SECTION 7: FOURIER ANALYSIS

ESC 440 - Computational Methods for Engineers

Periodic Functions

\square A function is periodic if

$$
f(t)=f(t+T)
$$

where T is the period of the function
\square The function repeats itself every T seconds
\square Here, we're assuming a function of time, but could also be a spatial function, e.g.

- Elevation
\square Pixel intensity along rows or columns of an image

Frequency

\square The frequency of a periodic function is the inverse of its period

$$
f=\frac{1}{T}
$$

\square We'll refer to a function's frequency as its fundamental frequency, f_{0}
\square This is ordinary frequency, and has units of Hertz (Hz) (or cycles/sec)
\square Can also describe a function in terms of its angular frequency, which has units of rad/sec

$$
\omega_{0}=2 \pi \cdot f_{0}=\frac{2 \pi}{T}
$$

Fourier Series

\square Fourier discovered that if a periodic function satisfies the Dirichlet conditions:

1) It is absolutely integrable over any period:

$$
\int_{t_{0}}^{t_{0}+T} f(t) d t<\infty
$$

2) It has a finite number of maxima and minima over any period
3) It has a finite number of discontinuities over any period

Joseph Fourier 1768-1830
\square In other words, any periodic signal of engineering interest
\square Then it can be represented as an infinite sum of harmonically-related sinusoids, the Fourier series

Fourier Series

$\square \quad$ The Fourier series

$$
f(t)=a_{0}+\sum_{k=1}^{\infty}\left[a_{k} \cos \left(k \omega_{0} t\right)+b_{k} \sin \left(k \omega_{0} t\right)\right]
$$

where ω_{0} is the fundamental frequency, $\omega_{0}=\frac{2 \pi}{T}$
and, the Fourier coefficients are given by

$$
a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t
$$

the average value of the function over a full period, and

$$
a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

and

$$
b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

Sinusoids as Basis Functions

\square Harmonically-related sinusoids form a set of orthogonal basis functions for any periodic functions satisfying the Dirichlet conditions
\square Not unlike the unit vectors in \mathbf{R}^{2} space:

$$
\hat{\mathbf{\imath}}=(1,0), \quad \hat{\mathbf{\jmath}}=(0,1)
$$

\square Any vector can be expressed as a linear combination of these basis vectors

$$
\mathbf{x}=a_{1} \hat{\mathbf{\imath}}+a_{2} \hat{\mathbf{\jmath}}
$$

where each coefficient is given by an inner product

$$
\begin{aligned}
& a_{1}=\mathbf{x} \cdot \hat{\mathbf{1}} \\
& a_{2}=\mathbf{x} \cdot \hat{\mathbf{j}}
\end{aligned}
$$

\square These are the projections of \mathbf{x} onto the basis vectors

Sinusoids as Basis Functions

\square Similarly, any periodic function can be represented as a sum of projections onto the sinusoidal basis functions
\square Similar to vector dot products, these projections are also given by inner products:

$$
a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

and

$$
b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(k \omega_{0} t\right) d t, \quad k=1,2,3 \ldots
$$

\square These are projections of $f(t)$ onto the sinusoidal basis functions

Fourier Series - Example

\square Consider a rectangular pulse train
$\square T=2 \sec$

- $f_{0}=\frac{1}{T}=0.5 \mathrm{~Hz}$
- $\omega_{0}=\pi \mathrm{rad} / \mathrm{sec}$

\square Can determine the Fourier series by integrating over any full period, for example, $t=[0,2]$

$$
f(t)=\left\{\begin{array}{rr}
1 & 0<t<0.5 \\
0 & 0.5<t<1.5 \\
1 & 1.5<t<2.0
\end{array}\right.
$$

Fourier Series - Example $-a_{0}$

$$
f(t)=\left\{\begin{array}{rr}
1 & 0<t<0.5 \\
0 & 0.5<t<1.5 \\
1 & 1.5<t<2.0
\end{array}\right.
$$

First, calculate the average value

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t=\frac{1}{2} \int_{0}^{2} f(t) d t \\
& a_{0}=\frac{1}{2} \int_{0}^{0.5} 1 d t+\frac{1}{2} \int_{0.5}^{1.5} 0 d t+\frac{1}{2} \int_{1.5}^{2} 1 d t \\
& a_{0}=\left.\frac{1}{2} t\right|_{0} ^{0.5}+\left.\frac{1}{2} t\right|_{1.5} ^{2}=0.25+0.25 \\
& a_{0}=0.5, \text { as would be expected }
\end{aligned}
$$

Fourier Series - Example $-a_{k}$

\square Next determine the cosine coefficients, a_{k}

$$
\begin{aligned}
& a_{k}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(k \omega_{0} t\right) d t \\
& a_{k}=\frac{2}{2} \int_{0}^{0.5} \cos (k \pi t) d t+\frac{2}{2} \int_{1.5}^{2} \cos (k \pi t) d t \\
& a_{k}=\left.\frac{1}{k \pi} \sin (k \pi t)\right|_{0} ^{0.5}+\left.\frac{1}{k \pi} \sin (k \pi t)\right|_{1.5} ^{2} \\
& a_{k}=\frac{1}{k \pi}\left[\sin \left(k \frac{\pi}{2}\right)-0+0-\sin \left(k 3 \frac{\pi}{2}\right)\right] \\
& a_{k}=\frac{1}{k \pi}\left[\sin \left(k \frac{\pi}{2}\right)-\sin \left(k 3 \frac{\pi}{2}\right)\right]
\end{aligned}
$$

Fourier Series - Example $-a_{k}$

\square We know that

$$
\sin \left(k 3 \frac{\pi}{2}\right)=\sin \left(k \frac{\pi}{2}+k \pi\right)=-\sin \left(k \frac{\pi}{2}\right)
$$

so

$$
a_{k}=\frac{2}{k \pi} \sin \left(k \frac{\pi}{2}\right), \quad k=1,2,3 \ldots
$$

\square The first few values of a_{k} :

$$
a_{1}=\frac{2}{\pi}, a_{2}=0, a_{3}=-\frac{2}{3 \pi}, a_{4}=0, a_{5}=\frac{2}{5 \pi}
$$

\square Zero for all even values of k

- Only odd harmonics present in the Fourier Series

Fourier Series - Example - b_{k}

\square Next, determine the sine coefficients, b_{k}

$$
\begin{aligned}
& b_{k}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(k \omega_{0} t\right) d t \\
& b_{k}=\frac{2}{2} \int_{0}^{0.5} \sin (k \pi t) d t+\frac{2}{2} \int_{1.5}^{2} \sin (k \pi t) d t \\
& b_{k}=-\frac{1}{k \pi}\left[\left.\cos (k \pi t)\right|_{0} ^{0.5}+\left.\cos (k \pi t)\right|_{1.5} ^{2}\right] \\
& b_{k}=-\frac{1}{k \pi}\left[\cos \left(k \frac{\pi}{2}\right)-1+1-\cos \left(k \frac{\pi}{2}+k \pi\right)\right]=0 \\
& b_{k}=0, \quad k=1,2,3 \ldots
\end{aligned}
$$

\square All b_{k} coefficients are zero

- Only cosine terms in the Fourier series

Fourier Series - Example

\square The Fourier series for the rectangular pulse train:

$$
f(t)=0.5+\sum_{k=1}^{\infty} \frac{2}{k \pi} \sin \left(k \frac{\pi}{2}\right) \cos (k \pi t)
$$

\square Note that this is an equality as long as we include an infinite number of harmonics
\square Can approximate $f(t)$ by truncating after a finite number of terms

Fourier Series - Example

Fourier Series - Example

Even and Odd Symmetry

\square An even function is one for which

$$
f(t)=f(-t)
$$

\square An odd function is one for which

$$
f(t)=-f(-t)
$$

\square Consider two functions, $f(t)$ and $g(t)$

- If both are even (or odd), then

$$
\int_{-\alpha}^{\alpha} f(t) g(t) d t=2 \int_{0}^{\alpha} f(t) g(t) d t
$$

- If one is even, and one is odd, then

$$
\int_{-\alpha}^{\alpha} f(t) g(t) d t=0
$$

Even and Odd Symmetry

\square Since $\cos \left(k \omega_{0} t\right)$ is even, and $\sin \left(k \omega_{0} t\right)$ is odd - If $f(t)$ is an even function, then

$$
\begin{array}{ll}
a_{k}=\frac{4}{T} \int_{0}^{T / 2} f(t) \cos \left(k \omega_{0} t\right) d t, & k=1,2,3, \ldots \\
b_{k}=0, & k=1,2,3, \ldots
\end{array}
$$

- If $f(t)$ is an odd function, then

$$
\begin{array}{ll}
a_{k}=0, & k=1,2,3, \ldots \\
b_{k}=\frac{4}{T} \int_{0}^{T / 2} f(t) \sin \left(k \omega_{0} t\right) d t, & k=1,2,3, \ldots
\end{array}
$$

\square Recall the Fourier series for the pulse train, an even function, had only cosine terms

19
 Fourier Series - Cosine w/ Phase Form

Cosine-with-Phase Form

\square Given the trigonometric identity

$$
A_{1} \cos (\omega t)+B_{1} \sin (\omega t)=C_{1} \cos (\omega t+\theta)
$$

where

$$
C_{1}=\sqrt{A_{1}^{2}+B_{1}^{2}} \quad \text { and } \quad \theta=\tan ^{-1}\left(-\frac{B_{1}}{A_{1}}\right)
$$

\square We can express the Fourier series in cosine-with-phase form:

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\theta_{k}\right)
$$

where

$$
\begin{aligned}
& A_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}} \\
& \theta_{k}= \begin{cases}\tan ^{-1}\left(-\frac{b_{k}}{a_{k}}\right), & a \geq 0 \\
\pi+\tan ^{-1}\left(-\frac{b_{k}}{a_{k}}\right), & a<0\end{cases}
\end{aligned}
$$

Cosine-with-Phase Form - Example

\square Consider, again, the rectangular pulse train

- $a_{k}=\frac{2}{k \pi} \sin \left(\frac{k \pi}{2}\right)$
- $b_{k}=0$
\square So,

$$
A_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}}=\left|a_{k}\right|=\frac{2 k}{\pi}\left|\sin \left(\frac{k \pi}{2}\right)\right|
$$

and

$$
\theta_{k}=\tan ^{-1}\left(-\frac{0}{-\frac{2 k}{\pi} \sin \left(\frac{k \pi}{2}\right)}\right)= \begin{cases}0, & k=1,5,9, \ldots \\ \pi, & k=3,7,11, \ldots\end{cases}
$$

Line Spectra

\square The cosine-with-phase form of the Fourier series is conducive to graphical display as amplitude and phase line spectra

Amplitude Spectrum

\square Average value and amplitude of odd harmonics are clearly visible

Complex Exponential Fourier Series

\square Recall Euler's formula

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

\square This allows us to express the Fourier series in a more compact, though equivalent form

$$
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

where the complex coefficients are given by

$$
c_{k}=\frac{1}{T} \int_{0}^{T} f(t) e^{-j k \omega_{0} t} d t
$$

\square Note that the series is now computed for both positive and negative harmonics of the fundamental

Complex Exponential Fourier Series

\square We can express the complex series coefficients in terms of the trigonometric series coefficients

$$
\begin{array}{ll}
c_{0}=a_{0} \\
c_{k}=\frac{1}{2}\left(a_{k}-j b_{k}\right), & k=1,2,3, \ldots \\
c_{-k}=\frac{1}{2}\left(a_{k}+j b_{k}\right), & k=1,2,3, \ldots
\end{array}
$$

\square Coefficients at $\pm k$ are complex conjugates, so

$$
\left|c_{k}\right|=\left|c_{-k}\right| \quad \text { and } \quad \angle c_{k}=-\angle c_{-k}
$$

Complex Exponential Fourier Series

\square Similarly, the coefficients of the trigonometric series in terms of the complex coefficients are

$$
\begin{aligned}
& a_{0}=c_{0} \\
& a_{k}=c_{k}+c_{-k}=2 \mathcal{R e}\left(c_{k}\right) \\
& b_{k}=j\left(c_{k}-c_{-k}\right)=-2 \mathcal{J} m\left(c_{k}\right)
\end{aligned}
$$

\square Can also relate the complex coefficients to the cosine-withphase series coefficients

$$
\begin{aligned}
& \left|c_{k}\right|=\left|c_{-k}\right|=\frac{1}{2} A_{k}, \quad k=1,2,3, \ldots \\
& \angle c_{k}= \begin{cases}\theta_{k}, & k=+1,+2,+3, \ldots \\
-\theta_{k}, & k=-1,-2,-3, \ldots\end{cases}
\end{aligned}
$$

Even and Odd Symmetry

\square For even functions, since $b_{k}=0$, coefficients of the complex series are purely real:

$$
\begin{aligned}
& c_{0}=a_{0} \\
& c_{k}=c_{-k}=\frac{1}{2} a_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

\square For odd functions, since $a_{k}=0$, coefficients of the complex series are purely imaginary (except c_{0}):

$$
\begin{array}{ll}
c_{0}=a_{0} \\
c_{k}=-j \frac{1}{2} b_{k}, & k=1,2,3, \ldots \\
c_{-k}=+j \frac{1}{2} b_{k}, & k=1,2,3, \ldots
\end{array}
$$

Complex Series - Example

$$
f(t)=\left\{\begin{array}{rr}
1 & 0<t<0.5 \\
0 & 0.5<t<1.5 \\
1 & 1.5<t<2.0
\end{array}\right.
$$

\square The complex Fourier series for the rectangular pulse train:

$$
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

\square The complex coefficients are given by

$$
\begin{aligned}
& c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j k \omega_{0} t} d t=\frac{1}{2} \int_{-1}^{1} f(t) e^{-j k \pi t} d t \\
& c_{k}=\frac{1}{2} \int_{-0.5}^{0.5} e^{-j k \pi t} d t=-\left.\frac{1}{2 j k \pi} e^{-j k \pi t}\right|_{-0.5} ^{0.5}
\end{aligned}
$$

Complex Series - Example

$$
\begin{gathered}
c_{k}=-\left.\frac{1}{2 j k \pi} e^{-j k \pi t}\right|_{-0.5} ^{0.5} \\
c_{k}=-\frac{1}{2 j k \pi}\left[e^{-j k \frac{\pi}{2}}-e^{\left.j k \frac{\pi}{2}\right]}\right.
\end{gathered}
$$

\square Rearranging into the form of a sinusoid

$$
c_{k}=\frac{1}{k \pi}\left[\frac{e^{j k \frac{\pi}{2}}-e^{-j k \frac{\pi}{2}}}{2 j}\right]=\frac{1}{k \pi} \sin \left(k \frac{\pi}{2}\right)
$$

\square Given the even symmetry of $f(t)$, all coefficients are real, and also have even symmetry

$$
c_{k}=c_{-k}=\frac{1}{k \pi} \sin \left(k \frac{\pi}{2}\right)=\frac{1}{\pi}, 0,-\frac{1}{3 \pi}, 0, \frac{1}{5 \pi}, 0, \ldots
$$

Line Spectra

\square The complex series coefficients can also be plotted as amplitude and phase line spectra

- Now, plot spectra over positive and negative frequencies

$\square \quad$ Note that the magnitude spectrum is an even function of frequency, and the phase spectrum is an odd function of frequency

31

Sinusoidal Curve Fitting

The Fourier series can also be understood by approaching it as a least-squares curve-fitting problem, where sinusoids are fit to a function or data set.

Sinusoidal Curve Fitting

\square In a previous section of the course we saw how we can fit different functions to data using linear leastsquares regression

- Can also fit sinusoids using this technique
\square The data we're fitting could be:
\square Measured data that we believe to be sinusoidal in nature
- A periodic function, that, while not sinusoidal, we want to approximate as a sinusoid or sum of sinusoids

Sinusoidal Curve Fitting

\square Our fitting function is

$$
y=A_{0}+C_{1} \cos \left(\omega_{0} t+\theta\right)
$$

\square The fundamental frequency is

$$
\omega_{0}=2 \pi f_{0}=\frac{2 \pi}{T}
$$

where T is the period of the function or data we are fitting
\square The three fitting parameters are: A_{0}, C_{1}, and θ
\square In order to be able to apply linear regression, we can't have a fitting parameter in the argument of a trigonometric function

- Apply a trig. Identity to recast the model as

$$
y=A_{0}+A_{1} \cos \left(\omega_{0} t\right)+B_{1} \sin \left(\omega_{0} t\right)
$$

\square Assuming we know ω_{0}, this is a linear least-squares model

Sinusoidal Curve Fitting

\square Assuming ω_{0} is known, the linear least-squares model is

$$
y=a_{0} z_{0}+a_{1} z_{1}+a_{2} z_{2}
$$

where

$$
z_{0}=1, \quad z_{1}=\cos \left(\omega_{0} t\right), \quad z_{2}=\sin \left(\omega_{0} t\right)
$$

and

$$
a_{0}=A_{0}, \quad a_{1}=A_{1}, \text { and } a_{2}=B_{1}
$$

\square For a least-squares fit, minimize the sum of the squares of the residuals

$$
S_{r}=\sum_{i=1}^{N}\left\{y_{i}-\left[A_{0}+A_{1} \cos \left(\omega_{0} t\right)+B_{1} \sin \left(\omega_{0} t\right)\right]\right\}^{2}
$$

Normal Equations

\square As we saw in the curve fitting section of the course, the matrix normal equations for this least-squares fit are

$$
\mathbf{Z}^{\mathrm{T}} \mathbf{Z a}=\mathbf{Z}^{\mathrm{T}} \mathbf{y}
$$

where Z is the design matrix:

$$
\mathbf{Z}=\left[\begin{array}{ccc}
z_{01} & z_{11} & z_{21} \\
z_{02} & z_{12} & z_{22} \\
\vdots & \vdots & \vdots \\
z_{0 N} & z_{1 N} & z_{2 N}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \cos \left(\omega_{0} t_{1}\right) & \sin \left(\omega_{0} t_{1}\right) \\
1 & \cos \left(\omega_{0} t_{2}\right) & \sin \left(\omega_{0} t_{2}\right) \\
\vdots & \vdots & \vdots \\
1 & \cos \left(\omega_{0} t_{N}\right) & \sin \left(\omega_{0} t_{N}\right)
\end{array}\right]
$$

\mathbf{a} is the vector of fitting parameters

$$
\mathbf{a}=\left[A_{0} A_{1} B_{1}\right]^{T}
$$

and \mathbf{y} is the vector of N function or data values

$$
\mathbf{y}=\left[\begin{array}{llll}
y_{1} & y_{2} & y_{3} & \ldots
\end{array} y_{N}\right]^{T}
$$

Normal Equations $-\mathbf{z}^{\mathbf{T}} \mathbf{Z a}=\mathbf{z}^{\mathbf{T}} \mathbf{y}$

$\square \quad$ The LHS of the normal equations is

$$
\begin{gathered}
\mathbf{Z}^{\mathbf{T}} \mathbf{Z} \mathbf{a}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\cos \left(\omega_{0} t_{1}\right) & \cos \left(\omega_{0} t_{2}\right) & \cdots & \cos \left(\omega_{0} t_{N}\right) \\
\sin \left(\omega_{0} t_{1}\right) & \sin \left(\omega_{0} t_{2}\right) & \cdots & \sin \left(\omega_{0} t_{N}\right)
\end{array}\right]\left[\begin{array}{ccc}
1 & \cos \left(\omega_{0} t_{1}\right) & \sin \left(\omega_{0} t_{1}\right) \\
1 & \cos \left(\omega_{0} t_{2}\right) & \sin \left(\omega_{0} t_{2}\right) \\
\vdots & \vdots & \vdots \\
1 & \cos \left(\omega_{0} t_{N}\right) & \sin \left(\omega_{0} t_{N}\right)
\end{array}\right]\left[\begin{array}{c}
A_{0} \\
A_{1} \\
B_{1}
\end{array}\right] \\
\mathbf{Z}^{\mathbf{T}} \mathbf{Z a}=\left[\begin{array}{ccc}
N & \Sigma \cos \left(\omega_{0} t\right) & \Sigma \sin \left(\omega_{0} t\right) \\
\Sigma \cos \left(\omega_{0} t\right) & \Sigma \cos ^{2}\left(\omega_{0} t\right) & \Sigma \cos \left(\omega_{0} t\right) \sin \left(\omega_{0} t\right) \\
\Sigma \sin \left(\omega_{0} t\right) & \Sigma \sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t\right) & \Sigma \sin ^{2}\left(\omega_{0} t\right)
\end{array}\right]\left[\begin{array}{c}
A_{0} \\
A_{1} \\
B_{1}
\end{array}\right]
\end{gathered}
$$

$\square \quad$ If we assume our N data points span exactly one period, then we know the following mean values

$$
\frac{\Sigma \cos \left(\omega_{0} t\right)}{N}=\frac{\Sigma \sin \left(\omega_{0} t\right)}{N}=\frac{\Sigma \cos \left(\omega_{0} t\right) \sin \left(\omega_{0} t\right)}{N}=0
$$

and

$$
\frac{\Sigma \cos ^{2}\left(\omega_{0} t\right)}{N}=\frac{\Sigma \sin ^{2}\left(\omega_{0} t\right)}{N}=\frac{1}{2}
$$

Normal Equations $-\mathbf{z}^{\mathbf{T}} \mathbf{Z a}=\mathbf{z}^{\mathbf{T}} \mathbf{y}$

\square Using these known mean values, the normal equations simplify to

$$
\left[\begin{array}{ccc}
N & 0 & 0 \\
0 & N / 2 & 0 \\
0 & 0 & N / 2
\end{array}\right]\left[\begin{array}{l}
A_{0} \\
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{c}
\Sigma y \\
\Sigma y \cos \left(\omega_{0} t\right) \\
\Sigma y \sin \left(\omega_{0} t\right)
\end{array}\right]
$$

\square We can solve for the vector of fitting parameters, a

$$
\mathbf{a}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{y}
$$

\square The inverse of the diagonal matrix is a diagonal matrix, where the diagonal elements are inverted, so

$$
\left[\begin{array}{l}
A_{0} \\
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{ccc}
1 / N & 0 & 0 \\
0 & 2 / N & 0 \\
0 & 0 & 2 / N
\end{array}\right]\left[\begin{array}{c}
\Sigma y \\
\Sigma y \cos \left(\omega_{0} t\right) \\
\Sigma y \sin \left(\omega_{0} t\right)
\end{array}\right]
$$

Sinusoidal Least-Squares Fit

\square The fitting parameters are

$$
\begin{aligned}
A_{0} & =\frac{\Sigma y}{N} \\
A_{1} & =\frac{2}{N} \Sigma y \cos \left(\omega_{0} t\right) \\
B_{1} & =\frac{2}{N} \Sigma y \sin \left(\omega_{0} t\right)
\end{aligned}
$$

\square Note the similarity to the Fourier series coefficients
\square The least-squares, best-fit sinusoid is given by

$$
y=\frac{\Sigma y}{N}+\left(\frac{2}{N} \Sigma y \cos \left(\omega_{0} t\right)\right) \cos \left(\omega_{0} t\right)+\left(\frac{2}{N} \Sigma y \sin \left(\omega_{0} t\right)\right) \sin \left(\omega_{0} t\right)
$$

Sinusoidal Least-Squares Fit - Example


```
# rect pulse cfit.py
import numpy as np
from matplotlib import pyplot as plt
T = 2 # period of the pulse train
f0 = 1/T # fundamental frequency
w0 = 2*np.pi*f0
Ts = T/1001 # sample period
t = np.arange(-T/2, T/2, Ts) # time vector spans one full period
y = 0.5 + 0.5*np.sign(np.cos(np.pi*t))
N = len(y)
# create the design matrix
Z1 = np.ones((N,1))
Z2 = np.array([np.cos(w0*t)]).transpose()
Z3 = np.array([np.sin(w0*t)]).transpose()
Z = np.append(np.append(Z1, Z2, axis=1), Z3, axis=1)
# Solve normal equations for vector of fitting coefficients, a.
# Need to transpose y to a column vector
a = np.linalg.inv(Z.transpose() @ Z) @ (Z.transpose() @ y.transpose())
A0 = a[0]
A1 =a[1]
B1 =a[2]
```As expected, \(B_{1}=0\) due to the even symmetry of the function being fit

\section*{Least-Squares Fit of Two Harmonics}
\(\square\) Now, consider extending the fitting model to include the first two harmonics
\[
y=A_{0}+A_{1} \cos \left(\omega_{0} t\right)+B_{1} \sin \left(\omega_{0} t\right)+A_{2} \cos \left(2 \omega_{0} t\right)+B_{2} \sin \left(2 \omega_{0} t\right)
\]
\(\square\) We've added two more basis functions to the linear least-squares model
\(\square\) The design matrix is now
\[
\mathbf{Z}=\left[\begin{array}{ccccc}
1 & \cos \left(\omega_{0} t_{1}\right) & \sin \left(\omega_{0} t_{1}\right) & \cos \left(2 \omega_{0} t_{1}\right) & \sin \left(2 \omega_{0} t_{1}\right) \\
1 & \cos \left(\omega_{0} t_{2}\right) & \sin \left(\omega_{0} t_{2}\right) & \cos \left(2 \omega_{0} t_{2}\right) & \sin \left(2 \omega_{0} t_{2}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \cos \left(\omega_{0} t_{N}\right) & \sin \left(\omega_{0} t_{N}\right) & \cos \left(2 \omega_{0} t_{N}\right) & \sin \left(2 \omega_{0} t_{N}\right)
\end{array}\right]
\]

\section*{Least-Squares Fit of Two Harmonics}
\(\square\) If we again assume samples spanning exactly one period, the off-diagonal terms on the LHS of the normal equations go to zero, leaving
\[
\mathbf{Z}^{\mathrm{T}} \mathbf{Z a}=\mathbf{Z}^{\mathrm{T}} \mathbf{y}
\]
\[
\left[\begin{array}{ccccc}
N & 0 & 0 & 0 & 0 \\
0 & N / 2 & 0 & 0 & 0 \\
0 & 0 & N / 2 & 0 & 0 \\
0 & 0 & 0 & N / 2 & 0 \\
0 & 0 & 0 & 0 & N / 2
\end{array}\right]\left[\begin{array}{c}
A_{0} \\
A_{1} \\
B_{1} \\
A_{2} \\
B_{2}
\end{array}\right]=\left[\begin{array}{c}
\Sigma y \\
\Sigma y \cos \left(\omega_{0} t\right) \\
\Sigma y \sin \left(\omega_{0} t\right) \\
\Sigma y \cos \left(2 \omega_{0} t\right) \\
\Sigma y \sin \left(2 \omega_{0} t\right)
\end{array}\right]
\]
\(\square\) Solve for a as
\[
\mathbf{a}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{y}
\]

\section*{Least-Squares Fit of Two Harmonics}
\(\square\) Solving for a gives the following fitting parameters
\[
\begin{aligned}
& A_{0}=\frac{\Sigma y}{N} \\
& A_{1}=\frac{2}{N} \Sigma y \cos \left(\omega_{0} t\right) \\
& B_{1}=\frac{2}{N} \Sigma y \sin \left(\omega_{0} t\right) \\
& A_{2}=\frac{2}{N} \Sigma y \cos \left(2 \omega_{0} t\right) \\
& B_{2}=\frac{2}{N} \Sigma y \sin \left(2 \omega_{0} t\right)
\end{aligned}
\]
\(\square\) This model could obviously be extended to include an arbitrary number of harmonics

\section*{Least-Squares Fit - Example}

Least-Squares Sinusoidal Curve Fit

```

|
mport numpy as np
from matplotlib import pyplot as plt

# fit a sum of first two harmonics to a sawtooth wave

T=2

# period of the pulse train

f0 = 1/T \# fundamental frequency
w0 = 2*np.pi*f0
Ts = T/1001 \# sample period
t = np.arange(-T/2, T/2, Ts) \# time vector spans one full period
y=1+t/2
N = len(y)

# create the design matrix

# Z = [ones(N,1), cos(w0*\mp@subsup{t}{}{\prime}),\operatorname{sin}(w0*\mp@subsup{t}{}{\prime}),\operatorname{cos}(2*w0*\mp@subsup{t}{}{\prime}),\operatorname{sin}(2*w0*\mp@subsup{t}{}{\prime})];

z1 = np.ones((N,1))
Z2 = np.array([np.cos(w0*t)]).transpose()
Z3 = np.array([np.sin(w0*t)]).transpose()
Z4 = np.array([np.cos(2*w0*t)]).transpose()
Z5 = np.array([np.sin(2*w0*t)]).transpose()
Z123 = np.append(np.append(Z1, Z2, axis=1), Z3, axis=1)
Z = np.append(np.append(Z123, Z4, axis=1), Z5, axis=1)

# Solve normal equations for vector of fitting coefficients, a.

# Need to transpose y to a column vector

a = np.linalg.inv(Z.transpose() @ Z) @ (Z.transpose() @ y.transpose())
A0 = a[0]
A1 = a[1]
B1 =a[2]
A2 = a[3]
B2 = a[4]

```

Sawtooth wave has odd symmetry, so \(\mathrm{A}_{1}=A_{2}=0\), and only sine terms are present

\section*{44 \\ Fourier Transform}

The Fourier transform extends the frequencydomain analysis capability provided by the Fourier series to aperiodic signals.

\section*{Fourier Transform}
\(\square\) The Fourier Series is a tool that provides insight into the frequency content of periodic signals
\[
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
\]
where the complex coefficients are given by
\[
c_{k}=\int_{-T / 2}^{T / 2} f(t) e^{-j k \omega_{0} t} d t
\]
\(\square\) These \(c_{k}\) values provide a measure of the energy present in a signal at discrete values of frequency
- \(k \omega_{0}\), integer multiples (harmonics) of the fundamental
\(\square\) Frequency-domain representation is discrete, because the timedomain signal is periodic

\section*{Fourier Transform}
\(\square\) Many signals of interest are aperiodic
- They never repeat
- Equivalent to an infinite period, \(T \rightarrow \infty\)
\(\square\) As \(T \rightarrow \infty\), the mapping from the time domain to the frequency domain is given by the Fourier transform
\[
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
\]
where \(F(\omega)\) is a complex, continuous function of frequency
\(\square\) The continuous frequency-domain representation corresponds to the aperiodic time-domain signal

\section*{Inverse Fourier Transform}
\(\square\) We can also map frequency-domain functions back to the time domain using the inverse Fourier transform
\[
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega
\]
\(\square\) The forward (\(-j\) or \(-i\) transform) and the inverse (\(+j\) or \(+i\) transform) provide the mapping between Fourier transform pairs
\[
f(t) \leftrightarrow F(\omega)
\]

\section*{Fourier Transform - Rectangular Pulse}
\(\square\) Consider a pulse of duration, \(\tau\)
\[
f(t)=p_{\tau}(t)
\]
\(\square\) Calculate the Fourier transform
\[
\begin{gathered}
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t=\int_{-\tau / 2}^{\tau / 2} e^{-j \omega t} d t \\
F(\omega)=-\left.\frac{1}{j \omega} e^{-j \omega t}\right|_{-\frac{\tau}{2}} ^{\frac{\tau}{2}}=-\frac{1}{j \omega}\left[e^{-j \omega \frac{\tau}{2}}-e^{j \omega \frac{\tau}{2}}\right] \\
F(\omega)=\frac{2}{\omega}\left[\frac{e^{j \omega \frac{\tau}{2}}-e^{-j \omega \frac{\tau}{2}}}{2 j}\right]=\frac{2}{\omega} \sin \left(\frac{\tau \omega}{2}\right)
\end{gathered}
\]

\section*{Fourier Transform - Rectangular Pulse}
\(\square\) Here, we can introduce the sinc function
\[
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
\]

Letting \(x=\frac{\tau \omega}{2 \pi}\), we have
\[
\begin{gathered}
F(\omega)=\frac{2}{\omega} \sin \left(\frac{\tau \omega}{2}\right) \\
F(\omega)=\tau \frac{\sin \left(\pi \frac{\tau \omega}{2 \pi}\right)}{\pi \frac{\tau \omega}{2 \pi}} \\
F(\omega)=\tau \operatorname{sinc}\left(\frac{\tau \omega}{2 \pi}\right)
\end{gathered}
\]

\section*{Fourier Transform - Triangular Pulse}
\(\square \quad\) Next, consider a triangular pulse of duration, \(\tau\)
\[
\begin{aligned}
& f(t)=\Lambda_{\tau}(t) \\
& \Lambda_{\tau}(t)=\left\{\begin{array}{lc}
+\frac{2}{\tau} t+1, & -\frac{\tau}{2} \leq t \leq 0 \\
-\frac{2}{\tau} t+1, & 0 \leq t \leq \frac{\tau}{2} \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
\]
\(\square\) The Fourier transform is

\[
F(\omega)=\int_{-\infty}^{\infty} \Lambda_{\tau} e^{-j \omega t} d t=\int_{-\tau / 2}^{0}\left(\frac{2}{\tau} t+1\right) e^{-j \omega t} d t+\int_{0}^{\tau / 2}\left(-\frac{2}{\tau} t+1\right) e^{-j \omega t} d t
\]
\(\square \quad\) Integration by parts gives
\[
F(\omega)=\frac{8}{\tau \omega^{2}} \sin ^{2}\left(\frac{\tau \omega}{4}\right)
\]

\section*{Fourier Transform - Triangular Pulse}
\(\square\) This, too, can be recast into the form of a sinc function
\(\square\) Letting \(x=\frac{\tau \omega}{4 \pi^{\prime}}\), we have
\[
\begin{aligned}
& F(\omega)=\frac{8}{\tau \omega^{2}} \sin ^{2}\left(\pi \frac{\tau \omega}{4 \pi}\right) \\
& F(\omega)=\frac{\tau}{2} \frac{\sin ^{2}\left(\pi \frac{\tau \omega}{4 \pi}\right)}{\left(\pi \frac{\tau \omega}{4 \pi}\right)^{2}} \\
& F(\omega)=\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\tau \omega}{4 \pi}\right)
\end{aligned}
\]

\section*{Rectangular vs. Triangular Pulse}
\(\square\) Average value in time domain translates to \(F(0)\) value in frequency domain
\(\square\) More abrupt transitions in time domain correspond to more high-frequency content
\(\square\) Multiplication in one domain corresponds to convolution in the other
- Convolution of two rectangular pulses is a triangular pulse
- \(\operatorname{sinc}\) becomes \(\operatorname{sinc}^{2}\) in the frequency domain

\section*{Fourier Transform - Impulse Function}
\(\square\) The impulse function is defined as
\[
\begin{aligned}
& \delta(t)=0, \quad t \neq 0 \\
& \int_{-\infty}^{\infty} \delta(t) d t=1
\end{aligned}
\]
\(\square\) Its Fourier transform is
\[
F(\omega)=\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t
\]
\(\square\) Since \(\delta(t)=0\) for \(t \neq 0\), and since \(e^{-j \omega t}=1\) for \(t=0\)
\[
F(\omega)=\int_{-\infty}^{\infty} \delta(t) d t=1
\]
\(\square \quad\) The Fourier transform of the time-domain impulse function is one for all frequencies
- Equal energy at all frequencies

\section*{Fourier Transform - Decaying Exponential}
\(\square\) Consider a decaying exponential
\[
f(t)=e^{-\sigma t} \cdot u(t)
\]
where \(u(t)\) is the unit step function
\(\square\) The Fourier transform is:
\[
\begin{aligned}
& F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& F(\omega)=\int_{0}^{\infty} e^{-\sigma t} e^{-j \omega t} d t
\end{aligned}
\]

\[
F(\omega)=\int_{0}^{\infty} e^{-(\sigma+j \omega) t} d t=-\left.\frac{1}{\sigma+j \omega} e^{-(\sigma+j \omega) t}\right|_{0} ^{\infty}=-\frac{1}{\sigma+j \omega}[0-1]
\]
\[
F(\omega)=\frac{1}{\sigma+j \omega}
\]

\section*{Fourier Transform - Decaying Exponential}
\(\square\) Fourier transform of this exponential signal is complex
\(\square\) Plot magnitude and phase separately

\(\square\) Note the even symmetry of magnitude, and odd symmetry of the phase of \(F(\omega)\)

\section*{Fourier Transform - Decaying Exponential}
\(\square\) On logarithmic scales, this Fourier transform should look familiar
\(\square f(t)\) could be the impulse response of a first-order system
- Convolution of an impulse with the system's impulse response
\(\square F(\omega)\) looks like the frequency response of a first-order system
- Multiplication of the F.T. of an impulse (\(F(\omega)=1\)) with the system's frequency response

\section*{Even and Odd Symmetry}
\(\square\) We are mostly concerned with real time-domain signals
\(\square\) Not true for all engineering disciplines, e.g. communications, signal processing, etc.
\(\square\) For a real time-domain signal, \(\boldsymbol{f}(\boldsymbol{t})\),
- If \(f(t)\) is even \(F(\omega)\) will be real and even
- If \(f(t)\) is odd, \(F(\omega)\) will be imaginary and odd
- If \(f(t)\) has neither even nor odd symmetry, \(F(\omega)\) will be complex with an even real part and an odd imaginary part.

\section*{58 \\ Discrete Fourier Transform}

For discrete-time signals, mapping from the time domain to the frequency domain is accomplished with the discrete Fourier transform (DFT).

\section*{Discrete-Time Fourier Transform (DTFT)}
\(\square\) The Fourier transform maps a continuous-time signal, defined for \(-\infty<t<\infty\), to a continuous frequency-domain function defined for \(-\infty<\omega<\infty\)
\(\square\) In practice we have to deal with discrete-time, i.e. sampled, signals
- Only defined at discrete sampling instants
\[
f(t) \rightarrow f[n]
\]
\(\square\) Now, mapping to the frequency domain is the discrete-time Fourier transform (DTFT)
\[
F(\omega)=\sum_{n=-\infty}^{\infty} f[n] e^{-j \omega n}
\]
\(\square\) DTFT maps a discrete, aperiodic, time-domain signal to a continuous, periodic function of frequency

\section*{Aliasing}
\(\square\) Aliasing is a phenomena that results in a signal appearing as a lower-frequency signal as a result of sampling
\(\square\) In order to avoid aliasing, the sample rate must be at least the Nyquist rate
\[
f_{s} \geq 2 f_{\max }
\]
where \(f_{\text {max }}\) is the highest frequency component present in the signal
\(\square\) For a given sample rate, the Nyquist frequency is the highest frequency signal that will not result in aliasing
\[
f_{\text {Nyquist }}=\frac{f_{s}}{2}
\]

\section*{Aliasing - Examples}

\(f=10 \mathrm{~Hz}, f_{s}=20.0 \mathrm{~Hz}\)

\(f=10 \mathrm{~Hz}, f_{s}=45.0 \mathrm{~Hz}\)

ESC 440

\section*{Discrete-Time Fourier Transform (DTFT)}
\[
F(\omega)=\sum_{n=-\infty}^{\infty} f[n] e^{-j \omega n}
\]
\(\square \quad\) Discrete-time \(f[n]\) generated from \(f(t)\) by sampling at a sample rate of \(f_{s}\), with a sample period of \(T_{S}\)
\(\square\) Sampled signals can only accurately represent frequencies up to the Nyquist frequency
\[
f_{\max }=f_{N y q u i s t}=\frac{f_{s}}{2}
\]

Higher frequency components of \(f(t)\) are aliased down to lower frequencies in the range of
\[
-\frac{f_{s}}{2} \leq f \leq \frac{f_{s}}{2}
\]
\(\square\) The DTFT is a periodic function of frequency, with a period \(f_{s}\)
\(\square\) Due to aliasing, sampling in the time domain corresponds to periodicity in the frequency domain

\section*{The Discrete Fourier Transform (DFT)}
\(\square\) The DTFT
\[
F(\omega)=\sum_{n=-\infty}^{\infty} f[n] e^{-j \omega n}
\]
utilizes discrete-time, sampled, data, but still requires and infinite amount of data
\(\square\) In practice, our time-domain data sets are both discrete and finite
\(\square\) The discrete Fourier transform, DFT, maps discrete and finite (periodic) time-domain signals to periodic and discrete frequencydomain signals
\[
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi \frac{n}{N}}
\]

\section*{The Discrete Fourier Transform (DFT)}
\(\square\) Consider \(N\) samples of a time-domain signal, \(f[n]\)
- Sampled with sampling period \(T_{s}\) and sampling frequency \(f_{s}\)
- Total time span of the sampled data is \(N \cdot T_{S}\)
\(\square\) The DFT of \(f[n]\) is
\[
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
\]
\(\square\) A discrete function of the integer value, \(k\)
\(\square\) The DFT consists of \(N\) complex values: \(F_{0}, F_{1}, \ldots, F_{N-1}\)
\(\square\) Each value of \(k\) represents a discrete value of frequency from \(f=0\) to \(f=f_{s}\)

\section*{The Inverse Discrete Fourier Transform}
\(\square\) A discrete, finite set of frequency-domain data can be transformed back to the time domain
\(\square\) The inverse discrete Fourier Transform (IDFT)
\[
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j k 2 \pi n / N}
\]
\(\square\) Note the \(1 / N\) scaling factor
- In practice, this is often applied when computing the DFT
- Must exist in either the DFT or IDFT, not both

\section*{DFT Frequencies}
\[
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
\]
\(\square\) A dot product of \(f[n]\) with a complex exponential
\[
F_{k}=f[n] \cdot e^{-j \Omega n}
\]
\(\square\) The frequency of the exponential, \(\Omega\), is the digital frequency:
\[
\Omega=k 2 \pi / N
\]
which has units of rad/sample
\(\square\) Digital frequency is related to the ordinary frequency by the sample rate, \(f_{s}\)
\[
\Omega=\frac{2 \pi f}{f_{s}} \quad\left[\frac{\mathrm{rad}}{\text { sample }}\right]
\]

\section*{DFT Frequencies}
\[
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
\]
\(\square\) \# of samples: \(N\), sample rate: \(f_{S}\), sample period: \(T_{S}\)
\(\square\) Maximum detectable frequency
\[
f_{\max }=f_{s} / 2
\]
- Nyquist frequency
- Corresponds to \(k=N / 2, \Omega=\pi\)
\(\square\) Frequency increment (bin width, resolution)
\[
\Delta f=\frac{1}{N \cdot T_{s}}=\frac{f_{s}}{N}
\]
\(\square\) Last \(\left({ }^{N} / 2-1\right)\) points of \(F_{k}, F_{N / 2+1} \ldots F_{N-1}\) correspond to negative frequency
\[
-\frac{f_{s}}{2}+\Delta f \ldots-\Delta f
\]

\section*{DFT Frequencies}
\(\square\) For example, consider \(N=10\) samples of a signal sampled at \(f_{s}=100 \mathrm{~Hz}, T_{S}=10 \mathrm{msec}\)
\(\square \Delta f=\frac{1}{N T_{s}}=\frac{f_{s}}{N}=\frac{1}{10 \cdot 0.01 \mathrm{sec}}=10 \mathrm{~Hz}\)
- \(f_{\text {max }}=\frac{f_{s}}{2}=50 \mathrm{~Hz}\)
- \(\Delta \Omega=\frac{2 \pi}{N} \mathrm{rad} / \mathrm{sa}=0.2 \pi \mathrm{rad} / \mathrm{sa}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(k\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & Units \\
\hline\(\Omega\) & \(\mathbf{0}\) & \(\mathbf{0 . 2 \boldsymbol { \pi }}\) & \(\mathbf{0 . 4 \boldsymbol { \pi }}\) & \(\mathbf{0 . 6 \boldsymbol { \pi }}\) & \(\mathbf{0 . 8 \boldsymbol { \pi }}\) & \(\boldsymbol{\pi}\) & \(\mathbf{1 . 2 \boldsymbol { \pi }}\) & \(\mathbf{1 . 4 \pi}\) & \(\mathbf{1 . 6 \boldsymbol { \pi }}\) & \(\mathbf{1 . 8 \boldsymbol { \pi }}\) & \(\mathrm{rad} / \mathrm{Sa}\) \\
\hline\(f / f_{s}\) & \(\mathbf{0}\) & \(\mathbf{0 . 1}\) & \(\mathbf{0 . 2}\) & \(\mathbf{0 . 3}\) & \(\mathbf{0 . 4}\) & \(\mathbf{0 . 5}\) & \(\mathbf{0 . 6}\) & \(\mathbf{0 . 7}\) & \(\mathbf{0 . 8}\) & \(\mathbf{0 . 9}\) & - \\
\hline\(f\) & \(\mathbf{0}\) & \(\mathbf{1 0}\) & \(\mathbf{2 0}\) & \(\mathbf{3 0}\) & \(\mathbf{4 0}\) & \(\mathbf{5 0}\) & \(\mathbf{- 4 0}\) & \(\mathbf{- 3 0}\) & \(\mathbf{- 2 0}\) & \(\mathbf{- 1 0}\) & Hz \\
\hline
\end{tabular}

\section*{DFT - Example}
\(\square\) Consider the following signal
\(f(t)=0.3+0.5 \cos (2 \pi \cdot 50 \cdot t)+\cos (2 \pi \cdot 120 \cdot t)+0.8 \cos (2 \pi \cdot 320 \cdot t)\)
- Sample rate: \(f_{s}=1 \mathrm{kHz}\)
- Record length: \(N=100\)
- Bin width: \(\Delta f=10 \mathrm{~Hz}\)

\section*{DFT - Example}
\[
f(t)=0.3+0.5 \cos (2 \pi \cdot 50 \cdot t)+\cos (2 \pi \cdot 120 \cdot t)+0.8 \cos (2 \pi \cdot 320 \cdot t)
\]
\(\square\) Plotting magnitude of (real) \(F_{k}\)
\(\square\) Components at \(0,50,120\), and 310 Hz are clearly visible
\(\square\) Plot spectrum as a function of
- Index value, \(k\)
- Normalized frequency
- Ordinary frequency
\(\square F_{k}\) values divided by \(N\) so that \(F_{0}\) is the average value of \(f(t)\)
- Amplitude of other components given by the sum of \(F_{k}\) and \(F_{-k}\) magnitudes

\section*{Spectral Leakage}
\[
f(t)=0.3+0.5 \cos (2 \pi \cdot 50 \cdot t)+\cos (2 \pi \cdot 120 \cdot t)+0.8 \cos (2 \pi \cdot 320 \cdot t)
\]
\(\square\) For \(f_{s}=1 \mathrm{kHz}\) and \(N=100, \Delta f=10 \mathrm{~Hz}\), and all signal components fall at integer multiples of \(\Delta f\)
- All components lie in exactly one frequency bin
\(\square\) Now, increase the number of samples to \(N=105\)
- Bin width decreases to \(\Delta f=9.52 \mathrm{~Hz}\)
- Each non-zero signal component now falls between frequency bins - Spectral Leakage

DFT of \(\left.f(t)--f_{s}=1\right) k H z, N=105, \Delta f=9.52 \mathrm{~Hz}\)

\section*{Spectral Leakage}
\(\square\) Signal components now fall between two bins
\(\square\) Why non-zero \(F_{k}\) over more than two bins?
- Truncation (windowing)
\(\square\) Finite record length is equivalent to multiplication of \(f(t)\) by a rectangular pulse (window)
- F.T. of pulse is a sinc
- Multiplication in the time domain \(\rightarrow\) convolution in frequency domain
\(\square\) Truncated signal is assumed periodic
- True only if windowing function captures an integer number of periods of all signal components

\section*{Summary of Fourier Analysis Tools}
\begin{tabular}{|l|l|l|}
\hline & Time Domain & Frequency Domain \\
\hline Fourier series & \begin{tabular}{l}
continuous \\
periodic (or truncated)
\end{tabular} & \begin{tabular}{l}
aperiodic \\
discrete
\end{tabular} \\
\hline Fourier & \begin{tabular}{l}
continuous \\
aperiodic
\end{tabular} & \begin{tabular}{l}
aperiodic \\
continuous
\end{tabular} \\
\hline DTFT & \begin{tabular}{l}
discrete \\
aperiodic
\end{tabular} & \begin{tabular}{l}
periodic \\
continuous
\end{tabular} \\
\hline DFT & \begin{tabular}{l}
discrete \\
periodic (or truncated)
\end{tabular} & \begin{tabular}{l}
periodic \\
discrete
\end{tabular} \\
\hline
\end{tabular}
\(\square\) In general:

\({ }^{7}\) DFT Algorithm

\section*{Implementing the DFT in Python}
\[
F_{k}=\sum_{n=0}^{N-1} f[n] e^{-j k 2 \pi n / N}
\]
\(\square\) A dot product of complex \(N\)-vectors for each of the \(N\) values of \(k\)
\[
F_{k}=f[n] \cdot e^{-j k 2 \pi n / N}
\]
\(\square\) Simple to code
- \(N\) multiplications for each \(k\) value - \(N^{2}\) operations
- Inefficient, particularly for large \(N\)
```

def dft(f):

```

Computes the discrete Fourier transform of an arry, f .

Parameters
f : N-vector for which to compute DFT
Returns
Fk : DFT of \(f-1 x N\) vector
. \(\cdot\)
\(N=\operatorname{len}(f)\)
\# initialize Fk as array pf complex zeros
\(\mathrm{Fk}=\mathrm{np} \cdot \operatorname{zeros}(\mathrm{N}\), dtype=complex)
\# compute DFT
\(\mathrm{n}=\mathrm{np}\).arange \((\mathrm{N})\)
for \(k\) in range \((\mathbb{N})\) :
\(\mathrm{Fk}[\mathrm{k}]=\mathrm{f} @ \mathrm{np} \cdot \exp \left(-1 \mathrm{j}^{*} \mathrm{k}^{*} 2^{*} \mathrm{np} \cdot \mathrm{pi}{ }^{*} \mathrm{n} / \mathrm{N}\right)\)
return Fk

\section*{Fast Fourier Transform - FFT}
\(\square\) The fast Fourier transform (FFT) is a very efficient algorithm for computing the DFT
- The Cooley-Tukey algorithm
\(\square\) Requires on the order of \(N \log _{2}(N)\) operations
\(\square\) Significantly fewer than \(N^{2}\)
\(\square\) For example, for \(N=1024\) :
- DFT: \(N^{2}=1,048,576\) operations
- FFT: \(N \log _{2}(N)=10240\) operations - (\(102 \times\) faster)
\(\square\) Requires \(N\) be a power of two
- If not, data record is padded with zeros

\section*{77 FFT in Python}

It is very simple to implement a straight DFT algorithm in Python, but the FFT algorithm is, by far, more efficient .

\section*{FFT in Pyhton}
\(\square\) Both the NumPy and SciPy Python packages include many FFT-related functions
\(\square\) Three most important to us:
-fft()
-ifft()
- fftshift()
\(\square\) All located in numpy.fft or scipy.fft modules
\(\square\) Import to use, e.g.:
from scipy.fft import fft, ifft, fftshift

\section*{Fast Fourier Transform in Python - fft ()}
\[
X k=f f t(x, n)
\]
- x : vector of points for DFT computation
- n : optional length of the DFT to compute
- Xk: complex vector of DFT values - len (x) or an \(n\)-vector
\(\square\) If n is specified, x will either be truncated or zero-padded so that its length is \(n\)
\(\square\) If \(x\) is a matrix, the fft for each column of \(x\) is returned
\(\square \mathrm{fft}()\) uses the Cooley-Tukey algorithm
\(\square\) Fastest for len(x) or \(n\) that are powers of two

\section*{Inverse FFT in Python - ifft()}
\[
x=i f f t(X k, n)
\]
- Xk: vector of points for inverse DFT computation
- n: optional length of the inverse DFT to compute
- x: complex vector of time-domain values - len(Xk) or an n-vector
\(\square\) If n is specified, Xk will either be truncated or zeropadded so that its length is \(n\)
\(\square\) ifft () uses the Cooley-Tukey algorithm
\(\square\) Fastest for len(Xk) or \(n\) that are powers of two

\section*{Shifting Negative Frequency Values - fftshift()}

\section*{Xshift = fftshift(Xk)}
- Xk: vector of FFT values with zero frequency point at Xk [0]
- Xshift: FFT vector with the zero-frequency point moved to the middle of the vector
\(\square\) If \(N=\operatorname{len}(X k)\) is even, first and second halves of \(X k\) are swapped
- Xshift \(=[X k[N / 2+1: N], X k[1: N / 2]]\)
- Frequency points are: \(f=\left[-\frac{f_{S}}{2} \ldots\left(\frac{f_{s}}{2}-\Delta f\right)\right]\)
\(\square\) If \(N=\) length (Xk) is odd, zero frequency point moved to the Xshift[(N-1)/2] position
- Xshift \(=[\operatorname{Xk}[(N+3) / 2): N], X k[1:(N-1) / 2]]\)
- Frequency points are: \(f=\left[-f_{S} \frac{N-1}{2 N} \ldots f_{S} \frac{N-1}{2 N}\right]\)```

