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Integration

 Integration, or quadrature, has many engineering applications

 A few examples:

 Mean value

ത𝑦 =
𝑎

𝑏
𝑓 𝑥 𝑑𝑥

𝑏 − 𝑎

 Constitutive physical laws

Δ𝑝 = න 𝐹 𝑡 𝑑𝑡

Δ𝑣 =
1

𝐶
න 𝑖 𝑡 𝑑𝑡

Δ𝑥 = න 𝑣 𝑡 𝑑𝑡

 Total flux through a surface

𝑄 = ඵ 𝑈 𝑥, 𝑦 𝑑𝑥 𝑑𝑦

 Etc. …
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Numerical Integration

 The numerical integration algorithms we’ll look at 
can be divided into two broad categories:

 Algorithms for integration of data or functions
◼ No flexibility to choose the points, 𝑓 𝑥𝑖 , used for 

calculation of the integral

◼ Points, 𝑓 𝑥𝑖 , may or may not be uniformly-spaced

◼ Newton-Cotes formulas

 Algorithms for the integration of functions
◼ Exploit the ability to calculate 𝑓 𝑥  at any value of 𝑥

◼ Improved accuracy and efficiency

◼ Adaptive quadrature, Romberg integration, Gauss 
quadrature 
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This first category of numerical integration 
algorithms can be applied either to functions or 
to discrete data sets.

Newton-Cotes Formulas5
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Newton-Cotes Formulas

 Want to approximate the integral of a function or data set

𝐼 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

 Approximate 𝒇(𝒙) with something that is easy to integrate

 An 𝑛𝑡ℎ-order polynomial

𝑓 𝑥 ≈ 𝑓𝑛 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛

 Integral approximation:

መ𝐼 = න
𝑎

𝑏

𝑓𝑛 𝑥 𝑑𝑥 ≈ 𝐼

 Unless otherwise noted, Newton-Cotes formulas assume evenly-
spaced data points
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Closed Forms vs. Open Formulas

 Two different versions of the Newton-Cotes integral 
formulas:

 Closed forms
◼ Values of the function at the limits of 

integration, 𝑓 𝑎  and 𝑓 𝑏 , are known

 Open forms
◼ 𝑓 𝑎  and 𝑓 𝑏  are unknown

 We’ll focus on closed forms of the 
Newton-Cotes formulas

Chapra



K. Webb ESC 440

8

Single-Segment vs. Composite

 Newton-Cotes formulas may be applied in two 
different ways:

 Single-segment
◼ Entire integration interval, 𝑎, 𝑏 , 

approximated with a single 
polynomial

 Composite
◼ Integration interval divided into 

multiple segments

◼ Integral approximated for each 
segment – results summed
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In the following sections, we’ll look at three 
different Newton-Cotes integration formulas:

▪ Trapezoid rule

▪ Simpson’s 1/3 rule

▪ Simpson’s 3/8 rule

Trapezoidal Rule9
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Trapezoidal Rule

 Approximate 𝑓 𝑥  as a first-order polynomial

𝑓 𝑥 ≈ 𝑓1 𝑥 = 𝑎0 + 𝑎1𝑥

𝑓1 𝑥 = 𝑓 𝑎 +
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎

 Integral approximation:

መ𝐼 = න
𝑎

𝑏

𝑓1 𝑥 𝑑𝑥 = න
𝑎

𝑏

𝑓 𝑎 +
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎 𝑑𝑥 ≈ 𝐼

 Trapezoidal rule formula:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2
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Trapezoidal Rule

 The trapezoidal rule formula

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑎 + 𝑓 𝑏

2

can be interpreted as

መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒

 All Newton-Cotes formulas can 
be expressed this way

 Only the approximation of the 
average value of 𝑓 𝑥  varies

 More accurate approx. of avg. 
value yields more accurate integral 
estimate

𝑎 𝑏

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑎𝑣𝑔.
𝑣𝑎𝑙𝑢𝑒

𝑓 𝑏

𝑓 𝑎

 Integral approximation is the 
area under the polynomial 
approximation of 𝑓 𝑥
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Trapezoidal Rule – Error 

 The error of the trapezoidal rule estimate is

𝐸𝑡 = መ𝐼 − 𝐼 =
1

12
𝑓′′ 𝜉 𝑏 − 𝑎 3

where 𝜉 is some unknown value of 𝑥 on [𝑎, 𝑏]

 Since 𝜉 is unknown, approximate the error as 

𝐸𝑎 =
1

12
ҧ𝑓′′ 𝑏 − 𝑎 3

where ҧ𝑓′′ is the mean curvature of 𝑓 𝑥  on [𝑎, 𝑏]
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Trapezoidal Rule – Error 

 The error of the trapezoidal rule estimate is

𝐸𝑡 =
1

12
𝑓′′ 𝜉 𝑏 − 𝑎 3

 If the curvature of 𝑓 𝑥  is zero on [𝑎, 𝑏]

𝑓′′ 𝑥 = 0,  for 𝑎 ≤ 𝑥 ≤ 𝑏

 Then the trapezoidal rule approximation is exact

𝐸𝑡 = 0

 First-order polynomial is an exact representation of 
a linear 𝑓 𝑥
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Trapezoidal Rule – Example 

 Trapezoidal rule may provide 
an accurate integral estimate
 Over regions with low curvature
 Where 𝑓 𝑥  is reasonably 

approximated as linear

 Or, large errors may result
 Over regions with large 

curvature
 Where a linear approximation is 

unacceptable
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Composite Trapezoidal Rule

 Accuracy can be improved by dividing the interval 
[𝑎, 𝑏] into 𝑛 segments

 𝑛 + 1 evenly-spaced 
sample points of 𝑓 𝑥 : 
𝑥0 … 𝑥𝑛

 Segment width:

ℎ =
𝑏 − 𝑎

𝑛

 Now approximating 𝑓 𝑥  
as piece-wise linear

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏
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Composite Trapezoidal Rule

 Divide the integral into 𝑛 segments

𝐼 = න
𝑥0

𝑥1

𝑓 𝑥 𝑑𝑥 + න
𝑥1

𝑥2

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−1

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using the trapezoidal rule

መ𝐼 = ℎ
𝑓 𝑥0 + 𝑓 𝑥1

2
+ ℎ

𝑓 𝑥1 + 𝑓 𝑥2

2
+ ⋯ + ℎ

𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

2

 Using summation notation

መ𝐼 =
ℎ

2
𝑓 𝑥0 + 2 

𝑖=1

𝑛−1

𝑓 𝑥𝑖 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒  form

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 2 σ𝑖=1

𝑛−1 𝑓 𝑥𝑖 + 𝑓 𝑥𝑛

2𝑛
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Composite Trapezoidal Rule – Error

 Total error is the sum of the individual errors

𝐸𝑡 = 
𝑖=1

𝑛

𝐸𝑡,𝑖 =
1

12
ℎ3 

𝑖=1

𝑛

𝑓′′ 𝜉𝑖 =
𝑏 − 𝑎 3

12𝑛3


𝑖=1

𝑛

𝑓′′ 𝜉𝑖

 Again, approximate using ҧ𝑓′′, the mean curvature

𝐸𝑎 =
𝑏 − 𝑎 3

12𝑛3


𝑖=1

𝑛
ҧ𝑓′′

where


𝑖=1

𝑛
ҧ𝑓′′ = 𝑛 ҧ𝑓′′

so

𝐸𝑎 =
𝑏 − 𝑎 3

12𝑛2
ҧ𝑓′′
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Composite Trapezoidal Rule – Example 

 Accuracy improves as the 
number of segments 
increases
 Average curvature over each 

segment decreases

 𝑓 𝑥  better approximated as 
linear over smaller regions 
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Trapezoidal Rule – Unequally-Spaced Data

 Trapezoidal rule can be easily modified to 
accommodate unequally-spaced data points

 Account for the width of each of the 𝑛 individual 
segments explicitly

መ𝐼 = ℎ1

𝑓 𝑥0 + 𝑓 𝑥1

2
+ ℎ2

𝑓 𝑥1 + 𝑓 𝑥2

2
+ ⋯ + ℎ𝑛

𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

2

 Useful for measured data, where uneven spacing is 
not uncommon
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Trapezoidal Rule in Python – trapezoid()

 The integrate module from the SciPy package includes 
several integration functions, including trapezoid rule
 Import it first:  

from scipy import integrate

I = integrate.trapezoid(y, x)

 y: vector of dependent variable data
 x: vector of independent variable data
 I: trapezoidal rule approximation to the integral of y with respect 

to x (a scalar)

 Data need not be equally-spaced
 Segment widths calculated from x values
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Cumulative Integral – cumulative_trapezoid()

I = integrate.cumulative_trapezoid(y, x,
initial=0)

 y: n-vector of dependent variable data
 x: n-vector of independent variable data
 initial: optional initial value inserted as the first value in I – if 

not given, I is an (n-1)-vector
 I: trapezoidal rule approximation to the cumulative 

 integral of y with respect to x (an n-vector)

 Result is a vector – equivalent to:

𝐼 𝑥 = න
𝑥1

𝑥

𝑦 𝑥  𝑑 𝑥
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trapezoid() and cumulative_trapezoid()
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Simpson’s 1/3 Rule23
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Simpson’s 1/3 Rule

 Approximate 𝑓 𝑥  with a second-order polynomial

𝑓 𝑥 ≈ 𝑓2 𝑥

where 𝑓2 𝑥  can be expressed as a Lagrange 
polynomial:

𝑓2 𝑥 =
𝑥 − 𝑥1 𝑥 − 𝑥2

𝑥0 − 𝑥1 𝑥0 − 𝑥2
𝑓 𝑥0 +

𝑥 − 𝑥0 𝑥 − 𝑥2

𝑥1 − 𝑥0 𝑥1 − 𝑥2
𝑓 𝑥1 +

𝑥 − 𝑥0 𝑥 − 𝑥1

𝑥2 − 𝑥0 𝑥2 − 𝑥1
𝑓 𝑥2

 Approximate the integral of 𝑓 𝑥  as the integral of the 
quadratic approximation

𝐼 ≈ መ𝐼 = න
𝑎

𝑏

𝑓2 𝑥  𝑑𝑥
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Simpson’s 1/3 Rule

 Now fitting a 
parabola to 𝑓 𝑥

 Three points 
required: 𝑥0, 𝑥1, 
and 𝑥2

 Integration interval, 
[𝑎, 𝑏] divided into 
two segments 

 Points must be 
evenly spaced 𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑓 𝑥0

𝑓 𝑥2

𝑓 𝑥1

ℎ =
𝑏 − 𝑎

2

𝑥2 = 𝑏
𝑥1
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Simpson’s 1/3 Rule

 Evaluating the integral of the quadratic 
approximation,  𝑓2 𝑥 , yields Simpson’s 1/3 rule:

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

 Or, in   መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒    form:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

6
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Simpson’s 1/3 Rule – Error 

 The error associated with Simpson’s 1/3 rule is

𝐸𝑡 =
1

90
ℎ5𝑓 4 𝜉 =

𝑏 − 𝑎 5

2880
𝑓 4 𝜉

 Error is proportional to the fourth derivative of 𝑓 𝑥

 For third- and lower-order polynomials, 𝑓 4 = 0

 The Simpson’s 1/3 rule integral estimate is exact for 
cubic and lower-order polynomials

 An interesting result, given that 𝑓 𝑥  is approximated 
with only a quadratic
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Composite Simpson’s 1/3 Rule

 Accuracy can be improved by dividing the interval 
[𝑎, 𝑏] into 𝑛 segments

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏

 Each application of 
Simpson’s 1/3 rule requires 
three points, and two 
segments 

 Total number of segments 
must be even

 Total number of points 
must be odd

 𝑓 𝑥  approximated as a 
quadratic over each pair of 
adjacent segments
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Composite Simpson’s 1/3 Rule

 Divide [𝑎, 𝑏] into 𝑛 segments, and the integral into 𝑛/2 segments

𝐼 = න
𝑥0

𝑥2

𝑓 𝑥 𝑑𝑥 + න
𝑥2

𝑥4

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−2

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using Simpson’s 1/3 rule

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2 +

ℎ

3
𝑓 𝑥2 + 4𝑓 𝑥3 + 𝑓 𝑥4 + ⋯ +

ℎ

3
𝑓 𝑥𝑛−2 + 4𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

 Using summation notation

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4 

𝑖=1,3,5…

𝑛−1

𝑓 𝑥𝑖 + 2 
𝑗=2,4,6…

𝑛−2

𝑓 𝑥𝑗 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒  form

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 4 σ𝑖=1,3,5…

𝑛−1 𝑓 𝑥𝑖 + 2 σ𝑗=2,4,6…
𝑛−2 𝑓 𝑥𝑗 + 𝑓 𝑥𝑛

3𝑛
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Composite Simpson’s 1/3 Rule – Example 

 Accuracy improves as the 
number of segments increases


ҧ𝑓 4  over each segment 
decreases

 𝑓 𝑥  better approximated as 
quadratic over smaller regions 
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Simpson’s 3/8 Rule31
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Simpson’s 3/8 Rule

 Approximate 𝑓 𝑥  with a third-order polynomial

𝑓 𝑥 ≈ 𝑓3 𝑥

where 𝑓3 𝑥  can, again, be expressed as a Lagrange 
polynomial

 Approximate the integral of 𝑓 𝑥  as the integral of 
the cubic approximation

𝐼 ≈ መ𝐼 = න
𝑎

𝑏

𝑓3 𝑥  𝑑𝑥
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Simpson’s 3/8 Rule

 Now fitting a cubic 
to 𝑓 𝑥

 Four points 
required: 𝑥0, 𝑥1, 
𝑥2, and 𝑥3

 Integration interval, 
[𝑎, 𝑏] divided into 
three segments 

 Points must be 
evenly spaced 𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

𝑥3 = 𝑏
𝑥1 𝑥2

ℎ =
𝑏 − 𝑎

3
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Simpson’s 3/8 Rule

 Evaluating the integral of the cubic approximation,  
𝑓3 𝑥 , yields Simpson’s 3/8 rule:

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

 Or, in   መ𝐼 = 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒    form:

መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

8
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Simpson’s 3/8 Rule – Error 

 The error associated with Simpson’s 3/8 rule is

𝐸𝑡 =
3

80
ℎ5𝑓 4 𝜉 =

𝑏 − 𝑎 5

6480
𝑓 4 𝜉

 Error is proportional to the fourth derivative of 𝑓 𝑥

 Third-order accuracy

◼ Same as Simpson’s 1/3 rule

 For nonzero 𝑓 4 , error is slightly lower than Simpson’s 
1/3 rule
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Composite Simpson’s 3/8 Rule

 Accuracy can be improved by dividing the interval 
[𝑎, 𝑏] into 𝑛 segments

 Each application of Simpson’s 
3/8 rule requires four points, 
and three segments 

 Total number of segments 
must be divisible by three

 Can be used in conjunction 
with Simpson’s 1/3 rule to 
accommodate an odd number 
of segments

 𝑓 𝑥  approximated as a cubic 
over each group of three 
adjacent segments

𝑥0 = 𝑎

𝑤𝑖𝑑𝑡ℎ = 𝑏 − 𝑎

ℎ =
𝑏 − 𝑎

𝑛

𝑥𝑛 = 𝑏
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Composite Simpson’s 3/8 Rule

 Divide 𝑎, 𝑏  into 𝑛 segments, and the integral into 𝑛/3 segments

𝐼 = න
𝑥0

𝑥3

𝑓 𝑥 𝑑𝑥 + න
𝑥3

𝑥6

𝑓 𝑥 𝑑𝑥 + ⋯ + න
𝑥𝑛−3

𝑥𝑛

𝑓 𝑥 𝑑𝑥

 Approximate each term using Simpson’s 3/8 rule

መ𝐼

=
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3 +

3ℎ

8
𝑓 𝑥3 + 3𝑓 𝑥4 + 3𝑓 𝑥5 + 𝑓 𝑥6 + ⋯

+
3ℎ

8
𝑓 𝑥𝑛−3 + 3𝑓 𝑥𝑛−2 + 3𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛

 Using summation notation

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3 

𝑖=1,4,7…

𝑛−2

𝑓 𝑥𝑖 + 3 
𝑗=2,5,8…

𝑛−1

𝑓 𝑥𝑗 + 2 
𝑘=3,6,9…

𝑛−3

𝑓 𝑥𝑘 + 𝑓 𝑥𝑛

 Or, in 𝑤𝑖𝑑𝑡ℎ × 𝑎𝑣𝑔. 𝑣𝑎𝑙𝑢𝑒  form

መ𝐼 = 𝑏 − 𝑎
3 𝑓 𝑥0 + 3 σ𝑖=1,4,7…

𝑛−2 𝑓 𝑥𝑖 + 3 σ𝑗=2,5,8…
𝑛−1 𝑓 𝑥𝑗 + 2 σ𝑘=3,6,9…

𝑛−3 𝑓 𝑥𝑘 + 𝑓 𝑥𝑛

8𝑛
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Composite Simpson’s 3/8 Rule – Example 

 Accuracy improves as the 
number of segments 
increases


ҧ𝑓 4  over each segment 

decreases

 𝑓 𝑥  better approximated as 
a cubic over smaller regions 
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Higher-Order Formulas39
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Higher-Order Formulas

 Typically, Simpson’s 1/3 rule, used in conjunction 
with Simpson’s 3/8 rule (for odd 𝑛), is sufficient

 Possible to use higher-order polynomials to 
approximate 𝑓 𝑥  

 𝑛 segments and 𝑛 + 1 points needed for 𝑛𝑡ℎ-order 
polynomial approximation

 Closed and open integration formulas exist

 Boole’s rule will show up in a different form later 
when we cover adaptive quadrature
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Higher-Order Newton-Cotes Formulas – Closed 

𝑛 Name Formula
Error 
prop. 
to

1
Trapezoidal 
rule

መ𝐼 =
ℎ

2

𝑓 𝑥0 + 𝑓 𝑥1

2
𝑓′′ 𝜉

2
Simpson’s 
1/3 rule

መ𝐼 =
ℎ

3
𝑓 𝑥0 + 4𝑓 𝑥1 + 𝑓 𝑥2

𝑓 4 𝜉

3
Simpson’s 
3/8 rule

መ𝐼 =
3ℎ

8
𝑓 𝑥0 + 3𝑓 𝑥1 + 3𝑓 𝑥2 + 𝑓 𝑥3

𝑓 4 𝜉

4 Boole’s rule መ𝐼 =
2ℎ

45
7𝑓 𝑥0 + 32𝑓 𝑥1 + 12𝑓 𝑥2 + 32𝑓 𝑥3 + 7𝑓 𝑥4

𝑓 6 𝜉

5 - መ𝐼 =
5ℎ

288
19𝑓 𝑥0 + 75𝑓 𝑥1 + 50𝑓 𝑥2 + 50𝑓 𝑥3 + 75𝑓 𝑥4 + 19𝑓 𝑥5 𝑓 6 𝜉

The step size in the above formulas is:     ℎ =
𝑏−𝑎

𝑛
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Open Integration Formulas

 Function values not 
know at the limits of 
integration

 𝑛 segments

 𝑛 − 1  points

 𝑛 − 2 𝑛𝑑-order 
polynomial 
approximation

Chapra
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Higher-Order Newton-Cotes Formulas – Open

Segments

(𝑛)
Points Formula

Error prop. 
to

2 1 መ𝐼 = 𝑏 − 𝑎 𝑓 𝑥1 𝑓′′ 𝜉

3 2 መ𝐼 = 𝑏 − 𝑎
𝑓 𝑥1 + 𝑓 𝑥2

2

𝑓 4 𝜉

4 3 መ𝐼 = 𝑏 − 𝑎
2𝑓 𝑥1 + 𝑓 𝑥2 + 2𝑓 𝑥3

3

𝑓 4 𝜉

5 4 መ𝐼 = 𝑏 − 𝑎
11𝑓 𝑥1 + 𝑓 𝑥2 + 𝑓 𝑥3 + 11𝑓 𝑥4

24

𝑓 6 𝜉

6 5 መ𝐼 = 𝑏 − 𝑎
11𝑓 𝑥1 − 14𝑓 𝑥2 + 26𝑓 𝑥3 − 14𝑓 𝑥4 + 11𝑓 𝑥5

20
𝑓 6 𝜉
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Integration of Functions

 Newton-Cotes formulas can be used to integrate 
functions or discrete data points
 Evenly-spaced data points are assumed

 If 𝒇 𝒙  is known, spacing of 𝒙-values can be chosen 
to improve accuracy
 Spacing need not be uniform

 Can locate points specific distances from limits of 
integration or segment edges to improve accuracy

 Can use larger step size where acceptable, reduced step 
size where necessary
◼ Effectively trade off accuracy and efficiency 
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Methods for integrating functions

 Romberg integration

 Combine two trapezoidal rule estimates with different step 
sizes to yield a third, more accurate estimate

 Gauss quadrature

 Spacing of points within the integration segments chosen to 
improve accuracy of Newton-Cotes formulas

 Adaptive Quadrature

 Adaptively refine step size to achieve desired accuracy

 Smaller step size in some regions, larger in others

 Uses some of the techniques used by Romberg integration
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Adaptive Quadrature

 Vary step size to 
achieve desired 
accuracy over each 
segment
 Smaller step size 

where 𝑓 𝑥  varies 
rapidly

 Larger step size 
where 𝑓 𝑥  varies 
gradually

 Integration method 
used is Simpson’s 
1/3 rule
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Adaptive Quadrature

 Apply Simpson’s 1/3 rule to approximate the integral at two different step 
sizes, መ𝐼 ℎ1  and መ𝐼 ℎ2 , where ℎ2 = ℎ1/2

መ𝐼 ℎ1 =
ℎ1

3
𝑓 𝑎 + 4𝑓 𝑐 + 𝑓 𝑏 መ𝐼 ℎ2 =

ℎ2

3
𝑓 𝑎 + 4𝑓 𝑑 + 2𝑓 𝑐 + 4𝑓 𝑒 + 𝑓 𝑏

𝑎 𝑐 𝑏 𝑑 𝑒𝑎 𝑐 𝑏
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Adaptive Quadrature

 Use መ𝐼 ℎ1  and መ𝐼 ℎ2  to approximate the error:

𝐸𝑎 = መ𝐼 ℎ2 − መ𝐼 ℎ1  (1)

 Two possible ways to proceed: 

 If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙
◼ Using an approach similar to Romberg integration, combine 

መ𝐼 ℎ1  and መ𝐼 ℎ2  to yield a third, more accurate estimate of 
the integral

 If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙
◼ Divide [a,b] into two segments: [𝑎, 𝑐] and [𝑐, 𝑏]

◼ Calculate መ𝐼 ℎ1  and መ𝐼 ℎ2  for each segment
◼ Single- and double-segment Simpson’s 1/3 approximations

◼ Use (1) to approximate the error for each sub-interval 
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Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙 

 If 𝐸𝑎 as calculated by (1) is acceptable (i.e. < 𝑎𝑏𝑠𝑡𝑜𝑙) we can use 
መ𝐼 ℎ1  and መ𝐼 ℎ2  to calculate a third, more accurate approximation 

 This is the basic principal used in Romberg integration

 We’ll now derive the formula used to combine መ𝐼 ℎ1  and መ𝐼 ℎ2

 Each estimate is the true integral plus some error

𝐼 = መ𝐼 ℎ1 − 𝐸 ℎ1 = መ𝐼 ℎ2 − 𝐸 ℎ2  (2)

 We’ve seen that Simpson’s 1/3 rule error can be approximated as

𝐸𝑎 ℎ =
𝑏−𝑎 ℎ4

180
ҧ𝑓 4  (3)

where ҧ𝑓 4  is the average value of 𝑓 4 𝑥  over the integration 
interval
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Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙 

 Equation (3) gives approximate error at each step 
size:

𝐸𝑎 ℎ1 =
𝑏−𝑎 ℎ1

4

180
ҧ𝑓 4  (4)

𝐸𝑎 ℎ2 =
𝑏−𝑎 ℎ2

4

180
ҧ𝑓 4  (5)

 Divide (4) by (5)
𝐸𝑎 ℎ1

𝐸𝑎 ℎ2
=

ℎ1
4

ℎ2
4 (6)

 Solve for 𝐸𝑎 ℎ1

𝐸𝑎 ℎ1 = 𝐸𝑎 ℎ2
ℎ1

4

ℎ2
4 (7)
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Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙 

 Restate (2) as an approximation

መ𝐼 ℎ1 − 𝐸𝑎 ℎ1 ≈ መ𝐼 ℎ2 − 𝐸𝑎 ℎ2  (8)

 Substitute (7) into (8)

መ𝐼 ℎ1 − 𝐸𝑎 ℎ2
ℎ1

4

ℎ2
4 ≈ መ𝐼 ℎ2 − 𝐸𝑎 ℎ2  (9)

 Solve (9) for the error of the more accurate 
approximation

𝐸𝑎 ℎ2 = −
መ𝐼 ℎ1 − መ𝐼 ℎ2

1−
ℎ1
ℎ2

4  (10)
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Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙 

 According to (2)

𝐼 = መ𝐼 ℎ2 − 𝐸 ℎ2  (11)

so

𝐼 ≈ መ𝐼 = መ𝐼 ℎ2 − 𝐸𝑎 ℎ2  (12)

 Substituting (10) into (12) 

መ𝐼 = መ𝐼 ℎ2 +
መ𝐼 ℎ1 − መ𝐼 ℎ2

1 −
ℎ1
ℎ2

4

 And, since ℎ1 = 2 ∙ ℎ2, the integral approximation is 

መ𝐼 = መ𝐼 ℎ2 +
1

15
መ𝐼 ℎ2 − መ𝐼 ℎ1  (13)

 Which can be shown to be equivalent to Boole’s rule
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Adaptive Quadrature – 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙 

 Summarizing:

 Want to numerically integrate 𝑓(𝑥) over [𝑎, 𝑏]  

 Calculate መ𝐼 ℎ1  and መ𝐼 ℎ2  

 Approximate the error as 

𝐸𝑎 = መ𝐼 ℎ2 − መ𝐼 ℎ1

 If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙, calculate the integral using Boole’s rule 

መ𝐼 = መ𝐼 ℎ2 +
1

15
መ𝐼 ℎ2 − መ𝐼 ℎ1

 Next, we’ll look at what to do if 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙
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Adaptive Quadrature – 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙 

 If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙, reduce the step size and try again

 Subdivide the integration interval, [𝑎, 𝑏], into two sub-
intervals, [𝑎, 𝑐] and [𝑐, 𝑏] 

 For each subinterval: 

◼ Calculate መ𝐼 ℎ1  and መ𝐼 ℎ2

◼ Calculate 𝐸𝑎

◼ If 𝐸𝑎 ≤ 𝑎𝑏𝑠𝑡𝑜𝑙, calculate መ𝐼 for that sub-interval using Boole’s rule

◼ If 𝐸𝑎 > 𝑎𝑏𝑠𝑡𝑜𝑙, further subdivide the sub-interval into two smaller 
sub-intervals
◼ Calculate መ𝐼 ℎ1  and መ𝐼 ℎ2 , then 𝐸𝑎… 

 Eventually, total integral approximation is the sum of all 
individual sub-interval integral approximations
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Adaptive Quadrature – Recursive Algorithm

 Adaptive quadrature 
uses a recursive 
algorithm

 A function that calls itself

 Integration interval is 
continually subdivided 
until approximate error is 
acceptable


መ𝐼 returned by function is 
the sum of the individual 
መ𝐼 values
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Adaptive Quadrature – quadadapt()

 Inputs: function handle, limits of 
integration, and tolerance

 On subsequent recursive calls, a 
and b will be sub-interval limits

 Step sizes and 𝑥-values for two 
Simpson’s 1/3 rule estimates

 Integral estimates at two different 
step sizes

 Approximate error

 Boole’s rule estimate

 Recursive function calls

 Sum the sub-interval integral 
estimates
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Adaptive Quadrature – Examples
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Integrating Functions – integrate.quad() 

 When we have an expression for the function to be 
integrated, we can use SciPy's integrate.quad() 
function:

I, err = integrate.quad(f,a,b)

 f: the function to be integrated

 a: lower integration limit

 b: upper integration limit

 I: numerical approximation of the integral

 err: approximate absolute error

 Calculates 𝐼 = 𝑎

𝑏
𝑓 𝑥 𝑑𝑥
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Ex

er
ci

se
 The impulse response of a certain 2nd-order system is given by

ℎ 𝑡 = 5.2414𝑒−𝛼𝑡 sin 𝜔𝑑𝑡

where  𝛼 = 1.5  and  𝜔𝑑 = 4.7697𝑟𝑎𝑑/𝑠𝑒𝑐

 A system’s step response is the integral of its impulse response. For this 
system, the step response is

𝑔 𝑡 = 1 − 𝑒−𝛼𝑡 cos 𝜔𝑑𝑡 − 0.3145𝑒−𝛼𝑡 sin 𝜔𝑑𝑡

 Plot 𝑔 𝑡  for 0 ≤ 𝑡 ≤ 10𝑠𝑒𝑐 using a small sampling interval (e.g. 1𝑚𝑠𝑒𝑐)

 For a variety of step sizes (e.g. 500, 200, 100, 10, 1𝑚𝑠𝑒𝑐)

 Calculate ො𝑔 𝑡  using cumulative_trapezoid() and superimpose on the plot 
of 𝑔 𝑡

 Calculate the steady-state value of the step response using trapezoid()

 Notice the effect of step size on the accuracy of the integral

 Also, calculate the steady-state step response value using quad()

Exercise – Integration in Python
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