal Rule – Error
	Slide 13: Trapezoidal Rule – Error
	Slide 14: Trapezoidal Rule – Example
	Slide 15: Composite Trapezoidal Rule
	Slide 16: Composite Trapezoidal Rule
	Slide 17: Composite Trapezoidal Rule – Error
	Slide 18: Composite Trapezoidal Rule – Example
	Slide 19: Trapezoidal Rule – Unequally-Spaced Data
	Slide 20: Trapezoidal Rule in Python – trapezoid()
	Slide 21: Cumulative Integral – cumulative_trapezoid()
	Slide 22: trapezoid() and cumulative_trapezoid()
	Slide 23: Simpson’s 1/3 Rule
	Slide 24: Simpson’s 1/3 Rule
	Slide 25: Simpson’s 1/3 Rule
	Slide 26: Simpson’s 1/3 Rule
	Slide 27: Simpson’s 1/3 Rule – Error
	Slide 28: Composite Simpson’s 1/3 Rule
	Slide 29: Composite Simpson’s 1/3 Rule
	Slide 30: Composite Simpson’s 1/3 Rule – Example
	Slide 31: Simpson’s 3/8 Rule
	Slide 32: Simpson’s 3/8 Rule
	Slide 33: Simpson’s 3/8 Rule
	Slide 34: Simpson’s 3/8 Rule
	Slide 35: Simpson’s 3/8 Rule – Error
	Slide 36: Composite Simpson’s 3/8 Rule
	Slide 37: Composite Simpson’s 3/8 Rule
	Slide 38: Composite Simpson’s 3/8 Rule – Example
	Slide 39: Higher-Order Formulas
	Slide 40: Higher-Order Formulas
	Slide 41: Higher-Order Newton-Cotes Formulas – Closed
	Slide 42: Open Integration Formulas
	Slide 43: Higher-Order Newton-Cotes Formulas – Open
	Slide 44: Integration of Functions
	Slide 45: Integration of Functions
	Slide 46: Methods for integrating functions
	Slide 47: Adaptive Quadrature
	Slide 48: Adaptive Quadrature
	Slide 49: Adaptive Quadrature
	Slide 50: Adaptive Quadrature
	Slide 51: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 52: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 53: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 54: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 55: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 56: Adaptive Quadrature – cap E sub a. greater than a. b s t o l
	Slide 57: Adaptive Quadrature – Recursive Algorithm
	Slide 58: Adaptive Quadrature – quadadapt()
	Slide 59: Adaptive Quadrature – Examples
	Slide 60: Integrating Functions in Python
	Slide 61: Integrating Functions – integrate.quad()
	Slide 62: Exercise – Integration in Python

