SECTION 6: ORDINARY DIFFERENTIAL EQUATIONS

ESC 440 - Computational Methods for Engineers

Introduction

Ordinary Differential Equations

\square Differential equations can be categorized as either ordinary or partial differential equations

- Ordinary differential equations (ODEs) - functions of a single independent variable
- Partial differential equations (PDEs) - functions of two or more independent variables
\square We'll focus on ordinary differential equations only
\square Note that we are not making any assumption of linearity here
- All techniques we'll look at apply equally to linear or nonlinear ODEs

Differential Equation Order

\square The order of a differential equation is the highest derivative it contains

- First-order ODEs contain only first derivatives
\square Second-order ODEs include second derivatives (possibly first, as well), and so on ...
\square Any $n^{\text {th }}$ - order ODE can be reduced to a system of n first-order ODEs
\square Solution requires knowledge of n initial or boundary conditions
\square We'll focus on techniques to solve first-order ODEs
\square Can be applied to systems of first-order ODEs representing higher-order ODEs

Initial-Value vs. Boundary-Value Problems

\square To solve an $n^{\text {th }}$-order ODE (or a system of n firstorder ODEs), n known conditions are required

- Initial-value problems - all n conditions are specified at the same value of the independent variable (typically, at $x=0$ or $t=0$)
\square Boundary-value problems - n conditions specified at different values of the independent variable
\square In this course, we'll focus exclusively on initial-value problems

Solving ODEs - General Aproach

\square Have an ODE that is some function of the independent and dependent variables:

$$
\frac{d y}{d t}=f(t, y)
$$

\square Numerical solutions amounts to approximating $y(t)$
\square Starting at some known initial condition, $y(0)$, propagate the solution forward in time:

$$
y_{i+1}=y_{i}+\phi h
$$

or

$$
(\text { next } y \text { value })=(\text { current } y \text { value })+(\text { slope }) \times(\text { step size })
$$

$\square \phi$ is called the increment function

- Represents a slope, though not necessarily the slope at $\left(t_{i}, y_{i}\right)$
$\square h$ is the time step: $h=t_{i+1}-t_{i}$

One-Step vs. Multi-Step Methods

\square One-step methods

- Use only information at current value of $y(t)$ (i.e. $y\left(t_{i}\right)$, or $\left.y_{i}\right)$ to determine the increment function, ϕ, to be used to propagate the solution forward to y_{i+1}
- Collectively known as Runge-Kutta methods
\square We'll focus on these exclusively in this course
\square Multi-step methods
- Use both current and past values of $y(t)$ to provide information about the trajectory of $y(t)$
- Improved accuracy

Euler's Method

We'll first look at three specific Runge-Kutta algorithms, before returning to a development of the Runge-Kutta approach from a more general perspective.

Euler's Method

\square Given an ODE of the form

$$
\frac{d y}{d t}=f(t, y)
$$

approximate the solution, $y(t)$, using the formula

$$
y_{i+1}=y_{i}+\phi h
$$

where the increment function is the current derivative

$$
\phi=f\left(t_{i}, y_{i}\right)
$$

\square That is, assume the slope of $y(t)$ is constant for $t_{i} \leq$ $t \leq t_{i+1}$

- Use the slope at $\left(t_{i}, y_{i}\right)$ to extrapolate to y_{i+1}

Euler's Method

\square Euler's method formula:

$$
y_{i+1}=y_{i}+f\left(t_{i}, y_{i}\right) h
$$

\square Increment function is the current slope:

$$
\phi=f\left(t_{i}, y_{i}\right)
$$

Euler's Method - Example

\square Use Euler's method to solve

$$
\frac{d y}{d t}=5 e^{-0.5 t}-0.5 y
$$

given an initial condition of

$$
y(0)=3
$$

and a step size of

$$
h=0.5 \mathrm{sec}
$$

\square True solution is:

$$
y(t)=e^{-0.5 t}+5 t \cdot e^{-0.5 t}
$$

Euler's Method - Example

```
dydt = lambda t, y: 5*np.exp(-0.5*t) - 0.5*y
y0}=
t0 = 0
tf = 10
h}=0.
ttrue = np.linspace(t0,tf, 2000)
ytrue = 3*np.exp(-0.5*ttrue) + 5*ttrue*np.exp(-0.5*ttrue)
[t,y] = euler(dydt, [t0,tf], y0, h)
```


Euler's Method - Error

\square Two types of truncation error:

- Local - error due to the approximation associated with the given method over a single time step
- Global - error propagated forward from previous time steps
\square Total error is the sum of local and global error
\square Representing the solution to the ODE as a Taylor series expansion about $\left(t_{i}, y_{i}\right)$, the solution at t_{i+1} is:

$$
y_{i+1}=y_{i}+f\left(t_{i}, y_{i}\right) h+f^{\prime}\left(t_{i}, y_{i}\right) \frac{h^{2}}{2!}+\cdots+f^{(n)}\left(t_{i}, y_{i}\right) \frac{h^{n}}{n!}+R_{n}
$$

\square Where the remainder term is:

$$
R_{n}=O\left(h^{n+1}\right)
$$

Euler's Method - Error

\square Euler's method is the Taylor series, truncated after the first derivative term

$$
y_{i+1}=y_{i}+f\left(t_{i}, y_{i}\right) h+R_{1}
$$

\square For small enough h, the error is dominated by the next term in the series, so

$$
E_{a}=f^{\prime}\left(t_{i}, y_{i}\right) \frac{h^{2}}{2!} \approx R_{1}=O\left(h^{2}\right)
$$

\square Local error is proportional to $\boldsymbol{h}^{\mathbf{2}}$
\square Analysis of the global (i.e. propagated) error is beyond the scope of this course, but the result is that global error is proportional to h

Euler's Method - Stability

\square Euler's method will result in error, but worse yet, it may be unstable

- Unstable if errors grow without bound
\square Consider, for example, the following ODE:

$$
\frac{d y}{d t}=f(t, y)=-a y
$$

\square The true solution decays exponentially to zero:

$$
y(t)=y_{0} e^{-a t}
$$

\square Using Euler's method, the solution is

$$
y_{i+1}=y_{i}-a y_{i} h=y_{i}(1-a h)
$$

\square This solution will grow without bound if $|1-a h|>1$, i.e. if $h>2 / a$

- If the step size is too large, solution blows up
- Euler's method is conditionally stable

Stability of Euler's Method - Examples

Euler's Method ODE Solution

Euler's Method ODE Solution

17

Heun's Method

Heun's Method

\square Euler's assumes a constant slope for the increment function:

$$
y_{i+1}=y_{i}+f\left(t_{i}, y_{i}\right) h
$$

\square Improve accuracy of the solution by using a more accurate slope estimate for $t_{i} \leq t \leq t_{i+1}$
\square Heun's method first applies Euler's method to predict the value of y at t_{i+1} - the predictor equation:

$$
y_{i+1}^{0}=y_{i}+f\left(t_{i}, y_{i}\right) h
$$

\square This value is then used to predict the slope at t_{i+1}

$$
y_{i+1}^{\prime}=f\left(t_{i+1}, y_{i+1}^{0}\right)
$$

Heun's Method

\square The increment function is the average of the slope at $\left(t_{i}, y_{i}\right)$ and the slope at $\left(t_{i+1}, y_{i+1}^{0}\right)$

$$
\phi=\bar{y}^{\prime}=\frac{f\left(t_{i}, y_{i}\right)+f\left(t_{i+1}, y_{i+1}^{0}\right)}{2}
$$

\square The next value of $y(t)$ is given by the corrector equation:

$$
y_{i+1}=y_{i}+\frac{f\left(t_{i}, y_{i}\right)+f\left(t_{i+1}, y_{i+1}^{0}\right)}{2} h
$$

Heun's Method - Summary

\square Apply Euler's - the predictor equation - to predict y_{i+1}^{0}
\square Calculate slope at $\left(t_{i+1}, y_{i+1}^{0}\right)$
\square Compute average of the two slopes
\square Use slope average to propagate the solution forward to y_{i+1} - the corrector equation

Heun's Method - Example

```
def heun(dydt,tspan,y0,h):
    Solves an ODE using Heun's method
    Parameters
    dydt : ODE function - function of t and y
    tspan : array of initial and final times: tspan = [t0, tf]
    y0 : initial condition
    h : time step
    Returns
    t : time vector of solution - will contain tf, so final time
        step may be smaller than h
    y : solution vector
    ...
    t0 = tspan[0]
    tf = tspan[1]
    t = np.arange(t0, tf+h/2, h)
    # make sure last time point is tf
    if t[-1] != tf:
        t = np.append(t, tf)
    n=len(t)
    y = np.zeros(len(t))
    y[0] = y0
    for i in range(n-1):
        # predictor equation
        yp = y[i] + dydt(t[i],y[i])*(t[i+1]-t[i])
        # predicted slope at t(i+1)
        dydtp = dydt(t[i+1],yp)
        # increment function - avg. slope
        phi = (dydt(t[i],y[i]) + dydtp)/2
        # corrector equation
        y[i+1] = y[i] + phi*(t[i+1]-t[i])
    return [t, y]
```


Heun's Method with Iteration

\square Predictor equation:

$$
y_{i+1}^{0}=y_{i}+f\left(t_{i}, y_{i}\right) h
$$

\square Corrector equation:

$$
y_{i+1}^{j}=y_{i}+\frac{f\left(t_{i}, y_{i}\right)+f\left(t_{i+1}, y_{i+1}^{j-1}\right)}{2} h
$$

\square The corrector equation can be applied iteratively, providing a refined estimate of y_{i+1}
\square Iterate until approximate error falls below some stopping criterion

$$
\left|\varepsilon_{a}\right|=\left|\frac{y_{i+1}^{j}-y_{i+1}^{j-1}}{y_{i+1}^{j}}\right| \cdot 100 \% \leq \varepsilon_{s}
$$

Iterative Heun's Method - Algorithm

$\square \quad y_{i+1}^{0}=y_{i}+f\left(t_{i}, y_{i}\right) h$
$\square \quad j=1$
\square While $\left|\varepsilon_{a}\right|>\varepsilon_{s}$

$$
\begin{aligned}
& \text { ㅁ } \quad y_{i+1}^{j}=y_{i}+\frac{f\left(t_{i} y_{i}\right)+f\left(t_{i+1}, y_{i+1}^{j-1}\right)}{2} h \\
& \text { व } \quad\left|\varepsilon_{a}\right|=\left|\frac{y_{i+1}^{j}-y_{i+1}^{j-1}}{y_{i+1}^{j}}\right| \cdot 100 \% \\
& \text { - } \quad j=j+1
\end{aligned}
$$

\square Does not necessarily converge to the correct solution, though ε_{a} will converge to a finite value

Iterative Heun’s Method - Example

Midpoint Method

Midpoint Method

\square The slope at the midpoint of a time interval used as the increment function
\square Provides a more accurate estimate of the slope across the entire time interval

Midpoint Method

\square Apply Euler's method to approximate y at midpoint $\uparrow^{y(t)}$

$$
y_{i+\frac{1}{2}}=y_{i}+f\left(t_{i}, y_{i}\right) \frac{h}{2}
$$

\square Slope estimate at midpoint:

$$
y_{i+\frac{1}{2}}^{\prime}=f\left(t_{i+\frac{1}{2}} y_{i+\frac{1}{2}}\right)
$$

\square Midpoint slope estimate is increment function

$$
y_{i+1}=y_{i}+f\left(t_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}\right)^{h}
$$

Midpoint Method - Example

```
def midpt(dydt,tspan,y0,h):
    Solves an ODE using the midpoint method
    Parameters
    dydt : ODE function - function of t and }
    tspan : array of initial and final times: tspan = [t0, tf]
    y0 : initial condition
    h : time step
    Returns
    t : time vector of solution - will contain tf, so final time
        step may be smaller than h
    y : solution vector
    t0 = tspan[0]
    tf = tspan[1]
    t = np.arange(t0, tf+h/2, h)
    # make sure last time point is tf
    if t[-1] != tf:
        t = np.append(t, tf)
    n = len(t)
    y = np.zeros(len(t))
    y[0] = y0
    for i in range(n-1):
        # apply Euler's to get y(i+1/2)
        h = t[i+1] - t[i]
        ymp = y[i] + dydt(t[i],y[i])*h/2
        # increment function - midpoint slope
        phi = dydt(t[i]+h/2, ymp)
        # propagate y forward one time step
        y[i+1] = y[i] + phi*h
    return [t, y]
```

Midpoint Method ODE Solution

One-Step Methods - Error

Method	Local Error	Global Error
Euler's	$O\left(h^{2}\right)$	$O(h)$
Heun's (w/o iter.)	$O\left(h^{3}\right)$	$O\left(h^{2}\right)$
Midpoint	$O\left(h^{3}\right)$	$O\left(h^{2}\right)$

Runge-Kutta Methods

\square Euler's, Heun's, and midpoint methods are specific cases of the broader category of one-step methods known as Runge-Kutta methods
\square Runge-Kutta methods all have the same general form

$$
y_{i+1}=y_{i}+\phi h
$$

\square The increment function has the following form

$$
\phi=a_{1} k_{1}+a_{2} k_{2}+\cdots+a_{n} k_{n}
$$

$\square n$ is the order of the Runge-Kutta method

- We'll see that Euler's is a first-order method, while Heun's and midpoint are both second-order

Runge-Kutta Methods

\square The increment function is

$$
\phi=a_{1} k_{1}+a_{2} k_{2}+\cdots+a_{n} k_{n}
$$

where

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, y_{i}\right) \\
& k_{2}=f\left(t_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right) \\
& k_{3}=f\left(t_{i}+p_{2} h, y_{i}+q_{21} k_{1} h+q_{22} k_{2} h\right) \\
& \quad \vdots \quad \vdots \\
& k_{n}=f\left(t_{i}+p_{n-1} h, y_{i}+q_{n-1,1} k_{1} h+\cdots+q_{n-1, n-1} k_{n-1} h\right)
\end{aligned}
$$

\square The $a^{\prime} \mathrm{s}, p^{\prime} \mathrm{s}$, and $q^{\prime} \mathrm{s}$ are constants
\square Can see that Euler's method is first-order with $a_{1}=1$

Runge-Kutta Methods

\square To determine values of $a^{\prime} s, p$'s, and q 's:
\square Set the Runge-Kutta formula equal to a Taylor series of the same order
\square Equate coefficients
\square An under-determined system results
\square Arbitrarily set one constant and solve for others
\square Procedure is the same for all orders
\square We'll step through the derivation of the second-order Runge-Kutta formulas

Second-Order Runge-Kutta Methods

\square Second-order Runge-Kutta:

$$
\begin{equation*}
y_{i+1}=\left(a_{1} k_{1}+a_{2} k_{2}\right) h \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& k_{1}=f\left(t_{i}, y_{i}\right) \tag{2}\\
& k_{2}=f\left(t_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right) \tag{3}
\end{align*}
$$

\square Second-order Taylor series:

$$
\begin{equation*}
y_{i+1}=y_{i}+f\left(t_{i}, y_{i}\right) h+\frac{f^{\prime}\left(t_{i}, y_{i}\right)}{2!} h^{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{\prime}\left(t_{i}, y_{i}\right)=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \tag{5}
\end{equation*}
$$

Second-Order Runge-Kutta Methods

\square Substituting (5) into (4), and recognizing that $\frac{d y}{d t}=f\left(t_{i}, y_{i}\right)$, the Taylor series becomes

$$
\begin{equation*}
y_{i+1}=y_{i}+f\left(t_{i}, y_{i}\right) h+\left(\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} f\left(t_{i}, y_{i}\right)\right) \frac{h^{2}}{2!} \tag{6}
\end{equation*}
$$

\square Next, represent (3) as a first-order Taylor series

- It's a function of two variables, for which the first-order Taylor series has the following form

$$
\begin{equation*}
g(x+\Delta x, y+\Delta y)=g(x, y)+\Delta x \frac{\partial g}{\partial x}+\Delta y \frac{\partial g}{\partial y}+O\left(h^{2}\right) \tag{7}
\end{equation*}
$$

\square Using (7), (3) becomes

$$
\begin{equation*}
k_{2}=f\left(t_{i}, y_{i}\right)+p_{1} h \frac{\partial f}{\partial t}+q_{11} k_{1} h \frac{\partial f}{\partial y}+O\left(h^{2}\right) \tag{8}
\end{equation*}
$$

Second-Order Runge-Kutta Methods

\square Substituting (2) and (8) into (1)

$$
\begin{align*}
y_{i+1}=y_{i} & +a_{1} h f\left(t_{i}, y_{i}\right)+a_{2} h f\left(t_{i}, y_{i}\right) \\
& +a_{2} p_{1} h^{2} \frac{\partial f}{\partial t}+a_{2} q_{11} h^{2} \frac{\partial f}{\partial y} f\left(t_{i}, y_{i}\right) \tag{9}
\end{align*}
$$

\square Now, set (9) equal to (6), the Taylor series

$$
\begin{gather*}
y_{i}+a_{1} h f\left(t_{i}, y_{i}\right)+a_{2} h f\left(t_{i}, y_{i}\right)+a_{2} p_{1} h^{2} \frac{\partial f}{\partial t}+a_{2} q_{11} h^{2} \frac{\partial f}{\partial y} f\left(t_{i}, y_{i}\right) \\
=y_{i}+f\left(t_{i}, y_{i}\right) h+\frac{\partial f}{\partial t} \frac{h^{2}}{2}+\frac{\partial f}{\partial y} \frac{h^{2}}{2} f\left(t_{i}, y_{i}\right) \tag{10}
\end{gather*}
$$

\square Equating the coefficients in (10) gives three equations with four unknowns:

$$
\begin{align*}
& a_{1}+a_{2}=1 \tag{11}\\
& a_{2} p_{1}=\frac{1}{2} \tag{12}\\
& a_{2} q_{11}=\frac{1}{2} \tag{13}
\end{align*}
$$

Second-Order Runge-Kutta Methods

\square We have three equations in four unknowns

$$
\begin{align*}
& a_{1}+a_{2}=1 \tag{11}\\
& a_{2} p_{1}=\frac{1}{2} \tag{12}\\
& a_{2} q_{11}=\frac{1}{2} \tag{13}
\end{align*}
$$

\square An under-determined system

- An infinite number of solutions
- Arbitrarily set one constant $-a_{2}$ - to a certain value and solve for the other three constants
- Different solution for each value of $a_{2}-$ a family of solutions

$a_{2}=1 / 2-$ Heun's Method

\square Arbitrarily set a_{2} and solve for the other constants

$$
a_{1}=\frac{1}{2^{\prime}} \quad a_{2}=\frac{1}{2^{\prime}} \quad p_{1}=1, \quad q_{11}=1
$$

\square The second-order Runge-Kutta formula becomes

$$
y_{i+1}=y_{i}+\left(\frac{1}{2} k_{1}+\frac{1}{2} k_{2}\right) h
$$

where

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, y_{i}\right) \\
& k_{2}=f\left(t_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right)=f\left(t_{i}+h, y_{i}+k_{1} h\right)
\end{aligned}
$$

\square This is Heun's method

$$
y_{i+1}=y_{i}+\frac{f\left(t_{i}, y_{i}\right)+f\left(t_{i+1}, y_{i+1}^{0}\right)}{2} h
$$

$a_{2}=1$ - Midpoint Method

\square Arbitrarily set a_{2} and solve for the other constants

$$
a_{1}=0, \quad a_{2}=1, \quad p_{1}=\frac{1}{2}, \quad q_{11}=\frac{1}{2}
$$

\square The second-order Runge-Kutta formula becomes

$$
y_{i+1}=y_{i}+k_{2} h
$$

where

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, y_{i}\right) \\
& k_{2}=f\left(t_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right)=f\left(t_{i}+\frac{h}{2}, y_{i}+k_{1} \frac{h}{2}\right)
\end{aligned}
$$

\square This is the midpoint method

$$
y_{i+1}=y_{i}+f\left(t_{i+\frac{1}{2}} y_{i+\frac{1}{2}}\right)^{h}
$$

Fourth-Order Runge-Kutta

\square The most commonly used Runge-Kutta method is the fourth-order method
\square Derivation proceeds similar to that of the second-order method

- Under-determined system - family of solutions
\square Most common fourth-order Runge-Kutta method:

$$
y_{i+1}=y_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h
$$

where

$$
\begin{aligned}
& k_{1}=f\left(t_{i}, y_{i}\right) \\
& k_{2}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1} h\right) \\
& k_{3}=f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{2} h\right) \\
& k_{4}=f\left(t_{i}+h, y_{i}+k_{3} h\right)
\end{aligned}
$$

$\square \quad$ The increment function is a weighted average of four different slopes

$4^{\text {th }}$-Order Runge-Kutta - Algorithm

1. Calculate the slope at $\left(t_{i}, y_{i}\right)$ \rightarrow this is k_{1}
2. Use k_{1} to approximate $y_{i+1 / 2}$ from y_{i}. Calculate the slope here \rightarrow this is k_{2}
3. Use k_{2} to re-approx. $y_{i+1 / 2}$ from y_{i}. Calculate the slope here \rightarrow this is k_{3}
4. Use k_{3} to approx. y_{i+1} from y_{i}. Calculate the slope here \rightarrow this is k_{4}
5. Calculate ϕ as a weighted average of the four slopes

Fourth-Order Runge-Kutta - Example

```
def rk4ode(dydt,tspan,y0,h):
    Solves an ODE using the 4th-order Runge-Kutta method
    Parameters
    dydt : ODE function - function of t and y
    tspan : array of initial and final times: tspan = [t0, tf]
    y0 : initial condition
    h : time step
    Returns
    t : time vector of solution - will contain tf, so final time
        step may be smaller than h
    y : solution vector
    t0 = tspan[0]
    tf = tspan[1]
    t = np.arange(t0, tf+h/2, h)
    & make sure last time point is tf
    if t[-1] != tf:
        t = np.append(t, tf)
    n= len(t)
    y = np.zeros(len(t))
    y[0] = y0
    for i in range(n-1):
        # calculate slopes
        k1 = dydt(t[i],y[i])
        k2 = dydt(t[i]+h/2,y[i]+k1*h/2)
        k3 = dydt(t[i]+h/2,y[i]+k2*h/2)
        k4 = dydt(t[i]+h,y[i]+k3*h)
        # increment function
        phi = 1/6*(k1 + 2*k2 + 2*k3 + k4)
        # propagate y forward one time step
        y[i+1] = y[i] + phi*h
    return [t, y]
```


43
 Systems of Equations

Higher-Order Differential Equations

\square The ODE solution techniques we've looked at so far pertain to first-order ODEs
\square Can be extended to higher-order ODEs by reducing to systems of first-order equations
\square An $n^{\text {th }}$-order ODE can be represented as a system of n first-order ODEs
\square Solution method is applied to each equation at each time step before advancing to the next time step
\square We'll now illustrate the process with a fourth-order quarter-car model example

Fourth-Order ODE - Example

\square Consider a quarter-car model of a vehicle's suspension system
\square Apply Newton's second law to each mass to derive the governing fourthorder ODE

- Single $4^{\text {th }}$-order equation, or
- Two $2^{\text {nd }}$-order equations

$$
\begin{aligned}
& \ddot{x}+\frac{k}{m_{s}}\left(x-x_{u s}\right)+\frac{b}{m_{s}}\left(\dot{x}-\dot{x}_{u s}\right)=0 \\
& \ddot{x}_{u s}+\frac{b}{m_{u s}}\left(\dot{x}_{u s}-\dot{x}\right)+\frac{k}{m_{u s}}\left(x_{u s}-x\right)+\frac{k_{t}}{m_{u s}} x_{u s}=\frac{k_{t}}{m_{u s}} x_{r}
\end{aligned}
$$

\square Want to reduce to a system of four first-order ODEs

- Put into state-space form

Fourth-Order ODE - Example

$$
\begin{align*}
& \ddot{x}+\frac{k}{m_{s}}\left(x-x_{u s}\right)+\frac{b}{m_{s}}\left(\dot{x}-\dot{x}_{u s}\right)=0 \tag{1}\\
& \ddot{x}_{u s}+\frac{b}{m_{u s}}\left(\dot{x}_{u s}-\dot{x}\right)+\frac{k}{m_{u s}}\left(x_{u s}-x\right)+\frac{k_{t}}{m_{u s}} x_{u s}=\frac{k_{t}}{m_{u s}} x_{r}(t) \tag{2}
\end{align*}
$$

\square Reducing the ODE to a system of first-order ODEs amounts to representing our system in state-space form:

$$
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{b} u
$$

\square Define a state vector of displacements and velocities:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \tag{3}\\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x \\
x_{u s} \\
v \\
v_{u s}
\end{array}\right]
$$

Fourth-Order ODE - Example

\square Rewrite (1) and (2) using the state variables defined in (3)

$$
\begin{align*}
& \dot{v}=\dot{x}_{3}=-\frac{k}{m_{s}} x_{1}+\frac{k}{m_{s}} x_{2}-\frac{b}{m_{s}} x_{3}+\frac{b}{m_{s}} x_{4}=0 \tag{4}\\
& \dot{v}_{u s}=\dot{x}_{4}=-\frac{b}{m_{u s}} x_{4}+\frac{b}{m_{u s}} x_{3}-\frac{k}{m_{u s}} x_{2}+\frac{k}{m_{u s}} x_{1}-\frac{k_{t}}{m_{u s}} x_{2}+\frac{k_{t}}{m_{u s}} x_{r}(t) \tag{5}
\end{align*}
$$

\square The state variable representation of the system is

$$
\dot{\mathbf{x}}=\left[\begin{array}{c}
\dot{x}_{1} \tag{6}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
\dot{x} \\
\dot{x}_{u s} \\
\dot{v} \\
\dot{v}_{u s}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{k}{m_{s}} & \frac{k}{m_{s}} & -\frac{b}{m_{s}} & \frac{b}{m_{s}} \\
\frac{k}{m_{u s}} & -\frac{k+k_{t}}{m_{u s}} & \frac{b}{m_{u s}} & -\frac{b}{m_{u s}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{k_{t}}{m_{u s}}
\end{array}\right] \cdot x_{r}(t)
$$

Fourth-Order ODE - Example

\square Equation (6) clearly shows our system of four first-order ODEs

- Alternatively, could have derived the state-space equations directly (e.g. using a bond graph approach)
\square In Python, we'll represent our system as an n-dimensional function
- A vector of n functions:

$$
\begin{align*}
\dot{x}_{1} & =x_{3} \tag{7}\\
\dot{x}_{2} & =x_{4} \tag{8}\\
\dot{x}_{3} & =-\frac{k}{m_{s}} x_{1}+\frac{k}{m_{s}} x_{2}-\frac{b}{m_{s}} x_{3}+\frac{b}{m_{s}} x_{4} \tag{9}\\
\dot{x}_{4} & =\frac{k}{m_{u s}} x_{1}-\frac{k+k_{t}}{m_{u s}} x_{2}+\frac{b}{m_{u s}} x_{3}-\frac{b}{m_{u s}} x_{4}+\frac{k_{t}}{m_{u s}} x_{r}(t) \tag{10}
\end{align*}
$$

Fourth-Order ODE - Example

\square In Python, define the $n^{\text {th }}$-order system of ODEs as shown below

- An n-dimensional function

```
12 def qcarode(t,y,ms,mus,k,kt,b,xr):
        # system of first-order ODEs
        dy = np.zeros(4)
        dy[0] = y[2]
        dy[1] = y[3]
        dy[2] = -k/ms*y[0] + k/ms*y[1] - b/ms*y[2] +b/ms*y[3]
        dy[3] = k/mus*y[0] - (k+kt)/mus*y[1] + b/mus*y[2] - b/mus*y[3] + kt/mus*xr
            return dy
```

\square Here, the ODE function includes parameters (m_{s}, k, etc.) in addition to variables t and y

- Can create a lambda function wrapper to simplify the passing of parameters

Fourth-Order ODE - Example

\square Basic formula remains the same

- Advance the solution to the next time step using the increment function

$$
y_{i+1}=y_{i}+\phi h
$$

\square Now, the output is the vector of states, and the increment function is an n-dimensional vector

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\boldsymbol{\phi} h
$$

or

$$
\left[x_{1, i+1}, x_{2, i+1}, \ldots, x_{n, i+1}\right]=\left[x_{1, i}, x_{2, i}, \ldots, x_{n, i}\right]+\left[\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right] h
$$

\square Requires only a minor modification of the code written for first-order ODEs to accommodate n-dimensional functions

Fourth-Order ODE - Example

\square Often want to pass parameters (i.e., Input arguments in addition to t and y) to the ODE function
\square Create a lambda function wrapper for the ODE function, e.g.:

```
26
29
30
31
32
33
34
35
36
37
38
```

```
# physical system parameters
```


physical system parameters

27 ms = 973 \# sprung mass
27 ms = 973 \# sprung mass
28 k = 10e3 \# shock absorber spring constant
28 k = 10e3 \# shock absorber spring constant

```
b = 3000 # shock absorber damping
```

b = 3000 \# shock absorber damping
kt = 101115 \# tire spring constant
kt = 101115 \# tire spring constant
mus = 114 \# unsprung mass
mus = 114 \# unsprung mass

input displacement step

input displacement step

xr = 0.1 \# 10 cm
xr = 0.1 \# 10 cm

lambda function wrapper to allow

lambda function wrapper to allow

for passing parameters

for passing parameters

xdot = lambda t, y: qcarode(t,y,ms,mus,k,kt,b,xr)

```
xdot = lambda t, y: qcarode(t,y,ms,mus,k,kt,b,xr)
```

39

Fourth-Order ODE - Example

Fourth-Order ODE - Example


```
def eulern(dydt,tspan,y0,h):
    Solves an Nth-order ODE using Euler's method.
    Parameters
    dydt : ODE function - function of }t\mathrm{ and }
    tspan : array of initial and final times: tspan = [t0, tf]
    y0 : initial condition
    h : time step
    Returns
    : time vector of solution - will contain tf, so final time
        step may be smaller than h
    y : solution vector
    t0 = tspan[0]
    tf = tspan[1]
    t = np.arange(t0, tf+h/2, h)
    # if tspan isn't divisible by }h\mathrm{ ,
    # add tf as final time point
    if t[-1] != tf:
        t = np.append(t, tf)
    n = len(t)
    N = len(y0)
    y = np.zeros((n,N))
    y[0,:] = y0
    for i in range(n-1)
        y[i+1,:] = y[i,:] + dydt(t[i],y[i,:])*(t[i+1]-t[i])
return [t, y]
```


Fourth-Order ODE - Example

K. Webb
def rk4oden(dydt, tspan, $y 0, h$):
Solves an Nth-order ODE using the 4th-order Runge-Kutta method
Parameters
dydt : ODE function - function of t and y
tspan : array of initial and final times: tspan $=[t 0$, tf]
y0 : initial condition
h : time step

Returns
t : time vector of solution - will contain tf, so final time step may be smaller than h
y : solution vector
' ${ }^{\prime}$
t0 $=$ tspan[0]
tf $=$ tspan[1]
$\mathrm{t}=\mathrm{np}$.arange(t0, $\mathrm{tf}+\mathrm{h} / 2, \mathrm{~h})$
\# make sure last time point is $t f$
if $\mathrm{t}[-1]$! $=\mathrm{tf}$:
$\mathrm{t}=\mathrm{np}$.append($\mathrm{t}, \mathrm{tf})$
$\mathrm{n}=\operatorname{len}(\mathrm{t})$
$N=\operatorname{len}(y 0)$
$y=n p \cdot z \operatorname{cros}((n, N))$
$y[0,:]=y 0$
for i in range($n-1$):
\# calculate slopes
k1 $=\operatorname{dydt}(t[i], y[i,:])$
$\mathrm{k} 2=\operatorname{dydt}\left(\mathrm{t}[\mathrm{i}]+\mathrm{h} / 2, \mathrm{y}[\mathrm{i},:]+\mathrm{k} 1^{*} \mathrm{~h} / 2\right)$
$k 3=\operatorname{dydt}\left(t[i]+h / 2, y[i,:]+k 2^{*} h / 2\right)$
k4 $=\operatorname{dydt}\left(\mathrm{t}[\mathrm{i}]+\mathrm{h}, \mathrm{y}[\mathrm{i},:]+\mathrm{k} 3^{*} \mathrm{~h}\right)$
\# increment function
phi $=1 / 6^{*}\left(\mathrm{k} 1+2^{*} \mathrm{k} 2+2^{*} \mathrm{k} 3+\mathrm{k} 4\right)$
\# propagate y forward one time step
$y[i+1,:]=y[i,:]+p h i^{*} h$
return [t, y]

${ }_{55}$ Solving ODEs in Python

SciPy's ODE Solvers

- SciPy's solve_ivp() has several ODE solvers
- RK45 is the default and should usually be first choice for non-stiff problems
\square Stiff ODEs are those with a large range of eigenvalues - i.e., both very fast and very slow system poles
- Numerical solution is difficult
\square From the SciPy documentation:

Solver	Stiffness	Accuracy	When to use
RK45		Medium	Most of the time. First choice.
RK23	Non-stiff	Low	For problems with crude error tolerances or for solving moderately stiff problems.
DOP853		High	For problems requiring high precision (low values of rtol and atol).
Radau	Stiff	Low to medium	If ode45 is slow or non-convergent because the problem is stiff.
BDF	St		

Solving ODEs with SciPy - solve_ivp()

sol = solve_ivp(dydt, tspan, y0, method='RK45')

- dydt: ODE function object - n -dimensional
- tspan: array of initial and final times - [ti, tf]
- y0: initial conditions - an n-vector
- method: solver to use - optional - default: 'RK45'
- sol: an OdeResult object with several fields, including:
- sol.y: solution vector
- sol.t: time vector for the solution
\square Default method, RK45, is an adaptive algorithm that uses fourth- and fifth-order Runge-Kutta formulas
- Variable step size

Fourth-Order ODE - Example

K. Webb

