
ESC 440 – Computational Methods for Engineers

SECTION 5: INTEGRATION

K. Webb ESC 440

Introduction2

K. Webb ESC 440

3

Integration

 Integration, or quadrature, has many engineering applications

 A few examples:

 Mean value

ത𝑦 =
𝑎

𝑏
𝑓 𝑥 𝑑𝑥

𝑏 − 𝑎

 Constitutive physical laws

Δ𝑝 = න 𝐹 𝑡 𝑑𝑡

Δ𝑣 =
1

𝐶
න 𝑖 𝑡 𝑑𝑡

Δ𝑥 = න 𝑣 𝑡 𝑑𝑡

 Total flux through a surface

𝑄 = ඵ 𝑈 𝑥, 𝑦 𝑑𝑥 𝑑𝑦

 Etc. …

K. Webb ESC 440

4

Numerical Integration

 The numerical integration algorithms we’ll look at
can be divided into two broad categories:

 Algorithms for integration of data or functions
◼ No flexibility to choose the points, 𝑓 𝑥𝑖 , used for

calculation of the integral

◼ Points, 𝑓 𝑥𝑖 , may or may not be uniformly-spaced

◼ Newton-Cotes formulas

 Algorithms for the integration of functions
◼ Exploit the ability to calculate 𝑓 𝑥 at any value of 𝑥

◼ Improved accuracy and efficiency

◼ Adaptive quadrature, Romberg integration, Gauss
quadrature

K. Webb ESC 440

This first category of numerical integration
algorithms can be applied either to functions or
to discrete data sets.

Newton-Cotes Formulas5

K. Webb ESC 440

6

Newton-Cotes Formulas

 Want to approximate the integral of a function or data set

𝐼 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

 Approximate 𝒇(𝒙) with something that is easy to integrate

 An 𝑛𝑡ℎ-order polynomial

𝑓 𝑥 ≈ 𝑓𝑛 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛

 Integral approximation:

መ𝐼 = න
𝑎

𝑏

𝑓𝑛 𝑥 𝑑𝑥 ≈ 𝐼

 Unless otherwise noted, Newton-Cotes formulas assume evenly-
spaced data points

K. Webb ESC 440

7

Closed Forms vs. Open Formulas

 Two different versions of the Newton-Cotes integral
formulas:

 Closed forms
◼ Values of the function at the limits of

integration, 𝑓 𝑎 and 𝑓 𝑏 , are known

 Open forms
◼ 𝑓 𝑎 and 𝑓 𝑏 are unknown

 We’ll focus on closed forms of the
Newton-Cotes formulas

Chapra

K. Webb ESC 440

8

Single-Segment vs. Composite

 Newton-Cotes formulas may be applied in two
different ways:

 Single-segment
◼ Entire integration interval, 𝑎, 𝑏 ,

approximated with a single
polynomial

 Composite
◼ Integration interval divided into

multiple segments

◼ Integral approximated for each
segment – results summed

K. Webb ESC 440

In the following sections, we’ll look at three
different Newton-Cotes integration formulas:

▪ Trapezoid rule

▪ Simpson’s 1/3 rule

▪ Simpson’s 3/8 rule

Trapezoidal Rule9

K. Webb ESC 440

10

Trapezoidal Rule

 Approximate 𝑓 𝑥 as a first-order polynomial

𝑓 𝑥 ≈ 𝑓1 𝑥 = 𝑎0 + 𝑎1𝑥

𝑓1 𝑥 = 𝑓 𝑎 +
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎

 Integral approximation:

መ𝐼 = න
𝑎

𝑏

𝑓1 𝑥 𝑑𝑥 = න
𝑎

𝑏

𝑓 𝑎 +
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎 𝑑𝑥 ≈ 𝐼

 Trapezoidal rule formula:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2

K. Webb ESC 440

11

Trapezoidal Rule

 The trapezoidal rule formula

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2

can be interpreted as

መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒

 All Newton-Cotes formulas can
be expressed this way

 Only the approximation of the
average value of 𝑓 𝑥 varies

 More accurate approx. of avg.
value yields more accurate integral
estimate

𝑎 𝑏

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑎𝑣𝑔.
𝑣𝑎𝑙𝑢𝑒

𝑓 𝑏

𝑓 𝑎

 Integral approximation is the
area under the polynomial
approximation of 𝑓 𝑥

K. Webb ESC 440

12

Trapezoidal Rule – Error

 The error of the trapezoidal rule estimate is

𝐸𝑡 = መ𝐼 − 𝐼 =
1

12
𝑓′′ 𝜉 𝑏 − 𝑎 3

where 𝜉 is some unknown value of 𝑥 on [𝑎, 𝑏]

 Since 𝜉 is unknown, approximate the error as

𝐸𝑎 =
1

12
ҧ𝑓′′ 𝑏 − 𝑎 3

where ҧ𝑓′′ is the mean curvature of 𝑓 𝑥 on [𝑎, 𝑏]

K. Webb ESC 440

13

Trapezoidal Rule – Error

 The error of the trapezoidal rule estimate is

𝐸𝑡 =
1

12
𝑓′′ 𝜉 𝑏 − 𝑎 3

 If the curvature of 𝑓 𝑥 is zero on [𝑎, 𝑏]

𝑓′′ 𝑥 = 0, for 𝑎 ≤ 𝑥 ≤ 𝑏

 Then the trapezoidal rule approximation is exact

𝐸𝑡 = 0

 First-order polynomial is an exact representation of
a linear 𝑓 𝑥

K. Webb ESC 440

14

Trapezoidal Rule – Example

 Trapezoidal rule may provide
an accurate integral estimate
 Over regions with low curvature
 Where 𝑓 𝑥 is reasonably

approximated as linear

 Or, large errors may result
 Over regions with large

curvature
 Where a linear approximation is

unacceptable

K. Webb ESC 440

15

Composite Trapezoidal Rule

 Accuracy can be improved by dividing the interval
[𝑎, 𝑏] into 𝑛 segments

 𝑛 + 1 evenly-spaced
sample points of 𝑓 𝑥 :
𝑥0 … 𝑥𝑛

 Segment width:

ℎ =
𝑏 − 𝑎

𝑛

 Now approximating 𝑓 𝑥
as piece-wise linear

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏

K. Webb ESC 440

16

Composite Trapezoidal Rule

 Divide the integral into 𝑛 segments

𝐼 = න
𝑥0

𝑥1

𝑓 𝑥 𝑑𝑥 + න
𝑥1

𝑥2

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−1

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using the trapezoidal rule

መ𝐼 = ℎ
𝑓 𝑥0 + 𝑓 𝑥1

2
+ ℎ

𝑓 𝑥1 + 𝑓 𝑥2

2
+ ⋯ + ℎ

𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

2

 Using summation notation

መ𝐼 =
ℎ

2
𝑓 𝑥0 + 2

𝑖=1

𝑛−1

𝑓 𝑥𝑖 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 2 σ𝑖=1

𝑛−1 𝑓 𝑥𝑖 + 𝑓 𝑥𝑛

2𝑛

K. Webb ESC 440

17

Composite Trapezoidal Rule – Error

 Total error is the sum of the individual errors

𝐸𝑡 =
𝑖=1

𝑛

𝐸𝑡,𝑖 =
1

12
ℎ3

𝑖=1

𝑛

𝑓′′ 𝜉𝑖 =
𝑏 − 𝑎 3

12𝑛3

𝑖=1

𝑛

𝑓′′ 𝜉𝑖

 Again, approximate using ҧ𝑓′′, the mean curvature

𝐸𝑎 =
𝑏 − 𝑎 3

12𝑛3

𝑖=1

𝑛
ҧ𝑓′′

where

𝑖=1

𝑛
ҧ𝑓′′ = 𝑛 ҧ𝑓′′

so

𝐸𝑎 =
𝑏 − 𝑎 3

12𝑛2
ҧ𝑓′′

K. Webb ESC 440

18

Composite Trapezoidal Rule – Example

 Accuracy improves as the
number of segments
increases
 Average curvature over each

segment decreases

 𝑓 𝑥 better approximated as
linear over smaller regions

K. Webb ESC 440

19

Trapezoidal Rule – Unequally-Spaced Data

 Trapezoidal rule can be easily modified to
accommodate unequally-spaced data points

 Account for the width of each of the 𝑛 individual
segments explicitly

መ𝐼 = ℎ1

𝑓 𝑥0 + 𝑓 𝑥1

2
+ ℎ2

𝑓 𝑥1 + 𝑓 𝑥2

2
+ ⋯ + ℎ𝑛

𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

2

 Useful for measured data, where uneven spacing is
not uncommon

K. Webb ESC 440

20

Trapezoidal Rule in Python – trapezoid()

 The integrate module from the SciPy package includes
several integration functions, including trapezoid rule
 Import it first:

from scipy import integrate

I = integrate.trapezoid(y, x)

 y: vector of dependent variable data
 x: vector of independent variable data
 I: trapezoidal rule approximation to the integral of y with respect

to x (a scalar)

 Data need not be equally-spaced
 Segment widths calculated from x values

K. Webb ESC 440

21

Cumulative Integral – cumulative_trapezoid()

I = integrate.cumulative_trapezoid(y, x,
initial=0)

 y: n-vector of dependent variable data
 x: n-vector of independent variable data
 initial: optional initial value inserted as the first value in I – if

not given, I is an (n-1)-vector
 I: trapezoidal rule approximation to the cumulative

 integral of y with respect to x (an n-vector)

 Result is a vector – equivalent to:

𝐼 𝑥 = න
𝑥1

𝑥

𝑦 𝑥 𝑑 𝑥

K. Webb ESC 440

22

trapezoid() and cumulative_trapezoid()

K. Webb ESC 440

Simpson’s 1/3 Rule23

K. Webb ESC 440

24

Simpson’s 1/3 Rule

 Approximate 𝑓 𝑥 with a second-order polynomial

𝑓 𝑥 ≈ 𝑓2 𝑥

where 𝑓2 𝑥 can be expressed as a Lagrange
polynomial:

𝑓2 𝑥 =
𝑥 − 𝑥1 𝑥 − 𝑥2

𝑥0 − 𝑥1 𝑥0 − 𝑥2
𝑓 𝑥0 +

𝑥 − 𝑥0 𝑥 − 𝑥2

𝑥1 − 𝑥0 𝑥1 − 𝑥2
𝑓 𝑥1 +

𝑥 − 𝑥0 𝑥 − 𝑥1

𝑥2 − 𝑥0 𝑥2 − 𝑥1
𝑓 𝑥2

 Approximate the integral of 𝑓 𝑥 as the integral of the
quadratic approximation

𝐼 ≈ መ𝐼 = න
𝑎

𝑏

𝑓2 𝑥 𝑑𝑥

K. Webb ESC 440

25

Simpson’s 1/3 Rule

 Now fitting a
parabola to 𝑓 𝑥

 Three points
required: 𝑥0, 𝑥1,
and 𝑥2

 Integration interval,
[𝑎, 𝑏] divided into
two segments

 Points must be
evenly spaced 𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑓 𝑥0

𝑓 𝑥2

𝑓 𝑥1

ℎ =
𝑏 − 𝑎

2

𝑥2 = 𝑏
𝑥1

K. Webb ESC 440

26

Simpson’s 1/3 Rule

 Evaluating the integral of the quadratic
approximation, 𝑓2 𝑥 , yields Simpson’s 1/3 rule:

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

 Or, in መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

6

K. Webb ESC 440

27

Simpson’s 1/3 Rule – Error

 The error associated with Simpson’s 1/3 rule is

𝐸𝑡 =
1

90
ℎ5𝑓 4 𝜉 =

𝑏 − 𝑎 5

2880
𝑓 4 𝜉

 Error is proportional to the fourth derivative of 𝑓 𝑥

 For third- and lower-order polynomials, 𝑓 4 = 0

 The Simpson’s 1/3 rule integral estimate is exact for
cubic and lower-order polynomials

 An interesting result, given that 𝑓 𝑥 is approximated
with only a quadratic

K. Webb ESC 440

28

Composite Simpson’s 1/3 Rule

 Accuracy can be improved by dividing the interval
[𝑎, 𝑏] into 𝑛 segments

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏

 Each application of
Simpson’s 1/3 rule requires
three points, and two
segments

 Total number of segments
must be even

 Total number of points
must be odd

 𝑓 𝑥 approximated as a
quadratic over each pair of
adjacent segments

K. Webb ESC 440

29

Composite Simpson’s 1/3 Rule

 Divide [𝑎, 𝑏] into 𝑛 segments, and the integral into 𝑛/2 segments

𝐼 = න
𝑥0

𝑥2

𝑓 𝑥 𝑑𝑥 + න
𝑥2

𝑥4

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−2

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using Simpson’s 1/3 rule

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2 +

ℎ

3
𝑓 𝑥2 + 4𝑓 𝑥3 + 𝑓 𝑥4 + ⋯ +

ℎ

3
𝑓 𝑥𝑛−2 + 4𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

 Using summation notation

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4

𝑖=1,3,5…

𝑛−1

𝑓 𝑥𝑖 + 2
𝑗=2,4,6…

𝑛−2

𝑓 𝑥𝑗 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 4 σ𝑖=1,3,5…

𝑛−1 𝑓 𝑥𝑖 + 2 σ𝑗=2,4,6…
𝑛−2 𝑓 𝑥𝑗 + 𝑓 𝑥𝑛

3𝑛

K. Webb ESC 440

30

Composite Simpson’s 1/3 Rule – Example

 Accuracy improves as the
number of segments increases

ҧ𝑓 4 over each segment
decreases

 𝑓 𝑥 better approximated as
quadratic over smaller regions

K. Webb ESC 440

Simpson’s 3/8 Rule31

K. Webb ESC 440

32

Simpson’s 3/8 Rule

 Approximate 𝑓 𝑥 with a third-order polynomial

𝑓 𝑥 ≈ 𝑓3 𝑥

where 𝑓3 𝑥 can, again, be expressed as a Lagrange
polynomial

 Approximate the integral of 𝑓 𝑥 as the integral of
the cubic approximation

𝐼 ≈ መ𝐼 = න
𝑎

𝑏

𝑓3 𝑥 𝑑𝑥

K. Webb ESC 440

33

Simpson’s 3/8 Rule

 Now fitting a cubic
to 𝑓 𝑥

 Four points
required: 𝑥0, 𝑥1,
𝑥2, and 𝑥3

 Integration interval,
[𝑎, 𝑏] divided into
three segments

 Points must be
evenly spaced 𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑥3 = 𝑏
𝑥1 𝑥2

ℎ =
𝑏 − 𝑎

3

K. Webb ESC 440

34

Simpson’s 3/8 Rule

 Evaluating the integral of the cubic approximation,
𝑓3 𝑥 , yields Simpson’s 3/8 rule:

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

 Or, in መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

8

K. Webb ESC 440

35

Simpson’s 3/8 Rule – Error

 The error associated with Simpson’s 3/8 rule is

𝐸𝑡 =
3

80
ℎ5𝑓 4 𝜉 =

𝑏 − 𝑎 5

6480
𝑓 4 𝜉

 Error is proportional to the fourth derivative of 𝑓 𝑥

 Third-order accuracy

◼ Same as Simpson’s 1/3 rule

 For nonzero 𝑓 4 , error is slightly lower than Simpson’s
1/3 rule

K. Webb ESC 440

36

Composite Simpson’s 3/8 Rule

 Accuracy can be improved by dividing the interval
[𝑎, 𝑏] into 𝑛 segments

 Each application of Simpson’s
3/8 rule requires four points,
and three segments

 Total number of segments
must be divisible by three

 Can be used in conjunction
with Simpson’s 1/3 rule to
accommodate an odd number
of segments

 𝑓 𝑥 approximated as a cubic
over each group of three
adjacent segments

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏

K. Webb ESC 440

37

Composite Simpson’s 3/8 Rule

 Divide 𝑎, 𝑏 into 𝑛 segments, and the integral into 𝑛/3 segments

𝐼 = න
𝑥0

𝑥3

𝑓 𝑥 𝑑𝑥 + න
𝑥3

𝑥6

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−3

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using Simpson’s 3/8 rule

መ𝐼

=
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3 +

3ℎ

8
𝑓 𝑥3 + 3𝑓 𝑥4 + 3𝑓 𝑥5 + 𝑓 𝑥6 + ⋯

+
3ℎ

8
𝑓 𝑥𝑛−3 + 3𝑓 𝑥𝑛−2 + 3𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

 Using summation notation

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3

𝑖=1,4,7…

𝑛−2

𝑓 𝑥𝑖 + 3
𝑗=2,5,8…

𝑛−1

𝑓 𝑥𝑗 + 2
𝑘=3,6,9…

𝑛−3

𝑓 𝑥𝑘 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒 form

መ𝐼 = 𝑏 − 𝑎
3 𝑓 𝑥0 + 3 σ𝑖=1,4,7…

𝑛−2 𝑓 𝑥𝑖 + 3 σ𝑗=2,5,8…
𝑛−1 𝑓 𝑥𝑗 + 2 σ𝑘=3,6,9…

𝑛−3 𝑓 𝑥𝑘 + 𝑓 𝑥𝑛

8𝑛

K. Webb ESC 440

38

Composite Simpson’s 3/8 Rule – Example

 Accuracy improves as the
number of segments
increases

ҧ𝑓 4 over each segment

decreases

 𝑓 𝑥 better approximated as
a cubic over smaller regions

K. Webb ESC 440

Higher-Order Formulas39

K. Webb ESC 440

40

Higher-Order Formulas

 Typically, Simpson’s 1/3 rule, used in conjunction
with Simpson’s 3/8 rule (for odd 𝑛), is sufficient

 Possible to use higher-order polynomials to
approximate 𝑓 𝑥

 𝑛 segments and 𝑛 + 1 points needed for 𝑛𝑡ℎ-order
polynomial approximation

 Closed and open integration formulas exist

 Boole’s rule will show up in a different form later
when we cover adaptive quadrature

K. Webb ESC 440

41

Higher-Order Newton-Cotes Formulas – Closed

𝑛 Name Formula
Error
prop.
to

1
Trapezoidal
rule

መ𝐼 =
ℎ

2

𝑓 𝑥0 + 𝑓 𝑥1

2
𝑓′′ 𝜉

2
Simpson’s
1/3 rule

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

𝑓 4 𝜉

3
Simpson’s
3/8 rule

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

𝑓 4 𝜉

4 Boole’s rule መ𝐼 =
2ℎ

45
7𝑓 𝑥0 + 32𝑓 𝑥1 + 12𝑓 𝑥2 + 32𝑓 𝑥3 + 7𝑓 𝑥4

𝑓 6 𝜉

5 - መ𝐼 =
5ℎ

288
19𝑓 𝑥0 + 75𝑓 𝑥1 + 50𝑓 𝑥2 + 50𝑓 𝑥3 + 75𝑓 𝑥4 + 19𝑓 𝑥5 𝑓 6 𝜉

The step size in the above formulas is: ℎ =
𝑏−𝑎

𝑛

K. Webb ESC 440

42

Open Integration Formulas

 Function values not
know at the limits of
integration

 𝑛 segments

 𝑛 − 1 points

 𝑛 − 2 𝑛𝑑-order
polynomial
approximation

Chapra

K. Webb ESC 440

43

Higher-Order Newton-Cotes Formulas – Open

Segments

(𝑛)
Points Formula

Error prop.
to

2 1 መ𝐼 = 𝑏 − 𝑎 𝑓 𝑥1 𝑓′′ 𝜉

3 2 መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥1 + 𝑓 𝑥2

2

𝑓 4 𝜉

4 3 መ𝐼 = 𝑏 − 𝑎
2𝑓 𝑥1 + 𝑓 𝑥2 + 2𝑓 𝑥3

3

𝑓 4 𝜉

5 4 መ𝐼 = 𝑏 − 𝑎
11𝑓 𝑥1 + 𝑓 𝑥2 + 𝑓 𝑥3 + 11𝑓 𝑥4

24

𝑓 6 𝜉

6 5 መ𝐼 = 𝑏 − 𝑎
11𝑓 𝑥1 − 14𝑓 𝑥2 + 26𝑓 𝑥3 − 14𝑓 𝑥4 + 11𝑓 𝑥5

20
𝑓 6 𝜉

K. Webb ESC 440

Integration of Functions44

K. Webb ESC 440

45

Integration of Functions

 Newton-Cotes formulas can be used to integrate
functions or discrete data points
 Evenly-spaced data points are assumed

 If 𝒇 𝒙 is known, spacing of 𝒙-values can be chosen
to improve accuracy
 Spacing need not be uniform

 Can locate points specific distances from limits of
integration or segment edges to improve accuracy

 Can use larger step size where acceptable, reduced step
size where necessary
◼ Effectively trade off accuracy and efficiency

K. Webb ESC 440

46

Methods for integrating functions

 Romberg integration

 Combine two trapezoidal rule estimates with different step
sizes to yield a third, more accurate estimate

 Gauss quadrature

 Spacing of points within the integration segments chosen to
improve accuracy of Newton-Cotes formulas

 Adaptive Quadrature

 Adaptively refine step size to achieve desired accuracy

 Smaller step size in some regions, larger in others

 Uses some of the techniques used by Romberg integration

K. Webb ESC 440

Adaptive Quadrature47

K. Webb ESC 440

48

Adaptive Quadrature

 Vary step size to
achieve desired
accuracy over each
segment
 Smaller step size

where 𝑓 𝑥 varies
rapidly

 Larger step size
where 𝑓 𝑥 varies
gradually

 Integration method
used is Simpson’s
1/3 rule

K. Webb ESC 440

49

Adaptive Quadrature

 Apply Simpson’s 1/3 rule to approximate the integral at two different step
sizes, መ𝐼 ℎ1 and መ𝐼 ℎ2 , where ℎ2 = ℎ1/2

መ𝐼 ℎ1 =
ℎ1

3
𝑓 𝑎 + 4𝑓 𝑐 + 𝑓 𝑏 መ𝐼 ℎ2 =

ℎ2

3
𝑓 𝑎 + 4𝑓 𝑑 + 2𝑓 𝑐 + 4𝑓 𝑒 + 𝑓 𝑏

𝑎 𝑐 𝑏 𝑑 𝑒𝑎 𝑐 𝑏

K. Webb ESC 440

50

Adaptive Quadrature

 Use መ𝐼 ℎ1 and መ𝐼 ℎ2 to approximate the error:

𝐸𝑎 = መ𝐼 ℎ2 − መ𝐼 ℎ1 (1)

 Two possible ways to proceed:

 If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙
◼ Using an approach similar to Romberg integration, combine

መ𝐼 ℎ1 and መ𝐼 ℎ2 to yield a third, more accurate estimate of
the integral

 If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙
◼ Divide [a,b] into two segments: [𝑎, 𝑐] and [𝑐, 𝑏]

◼ Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2 for each segment
◼ Single- and double-segment Simpson’s 1/3 approximations

◼ Use (1) to approximate the error for each sub-interval

K. Webb ESC 440

51

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 If 𝐸𝑎 as calculated by (1) is acceptable (i.e. < 𝑎𝑏𝑠𝑡𝑜𝑙) we can use
መ𝐼 ℎ1 and መ𝐼 ℎ2 to calculate a third, more accurate approximation

 This is the basic principal used in Romberg integration

 We’ll now derive the formula used to combine መ𝐼 ℎ1 and መ𝐼 ℎ2

 Each estimate is the true integral plus some error

𝐼 = መ𝐼 ℎ1 − 𝐸 ℎ1 = መ𝐼 ℎ2 − 𝐸 ℎ2 (2)

 We’ve seen that Simpson’s 1/3 rule error can be approximated as

𝐸𝑎 ℎ =
𝑏−𝑎 ℎ4

180
ҧ𝑓 4 (3)

where ҧ𝑓 4 is the average value of 𝑓 4 𝑥 over the integration
interval

K. Webb ESC 440

52

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 Equation (3) gives approximate error at each step
size:

𝐸𝑎 ℎ1 =
𝑏−𝑎 ℎ1

4

180
ҧ𝑓 4 (4)

𝐸𝑎 ℎ2 =
𝑏−𝑎 ℎ2

4

180
ҧ𝑓 4 (5)

 Divide (4) by (5)
𝐸𝑎 ℎ1

𝐸𝑎 ℎ2
=

ℎ1
4

ℎ2
4 (6)

 Solve for 𝐸𝑎 ℎ1

𝐸𝑎 ℎ1 = 𝐸𝑎 ℎ2
ℎ1

4

ℎ2
4 (7)

K. Webb ESC 440

53

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 Restate (2) as an approximation

መ𝐼 ℎ1 − 𝐸𝑎 ℎ1 ≈ መ𝐼 ℎ2 − 𝐸𝑎 ℎ2 (8)

 Substitute (7) into (8)

መ𝐼 ℎ1 − 𝐸𝑎 ℎ2
ℎ1

4

ℎ2
4 ≈ መ𝐼 ℎ2 − 𝐸𝑎 ℎ2 (9)

 Solve (9) for the error of the more accurate
approximation

𝐸𝑎 ℎ2 = −
መ𝐼 ℎ1 − መ𝐼 ℎ2

1−
ℎ1
ℎ2

4 (10)

K. Webb ESC 440

54

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 According to (2)

𝐼 = መ𝐼 ℎ2 − 𝐸 ℎ2 (11)

so

𝐼 ≈ መ𝐼 = መ𝐼 ℎ2 − 𝐸𝑎 ℎ2 (12)

 Substituting (10) into (12)

መ𝐼 = መ𝐼 ℎ2 +
መ𝐼 ℎ1 − መ𝐼 ℎ2

1 −
ℎ1
ℎ2

4

 And, since ℎ1 = 2 ∙ ℎ2, the integral approximation is

መ𝐼 = መ𝐼 ℎ2 +
1

15
መ𝐼 ℎ2 − መ𝐼 ℎ1 (13)

 Which can be shown to be equivalent to Boole’s rule

K. Webb ESC 440

55

Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙

 Summarizing:

 Want to numerically integrate 𝑓(𝑥) over [𝑎, 𝑏]

 Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2

 Approximate the error as

𝐸𝑎 = መ𝐼 ℎ2 − መ𝐼 ℎ1

 If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙, calculate the integral using Boole’s rule

መ𝐼 = መ𝐼 ℎ2 +
1

15
መ𝐼 ℎ2 − መ𝐼 ℎ1

 Next, we’ll look at what to do if 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙

K. Webb ESC 440

56

Adaptive Quadrature – 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙

 If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙, reduce the step size and try again

 Subdivide the integration interval, [𝑎, 𝑏], into two sub-
intervals, [𝑎, 𝑐] and [𝑐, 𝑏]

 For each subinterval:

◼ Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2

◼ Calculate 𝐸𝑎

◼ If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙, calculate መ𝐼 for that sub-interval using Boole’s rule

◼ If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙, further subdivide the sub-interval into two smaller
sub-intervals
◼ Calculate መ𝐼 ℎ1 and መ𝐼 ℎ2 , then 𝐸𝑎…

 Eventually, total integral approximation is the sum of all
individual sub-interval integral approximations

K. Webb ESC 440

57

Adaptive Quadrature – Recursive Algorithm

 Adaptive quadrature
uses a recursive
algorithm

 A function that calls itself

 Integration interval is
continually subdivided
until approximate error is
acceptable

መ𝐼 returned by function is
the sum of the individual
መ𝐼 values

K. Webb ESC 440

58

Adaptive Quadrature – quadadapt()

 Inputs: function handle, limits of
integration, and tolerance

 On subsequent recursive calls, a
and b will be sub-interval limits

 Step sizes and 𝑥-values for two
Simpson’s 1/3 rule estimates

 Integral estimates at two different
step sizes

 Approximate error

 Boole’s rule estimate

 Recursive function calls

 Sum the sub-interval integral
estimates

K. Webb ESC 440

59

Adaptive Quadrature – Examples

K. Webb ESC 440

Integrating Functions in Python60

K. Webb ESC 440

61

Integrating Functions – integrate.quad()

 When we have an expression for the function to be
integrated, we can use SciPy's integrate.quad()
function:

I, err = integrate.quad(f,a,b)

 f: the function to be integrated

 a: lower integration limit

 b: upper integration limit

 I: numerical approximation of the integral

 err: approximate absolute error

 Calculates 𝐼 = 𝑎

𝑏
𝑓 𝑥 𝑑𝑥

K. Webb ESC 440

62
Ex

er
ci

se
 The impulse response of a certain 2nd-order system is given by

ℎ 𝑡 = 5.2414𝑒−𝛼𝑡 sin 𝜔𝑑𝑡

where 𝛼 = 1.5 and 𝜔𝑑 = 4.7697𝑟𝑎𝑑/𝑠𝑒𝑐

 A system’s step response is the integral of its impulse response. For this
system, the step response is

𝑔 𝑡 = 1 − 𝑒−𝛼𝑡 cos 𝜔𝑑𝑡 − 0.3145𝑒−𝛼𝑡 sin 𝜔𝑑𝑡

 Plot 𝑔 𝑡 for 0 ≤ 𝑡 ≤ 10𝑠𝑒𝑐 using a small sampling interval (e.g. 1𝑚𝑠𝑒𝑐)

 For a variety of step sizes (e.g. 500, 200, 100, 10, 1𝑚𝑠𝑒𝑐)

 Calculate ො𝑔 𝑡 using cumulative_trapezoid() and superimpose on the plot
of 𝑔 𝑡

 Calculate the steady-state value of the step response using trapezoid()

 Notice the effect of step size on the accuracy of the integral

 Also, calculate the steady-state step response value using quad()

Exercise – Integration in Python

	Slide 1: Section 5: Integration
	Slide 2: Introduction
	Slide 3: Integration
	Slide 4: Numerical Integration
	Slide 5: Newton-Cotes Formulas
	Slide 6: Newton-Cotes Formulas
	Slide 7: Closed Forms vs. Open Formulas
	Slide 8: Single-Segment vs. Composite
	Slide 9: Trapezoidal Rule
	Slide 10: Trapezoidal Rule
	Slide 11: Trapezoidal Rule
	Slide 12: Trapezoidal Rule – Error
	Slide 13: Trapezoidal Rule – Error
	Slide 14: Trapezoidal Rule – Example
	Slide 15: Composite Trapezoidal Rule
	Slide 16: Composite Trapezoidal Rule
	Slide 17: Composite Trapezoidal Rule – Error
	Slide 18: Composite Trapezoidal Rule – Example
	Slide 19: Trapezoidal Rule – Unequally-Spaced Data
	Slide 20: Trapezoidal Rule in Python – trapezoid()
	Slide 21: Cumulative Integral – cumulative_trapezoid()
	Slide 22: trapezoid() and cumulative_trapezoid()
	Slide 23: Simpson’s 1/3 Rule
	Slide 24: Simpson’s 1/3 Rule
	Slide 25: Simpson’s 1/3 Rule
	Slide 26: Simpson’s 1/3 Rule
	Slide 27: Simpson’s 1/3 Rule – Error
	Slide 28: Composite Simpson’s 1/3 Rule
	Slide 29: Composite Simpson’s 1/3 Rule
	Slide 30: Composite Simpson’s 1/3 Rule – Example
	Slide 31: Simpson’s 3/8 Rule
	Slide 32: Simpson’s 3/8 Rule
	Slide 33: Simpson’s 3/8 Rule
	Slide 34: Simpson’s 3/8 Rule
	Slide 35: Simpson’s 3/8 Rule – Error
	Slide 36: Composite Simpson’s 3/8 Rule
	Slide 37: Composite Simpson’s 3/8 Rule
	Slide 38: Composite Simpson’s 3/8 Rule – Example
	Slide 39: Higher-Order Formulas
	Slide 40: Higher-Order Formulas
	Slide 41: Higher-Order Newton-Cotes Formulas – Closed
	Slide 42: Open Integration Formulas
	Slide 43: Higher-Order Newton-Cotes Formulas – Open
	Slide 44: Integration of Functions
	Slide 45: Integration of Functions
	Slide 46: Methods for integrating functions
	Slide 47: Adaptive Quadrature
	Slide 48: Adaptive Quadrature
	Slide 49: Adaptive Quadrature
	Slide 50: Adaptive Quadrature
	Slide 51: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 52: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 53: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 54: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 55: Adaptive Quadrature – cap E sub a. less than or equal to a. b s t o l
	Slide 56: Adaptive Quadrature – cap E sub a. greater than a. b s t o l
	Slide 57: Adaptive Quadrature – Recursive Algorithm
	Slide 58: Adaptive Quadrature – quadadapt()
	Slide 59: Adaptive Quadrature – Examples
	Slide 60: Integrating Functions in Python
	Slide 61: Integrating Functions – integrate.quad()
	Slide 62: Exercise – Integration in Python

