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Ordinary Differential Equations

 Differential equations can be categorized as either 
ordinary or partial differential equations

 Ordinary differential equations (ODEs) – functions of a 
single independent variable

 Partial differential equations (PDEs) – functions of two or 
more independent variables

 We’ll focus on ordinary differential equations only

 Note that we are not making any assumption of 
linearity here
 All techniques we’ll look at apply equally to linear or 

nonlinear ODEs
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Differential Equation Order

 The order of a differential equation is the highest 
derivative it contains
 First-order ODEs contain only first derivatives
 Second-order ODEs include second derivatives (possibly 

first, as well), and so on … 

 Any 𝒏𝒕𝒉- order ODE can be reduced to a system of 𝒏 
first-order ODEs
 Solution requires knowledge of 𝑛 initial or boundary 

conditions

 We’ll focus on techniques to solve first-order ODEs
 Can be applied to systems of first-order ODEs representing 

higher-order ODEs
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Initial-Value vs. Boundary-Value Problems

 To solve an 𝑛𝑡ℎ-order ODE (or a system of 𝑛 first-
order ODEs), 𝑛 known conditions are required

 Initial-value problems – all 𝑛 conditions are specified at 
the same value of the independent variable (typically, 
at 𝑥 = 0 or 𝑡 = 0)

 Boundary-value problems – 𝑛 conditions specified at 
different values of the independent variable

 In this course, we’ll focus exclusively on initial-value 
problems
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Solving ODEs – General Aproach

 Have an ODE that is some function of the independent and 
dependent variables:

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

 Numerical solutions amounts to approximating 𝑦 𝑡

 Starting at some known initial condition, 𝑦 0 , propagate the 
solution forward in time:

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

or
𝑛𝑒𝑥𝑡 𝑦 𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑦 𝑣𝑎𝑙𝑢𝑒 + 𝑠𝑙𝑜𝑝𝑒 × 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒

 𝜙 is called the increment function
 Represents a slope, though not necessarily the slope at 𝑡𝑖 , 𝑦𝑖

 ℎ is the time step:  ℎ = 𝑡𝑖+1 − 𝑡𝑖
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One-Step vs. Multi-Step Methods

 One-step methods

 Use only information at current value of 𝑦 𝑡  (i.e.  
𝑦 𝑡𝑖 , or 𝑦𝑖) to determine the increment function, 𝜙, to 
be used to propagate the solution forward to 𝑦𝑖+1

 Collectively known as Runge-Kutta methods

 We’ll focus on these exclusively in this course

 Multi-step methods

 Use both current and past values of 𝑦 𝑡  to provide 
information about the trajectory of 𝑦 𝑡

 Improved accuracy
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We’ll first look at three specific Runge-Kutta 
algorithms,  before returning to a development 
of the Runge-Kutta approach from a more 
general perspective.

Euler’s Method8
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Euler’s Method

 Given an ODE of the form

𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦

approximate the solution, 𝑦 𝑡 , using the formula

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

where the increment function is the current derivative

𝜙 = 𝑓 𝑡𝑖 , 𝑦𝑖

 That is, assume the slope of 𝑦 𝑡  is constant for 𝑡𝑖 ≤
𝑡 ≤ 𝑡𝑖+1

 Use the slope at 𝑡𝑖 , 𝑦𝑖  to extrapolate to 𝑦𝑖+1
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Euler’s Method

 Euler’s method 
formula:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ

 Increment function is 
the current slope:

𝜙 = 𝑓 𝑡𝑖 , 𝑦𝑖
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Euler’s Method - Example

 Use Euler’s method  to 
solve

𝑑𝑦

𝑑𝑡
= 5𝑒−0.5𝑡 − 0.5𝑦

given an initial condition 
of

𝑦 0 = 3

and a step size of 

ℎ = 0.5 𝑠𝑒𝑐

 True solution is:

𝑦 𝑡 = 𝑒−0.5𝑡 + 5𝑡 ∙ 𝑒−0.5𝑡
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Euler’s Method - Example
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Euler’s Method - Error

 Two types of truncation error:

 Local – error due to the approximation associated with the 
given method over a single time step 

 Global – error propagated forward from previous time steps 

 Total error is the sum of local and global error

 Representing the solution to the ODE as a Taylor series 
expansion about 𝑡𝑖 , 𝑦𝑖 , the solution at 𝑡𝑖+1 is:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓(𝑡𝑖 , 𝑦𝑖)ℎ + 𝑓′(𝑡𝑖 , 𝑦𝑖)
ℎ2

2!
+ ⋯ + 𝑓 𝑛 𝑡𝑖 , 𝑦𝑖

ℎ𝑛

𝑛!
+ 𝑅𝑛

 Where the remainder term is:

𝑅𝑛 = 𝑂 ℎ𝑛+1
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Euler’s Method - Error

 Euler’s method is the Taylor series, truncated after the 
first derivative term

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ + 𝑅1

 For small enough ℎ, the error is dominated by the next 
term in the series, so 

𝐸𝑎 = 𝑓′ 𝑡𝑖 , 𝑦𝑖

ℎ2

2!
≈ 𝑅1 = 𝑂 ℎ2

 Local error is proportional to 𝒉𝟐

 Analysis of the global (i.e. propagated) error is beyond 
the scope of this course, but the result is that global 
error is proportional to 𝒉
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Euler’s Method – Stability 

 Euler’s method will result in error, but worse yet, it may be unstable
 Unstable if errors grow without bound

 Consider, for example, the following ODE:

𝑑𝑦

𝑑𝑡
= 𝑓 𝑡, 𝑦 = −𝑎𝑦

 The true solution decays exponentially to zero: 

𝑦 𝑡 = 𝑦0𝑒−𝑎𝑡

 Using Euler’s method, the solution is

𝑦𝑖+1 = 𝑦𝑖 − 𝑎𝑦𝑖ℎ = 𝑦𝑖 1 − 𝑎ℎ

 This solution will grow without bound if 1 − 𝑎ℎ > 1, i.e. if ℎ > 2/𝑎
 If the step size is too large, solution blows up 

 Euler’s method is conditionally stable
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Stability of Euler’s Method – Examples 
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Heun’s Method

 Euler’s assumes a constant slope for the increment 
function:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓(𝑡𝑖 , 𝑦𝑖)ℎ

 Improve accuracy of the solution by using a more 
accurate slope estimate for 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

 Heun’s method first applies Euler’s method to predict 
the value of 𝑦 at 𝑡𝑖+1  – the predictor equation: 

𝑦𝑖+1
0 = 𝑦𝑖 + 𝑓(𝑡𝑖 , 𝑦𝑖)ℎ

 This value is then used to predict the slope at 𝑡𝑖+1

𝑦𝑖+1
′ = 𝑓(𝑡𝑖+1, 𝑦𝑖+1

0 )
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Heun’s Method

 The increment function is the average of the slope 

at 𝑡𝑖 , 𝑦𝑖  and the slope at 𝑡𝑖+1, 𝑦𝑖+1
0

𝜙 = ത𝑦′ =
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

0

2

 The next value of 𝑦 𝑡  is given by the corrector 
equation:

𝑦𝑖+1 = 𝑦𝑖 +
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

0

2
ℎ
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Heun’s Method – Summary 

 Apply Euler’s – the 
predictor equation – to 
predict 𝑦𝑖+1

0

 Calculate slope at 
(𝑡𝑖+1, 𝑦𝑖+1

0 )

 Compute average of the 
two slopes

 Use slope average to 
propagate the solution 
forward to 𝑦𝑖+1  – the 
corrector equation
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Heun’s Method – Example 
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Heun’s Method with Iteration

 Predictor equation:

𝑦𝑖+1
0 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ

 Corrector equation:

𝑦𝑖+1
𝑗

= 𝑦𝑖 +
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

𝑗−1

2
ℎ

 The corrector equation can be applied iteratively, providing a 
refined estimate of 𝑦𝑖+1

 Iterate until approximate error falls below some stopping criterion

𝜀𝑎 =
𝑦𝑖+1

𝑗
− 𝑦𝑖+1

𝑗−1

𝑦𝑖+1
𝑗

∙ 100% ≤ 𝜀𝑠
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Iterative Heun’s Method – Algorithm 

   𝑦𝑖+1
0 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ

  𝑗 = 1

  While 𝜀𝑎 > 𝜀𝑠

   𝑦𝑖+1
𝑗

= 𝑦𝑖 +
𝑓 𝑡𝑖,𝑦𝑖 +𝑓 𝑡𝑖+1,𝑦𝑖+1

𝑗−1

2
ℎ

 𝜀𝑎 =
𝑦𝑖+1

𝑗
−𝑦𝑖+1

𝑗−1

𝑦
𝑖+1
𝑗 ∙ 100%

   𝑗 = 𝑗 + 1

 Does not necessarily converge to the correct solution, 
though 𝜀𝑎 will converge to a finite value
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Iterative Heun’s Method – Example
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Midpoint Method

 The slope at the 
midpoint of a time 
interval used as the 
increment function

 Provides a more 
accurate estimate of 
the slope across the 
entire time interval
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Midpoint Method

 Apply Euler’s method to 
approximate 𝑦 at midpoint

𝑦
𝑖+

1
2

= 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖

ℎ

2

 Slope estimate at midpoint:

𝑦
𝑖+

1
2

′ = 𝑓 𝑡
𝑖+

1
2

, 𝑦
𝑖+

1
2

 Midpoint slope estimate is 
increment function

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡
𝑖+

1
2

, 𝑦
𝑖+

1
2

ℎ
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Midpoint Method – Example 
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One-Step Methods – Error 

Method Local Error Global Error

Euler’s 𝑂 ℎ2 𝑂 ℎ

Heun’s (w/o iter.) 𝑂 ℎ3 𝑂 ℎ2

Midpoint 𝑂 ℎ3 𝑂 ℎ2



K. Webb ESC 440

Runge-Kutta Methods30



K. Webb ESC 440

31

Runge-Kutta Methods

 Euler’s, Heun’s, and midpoint methods are specific 
cases of the broader category of one-step methods 
known as Runge-Kutta methods

 Runge-Kutta methods all have the same general form

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

 The increment function has the following form

𝜙 = 𝑎1𝑘1 + 𝑎2𝑘2 + ⋯ + 𝑎𝑛𝑘𝑛

 𝑛 is the order of the Runge-Kutta method
 We’ll see that Euler’s is a first-order method, while Heun’s 

and midpoint are both second-order
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Runge-Kutta Methods

 The increment function is

𝜙 = 𝑎1𝑘1 + 𝑎2𝑘2 + ⋯ + 𝑎𝑛𝑘𝑛

where

𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ
𝑘3 = 𝑓 𝑡𝑖 + 𝑝2ℎ, 𝑦𝑖 + 𝑞21𝑘1ℎ + 𝑞22𝑘2ℎ
 ⋮ ⋮
𝑘𝑛 = 𝑓(𝑡𝑖 + 𝑝𝑛−1ℎ, 𝑦𝑖 + 𝑞𝑛−1,1𝑘1ℎ + ⋯ + 𝑞𝑛−1,𝑛−1𝑘𝑛−1ℎ)

 The 𝑎’s, 𝑝’s, and 𝑞’s are constants

 Can see that Euler’s method is first-order with 𝑎1 = 1
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Runge-Kutta Methods

 To determine values of 𝑎’s, 𝑝’s, and 𝑞’s:

 Set the Runge-Kutta formula equal to a Taylor series of 
the same order

 Equate coefficients 

 An under-determined system results

 Arbitrarily set one constant and solve for others

 Procedure is the same for all orders 

 We’ll step through the derivation of the second-order 
Runge-Kutta formulas
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Second-Order Runge-Kutta Methods

 Second-order Runge-Kutta:

𝑦𝑖+1 = 𝑎1𝑘1 + 𝑎2𝑘2 ℎ (1)

where

𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖  (2)

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ  (3)

 Second-order Taylor series:

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ +
𝑓′ 𝑡𝑖,𝑦𝑖

2!
ℎ2 (4)

where

𝑓′ 𝑡𝑖 , 𝑦𝑖 =
𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
 (5)
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Second-Order Runge-Kutta Methods

 Substituting (5) into (4), and recognizing that 𝑑𝑦

𝑑𝑡
= 𝑓 𝑡𝑖 , 𝑦𝑖 , 

the Taylor series becomes

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ +
𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑦
𝑓 𝑡𝑖 , 𝑦𝑖

ℎ2

2!
 (6)

 Next, represent (3) as a first-order Taylor series
 It’s a function of two variables, for which the first-order 

Taylor series has the following form

𝑔 𝑥 + Δ𝑥, 𝑦 + Δ𝑦 = 𝑔 𝑥, 𝑦 + Δ𝑥
𝜕𝑔

𝜕𝑥
+ Δ𝑦

𝜕𝑔

𝜕𝑦
+ 𝑂 ℎ2  (7)

 Using (7), (3) becomes

𝑘2 = 𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑝1ℎ
𝜕𝑓

𝜕𝑡
+ 𝑞11𝑘1ℎ

𝜕𝑓

𝜕𝑦
+ 𝑂 ℎ2  (8)
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Second-Order Runge-Kutta Methods

 Substituting (2) and (8) into (1)

𝑦𝑖+1 = 𝑦𝑖 + 𝑎1ℎ𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑎2ℎ𝑓 𝑡𝑖 , 𝑦𝑖

+𝑎2𝑝1ℎ2 𝜕𝑓

𝜕𝑡
+ 𝑎2𝑞11ℎ2 𝜕𝑓

𝜕𝑦
𝑓 𝑡𝑖 , 𝑦𝑖  (9)

 Now, set (9) equal to (6), the Taylor series

𝑦𝑖 + 𝑎1ℎ𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑎2ℎ𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑎2𝑝1ℎ2
𝜕𝑓

𝜕𝑡
+ 𝑎2𝑞11ℎ2

𝜕𝑓

𝜕𝑦
𝑓 𝑡𝑖 , 𝑦𝑖

= 𝑦𝑖 + 𝑓 𝑡𝑖 , 𝑦𝑖 ℎ +
𝜕𝑓

𝜕𝑡

ℎ2

2
+

𝜕𝑓

𝜕𝑦

ℎ2

2
𝑓 𝑡𝑖 , 𝑦𝑖  (10)

 Equating the coefficients in (10) gives three equations with four 
unknowns:

𝑎1 + 𝑎2 = 1 (11)

𝑎2𝑝1 =
1

2
 (12)

𝑎2𝑞11 =
1

2
 (13)
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Second-Order Runge-Kutta Methods

 We have three equations in four unknowns
𝑎1 + 𝑎2 = 1 (11)

𝑎2𝑝1 =
1

2
 (12)

𝑎2𝑞11 =
1

2
 (13)

 An under-determined system

 An infinite number of solutions

 Arbitrarily set one constant – 𝑎2 – to a certain value 
and solve for the other three constants

 Different solution for each value of 𝑎2 – a family of 
solutions
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𝑎2 = 1/2 – Heun’s Method

 Arbitrarily set 𝑎2 and solve for the other constants

𝑎1 =
1

2
,    𝑎2 =

1

2
,     𝑝1 = 1,     𝑞11 = 1

 The second-order Runge-Kutta formula becomes

𝑦𝑖+1 = 𝑦𝑖 +
1

2
𝑘1 +

1

2
𝑘2 ℎ

where
𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + 𝑘1ℎ)

 This is Heun’s method

𝑦𝑖+1 = 𝑦𝑖 +
𝑓 𝑡𝑖 , 𝑦𝑖 + 𝑓 𝑡𝑖+1, 𝑦𝑖+1

0

2
ℎ
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𝑎2 = 1 – Midpoint Method

 Arbitrarily set 𝑎2 and solve for the other constants

𝑎1 = 0,    𝑎2 = 1,     𝑝1 =
1

2
,     𝑞11 =

1

2

 The second-order Runge-Kutta formula becomes

𝑦𝑖+1 = 𝑦𝑖 + 𝑘2ℎ

where
𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 + 𝑞11𝑘1ℎ = 𝑓(𝑡𝑖 +
ℎ

2
, 𝑦𝑖 + 𝑘1

ℎ

2
)

 This is the midpoint method

𝑦𝑖+1 = 𝑦𝑖 + 𝑓 𝑡
𝑖+

1
2

, 𝑦
𝑖+

1
2

ℎ



K. Webb ESC 440

40

Fourth-Order Runge-Kutta

 The most commonly used Runge-Kutta method is the fourth-order method

 Derivation proceeds similar to that of the second-order method
 Under-determined system – family of solutions

 Most common fourth-order Runge-Kutta method:

𝑦𝑖+1 = 𝑦𝑖 +
1

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4 ℎ

where
𝑘1 = 𝑓 𝑡𝑖 , 𝑦𝑖

𝑘2 = 𝑓 𝑡𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘1ℎ

𝑘3 = 𝑓 𝑡𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝑘2ℎ

𝑘4 = 𝑓 𝑡𝑖 + ℎ, 𝑦𝑖 + 𝑘3ℎ

 The increment function is a weighted average of four different slopes
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4th-Order Runge-Kutta – Algorithm 

1. Calculate the slope at 𝑡𝑖 , 𝑦𝑖    
→  this is 𝑘1

2. Use 𝑘1 to approximate 𝑦𝑖+1/2 
from 𝑦𝑖. Calculate the slope 
here  →  this is 𝑘2 

3. Use 𝑘2 to re-approx. 𝑦𝑖+1/2 
from 𝑦𝑖. Calculate the slope 
here →  this is 𝑘3

4. Use 𝑘3 to approx. 𝑦𝑖+1 from 𝑦𝑖. 
Calculate the slope here →  this 
is 𝑘4

5. Calculate 𝜙 as a weighted 
average of the four slopes
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Fourth-Order Runge-Kutta – Example 
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Systems of Equations43
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Higher-Order Differential Equations

 The ODE solution techniques we’ve looked at so far 
pertain to first-order ODEs

 Can be extended to higher-order ODEs by reducing 
to systems of first-order equations

 An 𝒏𝒕𝒉-order ODE can be represented as a system of 𝒏 
first-order ODEs

 Solution method is applied to each equation at each 
time step before advancing to the next time step

 We’ll now illustrate the process with a fourth-order 
quarter-car model example
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Fourth-Order ODE – Example 

 Consider a quarter-car model of a vehicle’s suspension 
system

 Apply Newton’s second law to each 
mass to derive the governing fourth-
order ODE
 Single 4th-order equation, or

 Two 2nd-order equations

ሷ𝑥 +
𝑘

𝑚𝑠
𝑥 − 𝑥𝑢𝑠 +

𝑏

𝑚𝑠
ሶ𝑥 − ሶ𝑥𝑢𝑠 = 0 

ሷ𝑥𝑢𝑠 +
𝑏

𝑚𝑢𝑠
ሶ𝑥𝑢𝑠 − ሶ𝑥 +

𝑘

𝑚𝑢𝑠
𝑥𝑢𝑠 − 𝑥  +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑢𝑠 =

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟

 Want to reduce to a system of four 
first-order ODEs
 Put into state-space form
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Fourth-Order ODE – Example 

ሷ𝑥 +
𝑘

𝑚𝑠
𝑥 − 𝑥𝑢𝑠 +

𝑏

𝑚𝑠
ሶ𝑥 − ሶ𝑥𝑢𝑠 = 0 (1)

ሷ𝑥𝑢𝑠 +
𝑏

𝑚𝑢𝑠
ሶ𝑥𝑢𝑠 − ሶ𝑥 +

𝑘

𝑚𝑢𝑠
𝑥𝑢𝑠 − 𝑥  +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑢𝑠 =

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟 𝑡  (2)

 Reducing the ODE to a system of first-order ODEs amounts 
to representing our system in state-space form:

ሶ𝐱 = 𝐀𝐱 + 𝐛𝑢

 Define a state vector of displacements and velocities:

𝐱 =

𝑥1

𝑥2

𝑥3

𝑥4

=

𝑥
𝑥𝑢𝑠

𝑣
𝑣𝑢𝑠

 (3)
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Fourth-Order ODE – Example 

 Rewrite (1) and (2) using the state variables defined 
in (3)

ሶ𝑣 = ሶ𝑥3 = −
𝑘

𝑚𝑠
𝑥1 +

𝑘

𝑚𝑠
𝑥2 −

𝑏

𝑚𝑠
𝑥3 +

𝑏

𝑚𝑠
𝑥4 = 0 (4)

ሶ𝑣𝑢𝑠 = ሶ𝑥4 = −
𝑏

𝑚𝑢𝑠
𝑥4 +

𝑏

𝑚𝑢𝑠
𝑥3 −

𝑘

𝑚𝑢𝑠
𝑥2 +

𝑘

𝑚𝑢𝑠
𝑥1 −

𝑘𝑡

𝑚𝑢𝑠
𝑥2 +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟 𝑡  (5)

 The state variable representation of the system is

ሶ𝐱 =

ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

ሶ𝑥4

=

ሶ𝑥
ሶ𝑥𝑢𝑠

ሶ𝑣
ሶ𝑣𝑢𝑠

=

0 0 1 0
0 0 0 1

−
𝑘

𝑚𝑠

𝑘

𝑚𝑠
−

𝑏

𝑚𝑠

𝑏

𝑚𝑠

𝑘

𝑚𝑢𝑠
−

𝑘+𝑘𝑡

𝑚𝑢𝑠

𝑏

𝑚𝑢𝑠
−

𝑏

𝑚𝑢𝑠

𝑥1

𝑥2

𝑥3

𝑥4

+

0
0
0
𝑘𝑡

𝑚𝑢𝑠

∙ 𝑥𝑟 𝑡  (6)
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Fourth-Order ODE – Example 

 Equation (6) clearly shows our system of four first-order 
ODEs
 Alternatively, could have derived the state-space equations 

directly (e.g. using a bond graph approach)

 In Python, we’ll represent our system as an         
n-dimensional function 
 A vector of n functions:

ሶ𝑥1 = 𝑥3 (7)

ሶ𝑥2 = 𝑥4 (8)

ሶ𝑥3 = −
𝑘

𝑚𝑠
𝑥1 +

𝑘

𝑚𝑠
𝑥2 −

𝑏

𝑚𝑠
𝑥3 +

𝑏

𝑚𝑠
𝑥4 (9)

ሶ𝑥4 =
𝑘

𝑚𝑢𝑠
𝑥1 −

𝑘+𝑘𝑡

𝑚𝑢𝑠
𝑥2 +

𝑏

𝑚𝑢𝑠
𝑥3 −

𝑏

𝑚𝑢𝑠
𝑥4 +

𝑘𝑡

𝑚𝑢𝑠
𝑥𝑟 𝑡  (10)
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Fourth-Order ODE – Example 

 In Python, define the 𝑛𝑡ℎ-order system of ODEs as 
shown below
 An 𝑛-dimensional function

 Here, the ODE function includes parameters (𝑚𝑠, 𝑘, 
etc.) in addition to variables 𝑡 and 𝑦
 Can create a lambda function wrapper to simplify the 

passing of parameters
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Fourth-Order ODE – Example 

 Basic formula remains the same
 Advance the solution to the next time step using the increment 

function

𝑦𝑖+1 = 𝑦𝑖 + 𝜙ℎ

 Now, the output is the vector of states, and the increment 
function is an 𝑛-dimensional vector

𝐱𝑖+1 = 𝐱𝑖 + 𝛟ℎ

or
𝑥1,𝑖+1, 𝑥2,𝑖+1, … , 𝑥𝑛,𝑖+1 = 𝑥1,𝑖 , 𝑥2,𝑖 , … , 𝑥𝑛,𝑖 + 𝜙1, 𝜙2, … , 𝜙𝑛 ℎ

 Requires only a minor modification of the code written for 
first-order ODEs to accommodate 𝑛-dimensional functions
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Fourth-Order ODE – Example 

 Often want to pass parameters (i.e., Input arguments in 
addition to 𝑡 and 𝑦) to the ODE function 

 Create a lambda function wrapper for the ODE 
function, e.g.:
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Fourth-Order ODE – Example 
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Fourth-Order ODE – Example 
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Fourth-Order ODE – Example 
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Solving ODEs in Python55
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SciPy’s ODE Solvers

 SciPy’s solve_ivp() has several ODE solvers

 RK45 is the default and should usually be first choice for non-stiff problems

 Stiff ODEs are those with a large range of eigenvalues – i.e., both very fast 
and very slow system poles

 Numerical solution is difficult

 From the SciPy documentation:

Solver Stiffness Accuracy When to use

RK45

Non-stiff

Medium Most of the time. First choice.

RK23 Low For problems with crude error tolerances or for solving 
moderately stiff problems.

DOP853 High For problems requiring high precision (low values of rtol 
and atol).

Radau
Stiff Low to medium

If ode45 is slow or non-convergent because the problem 
is stiff.BDF
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Solving ODEs with SciPy – solve_ivp()

sol = solve_ivp(dydt, tspan, y0, method='RK45')

 dydt: ODE function object – n-dimensional
 tspan: array of initial and final times – [ti,tf]
 y0: initial conditions – an n-vector
 method: solver to use – optional – default: ‘RK45’
 sol: an OdeResult object with several fields, including:

◼ sol.y: solution vector
◼ sol.t: time vector for the solution

 Default method, RK45, is an adaptive algorithm that 
uses fourth- and fifth-order Runge-Kutta formulas
 Variable step size
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Fourth-Order ODE – Example 

Tolerance set 
with rtol

Pass parameters 
with args
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