SECTION 5: INTEGRATION

ESC 440 - Computational Methods for Engineers

Introduction

Integration

- Integration, or quadrature, has many engineering applications
\square A few examples:
- Mean value

$$
\bar{y}=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

- Constitutive physical laws

$$
\begin{aligned}
& \Delta p=\int F(t) d t \\
& \Delta v=\frac{1}{C} \int i(t) d t \\
& \Delta x=\int v(t) d t
\end{aligned}
$$

- Total flux through a surface

$$
Q=\iint U(x, y) d x d y
$$

- Etc. ...

Numerical Integration

\square The numerical integration algorithms we'll look at can be divided into two broad categories:

- Algorithms for integration of data or functions
- No flexibility to choose the points, $f\left(x_{i}\right)$, used for calculation of the integral
- Points, $f\left(x_{i}\right)$, may or may not be uniformly-spaced
- Newton-Cotes formulas
- Algorithms for the integration of functions
- Exploit the ability to calculate $f(x)$ at any value of x
- Improved accuracy and efficiency
- Adaptive quadrature, Romberg integration, Gauss quadrature

Newton-Cotes Formulas

This first category of numerical integration algorithms can be applied either to functions or to discrete data sets.

Newton-Cotes Formulas

\square Want to approximate the integral of a function or data set

$$
I=\int_{a}^{b} f(x) d x
$$

\square Approximate $f(x)$ with something that is easy to integrate

- An $n^{\text {th }}$-order polynomial

$$
f(x) \approx f_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

\square Integral approximation:

$$
\hat{I}=\int_{a}^{b} f_{n}(x) d x \approx I
$$

\square Unless otherwise noted, Newton-Cotes formulas assume evenlyspaced data points

Closed Forms vs. Open Formulas

\square Two different versions of the Newton-Cotes integral formulas:

- Closed forms
- Values of the function at the limits of integration, $f(a)$ and $f(b)$, are known
- Open forms
- $f(a)$ and $f(b)$ are unknown
\square We'll focus on closed forms of the Newton-Cotes formulas

Single-Segment vs. Composite

\square Newton-Cotes formulas may be applied in two different ways:
\square Single-segment

- Entire integration interval, $[a, b]$, approximated with a single polynomial

\square Composite
- Integration interval divided into multiple segments
- Integral approximated for each segment - results summed

9
 Trapezoidal Rule

In the following sections, we'll look at three different Newton-Cotes integration formulas:

- Trapezoid rule
- Simpson's 1/3 rule
- Simpson's $3 / 8$ rule

Trapezoidal Rule

\square Approximate $f(x)$ as a first-order polynomial

$$
\begin{aligned}
& f(x) \approx f_{1}(x)=a_{0}+a_{1} x \\
& f_{1}(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
\end{aligned}
$$

\square Integral approximation:

$$
\hat{I}=\int_{a}^{b} f_{1}(x) d x=\int_{a}^{b}\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] d x \approx I
$$

\square Trapezoidal rule formula:

$$
\hat{I}=(b-a) \frac{f(a)+f(b)}{2}
$$

Trapezoidal Rule

\square The trapezoidal rule formula

$$
\hat{I}=(b-a) \frac{f(a)+f(b)}{2}
$$

can be interpreted as

$$
\hat{I}=(\text { width }) \times(\text { avg.value })
$$

\square All Newton-Cotes formulas can be expressed this way

- Only the approximation of the average value of $f(x)$ varies
- More accurate approx. of avg. value yields more accurate integral estimate

\square Integral approximation is the area under the polynomial approximation of $f(x)$

Trapezoidal Rule - Error

\square The error of the trapezoidal rule estimate is

$$
E_{t}=\hat{I}-I=\frac{1}{12} f^{\prime \prime}(\xi)(b-a)^{3}
$$

where ξ is some unknown value of x on $[a, b]$
\square Since ξ is unknown, approximate the error as

$$
E_{a}=\frac{1}{12} \bar{f}^{\prime \prime}(b-a)^{3}
$$

where $\bar{f}^{\prime \prime}$ is the mean curvature of $f(x)$ on $[a, b]$

Trapezoidal Rule - Error

\square The error of the trapezoidal rule estimate is

$$
E_{t}=\frac{1}{12} f^{\prime \prime}(\xi)(b-a)^{3}
$$

\square If the curvature of $f(x)$ is zero on $[a, b]$

$$
f^{\prime \prime}(x)=0, \text { for } a \leq x \leq b
$$

\square Then the trapezoidal rule approximation is exact

$$
E_{t}=0
$$

\square First-order polynomial is an exact representation of a linear $f(x)$

Trapezoidal Rule - Example

\square Trapezoidal rule may provide an accurate integral estimate

- Over regions with low curvature
- Where $f(x)$ is reasonably approximated as linear

\square Or, large errors may result
- Over regions with large curvature
- Where a linear approximation is unacceptable

Composite Trapezoidal Rule

\square Accuracy can be improved by dividing the interval $[a, b]$ into n segments

- $n+1$ evenly-spaced sample points of $f(x)$: $x_{0} \ldots x_{n}$
\square Segment width:

$$
h=\frac{b-a}{n}
$$

\square Now approximating $f(x)$ as piece-wise linear

Composite Trapezoidal Rule

\square Divide the integral into n segments

$$
I=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x
$$

\square Approximate each term using the trapezoidal rule

$$
\hat{I}=h \frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}+h \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\cdots+h \frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2}
$$

\square Using summation notation

$$
\hat{I}=\frac{h}{2}\left[f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right]
$$

\square Or, in (width) \times (avg.value) form

$$
\hat{I}=(b-a) \frac{\left[f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right]}{2 n}
$$

Composite Trapezoidal Rule - Error

\square Total error is the sum of the individual errors

$$
E_{t}=\sum_{i=1}^{n} E_{t, i}=\frac{1}{12} h^{3} \sum_{i=1}^{n} f^{\prime \prime}\left(\xi_{i}\right)=\frac{(b-a)^{3}}{12 n^{3}} \sum_{i=1}^{n} f^{\prime \prime}\left(\xi_{i}\right)
$$

\square Again, approximate using $\bar{f}^{\prime \prime}$, the mean curvature

$$
E_{a}=\frac{(b-a)^{3}}{12 n^{3}} \sum_{i=1}^{n} \bar{f}^{\prime \prime}
$$

where

$$
\sum_{i=1}^{n} \bar{f}^{\prime \prime}=n \bar{f}^{\prime \prime}
$$

so

$$
E_{a}=\frac{(b-a)^{3}}{12 n^{2}} \bar{f}^{\prime \prime}
$$

Composite Trapezoidal Rule - Example

\square Accuracy improves as the number of segments increases

- Average curvature over each segment decreases
- $f(x)$ better approximated as linear over smaller regions

K. Webb

Trapezoidal Rule - Unequally-Spaced Data

\square Trapezoidal rule can be easily modified to accommodate unequally-spaced data points
\square Account for the width of each of the n individual segments explicitly

$$
\hat{I}=h_{1} \frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}+h_{2} \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}+\cdots+h_{n} \frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2}
$$

\square Useful for measured data, where uneven spacing is not uncommon

Trapezoidal Rule in Python - trapezoid()

\square The integrate module from the SciPy package includes several integration functions, including trapezoid rule

- Import it first:

> from scipy import integrate

I = integrate.trapezoid(y, x)

- y: vector of dependent variable data
- x: vector of independent variable data
- I: trapezoidal rule approximation to the integral of y with respect to x (a scalar)
\square Data need not be equally-spaced
- Segment widths calculated from x values

Cumulative Integral - cumulative_trapezoid()

$$
\begin{gathered}
\text { I = integrate.cumulative_trapezoid(y, x, } \\
\text { initial=0) }
\end{gathered}
$$

- y: n-vector of dependent variable data
$\square \mathrm{x}$: n-vector of independent variable data
- initial: optional initial value inserted as the first value in I - if not given, I is an ($\mathrm{n}-1$)-vector
- I: trapezoidal rule approximation to the cumulative integral of y with respect to x (an n -vector)
\square Result is a vector - equivalent to:

$$
I(x)=\int_{x_{1}}^{x} y(\tilde{x}) d \tilde{x}
$$

trapezoid() and cumulative_trapezoid()


```
# trapz test.py
import numpy as np
from matplotlib import pyplot as plt
from scipy import integrate
x = np.linspace(0,1,2000)
f = lambda x: 1 / ((x-0.3)**2 + .01) + 1 / ((x-0.9)**2 + 0.04) + 14
y=f(x)
I = integrate.trapezoid(y, x)
Ic = integrate.cumulative_trapezoid(y, x)
plt.figure(1); plt.clf()
plt.subplot(211)
plt.plot(x,y,'-b',linewidth=2)
plt.ylabel('f(x)')
plt.title('Integrating with\ntrapezoid() and cumulative_trapezoid()',
    fontweight='bold')
plt.subplot(212)
plt.plot(x[1:],Ic,'-b', linewidth=2)
plt.xlabel('x'); plt.ylabel('I(x)')
plt.text(0.65,15,f'I = {I:1.3f}',
    fontsize=12,fontname='Tahoma')
```


23

Simpson's 1/3 Rule

Simpson's 1/3 Rule

\square Approximate $f(x)$ with a second-order polynomial

$$
f(x) \approx f_{2}(x)
$$

where $f_{2}(x)$ can be expressed as a Lagrange polynomial:

$$
f_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

\square Approximate the integral of $f(x)$ as the integral of the quadratic approximation

$$
I \approx \hat{I}=\int_{a}^{b} f_{2}(x) d x
$$

Simpson's 1/3 Rule

\square Now fitting a parabola to $f(x)$
\square Three points required: x_{0}, x_{1}, and x_{2}
\square Integration interval, [a, b] divided into two segments
\square Points must be evenly spaced

Simpson's 1/3 Rule

\square Evaluating the integral of the quadratic approximation, $f_{2}(x)$, yields Simpson's 1/3 rule:

$$
\hat{I}=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

\square Or, in $\hat{I}=($ width $) \times($ avg.value $)$ form:

$$
\hat{I}=(b-a) \frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{6}
$$

Simpson's 1/3 Rule - Error

\square The error associated with Simpson's $1 / 3$ rule is

$$
E_{t}=\frac{1}{90} h^{5} f^{(4)}(\xi)=\frac{(b-a)^{5}}{2880} f^{(4)}(\xi)
$$

\square Error is proportional to the fourth derivative of $f(x)$

- For third- and lower-order polynomials, $f^{(4)}=0$
\square The Simpson's $1 / 3$ rule integral estimate is exact for cubic and lower-order polynomials
\square An interesting result, given that $f(x)$ is approximated with only a quadratic

Composite Simpson's 1/3 Rule

\square Accuracy can be improved by dividing the interval $[a, b]$ into n segments
\square Each application of Simpson's $1 / 3$ rule requires three points, and two segments

- Total number of segments must be even
- Total number of points must be odd
$\square f(x)$ approximated as a quadratic over each pair of adjacent segments

Composite Simpson's 1/3 Rule

\square Divide $[a, b]$ into n segments, and the integral into $n / 2$ segments

$$
I=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots+\int_{x_{n-2}}^{x_{n}} f(x) d x
$$

\square Approximate each term using Simpson's 1/3 rule

$$
\hat{I}=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{h}{3}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+\cdots+\frac{h}{3}\left[f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

\square Using summation notation

$$
\hat{I}=\frac{h}{3}\left[f\left(x_{0}\right)+4 \sum_{i=1,3,5 \ldots}^{n-1} f\left(x_{i}\right)+2 \sum_{j=2,4,6 \ldots}^{n-2} f\left(x_{j}\right)+f\left(x_{n}\right)\right]
$$

\square Or, in (width) \times (avg.value) form

$$
\hat{I}=(b-a) \frac{\left[f\left(x_{0}\right)+4 \sum_{i=1,3,5 \ldots . .}^{n-1} f\left(x_{i}\right)+2 \sum_{j=2,4,6 \ldots . .}^{n-2} f\left(x_{j}\right)+f\left(x_{n}\right)\right]}{3 n}
$$

Composite Simpson's 1/3 Rule - Example

31
 Simpson's 3/8 Rule

Simpson's 3/8 Rule

\square Approximate $f(x)$ with a third-order polynomial

$$
f(x) \approx f_{3}(x)
$$

where $f_{3}(x)$ can, again, be expressed as a Lagrange polynomial
\square Approximate the integral of $f(x)$ as the integral of the cubic approximation

$$
I \approx \hat{I}=\int_{a}^{b} f_{3}(x) d x
$$

Simpson's 3/8 Rule

\square Now fitting a cubic to $f(x)$
\square Four points required: x_{0}, x_{1}, x_{2}, and x_{3}
\square Integration interval, [a, b] divided into three segments
\square Points must be evenly spaced

Simpson's 3/8 Rule

\square Evaluating the integral of the cubic approximation, $f_{3}(x)$, yields Simpson's 3/8 rule:

$$
\hat{I}=\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]
$$

\square Or, in $\hat{I}=($ width $) \times($ avg.value $)$ form:

$$
\hat{I}=(b-a) \frac{f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)}{8}
$$

Simpson's 3/8 Rule - Error

\square The error associated with Simpson's 3/8 rule is

$$
E_{t}=\frac{3}{80} h^{5} f^{(4)}(\xi)=\frac{(b-a)^{5}}{6480} f^{(4)}(\xi)
$$

\square Error is proportional to the fourth derivative of $f(x)$
\square Third-order accuracy

- Same as Simpson's 1/3 rule
\square For nonzero $f^{(4)}$, error is slightly lower than Simpson's 1/3 rule

Composite Simpson's 3/8 Rule

\square Accuracy can be improved by dividing the interval $[a, b]$ into n segments
\square Each application of Simpson's $3 / 8$ rule requires four points, and three segments

- Total number of segments must be divisible by three
- Can be used in conjunction with Simpson's $1 / 3$ rule to accommodate an odd number of segments
$\square f(x)$ approximated as a cubic over each group of three adjacent segments

Composite Simpson's 3/8 Rule

\square Divide $[a, b]$ into n segments, and the integral into $n / 3$ segments

$$
I=\int_{x_{0}}^{x_{3}} f(x) d x+\int_{x_{3}}^{x_{6}} f(x) d x+\cdots+\int_{x_{n-3}}^{x_{n}} f(x) d x
$$

\square Approximate each term using Simpson's 3/8 rule

$$
\begin{aligned}
& \hat{I} \\
& =\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]+\frac{3 h}{8}\left[f\left(x_{3}\right)+3 f\left(x_{4}\right)+3 f\left(x_{5}\right)+f\left(x_{6}\right)\right]+\cdots \\
& +\frac{3 h}{8}\left[f\left(x_{n-3}\right)+3 f\left(x_{n-2}\right)+3 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

\square Using summation notation

$$
\hat{I}=\frac{3 h}{8}\left[f\left(x_{0}\right)+3 \sum_{i=1,4,7 \ldots}^{n-2} f\left(x_{i}\right)+3 \sum_{j=2,5,8 \ldots . .}^{n-1} f\left(x_{j}\right)+2 \sum_{k=3,6,9 \ldots}^{n-3} f\left(x_{k}\right)+f\left(x_{n}\right)\right]
$$

\square Or, in (width) $\times($ avg.value $)$ form

$$
\hat{I}=(b-a) \frac{3\left[f\left(x_{0}\right)+3 \sum_{i=1,4,7 \ldots}^{n-2} f\left(x_{i}\right)+3 \sum_{j=2,5,8 \ldots .}^{n-1} f\left(x_{j}\right)+2 \sum_{k=3,6,9 \ldots}^{n-3} f\left(x_{k}\right)+f\left(x_{n}\right)\right]}{8 n}
$$

Composite Simpson's 3/8 Rule - Example

Accuracy improves as the number of segments increases

- $\bar{f}^{(4)}$ over each segment decreases
- $f(x)$ better approximated as a cubic over smaller regions

K. Webb

39

Higher-Order Formulas

Higher-Order Formulas

\square Typically, Simpson's $1 / 3$ rule, used in conjunction with Simpson's $3 / 8$ rule (for odd n), is sufficient
\square Possible to use higher-order polynomials to approximate $f(x)$
$\square n$ segments and $n+1$ points needed for $n^{t h}$-order polynomial approximation
\square Closed and open integration formulas exist
\square Boole's rule will show up in a different form later when we cover adaptive quadrature

Higher-Order Newton-Cotes Formulas - Closed

n	Name		Error prop. to
1	Trapezoidal rule	$\hat{I}=\frac{h}{2} \frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}$	$f^{\prime \prime}(\xi)$
2	Simpson's $1 / 3$	$\hat{I}=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]$	$f^{(4)}(\xi)$
3	Simpson's $3 / 8$	$\hat{I}=\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right]$	$f^{(4)}(\xi)$
4	Boole's rule	$\hat{I}=\frac{2 h}{45}\left[7 f\left(x_{0}\right)+32 f\left(x_{1}\right)+12 f\left(x_{2}\right)+32 f\left(x_{3}\right)+7 f\left(x_{4}\right)\right]$	$f^{(6)}(\xi)$
5	-	$\hat{I}=\frac{5 h}{288}\left[19 f\left(x_{0}\right)+75 f\left(x_{1}\right)+50 f\left(x_{2}\right)+50 f\left(x_{3}\right)+75 f\left(x_{4}\right)+19 f\left(x_{5}\right)\right]$	$f^{(6)}(\xi)$

The step size in the above formulas is: $\quad h=\frac{(b-a)}{n}$

Open Integration Formulas

\square Function values not know at the limits of integration

- n segments
$\square(n-1)$ points
- $(n-2)^{n d}$-order polynomial approximation

Higher-Order Newton-Cotes Formulas - Open

Segments (n)	Points	Formula	Error prop. to
2	1	$\hat{I}=(b-a) f\left(x_{1}\right)$	$f^{\prime \prime}(\xi)$
3	2	$\hat{I}=(b-a) \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$	$f^{(4)}(\xi)$
4	3	$\hat{I}=(b-a) \frac{2 f\left(x_{1}\right)+f\left(x_{2}\right)+2 f\left(x_{3}\right)}{3}$	$f^{(4)}(\xi)$
5	4	$\hat{I}=(b-a) \frac{11 f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+11 f\left(x_{4}\right)}{24}$	$f^{(6)}(\xi)$
6	5	$\hat{I}=(b-a) \frac{11 f\left(x_{1}\right)-14 f\left(x_{2}\right)+26 f\left(x_{3}\right)-14 f\left(x_{4}\right)+11 f\left(x_{5}\right)}{20}$	$f^{(6)}(\xi)$

44

Integration of Functions

Integration of Functions

\square Newton-Cotes formulas can be used to integrate functions or discrete data points

- Evenly-spaced data points are assumed
\square If $f(x)$ is known, spacing of x-values can be chosen to improve accuracy
\square Spacing need not be uniform
\square Can locate points specific distances from limits of integration or segment edges to improve accuracy
\square Can use larger step size where acceptable, reduced step size where necessary
■ Effectively trade off accuracy and efficiency

Methods for integrating functions

\square Romberg integration

- Combine two trapezoidal rule estimates with different step sizes to yield a third, more accurate estimate
\square Gauss quadrature
- Spacing of points within the integration segments chosen to improve accuracy of Newton-Cotes formulas
\square Adaptive Quadrature
- Adaptively refine step size to achieve desired accuracy
- Smaller step size in some regions, larger in others
- Uses some of the techniques used by Romberg integration

Adaptive Quadrature

Adaptive Quadrature

\square Vary step size to achieve desired accuracy over each segment

- Smaller step size where $f(x)$ varies rapidly
- Larger step size where $f(x)$ varies gradually
\square Integration method used is Simpson's 1/3 rule

Adaptive Quadrature

- Apply Simpson's $1 / 3$ rule to approximate the integral at two different step sizes, $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$, where $h_{2}=h_{1} / 2$

$$
\hat{I}\left(h_{1}\right)=\frac{h_{1}}{3}[f(a)+4 f(c)+f(b)]
$$

$\hat{I}\left(h_{2}\right)=\frac{h_{2}}{3}[f(a)+4 f(d)+2 f(c)+4 f(e)+f(b)]$

Adaptive Quadrature

\square Use $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$ to approximate the error:

$$
\begin{equation*}
E_{a}=\hat{I}\left(h_{2}\right)-\hat{I}\left(h_{1}\right) \tag{1}
\end{equation*}
$$

\square Two possible ways to proceed:

- If $E_{a} \leq a b s t o l$
- Using an approach similar to Romberg integration, combine $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$ to yield a third, more accurate estimate of the integral
- If $E_{a}>a b s t o l$
- Divide [a,b] into two segments: $[a, c]$ and $[c, b]$
- Calculate $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$ for each segment
- Single- and double-segment Simpson's 1/3 approximations
- Use (1) to approximate the error for each sub-interval

Adaptive Quadrature $-E_{a} \leq$ abstol

\square If E_{a} as calculated by (1) is acceptable (i.e. $<a b s t o l$) we can use $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$ to calculate a third, more accurate approximation

- This is the basic principal used in Romberg integration
- We'll now derive the formula used to combine $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$
\square Each estimate is the true integral plus some error

$$
\begin{equation*}
I=\hat{I}\left(h_{1}\right)-E\left(h_{1}\right)=\hat{I}\left(h_{2}\right)-E\left(h_{2}\right) \tag{2}
\end{equation*}
$$

\square We've seen that Simpson's $1 / 3$ rule error can be approximated as

$$
\begin{equation*}
E_{a}(h)=\frac{(b-a) h^{4}}{180} \bar{f}^{(4)} \tag{3}
\end{equation*}
$$

where $\bar{f}^{(4)}$ is the average value of $f^{(4)}(x)$ over the integration interval

Adaptive Quadrature $-E_{a} \leq a b s t o l$

\square Equation (3) gives approximate error at each step size:

$$
\begin{align*}
& E_{a}\left(h_{1}\right)=\frac{(b-a) h_{1}^{4}}{180} \bar{f}^{(4)} \tag{4}\\
& E_{a}\left(h_{2}\right)=\frac{(b-a) h_{2}^{4}}{180} \bar{f}^{(4)} \tag{5}
\end{align*}
$$

\square Divide (4) by (5)

$$
\begin{equation*}
\frac{E_{a}\left(h_{1}\right)}{E_{a}\left(h_{2}\right)}=\frac{h_{1}^{4}}{h_{2}^{4}} \tag{6}
\end{equation*}
$$

\square Solve for $E_{a}\left(h_{1}\right)$

$$
\begin{equation*}
E_{a}\left(h_{1}\right)=E_{a}\left(h_{2}\right) \frac{h_{1}^{4}}{h_{2}^{4}} \tag{7}
\end{equation*}
$$

Adaptive Quadrature $-E_{a} \leq a b s t o l$

\square Restate (2) as an approximation

$$
\begin{equation*}
\hat{I}\left(h_{1}\right)-E_{a}\left(h_{1}\right) \approx \hat{I}\left(h_{2}\right)-E_{a}\left(h_{2}\right) \tag{8}
\end{equation*}
$$

\square Substitute (7) into (8)

$$
\begin{equation*}
\hat{I}\left(h_{1}\right)-E_{a}\left(h_{2}\right) \frac{h_{1}^{4}}{h_{2}^{4}} \approx \hat{I}\left(h_{2}\right)-E_{a}\left(h_{2}\right) \tag{9}
\end{equation*}
$$

\square Solve (9) for the error of the more accurate approximation

$$
\begin{equation*}
E_{a}\left(h_{2}\right)=-\left[\frac{\hat{I}\left(h_{1}\right)-\hat{I}\left(h_{2}\right)}{1-\left(\frac{h_{1}}{h_{2}}\right)^{4}}\right] \tag{10}
\end{equation*}
$$

Adaptive Quadrature $-E_{a} \leq a b s t o l$

\square According to (2)

$$
\begin{equation*}
I=\hat{I}\left(h_{2}\right)-E\left(h_{2}\right) \tag{11}
\end{equation*}
$$

so

$$
\begin{equation*}
I \approx \hat{I}=\hat{I}\left(h_{2}\right)-E_{a}\left(h_{2}\right) \tag{12}
\end{equation*}
$$

\square Substituting (10) into (12)

$$
\hat{I}=\hat{I}\left(h_{2}\right)+\frac{\hat{I}\left(h_{1}\right)-\hat{I}\left(h_{2}\right)}{1-\left(\frac{h_{1}}{h_{2}}\right)^{4}}
$$

\square And, since $h_{1}=2 \cdot h_{2}$, the integral approximation is

$$
\begin{equation*}
\hat{I}=\hat{I}\left(h_{2}\right)+\frac{1}{15}\left[\hat{I}\left(h_{2}\right)-\hat{I}\left(h_{1}\right)\right] \tag{13}
\end{equation*}
$$

\square Which can be shown to be equivalent to Boole's rule

Adaptive Quadrature $-E_{a} \leq a b s t o l$

\square Summarizing:

- Want to numerically integrate $f(x)$ over $[a, b]$
\square Calculate $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$
\square Approximate the error as

$$
E_{a}=\hat{I}\left(h_{2}\right)-\hat{I}\left(h_{1}\right)
$$

- If $E_{a} \leq a b s t o l$, calculate the integral using Boole's rule

$$
\hat{I}=\hat{I}\left(h_{2}\right)+\frac{1}{15}\left[\hat{I}\left(h_{2}\right)-\hat{I}\left(h_{1}\right)\right]
$$

- Next, we'll look at what to do if $E_{a}>a b s t o l$

Adaptive Quadrature $-E_{a}>$ abstol

\square If $E_{a}>a b s t o l$, reduce the step size and try again
\square Subdivide the integration interval, $[a, b]$, into two subintervals, $[a, c]$ and $[c, b]$

- For each subinterval:
- Calculate $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$
- Calculate E_{a}
- If $E_{a} \leq a b s t o l$, calculate \hat{I} for that sub-interval using Boole's rule
- If $E_{a}>a b s t o l$, further subdivide the sub-interval into two smaller sub-intervals
- Calculate $\hat{I}\left(h_{1}\right)$ and $\hat{I}\left(h_{2}\right)$, then $E_{a} \ldots$
- Eventually, total integral approximation is the sum of all individual sub-interval integral approximations

Adaptive Quadrature - Recursive Algorithm

\square Adaptive quadrature uses a recursive algorithm
\square A function that calls itself
\square Integration interval is continually subdivided until approximate error is acceptable
$\square \hat{I}$ returned by function is the sum of the individual \hat{I} values

Adaptive Quadrature - quadadapt()

Inputs: function handle, limits of integration, and tolerance

- On subsequent recursive calls, a and b will be sub-interval limits
\square Step sizes and x-values for two Simpson's $1 / 3$ rule estimates

Integral estimates at two different step sizes

Approximate error
Boole's rule estimate
Recursive function calls
Sum the sub-interval integral estimates

Adaptive Quadrature - Examples

60
 Integrating Functions in Python

Integrating Functions - integrate.quad()

\square When we have an expression for the function to be integrated, we can use SciPy's integrate. quad() function:

I, err = integrate.quad(f, $a, b)$

- f: the function to be integrated
- a: lower integration limit
- b: upper integration limit
- I: numerical approximation of the integral
- err: approximate absolute error
- Calculates $I=\int_{a}^{b} f(x) d x$

Exercise - Integration in Python

$\square \quad$ The impulse response of a certain $2^{\text {nd }}$-order system is given by

$$
h(t)=5.2414 e^{-\alpha t} \sin \left(\omega_{d} t\right)
$$

where $\alpha=1.5$ and $\omega_{d}=4.7697 \mathrm{rad} / \mathrm{sec}$
\square A system's step response is the integral of its impulse response. For this system, the step response is

$$
g(t)=1-e^{-\alpha t} \cos \left(\omega_{d} t\right)-0.3145 e^{-\alpha t} \sin \left(\omega_{d} t\right)
$$

\square Plot $g(t)$ for $0 \leq t \leq 10 \mathrm{sec}$ using a small sampling interval (e.g. 1msec)
\square For a variety of step sizes (e.g. 500, 200, 100, 10, 1msec)

- Calculate $\hat{g}(t)$ using cumulative_trapezoid () and superimpose on the plot of $g(t)$
- Calculate the steady-state value of the step response using trapezoid()
- Notice the effect of step size on the accuracy of the integral

