SECTION 6: ORDINARY DIFFERENTIAL EQUATIONS

ESC 440 – Computational Methods for Engineers

Ordinary Differential Equations

- 3
- Differential equations can be categorized as either ordinary or partial differential equations
 - Ordinary differential equations (ODEs) functions of a single independent variable
 - Partial differential equations (PDEs) functions of two or more independent variables
- We'll focus on ordinary differential equations only
- Note that we are not making any assumption of linearity here
 - All techniques we'll look at apply equally to *linear or nonlinear ODEs*

Differential Equation Order

- 4
- The order of a differential equation is the highest derivative it contains
 - First-order ODEs contain only first derivatives
 - Second-order ODEs include second derivatives (possibly first, as well), and so on ...

Any nth- order ODE can be reduced to a system of n first-order ODEs

- Solution requires knowledge of n initial or boundary conditions
- We'll focus on techniques to solve first-order ODEs
 - Can be applied to systems of first-order ODEs representing higher-order ODEs

- To solve an nth-order ODE (or a system of n firstorder ODEs), n known conditions are required
 - Initial-value problems all n conditions are specified at the same value of the independent variable (typically, at x = 0 or t = 0)
 - Boundary-value problems n conditions specified at different values of the independent variable

In this course, we'll focus exclusively on *initial-value* problems

Solving ODEs – General Aproach

- 6
- Have an ODE that is some function of the independent and dependent variables:

$$\frac{dy}{dt} = f(t, y)$$

- Numerical solutions amounts to approximating y(t)
- Starting at some known initial condition, y(0), propagate the solution forward in time:

$$y_{i+1} = y_i + \phi h$$

or

 $(next y value) = (current y value) + (slope) \times (step size)$

 $\Box \phi$ is called the *increment function*

\square Represents a slope, though not necessarily the slope at (t_i, y_i)

 \square h is the **time step**: $h = t_{i+1} - t_i$

One-Step vs. Multi-Step Methods

One-step methods

■ Use only information at *current value* of y(t) (i.e. $y(t_i)$, or y_i) to determine the increment function, ϕ , to be used to propagate the solution forward to y_{i+1}

Collectively known as *Runge-Kutta methods*

We'll focus on these exclusively in this course

Multi-step methods

- Use both *current and past values* of y(t) to provide information about the trajectory of y(t)
- Improved accuracy

⁸ Euler's Method

We'll first look at three specific Runge-Kutta algorithms, before returning to a development of the Runge-Kutta approach from a more general perspective.

Euler's Method

9

Given an ODE of the form

$$\frac{dy}{dt} = f(t, y)$$

approximate the solution, y(t), using the formula

$$y_{i+1} = y_i + \phi h$$

where the increment function is the current derivative

$$\phi = f(t_i, y_i)$$

□ That is, assume the slope of y(t) is constant for $t_i \le t \le t_{i+1}$

D Use the slope at (t_i, y_i) to extrapolate to y_{i+1}

Euler's Method

Euler's method formula:

$$y_{i+1} = y_i + f(t_i, y_i)h$$

Increment function is the current slope:

$$\phi = f(t_i, y_i)$$

Euler's Method - Example

11

Use Euler's method to solve

$$\frac{dy}{dt} = 5e^{-0.5t} - 0.5y$$

given an initial condition of

$$y(0) = 3$$

and a step size of

$$h = 0.5 sec$$

True solution is:

$$y(t) = e^{-0.5t} + 5t \cdot e^{-0.5t}$$

time [sec]

Euler's Method ODE Solution

Euler's Method - Example

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23 24

25

26 27 28

29

30

31

32

33

34 35

36

37 38

39

40

41

42

12

Euler's Method ODE Solution


```
# euler.py
import numpy as np
from matplotlib import pyplot as plt
def euler(dydt,tspan,y0,h):
    Solves an ODE using Euler's method.
    Parameters
    _ _ _ _ _ _ _ _ _ _ _ _ _
    dydt : ODE function - function of t and y
    tspan : array of initial and final times: tspan = [t0, tf]
    y0 : initial condition
    h : time step
    Returns
    t : time vector of solution - will contain tf, so final time
        step may be smaller than h
    ....
    t0 = tspan[0]
    tf = tspan[1]
    t = np.arange(t0, tf+h/2, h)
    # if tspan isn't divisible by h,
   # add tf as final time point
    if t[-1] != tf:
        t = np.append(t, tf)
    n = len(t)
   y = np.zeros(len(t))
   y[0] = y0
    for i in range(n-1):
        y[i+1] = y[i] + dydt(t[i],y[i])*(t[i+1]-t[i])
    return [t, y]
```

Euler's Method - Error

Two types of truncation error:

- Local error due to the approximation associated with the given method over a single time step
- **Global** error propagated forward from previous time steps
- Total error is the sum of local and global error
- Representing the solution to the ODE as a Taylor series expansion about (t_i, y_i), the solution at t_{i+1} is:

$$y_{i+1} = y_i + f(t_i, y_i)h + f'(t_i, y_i)\frac{h^2}{2!} + \dots + f^{(n)}(t_i, y_i)\frac{h^n}{n!} + R_n$$

Where the remainder term is:

$$R_n = O(h^{n+1})$$

Euler's Method - Error

- 14
- Euler's method is the Taylor series, truncated after the first derivative term

$$y_{i+1} = y_i + f(t_i, y_i)h + R_1$$

For small enough h, the error is dominated by the next term in the series, so

$$E_a = f'(t_i, y_i) \frac{h^2}{2!} \approx R_1 = O(h^2)$$

- \square Local error is proportional to h^2
- Analysis of the global (i.e. propagated) error is beyond the scope of this course, but the result is that *global error is proportional to h*

Euler's Method – Stability

- 15
- Euler's method will result in error, but worse yet, it may be unstable
 Unstable if errors grow without bound
- □ Consider, for example, the following ODE:

$$\frac{dy}{dt} = f(t, y) = -ay$$

□ The true solution decays exponentially to zero:

$$y(t) = y_0 e^{-at}$$

Using Euler's method, the solution is

$$y_{i+1} = y_i - ay_i h = y_i (1 - ah)$$

- □ This solution will grow without bound if |1 ah| > 1, i.e. if h > 2/a
 □ If the step size is too large, solution blows up
 □ Evelop's method is conditionally stable
 - Euler's method is *conditionally stable*

Stability of Euler's Method – Examples

Euler's Method ODE Solution

17 Heun's Method

Heun's Method

Euler's assumes a constant slope for the increment function:

$$y_{i+1} = y_i + f(t_i, y_i)h$$

- □ Improve accuracy of the solution by using a more accurate slope estimate for $t_i \le t \le t_{i+1}$
- Heun's method first applies Euler's method to predict the value of y at t_{i+1} – the **predictor equation**:

$$y_{i+1}^0 = y_i + f(t_i, y_i)h$$

This value is then used to predict the slope at t_{i+1}

$$y'_{i+1} = f(t_{i+1}, y^0_{i+1})$$

Heun's Method

□ The increment function is the average of the slope at (t_i, y_i) and the slope at (t_{i+1}, y_{i+1}^0)

$$\phi = \bar{y}' = \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}$$

□ The next value of y(t) is given by the *corrector* equation:

$$y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}h$$

Heun's Method – Summary

- 20
- Apply Euler's the *predictor equation* – to predict y⁰_{i+1}
- Calculate slope at (t_{i+1}, y_{i+1}^0)
- Compute average of the two slopes
- Use slope average to propagate the solution forward to y_{i+1} the corrector equation

Heun's Method – Example

return [t, y]

Heun's Method with Iteration

22

Predictor equation:

$$y_{i+1}^0 = y_i + f(t_i, y_i)h$$

Corrector equation:

$$y_{i+1}^{j} = y_{i} + \frac{f(t_{i}, y_{i}) + f(t_{i+1}, y_{i+1}^{j-1})}{2}h$$

- □ **The corrector equation can be applied iteratively**, providing a refined estimate of y_{i+1}
- □ Iterate until approximate error falls below some stopping criterion

$$|\varepsilon_{a}| = \left| \frac{y_{i+1}^{j} - y_{i+1}^{j-1}}{y_{i+1}^{j}} \right| \cdot 100\% \le \varepsilon_{s}$$

Iterative Heun's Method – Algorithm

$$\Box \quad y_{i+1}^0 = y_i + f(t_i, y_i)h$$

□ *j* = 1

• While $|\varepsilon_a| > \varepsilon_s$

$$y_{i+1}^{j} = y_{i} + \frac{f(t_{i}, y_{i}) + f(t_{i+1}, y_{i+1}^{j-1})}{2}h$$

$$|\varepsilon_{a}| = \left|\frac{y_{i+1}^{j} - y_{i+1}^{j-1}}{y_{i+1}^{j}}\right| \cdot 100\%$$

$$j = j + 1$$

Does not necessarily converge to the correct solution, though ε_a will converge to a finite value

Iterative Heun's Method – Example

6	<pre>def heuniter(dydt,tspan,y0,h,reltol):</pre>	
7		
8	Solves an ODE using the iterative Heun's method	
9		
10	Parameters	
11		
12	dydt : ODE function - function of t and y	
13	<pre>tspan : array of initial and final times: tspan = [t0, tf]</pre>	
14	y0 : initial condition	
15	h : time step	
16		
17	Returns	
18		
19	t : time vector of solution - will contain tf, so final time	
20	step may be smaller than h	
21	y : solution vector	
2.2		


```
t0 = tspan[0]
24
25
           tf = tspan[1]
26
           t = np.arange(t0, tf+h/2, h)
27
           # make sure last time point is tf
28
29
           if t[-1] != tf:
30
               t = np.append(t, tf)
31
32
           n = len(t)
33
34
           y = np.zeros(len(t))
35
           y[0] = y0
36
           ea = 100
37
38
           for i in range(n-1):
39
               # predictor equation
               yp_old = y[i] + dydt(t[i],y[i])*(t[i+1]-t[i])
40
               while ea >= reltol:
41
42
                   # predicted slope at (t(i+1), yp old)
                   dydtp = dydt(t[i+1],yp_old)
43
44
                   # increment function
45
                   phi = (dydt(t[i],y[i]) + dydtp)/2
46
                   # next estimate
47
                   yp = y[i] + phi^{*}(t[i+1]-t[i])
                   # estimate the error
48
                   ea = np.abs((yp-yp_old)/yp)*100
49
50
                   yp_old = yp
51
               # result of iteration is next y value
52
53
               y[i+1] = yp
               ea = 100 # reset ea for next time step
54
55
56
           return [t, y]
57
```

²⁵ Midpoint Method

Midpoint Method

- The slope at the midpoint of a time interval used as the increment function
- Provides a more accurate estimate of the slope across the entire time interval

Midpoint Method

Apply Euler's method to approximate y at midpoint

$$y_{i+\frac{1}{2}} = y_i + f(t_i, y_i)\frac{h}{2}$$

Slope estimate at midpoint:

$$y'_{i+\frac{1}{2}} = f(t_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$$

 Midpoint slope estimate is increment function

$$y_{i+1} = y_i + f(t_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})h$$

Midpoint Method – Example

28

One-Step Methods – Error

Method	Local Error	Global Error
Euler's	$O(h^2)$	O(h)
Heun's (w/o iter.)	$O(h^3)$	$O(h^2)$
Midpoint	$O(h^3)$	$O(h^2)$

³⁰ Runge-Kutta Methods

Runge-Kutta Methods

- 31
- Euler's, Heun's, and midpoint methods are specific cases of the broader category of one-step methods known as *Runge-Kutta methods*
- Runge-Kutta methods all have the same general form

$$y_{i+1} = y_i + \phi h$$

The increment function has the following form

$$\phi = a_1k_1 + a_2k_2 + \dots + a_nk_n$$

- □ *n* is the order of the Runge-Kutta method
 - We'll see that Euler's is a first-order method, while Heun's and midpoint are both second-order

Runge-Kutta Methods

The increment function is

$$\phi = a_1k_1 + a_2k_2 + \dots + a_nk_n$$

where

$$\begin{aligned} k_1 &= f(t_i, y_i) \\ k_2 &= f(t_i + p_1 h, y_i + q_{11} k_1 h) \\ k_3 &= f(t_i + p_2 h, y_i + q_{21} k_1 h + q_{22} k_2 h) \\ &\vdots &\vdots \\ k_n &= f(t_i + p_{n-1} h, y_i + q_{n-1,1} k_1 h + \dots + q_{n-1,n-1} k_{n-1} h) \end{aligned}$$

 \Box The *a*'s, *p*'s, and *q*'s are constants

 \Box Can see that Euler's method is first-order with $a_1 = 1$

Runge-Kutta Methods

- \Box To determine values of *a*'s, *p*'s, and *q*'s:
 - Set the Runge-Kutta formula equal to a Taylor series of the same order
 - Equate coefficients
 - An under-determined system results
 - Arbitrarily set one constant and solve for others
- Procedure is the same for all orders
 - We'll step through the derivation of the second-order Runge-Kutta formulas

Second-Order Runge-Kutta Methods

34

Second-order Runge-Kutta:

$$y_{i+1} = (a_1k_1 + a_2k_2)h \tag{1}$$

where

$$k_1 = f(t_i, y_i) \tag{2}$$

$$k_2 = f(t_i + p_1 h, y_i + q_{11} k_1 h)$$
(3)

Second-order Taylor series:

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{f'(t_i, y_i)}{2!}h^2$$
(4)

where

$$f'(t_i, y_i) = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$
(5)

Second-Order Runge-Kutta Methods

35

$$y_{i+1} = y_i + f(t_i, y_i)h + \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial y}f(t_i, y_i)\right)\frac{h^2}{2!}$$
(6)

- Next, represent (3) as a first-order Taylor series
 - It's a function of two variables, for which the first-order Taylor series has the following form

$$g(x + \Delta x, y + \Delta y) = g(x, y) + \Delta x \frac{\partial g}{\partial x} + \Delta y \frac{\partial g}{\partial y} + O(h^2)$$
(7)

Using (7), (3) becomes

$$k_2 = f(t_i, y_i) + p_1 h \frac{\partial f}{\partial t} + q_{11} k_1 h \frac{\partial f}{\partial y} + O(h^2)$$
(8)

Second-Order Runge-Kutta Methods

36

Substituting (2) and (8) into (1)

$$y_{i+1} = y_i + a_1 h f(t_i, y_i) + a_2 h f(t_i, y_i)$$

$$+a_2p_1h^2\frac{\partial f}{\partial t} + a_2q_{11}h^2\frac{\partial f}{\partial y}f(t_i, y_i)$$
(9)

□ Now, set (9) equal to (6), the Taylor series

$$y_{i} + a_{1}hf(t_{i}, y_{i}) + a_{2}hf(t_{i}, y_{i}) + a_{2}p_{1}h^{2}\frac{\partial f}{\partial t} + a_{2}q_{11}h^{2}\frac{\partial f}{\partial y}f(t_{i}, y_{i})$$

= $y_{i} + f(t_{i}, y_{i})h + \frac{\partial f}{\partial t}\frac{h^{2}}{2} + \frac{\partial f}{\partial y}\frac{h^{2}}{2}f(t_{i}, y_{i})$ (10)

Equating the coefficients in (10) gives three equations with four unknowns:

$$a_1 + a_2 = 1 \tag{11}$$

$$a_2 p_1 = \frac{1}{2}$$
(12)

$$a_2 q_{11} = \frac{1}{2} \tag{13}$$

Second-Order Runge-Kutta Methods

We have three equations in four unknowns

- $a_{1} + a_{2} = 1$ (11) $a_{2}p_{1} = \frac{1}{2}$ (12) $a_{2}q_{11} = \frac{1}{2}$ (13)
- An under-determined system
 - An infinite number of solutions
 - Arbitrarily set one constant a₂ to a certain value and solve for the other three constants
 - Different solution for each value of a₂ a *family* of solutions

$$a_2 = 1/2$$
 – Heun's Method

38

 \Box Arbitrarily set a_2 and solve for the other constants

$$a_1 = \frac{1}{2}, \quad a_2 = \frac{1}{2}, \quad p_1 = 1, \quad q_{11} = 1$$

□ The second-order Runge-Kutta formula becomes

$$y_{i+1} = y_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

where

$$k_{1} = f(t_{i}, y_{i})$$

$$k_{2} = f(t_{i} + p_{1}h, y_{i} + q_{11}k_{1}h) = f(t_{i} + h, y_{i} + k_{1}h)$$

This is *Heun's method*

$$y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}h$$

$$a_2 = 1 - Midpoint Method$$

 \Box Arbitrarily set a_2 and solve for the other constants

$$a_1 = 0$$
, $a_2 = 1$, $p_1 = \frac{1}{2}$, $q_{11} = \frac{1}{2}$

□ The second-order Runge-Kutta formula becomes

$$y_{i+1} = y_i + k_2 h$$

where

39

$$k_{1} = f(t_{i}, y_{i})$$

$$k_{2} = f(t_{i} + p_{1}h, y_{i} + q_{11}k_{1}h) = f(t_{i} + \frac{h}{2}, y_{i} + k_{1}\frac{h}{2})$$

□ This is the *midpoint method*

$$y_{i+1} = y_i + f(t_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})h$$

Fourth-Order Runge-Kutta

- The most commonly used Runge-Kutta method is the *fourth-order* method
- Derivation proceeds similar to that of the second-order method
 Under-determined system *family of solutions*
- Most common *fourth-order Runge-Kutta method*:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

where

$$k_{1} = f(t_{i}, y_{i})$$

$$k_{2} = f\left(t_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}h\right)$$

$$k_{3} = f\left(t_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{2}h\right)$$

$$k_{4} = f(t_{i} + h, y_{i} + k_{3}h)$$

The increment function is a weighted average of four different slopes

4th-Order Runge-Kutta – Algorithm

- 41
- 1. Calculate the slope at (t_i, y_i) \rightarrow this is k_1
- 2. Use k_1 to approximate $y_{i+1/2}$ from y_i . Calculate the slope here \rightarrow this is k_2
- 3. Use k_2 to re-approx. $y_{i+1/2}$ from y_i . Calculate the slope here \rightarrow this is k_3
- 4. Use k_3 to approx. y_{i+1} from y_i . Calculate the slope here \rightarrow this is k_4
- 5. Calculate ϕ as a weighted average of the four slopes

Fourth-Order Runge-Kutta – Example

43 Systems of Equations

Higher-Order Differential Equations

- 44
- The ODE solution techniques we've looked at so far pertain to first-order ODEs
- Can be extended to higher-order ODEs by reducing to systems of first-order equations

An nth-order ODE can be represented as a system of n first-order ODEs

- Solution method is applied to each equation at each time step before advancing to the next time step
- We'll now illustrate the process with a fourth-order quarter-car model example

- 45
- Consider a quarter-car model of a vehicle's suspension system
- Apply Newton's second law to each mass to derive the governing fourthorder ODE
 - Single 4th-order equation, or
 - Two 2nd-order equations

$$\ddot{x} + \frac{k}{m_s}(x - x_{us}) + \frac{b}{m_s}(\dot{x} - \dot{x}_{us}) = 0$$

$$\ddot{x}_{us} + \frac{b}{m_{us}}(\dot{x}_{us} - \dot{x}) + \frac{k}{m_{us}}(x_{us} - x) + \frac{k_t}{m_{us}}x_{us} = \frac{k_t}{m_{us}}x_t$$

- Want to reduce to a system of four first-order ODEs
 - Put into state-space form

46

$$\ddot{x} + \frac{k}{m_s}(x - x_{us}) + \frac{b}{m_s}(\dot{x} - \dot{x}_{us}) = 0$$
(1)

$$\ddot{x}_{us} + \frac{b}{m_{us}}(\dot{x}_{us} - \dot{x}) + \frac{k}{m_{us}}(x_{us} - x) + \frac{k_t}{m_{us}}x_{us} = \frac{k_t}{m_{us}}x_r(t)$$
(2)

 Reducing the ODE to a system of first-order ODEs amounts to representing our system in state-space form:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$

Define a state vector of displacements and velocities:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x \\ x_{us} \\ v \\ v_{us} \end{bmatrix}$$
(3)

Rewrite (1) and (2) using the *state variables* defined in (3)

$$\dot{v} = \dot{x}_3 = -\frac{k}{m_s}x_1 + \frac{k}{m_s}x_2 - \frac{b}{m_s}x_3 + \frac{b}{m_s}x_4 = 0 \tag{4}$$

$$\dot{v}_{us} = \dot{x}_4 = -\frac{b}{m_{us}}x_4 + \frac{b}{m_{us}}x_3 - \frac{k}{m_{us}}x_2 + \frac{k}{m_{us}}x_1 - \frac{k_t}{m_{us}}x_2 + \frac{k_t}{m_{us}}x_r(t) \quad (5)$$

The state variable representation of the system is

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{x}_{us} \\ \dot{v}_{us} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k}{m_s} & \frac{k}{m_s} & -\frac{b}{m_s} & \frac{b}{m_s} \\ \frac{k}{m_{us}} & -\frac{k+k_t}{m_{us}} & \frac{b}{m_{us}} & -\frac{b}{m_{us}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{k_t}{m_{us}} \end{bmatrix} \cdot x_r(t) \quad (6)$$

- Equation (6) clearly shows our system of four first-order ODEs
 - Alternatively, could have derived the state-space equations directly (e.g. using a *bond graph* approach)
- In Python, we'll represent our system as an *n-dimensional function*

A vector of n functions:

$$\dot{x}_1 = x_3 \tag{7}$$

$$\dot{x}_2 = x_4 \tag{8}$$

$$\dot{x}_3 = -\frac{k}{m_s}x_1 + \frac{k}{m_s}x_2 - \frac{b}{m_s}x_3 + \frac{b}{m_s}x_4$$
(9)

$$\dot{x}_4 = \frac{k}{m_{us}} x_1 - \frac{k + k_t}{m_{us}} x_2 + \frac{b}{m_{us}} x_3 - \frac{b}{m_{us}} x_4 + \frac{k_t}{m_{us}} x_r(t)$$
(10)

49

In Python, define the nth-order system of ODEs as shown below

An *n*-dimensional function

12	<pre>def qcarode(t,y,ms,mus,k,kt,b,xr):</pre>		
13	# system of first-order ODEs		
14	dy = np.zeros(4)		
15	dy[0] = y[2]		
16	dy[1] = y[3]		
17	dy[2] = -k/ms*y[0] + k/ms*y[1] - b/ms*y[2] +b/ms*y[3]		
18	dy[3] = k/mus*y[0] - (k+kt)/mus*y[1] + b/mus*y[2] - b/mus*y[3] + kt/mus*xr		
19			
20	return dy		

- Here, the ODE function includes parameters (m_s, k, etc.) in addition to variables t and y
 - Can create a lambda function wrapper to simplify the passing of parameters

- Basic formula remains the same
 - Advance the solution to the next time step using the increment function

$$y_{i+1} = y_i + \phi h$$

 Now, the *output* is the vector of states, and the increment function is an *n*-dimensional vector

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{\Phi}h$$

or

$$[x_{1,i+1}, x_{2,i+1}, \dots, x_{n,i+1}] = [x_{1,i}, x_{2,i}, \dots, x_{n,i}] + [\phi_1, \phi_2, \dots, \phi_n]h$$

 Requires only a minor modification of the code written for first-order ODEs to accommodate *n*-dimensional functions

- 51
- Often want to pass *parameters* (i.e., Input arguments in addition to t and y) to the ODE function
- Create a lambda function wrapper for the ODE function, e.g.:

```
# physical system parameters
26
      ms = 973 # sprung mass
27
28
     k = 10e3 # shock absorber spring constant
     b = 3000 # shock absorber damping
29
     kt = 101115  # tire spring constant
30
31
      mus = 114 # unsprung mass
32
33
      # input displacement step
34
      xr = 0.1 # 10 cm
35
      # lambda function wrapper to allow
36
      # for passing parameters
37
      xdot = lambda t, y: qcarode(t,y,ms,mus,k,kt,b,xr)
38
29
```

2

2

to to to to

10 10 10

3

4

22	t0 = 0		
23	tf = 8		
24	h = 2e-2		
25			
26	<pre># physical system parameters</pre>		
27	ms = 973	# sprung mass	
28	k = 10e3	<pre># shock absorber spring constant</pre>	
29	b = 3000	# shock absorber damping	
30	kt = 101115	# tire spring constant	
31	mus = 114	# unsprung mass	
32			
33	# input displacement step		
34	xr = 0.1	# 10 cm	
35			
36	# lambda function wrapper to allow		
37	# for passing parameters		
38	<pre>xdot = lambda t, y: qcarode(t,y,ms,mus,k,kt,b,xr)</pre>		
39			
40	x0 = [0,0,0,0]		
41			
42	<pre>[te, xe] = eulern(xdot, [t0, tf], x0, h)</pre>		
43	<pre>[trk4, xrk4] = rk4oden(xdot, [t0, tf], x0, h)</pre>		
44			

5	def eulern(dydt,tspan,y0,h):		
7	euter in (uyuc, cspan, yo, in).		
8	Solves an Nth-order ODE using Euler's method.		
9	Solves an nen order obe asing caler 3 meenoa.		
10	Parameters		
11			
12	dydt : ODE function - function of t and y		
13	tspan : array of initial and final times: tspan = [t0, tf]		
14	v0 : initial condition		
15	h : time step		
16			
17	Returns		
18			
19	t : time vector of solution - will contain tf, so final time		
20	step may be smaller than h		
21	y : solution vector		
22			
23	•••		
24			
25	t0 = tspan[0]		
26	tf = tspan[1]		
27	t = np.arange(t0, tf+h/2, h)		
28			
29	# if tspan isn't divisible by h,		
30	# add tf as final time point		
31	<pre>if t[-1] != tf:</pre>		
32	t = np.append(t, tf)		
33			
34	n = len(t)		
35	N = len(y0)		
36			
37 38	y = np.zeros((n, N))		
39	y[0,:] = y0		
40	for i in range(n-1):		
40	y[i+1,:] = y[i,:] + dydt(t[i],y[i,:])*(t[i+1]-t[i])		
41	$y[x_1,x_1,y] = y[x_1,y] + ayac(cx_1,y) (c[x_1,x_1],c[x_1])$		
43	return [t, y]		
44			

6	<pre>def rk4oden(dydt,tspan,y0,h):</pre>		
7			
8	Solves an Nth-order ODE using the 4th-order Runge-Kutta method		
9			
10	Parameters		
11			
12	dydt : ODE function - function of t and y		
13	tspan : array of initial and final times: tspan = [t0, tf]		
14 15	y0 : initial condition h : time step		
15	n : cime step		
10	Returns		
18			
19	t : time vector of solution - will contain tf, so final time		
20	step may be smaller than h		
21	y : solution vector		
22			
23			
24			
25	t0 = tspan[0]		
26	tf = tspan[1]		
27 28	t = np.arange(t0, tf+h/2, h)		
20	# make sure last time point is tf		
30	if t[-1] != tf:		
31	t = np.append(t, tf)		
32			
33	n = len(t)		
34	N = len(y0)		
35			
36	y = np.zeros((n, N))		
37	y[0,:] = y0		
38	for i in secolo 1).		
39 40	<pre>for i in range(n-1): # calculate slopes</pre>		
40	<pre>k1 = dydt(t[i],y[i,:])</pre>		
42	$k_{1} = 0, k_{1} = 0, k_{1} = 0, k_{1} = 0, k_{2} = 0, k_{1} = 0$		
43	$k^2 = dydt(t[i]+h/2,y[i,:]+k^2+h/2)$		
44	k4 = dydt(t[i]+h,y[i,:]+k3*h)		
45	# increment function		
46	phi = 1/6*(k1 + 2*k2 + 2*k3 + k4)		
47	<pre># propagate y forward one time step</pre>		
48	y[i+1,:] = y[i,:] + phi*h		
49			
50	return [t, y]		
	ESC 440		

55 Solving ODEs in Python

SciPy's ODE Solvers

SciPy's solve_ivp() has several ODE solvers

RK45 is the default and should usually be first choice for *non-stiff* problems

- Stiff ODEs are those with a large range of eigenvalues i.e., both very fast and very slow system poles
 - Numerical solution is difficult
- □ From the SciPy documentation:

Solver	Stiffness	Accuracy	When to use
RK45	Non-stiff	Medium	Most of the time. First choice.
RK23		Low	For problems with crude error tolerances or for solving moderately stiff problems.
DOP853		High	For problems requiring high precision (low values of rtol and atol).
Radau	Stiff	Low to medium	If ode45 is slow or non-convergent because the problem is stiff.
BDF			

Solving ODEs with SciPy - solve_ivp()

sol = solve_ivp(dydt, tspan, y0, method='RK45')

- dydt: ODE function object n-dimensional
- tspan: array of initial and final times [ti,tf]
- y0: initial conditions an n-vector
- method: solver to use optional default: 'RK45'
- sol: an OdeResult object with several fields, including:
 - sol.y: solution vector
 - sol.t: time vector for the solution
- Default method, RK45, is an adaptive algorithm that uses fourth- and fifth-order Runge-Kutta formulas
 Variable step size

