
ESC 440 – Computational Methods for Engineers

SECTION 6: ORDINARY
DIFFERENTIAL EQUATIONS

K. Webb ESC 440

Introduction2

K. Webb ESC 440

3

Ordinary Differential Equations

 Differential equations can be categorized as either
ordinary or partial differential equations

 Ordinary differential equations (ODEs) – functions of a
single independent variable

 Partial differential equations (PDEs) – functions of two or
more independent variables

 We’ll focus on ordinary differential equations only

 Note that we are not making any assumption of
linearity here
 All techniques we’ll look at apply equally to linear or

nonlinear ODEs

K. Webb ESC 440

4

Differential Equation Order

 The order of a differential equation is the highest
derivative it contains
 First-order ODEs contain only first derivatives
 Second-order ODEs include second derivatives (possibly

first, as well), and so on …

 Any 𝒏𝒕𝒉- order ODE can be reduced to a system of 𝒏
first-order ODEs
 Solution requires knowledge of 𝑛 initial or boundary

conditions

 We’ll focus on techniques to solve first-order ODEs
 Can be applied to systems of first-order ODEs representing

higher-order ODEs

K. Webb ESC 440

5

Initial-Value vs. Boundary-Value Problems

 To solve an 𝑛𝑡ℎ-order ODE (or a system of 𝑛 first-
order ODEs), 𝑛 known conditions are required

 Initial-value problems – all 𝑛 conditions are specified at
the same value of the independent variable (typically,
at 𝑥 = 0 or 𝑡 = 0)

 Boundary-value problems – 𝑛 conditions specified at
different values of the independent variable

 In this course, we’ll focus exclusively on initial-value
problems

K. Webb ESC 440

6

Solving ODEs – General Aproach

 Have an ODE that is some function of the independent and
dependent variables:

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

 Numerical solutions amounts to approximating 𝑦 𝑡

 Starting at some known initial condition, 𝑦 0 , propagate the
solution forward in time:

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

or
𝑛𝑒𝑥𝑡 𝑦 𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑦 𝑣𝑎𝑙𝑢𝑒 + 𝑠𝑙𝑜𝑝𝑒 × 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒

 𝜙 is called the increment function
 Represents a slope, though not necessarily the slope at 𝑡𝑖 , 𝑦𝑖

 ℎ is the time step: ℎ = 𝑡𝑖+1 − 𝑡𝑖

K. Webb ESC 440

7

One-Step vs. Multi-Step Methods

 One-step methods

 Use only information at current value of 𝑦 𝑡 (i.e.
𝑦 𝑡𝑖 , or 𝑦𝑖) to determine the increment function, 𝜙, to
be used to propagate the solution forward to 𝑦𝑖+1

 Collectively known as Runge-Kutta methods

 We’ll focus on these exclusively in this course

 Multi-step methods

 Use both current and past values of 𝑦 𝑡 to provide
information about the trajectory of 𝑦 𝑡

 Improved accuracy

K. Webb ESC 440

We’ll first look at three specific Runge-Kutta
algorithms, before returning to a development
of the Runge-Kutta approach from a more
general perspective.

Euler’s Method8

K. Webb ESC 440

9

Euler’s Method

 Given an ODE of the form

𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦

approximate the solution, 𝑦 𝑡 , using the formula

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

where the increment function is the current derivative

𝜙 = 𝑓 𝑡𝑖 , 𝑦𝑖

 That is, assume the slope of 𝑦 𝑡 is constant for 𝑡𝑖 ≤
𝑡 ≤ 𝑡𝑖+1

 Use the slope at 𝑡𝑖 , 𝑦𝑖 to extrapolate to 𝑦𝑖+1

K. Webb ESC 440

10

Euler’s Method

 Euler’s method
formula:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ

 Increment function is
the current slope:

𝜙 = 𝑓 𝑡𝑖 , 𝑦𝑖

K. Webb ESC 440

11

Euler’s Method - Example

 Use Euler’s method to
solve

𝑑𝑦

𝑑𝑡
= 5𝑒−0.5𝑡 − 0.5𝑦

given an initial condition
of

𝑦 0 = 3

and a step size of

ℎ = 0.5 𝑠𝑒𝑐

 True solution is:

𝑦 𝑡 = 𝑒−0.5𝑡 + 5𝑡 ∙ 𝑒−0.5𝑡

K. Webb ESC 440

12

Euler’s Method - Example

K. Webb ESC 440

13

Euler’s Method - Error

 Two types of truncation error:

 Local – error due to the approximation associated with the
given method over a single time step

 Global – error propagated forward from previous time steps

 Total error is the sum of local and global error

 Representing the solution to the ODE as a Taylor series
expansion about 𝑡𝑖 , 𝑦𝑖 , the solution at 𝑡𝑖+1 is:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓(𝑡𝑖 , 𝑦𝑖)ℎ + 𝑓′(𝑡𝑖 , 𝑦𝑖)
ℎ2

2!
+ ⋯ + 𝑓 𝑛 𝑡𝑖 , 𝑦𝑖

ℎ𝑛

𝑛!
+ 𝑅𝑛

 Where the remainder term is:

𝑅𝑛 = 𝑂 ℎ𝑛+1

K. Webb ESC 440

14

Euler’s Method - Error

 Euler’s method is the Taylor series, truncated after the
first derivative term

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ + 𝑅1

 For small enough ℎ, the error is dominated by the next
term in the series, so

𝐸𝑎 = 𝑓′ 𝑡𝑖 , 𝑦𝑖

ℎ2

2!
≈ 𝑅1 = 𝑂 ℎ2

 Local error is proportional to 𝒉𝟐

 Analysis of the global (i.e. propagated) error is beyond
the scope of this course, but the result is that global
error is proportional to 𝒉

K. Webb ESC 440

15

Euler’s Method – Stability

 Euler’s method will result in error, but worse yet, it may be unstable
 Unstable if errors grow without bound

 Consider, for example, the following ODE:

𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 = −𝑎𝑦

 The true solution decays exponentially to zero:

𝑦 𝑡 = 𝑦0𝑒−𝑎𝑡

 Using Euler’s method, the solution is

𝑦𝑖+1 = 𝑦𝑖 − 𝑎𝑦𝑖ℎ = 𝑦𝑖 1 − 𝑎ℎ

 This solution will grow without bound if 1 − 𝑎ℎ > 1, i.e. if ℎ > 2/𝑎
 If the step size is too large, solution blows up

 Euler’s method is conditionally stable

K. Webb ESC 440

16

Stability of Euler’s Method – Examples

K. Webb ESC 440

Heun’s Method17

K. Webb ESC 440

18

Heun’s Method

 Euler’s assumes a constant slope for the increment
function:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓(𝑡𝑖 , 𝑦𝑖)ℎ

 Improve accuracy of the solution by using a more
accurate slope estimate for 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

 Heun’s method first applies Euler’s method to predict
the value of 𝑦 at 𝑡𝑖+1 – the predictor equation:

𝑦𝑖+1
0 = 𝑦𝑖 + 𝑓(𝑡𝑖 , 𝑦𝑖)ℎ

 This value is then used to predict the slope at 𝑡𝑖+1

𝑦𝑖+1
′ = 𝑓(𝑡𝑖+1, 𝑦𝑖+1

0)

K. Webb ESC 440

19

Heun’s Method

 The increment function is the average of the slope

at 𝑡𝑖 , 𝑦𝑖 and the slope at 𝑡𝑖+1, 𝑦𝑖+1
0

𝜙 = ത𝑦′ =
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

0

2

 The next value of 𝑦 𝑡 is given by the corrector
equation:

𝑦𝑖+1 = 𝑦𝑖 +
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

0

2
ℎ

K. Webb ESC 440

20

Heun’s Method – Summary

 Apply Euler’s – the
predictor equation – to
predict 𝑦𝑖+1

0

 Calculate slope at
(𝑡𝑖+1, 𝑦𝑖+1

0)

 Compute average of the
two slopes

 Use slope average to
propagate the solution
forward to 𝑦𝑖+1 – the
corrector equation

K. Webb ESC 440

21

Heun’s Method – Example

K. Webb ESC 440

22

Heun’s Method with Iteration

 Predictor equation:

𝑦𝑖+1
0 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ

 Corrector equation:

𝑦𝑖+1
𝑗

= 𝑦𝑖 +
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

𝑗−1

2
ℎ

 The corrector equation can be applied iteratively, providing a
refined estimate of 𝑦𝑖+1

 Iterate until approximate error falls below some stopping criterion

𝜀𝑎 =
𝑦𝑖+1

𝑗
− 𝑦𝑖+1

𝑗−1

𝑦𝑖+1
𝑗

∙ 100% ≤ 𝜀𝑠

K. Webb ESC 440

23

Iterative Heun’s Method – Algorithm

 𝑦𝑖+1
0 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ

 𝑗 = 1

 While 𝜀𝑎 > 𝜀𝑠

 𝑦𝑖+1
𝑗

= 𝑦𝑖 +
𝑓 𝑡𝑖,𝑦𝑖 +𝑓 𝑡𝑖+1,𝑦𝑖+1

𝑗−1

2
ℎ

 𝜀𝑎 =
𝑦𝑖+1

𝑗
−𝑦𝑖+1

𝑗−1

𝑦
𝑖+1
𝑗 ∙ 100%

 𝑗 = 𝑗 + 1

 Does not necessarily converge to the correct solution,
though 𝜀𝑎 will converge to a finite value

K. Webb ESC 440

24

Iterative Heun’s Method – Example

K. Webb ESC 440

Midpoint Method25

K. Webb ESC 440

26

Midpoint Method

 The slope at the
midpoint of a time
interval used as the
increment function

 Provides a more
accurate estimate of
the slope across the
entire time interval

K. Webb ESC 440

27

Midpoint Method

 Apply Euler’s method to
approximate 𝑦 at midpoint

𝑦
𝑖+

1
2

= 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖

ℎ

2

 Slope estimate at midpoint:

𝑦
𝑖+

1
2

′ = 𝑓 𝑡
𝑖+

1
2

, 𝑦
𝑖+

1
2

 Midpoint slope estimate is
increment function

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡
𝑖+

1
2

, 𝑦
𝑖+

1
2

ℎ

K. Webb ESC 440

28

Midpoint Method – Example

K. Webb ESC 440

29

One-Step Methods – Error

Method Local Error Global Error

Euler’s 𝑂 ℎ2 𝑂 ℎ

Heun’s (w/o iter.) 𝑂 ℎ3 𝑂 ℎ2

Midpoint 𝑂 ℎ3 𝑂 ℎ2

K. Webb ESC 440

Runge-Kutta Methods30

K. Webb ESC 440

31

Runge-Kutta Methods

 Euler’s, Heun’s, and midpoint methods are specific
cases of the broader category of one-step methods
known as Runge-Kutta methods

 Runge-Kutta methods all have the same general form

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

 The increment function has the following form

𝜙 = 𝑎1𝑘1 + 𝑎2𝑘2 + ⋯ + 𝑎𝑛𝑘𝑛

 𝑛 is the order of the Runge-Kutta method
 We’ll see that Euler’s is a first-order method, while Heun’s

and midpoint are both second-order

K. Webb ESC 440

32

Runge-Kutta Methods

 The increment function is

𝜙 = 𝑎1𝑘1 + 𝑎2𝑘2 + ⋯ + 𝑎𝑛𝑘𝑛

where

𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ
𝑘3 = 𝑓 𝑡𝑖 + 𝑝2ℎ, 𝑦𝑖 + 𝑞21𝑘1ℎ + 𝑞22𝑘2ℎ
 ⋮ ⋮
𝑘𝑛 = 𝑓(𝑡𝑖 + 𝑝𝑛−1ℎ, 𝑦𝑖 + 𝑞𝑛−1,1𝑘1ℎ + ⋯ + 𝑞𝑛−1,𝑛−1𝑘𝑛−1ℎ)

 The 𝑎’s, 𝑝’s, and 𝑞’s are constants

 Can see that Euler’s method is first-order with 𝑎1 = 1

K. Webb ESC 440

33

Runge-Kutta Methods

 To determine values of 𝑎’s, 𝑝’s, and 𝑞’s:

 Set the Runge-Kutta formula equal to a Taylor series of
the same order

 Equate coefficients

 An under-determined system results

 Arbitrarily set one constant and solve for others

 Procedure is the same for all orders

 We’ll step through the derivation of the second-order
Runge-Kutta formulas

K. Webb ESC 440

34

Second-Order Runge-Kutta Methods

 Second-order Runge-Kutta:

𝑦𝑖+1 = 𝑎1𝑘1 + 𝑎2𝑘2 ℎ (1)

where

𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖 (2)

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ (3)

 Second-order Taylor series:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ +
𝑓′ 𝑡𝑖,𝑦𝑖

2!
ℎ2 (4)

where

𝑓′ 𝑡𝑖 , 𝑦𝑖 =
𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
 (5)

K. Webb ESC 440

35

Second-Order Runge-Kutta Methods

 Substituting (5) into (4), and recognizing that 𝑑𝑦

𝑑𝑡
= 𝑓 𝑡𝑖 , 𝑦𝑖 ,

the Taylor series becomes

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ +
𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑦
𝑓 𝑡𝑖 , 𝑦𝑖

ℎ2

2!
 (6)

 Next, represent (3) as a first-order Taylor series
 It’s a function of two variables, for which the first-order

Taylor series has the following form

𝑔 𝑥 + Δ𝑥, 𝑦 + Δ𝑦 = 𝑔 𝑥, 𝑦 + Δ𝑥
𝜕𝑔

𝜕𝑥
+ Δ𝑦

𝜕𝑔

𝜕𝑦
+ 𝑂 ℎ2 (7)

 Using (7), (3) becomes

𝑘2 = 𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑝1ℎ
𝜕𝑓

𝜕𝑡
+ 𝑞11𝑘1ℎ

𝜕𝑓

𝜕𝑦
+ 𝑂 ℎ2 (8)

K. Webb ESC 440

36

Second-Order Runge-Kutta Methods

 Substituting (2) and (8) into (1)

𝑦𝑖+1 = 𝑦𝑖 + 𝑎1ℎ𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑎2ℎ𝑓 𝑡𝑖 , 𝑦𝑖

+𝑎2𝑝1ℎ2 𝜕𝑓

𝜕𝑡
+ 𝑎2𝑞11ℎ2 𝜕𝑓

𝜕𝑦
𝑓 𝑡𝑖 , 𝑦𝑖 (9)

 Now, set (9) equal to (6), the Taylor series

𝑦𝑖 + 𝑎1ℎ𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑎2ℎ𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑎2𝑝1ℎ2
𝜕𝑓

𝜕𝑡
+ 𝑎2𝑞11ℎ2

𝜕𝑓

𝜕𝑦
𝑓 𝑡𝑖 , 𝑦𝑖

= 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ +
𝜕𝑓

𝜕𝑡

ℎ2

2
+

𝜕𝑓

𝜕𝑦

ℎ2

2
𝑓 𝑡𝑖 , 𝑦𝑖 (10)

 Equating the coefficients in (10) gives three equations with four
unknowns:

𝑎1 + 𝑎2 = 1 (11)

𝑎2𝑝1 =
1

2
 (12)

𝑎2𝑞11 =
1

2
 (13)

K. Webb ESC 440

37

Second-Order Runge-Kutta Methods

 We have three equations in four unknowns
𝑎1 + 𝑎2 = 1 (11)

𝑎2𝑝1 =
1

2
 (12)

𝑎2𝑞11 =
1

2
 (13)

 An under-determined system

 An infinite number of solutions

 Arbitrarily set one constant – 𝑎2 – to a certain value
and solve for the other three constants

 Different solution for each value of 𝑎2 – a family of
solutions

K. Webb ESC 440

38

𝑎2 = 1/2 – Heun’s Method

 Arbitrarily set 𝑎2 and solve for the other constants

𝑎1 =
1

2
, 𝑎2 =

1

2
, 𝑝1 = 1, 𝑞11 = 1

 The second-order Runge-Kutta formula becomes

𝑦𝑖+1 = 𝑦𝑖 +
1

2
𝑘1 +

1

2
𝑘2 ℎ

where
𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + 𝑘1ℎ)

 This is Heun’s method

𝑦𝑖+1 = 𝑦𝑖 +
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

0

2
ℎ

K. Webb ESC 440

39

𝑎2 = 1 – Midpoint Method

 Arbitrarily set 𝑎2 and solve for the other constants

𝑎1 = 0, 𝑎2 = 1, 𝑝1 =
1

2
, 𝑞11 =

1

2

 The second-order Runge-Kutta formula becomes

𝑦𝑖+1 = 𝑦𝑖 + 𝑘2ℎ

where
𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ = 𝑓(𝑡𝑖 +
ℎ

2
, 𝑦𝑖 + 𝑘1

ℎ

2
)

 This is the midpoint method

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡
𝑖+

1
2

, 𝑦
𝑖+

1
2

ℎ

K. Webb ESC 440

40

Fourth-Order Runge-Kutta

 The most commonly used Runge-Kutta method is the fourth-order method

 Derivation proceeds similar to that of the second-order method
 Under-determined system – family of solutions

 Most common fourth-order Runge-Kutta method:

𝑦𝑖+1 = 𝑦𝑖 +
1

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4 ℎ

where
𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘1ℎ

𝑘3 = 𝑓 𝑡𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘2ℎ

𝑘4 = 𝑓 𝑡𝑖 + ℎ, 𝑦𝑖 + 𝑘3ℎ

 The increment function is a weighted average of four different slopes

K. Webb ESC 440

41

4th-Order Runge-Kutta – Algorithm

1. Calculate the slope at 𝑡𝑖 , 𝑦𝑖
→ this is 𝑘1

2. Use 𝑘1 to approximate 𝑦𝑖+1/2
from 𝑦𝑖. Calculate the slope
here → this is 𝑘2

3. Use 𝑘2 to re-approx. 𝑦𝑖+1/2
from 𝑦𝑖. Calculate the slope
here → this is 𝑘3

4. Use 𝑘3 to approx. 𝑦𝑖+1 from 𝑦𝑖.
Calculate the slope here → this
is 𝑘4

5. Calculate 𝜙 as a weighted
average of the four slopes

K. Webb ESC 440

42

Fourth-Order Runge-Kutta – Example

K. Webb ESC 440

Systems of Equations43

K. Webb ESC 440

44

Higher-Order Differential Equations

 The ODE solution techniques we’ve looked at so far
pertain to first-order ODEs

 Can be extended to higher-order ODEs by reducing
to systems of first-order equations

 An 𝒏𝒕𝒉-order ODE can be represented as a system of 𝒏
first-order ODEs

 Solution method is applied to each equation at each
time step before advancing to the next time step

 We’ll now illustrate the process with a fourth-order
quarter-car model example

K. Webb ESC 440

45

Fourth-Order ODE – Example

 Consider a quarter-car model of a vehicle’s suspension
system

 Apply Newton’s second law to each
mass to derive the governing fourth-
order ODE
 Single 4th-order equation, or

 Two 2nd-order equations

ሷ𝑥 +
𝑘

𝑚𝑠
𝑥 − 𝑥𝑢𝑠 +

𝑏

𝑚𝑠
ሶ𝑥 − ሶ𝑥𝑢𝑠 = 0

ሷ𝑥𝑢𝑠 +
𝑏

𝑚𝑢𝑠
ሶ𝑥𝑢𝑠 − ሶ𝑥 +

𝑘

𝑚𝑢𝑠
𝑥𝑢𝑠 − 𝑥 +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑢𝑠 =

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟

 Want to reduce to a system of four
first-order ODEs
 Put into state-space form

K. Webb ESC 440

46

Fourth-Order ODE – Example

ሷ𝑥 +
𝑘

𝑚𝑠
𝑥 − 𝑥𝑢𝑠 +

𝑏

𝑚𝑠
ሶ𝑥 − ሶ𝑥𝑢𝑠 = 0 (1)

ሷ𝑥𝑢𝑠 +
𝑏

𝑚𝑢𝑠
ሶ𝑥𝑢𝑠 − ሶ𝑥 +

𝑘

𝑚𝑢𝑠
𝑥𝑢𝑠 − 𝑥 +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑢𝑠 =

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟 𝑡 (2)

 Reducing the ODE to a system of first-order ODEs amounts
to representing our system in state-space form:

ሶ𝐱 = 𝐀𝐱 + 𝐛𝑢

 Define a state vector of displacements and velocities:

𝐱 =

𝑥1

𝑥2

𝑥3

𝑥4

=

𝑥
𝑥𝑢𝑠

𝑣
𝑣𝑢𝑠

 (3)

K. Webb ESC 440

47

Fourth-Order ODE – Example

 Rewrite (1) and (2) using the state variables defined
in (3)

ሶ𝑣 = ሶ𝑥3 = −
𝑘

𝑚𝑠
𝑥1 +

𝑘

𝑚𝑠
𝑥2 −

𝑏

𝑚𝑠
𝑥3 +

𝑏

𝑚𝑠
𝑥4 = 0 (4)

ሶ𝑣𝑢𝑠 = ሶ𝑥4 = −
𝑏

𝑚𝑢𝑠
𝑥4 +

𝑏

𝑚𝑢𝑠
𝑥3 −

𝑘

𝑚𝑢𝑠
𝑥2 +

𝑘

𝑚𝑢𝑠
𝑥1 −

𝑘𝑡

𝑚𝑢𝑠
𝑥2 +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟 𝑡 (5)

 The state variable representation of the system is

ሶ𝐱 =

ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

ሶ𝑥4

=

ሶ𝑥
ሶ𝑥𝑢𝑠

ሶ𝑣
ሶ𝑣𝑢𝑠

=

0 0 1 0
0 0 0 1

−
𝑘

𝑚𝑠

𝑘

𝑚𝑠
−

𝑏

𝑚𝑠

𝑏

𝑚𝑠

𝑘

𝑚𝑢𝑠
−

𝑘+𝑘𝑡

𝑚𝑢𝑠

𝑏

𝑚𝑢𝑠
−

𝑏

𝑚𝑢𝑠

𝑥1

𝑥2

𝑥3

𝑥4

+

0
0
0
𝑘𝑡

𝑚𝑢𝑠

∙ 𝑥𝑟 𝑡 (6)

K. Webb ESC 440

48

Fourth-Order ODE – Example

 Equation (6) clearly shows our system of four first-order
ODEs
 Alternatively, could have derived the state-space equations

directly (e.g. using a bond graph approach)

 In Python, we’ll represent our system as an
n-dimensional function
 A vector of n functions:

ሶ𝑥1 = 𝑥3 (7)

ሶ𝑥2 = 𝑥4 (8)

ሶ𝑥3 = −
𝑘

𝑚𝑠
𝑥1 +

𝑘

𝑚𝑠
𝑥2 −

𝑏

𝑚𝑠
𝑥3 +

𝑏

𝑚𝑠
𝑥4 (9)

ሶ𝑥4 =
𝑘

𝑚𝑢𝑠
𝑥1 −

𝑘+𝑘𝑡

𝑚𝑢𝑠
𝑥2 +

𝑏

𝑚𝑢𝑠
𝑥3 −

𝑏

𝑚𝑢𝑠
𝑥4 +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟 𝑡 (10)

K. Webb ESC 440

49

Fourth-Order ODE – Example

 In Python, define the 𝑛𝑡ℎ-order system of ODEs as
shown below
 An 𝑛-dimensional function

 Here, the ODE function includes parameters (𝑚𝑠, 𝑘,
etc.) in addition to variables 𝑡 and 𝑦
 Can create a lambda function wrapper to simplify the

passing of parameters

K. Webb ESC 440

50

Fourth-Order ODE – Example

 Basic formula remains the same
 Advance the solution to the next time step using the increment

function

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

 Now, the output is the vector of states, and the increment
function is an 𝑛-dimensional vector

𝐱𝑖+1 = 𝐱𝑖 + 𝛟ℎ

or
𝑥1,𝑖+1, 𝑥2,𝑖+1, … , 𝑥𝑛,𝑖+1 = 𝑥1,𝑖 , 𝑥2,𝑖 , … , 𝑥𝑛,𝑖 + 𝜙1, 𝜙2, … , 𝜙𝑛 ℎ

 Requires only a minor modification of the code written for
first-order ODEs to accommodate 𝑛-dimensional functions

K. Webb ESC 440

51

Fourth-Order ODE – Example

 Often want to pass parameters (i.e., Input arguments in
addition to 𝑡 and 𝑦) to the ODE function

 Create a lambda function wrapper for the ODE
function, e.g.:

K. Webb ESC 440

52

Fourth-Order ODE – Example

K. Webb ESC 440

53

Fourth-Order ODE – Example

K. Webb ESC 440

54

Fourth-Order ODE – Example

K. Webb ESC 440

Solving ODEs in Python55

K. Webb ESC 440

56

SciPy’s ODE Solvers

 SciPy’s solve_ivp() has several ODE solvers

 RK45 is the default and should usually be first choice for non-stiff problems

 Stiff ODEs are those with a large range of eigenvalues – i.e., both very fast
and very slow system poles

 Numerical solution is difficult

 From the SciPy documentation:

Solver Stiffness Accuracy When to use

RK45

Non-stiff

Medium Most of the time. First choice.

RK23 Low For problems with crude error tolerances or for solving
moderately stiff problems.

DOP853 High For problems requiring high precision (low values of rtol
and atol).

Radau
Stiff Low to medium

If ode45 is slow or non-convergent because the problem
is stiff.BDF

K. Webb ESC 440

57

Solving ODEs with SciPy – solve_ivp()

sol = solve_ivp(dydt, tspan, y0, method='RK45')

 dydt: ODE function object – n-dimensional
 tspan: array of initial and final times – [ti,tf]
 y0: initial conditions – an n-vector
 method: solver to use – optional – default: ‘RK45’
 sol: an OdeResult object with several fields, including:

◼ sol.y: solution vector
◼ sol.t: time vector for the solution

 Default method, RK45, is an adaptive algorithm that
uses fourth- and fifth-order Runge-Kutta formulas
 Variable step size

K. Webb ESC 440

58

Fourth-Order ODE – Example

Tolerance set
with rtol

Pass parameters
with args

	Slide 1: Section 6: Ordinary Differential equations
	Slide 2: Introduction
	Slide 3: Ordinary Differential Equations
	Slide 4: Differential Equation Order
	Slide 5: Initial-Value vs. Boundary-Value Problems
	Slide 6: Solving ODEs – General Aproach
	Slide 7: One-Step vs. Multi-Step Methods
	Slide 8: Euler’s Method
	Slide 9: Euler’s Method
	Slide 10: Euler’s Method
	Slide 11: Euler’s Method - Example
	Slide 12: Euler’s Method - Example
	Slide 13: Euler’s Method - Error
	Slide 14: Euler’s Method - Error
	Slide 15: Euler’s Method – Stability
	Slide 16: Stability of Euler’s Method – Examples
	Slide 17: Heun’s Method
	Slide 18: Heun’s Method
	Slide 19: Heun’s Method
	Slide 20: Heun’s Method – Summary
	Slide 21: Heun’s Method – Example
	Slide 22: Heun’s Method with Iteration
	Slide 23: Iterative Heun’s Method – Algorithm
	Slide 24: Iterative Heun’s Method – Example
	Slide 25: Midpoint Method
	Slide 26: Midpoint Method
	Slide 27: Midpoint Method
	Slide 28: Midpoint Method – Example
	Slide 29: One-Step Methods – Error
	Slide 30: Runge-Kutta Methods
	Slide 31: Runge-Kutta Methods
	Slide 32: Runge-Kutta Methods
	Slide 33: Runge-Kutta Methods
	Slide 34: Second-Order Runge-Kutta Methods
	Slide 35: Second-Order Runge-Kutta Methods
	Slide 36: Second-Order Runge-Kutta Methods
	Slide 37: Second-Order Runge-Kutta Methods
	Slide 38: a. sub 2 equals 1 over 2 – Heun’s Method
	Slide 39: a. sub 2 equals 1 – Midpoint Method
	Slide 40: Fourth-Order Runge-Kutta
	Slide 41: 4th-Order Runge-Kutta – Algorithm
	Slide 42: Fourth-Order Runge-Kutta – Example
	Slide 43: Systems of Equations
	Slide 44: Higher-Order Differential Equations
	Slide 45: Fourth-Order ODE – Example
	Slide 46: Fourth-Order ODE – Example
	Slide 47: Fourth-Order ODE – Example
	Slide 48: Fourth-Order ODE – Example
	Slide 49: Fourth-Order ODE – Example
	Slide 50: Fourth-Order ODE – Example
	Slide 51: Fourth-Order ODE – Example
	Slide 52: Fourth-Order ODE – Example
	Slide 53: Fourth-Order ODE – Example
	Slide 54: Fourth-Order ODE – Example
	Slide 55: Solving ODEs in Python
	Slide 56: SciPy’s ODE Solvers
	Slide 57: Solving ODEs with SciPy – solve_ivp()
	Slide 58: Fourth-Order ODE – Example

