
ESE 330 – Modeling & Analysis of Dynamic Systems

SECTION 1: 
INTRODUCTION
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Modeling and Analysis

 As engineers, we are interested in analyzing and designing physical systems

 What is a system?
 Any entity comprised of interacting components

 Systems have inputs and outputs
 Not necessarily explicit
 System characteristics determine how inputs translate to outputs

 Separable from its surroundings or environment 
 Physically or conceptually
 May interact – via inputs and outputs – with its environment

 May be composed of multiple integrated subsystems

 Examples of systems:
 Refrigeration unit
 Mobile phone
 Industrial robot
 Computer software

 Satellite
 Engine
 Stock market
 Etc…
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System Models

 Want to be able to describe these systems in a 
tractable, mathematical way

 We represent these systems with models:
 Abstracted representation of the real system
 Captures some aspects of the real system’s behavior –

the behavior we care about – while ignoring others
 Simplified in some way
 Smaller
 Less complex
 Linear
 Lossless, etc. … 
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System Models

 Model of a physical system may be:
 A physical system itself, simplified in some way
 e.g., scale model for wind-tunnel testing

 A mathematical model
 An equation or system of equations that describe the 

aspects of system behavior that interest us (while ignoring 
others)

 A physical model as an intermediate step in generating 
a mathematical model
 An abstraction of the real system, whose behavior we can 

describe with mathematical expressions 
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Analysis & Simulation

 Model used for analysis and simulation of the system 
 Analysis of system behavior
 Could be physical simulation, e.g. aerodynamic testing in a wind 

tunnel
 Here, we’re interested in mathematical simulation
 Could be either analytical or numerical

 Why simulate?
 Analysis
 How does a system respond to different types of inputs?
 How does the response depend on component parameters?...

 Design
 Modifying the system parameters to achieve desired behavior
 Control system design – adding feedback and a controller to the 

system to improve system performance
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Linear vs. Nonlinear Systems

 Systems take inputs and yield outputs
 Could be force, velocity, voltage, current, etc. …

 Transfer characteristics relate outputs to inputs These may 
be linear or nonlinear 
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Linear vs. Nonlinear Systems

 Linear systems are comprised of linear components
 I.e., those with linear transfer characteristics

 Linear systems are described by linear differential
equations, e.g.

𝑚𝑚𝑥̈𝑥 + 𝑏𝑏𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 = 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
 Non-linear systems are described by nonlinear

differential equations, e.g.

𝑚𝑚𝑥̈𝑥 + 𝑏𝑏 � 𝑙𝑙𝑙𝑙 𝑥̇𝑥 + 𝑘𝑘𝑥𝑥2 = 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
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Linear vs. Nonlinear Systems

 Consider, for example, a simple spring
 Transfer characteristic relating displacement to force:

 Is the spring a linear component?
 No – over a full range of force and displacement, it is clearly 

nonlinear
 Yes – for small values of force and displacement the spring is 

accurately approximated as linear
 Obeys Hooke’s law: 𝑥𝑥 = 1

𝑘𝑘
� 𝐹𝐹
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No Such Thing as a Linear System

 Truly linear systems do not exist in reality
 All systems are inherently nonlinear
 Some very nonlinear, others negligibly so 

 If stressed far enough, all systems will exhibit significant 
nonlinearity

 We will focus nearly exclusively on linear systems
 Simplifies modeling and analysis
 Many systems can be accurately modeled as linear over 

a small enough range
 Linear system theory serves as the basis for dealing 

with nonlinear systems as well
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Superposition

 The principle of superposition applies to linear systems
𝑓𝑓 𝑥𝑥1 = 𝑦𝑦1
𝑓𝑓 𝑥𝑥2 = 𝑦𝑦2
𝑓𝑓 𝛼𝛼𝑥𝑥1 + 𝛽𝛽𝑥𝑥2 = 𝛼𝛼𝑦𝑦1 + 𝛽𝛽𝑦𝑦2

 For example, a linear spring:
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Linearization – Example 

 A simple pendulum is a nonlinear system

𝜃̈𝜃 =
𝑔𝑔
𝑙𝑙

sin 𝜃𝜃 −
1
𝑚𝑚𝑚𝑚

𝐹𝐹𝑑𝑑 𝜃̇𝜃 −
1
𝑚𝑚𝑙𝑙2

𝜏𝜏𝑓𝑓 𝜃̇𝜃

 Nonlinear air resistance term, 𝐹𝐹𝑑𝑑 𝜃̇𝜃
 Neglect it altogether

 Nonlinear friction term, 𝜏𝜏𝑓𝑓 𝜃̇𝜃
 Treat it as linear viscous friction:

𝜏𝜏𝑓𝑓 = 𝑏𝑏𝜏𝜏𝜃̇𝜃

 Pendulum model becomes:

𝜃̈𝜃 =
𝑔𝑔
𝑙𝑙

sin 𝜃𝜃 −
1
𝑚𝑚𝑙𝑙2

𝑏𝑏𝜏𝜏𝜃̇𝜃

 Still have the nonlinear 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 term
 Restrict angular displacement to very small values, where sin 𝜃𝜃 ≈ 𝜃𝜃

 The linearized pendulum model

𝜃̈𝜃 =
𝑔𝑔
𝑙𝑙 𝜃𝜃 −

1
𝑚𝑚𝑙𝑙2 𝑏𝑏𝜏𝜏

𝜃̇𝜃
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Without going into the details, we’ll now walk 
through the process of modeling and simulating 
two different types of systems – the first 
mechanical, and the second electrical.

Mechanical System – Example 14
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Vehicle Suspension System

 Suppose you want to analyze the performance of a 
vehicle suspension system

 Physical system:
 Car body mass - the sprung mass
 Four contact point to the road
 Tires

 Damped compliance

Wheels, etc. – the unsprung mass
 Shock absorbers

 A spring and a damper
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Initial Physical Model

 An initial model might look something like this:
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Simplified Physical Model

 Simplify the model by considering only one contact 
point at a time – the quarter-car model

 Assume linear components – springs and dampers

 Further simplify 
by neglecting 
the tire and 
unsprung mass
 Less significant 

than suspension 
and sprung 
mass
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Bond Graph Model

 The Physical model is specific to the type of system
 Mechanical system – springs, masses, dampers

 A bond graph model is a universal model
 Independent of domain
 Based on the flows of energy within the system
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Mathematical Model

 Use the bond graph model to derive the 
mathematical model for the system
 Governing differential equations in State-variable form

𝑝̇𝑝2
𝑞̇𝑞5

=
�−𝑏𝑏 𝑚𝑚 𝑘𝑘
�−1 𝑚𝑚 0

𝑝𝑝2
𝑞𝑞5 + 𝑏𝑏

1 𝑣𝑣𝑟𝑟 𝑡𝑡

 Note that we could have derived a similar, though 
not necessarily identical, set of equations by 
skipping the bond graph model and simply applying 
Newton’s 2nd law to the mass
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Simulation

 Can now use the mathematical model to determine how the 
system will respond to various inputs, e.g.:

 How will the suspension 
respond to a 10 cm step 
displacement
 Driving over a curb

 System parameters:
 Sprung mass:       𝑚𝑚 = 500 𝑘𝑘𝑘𝑘
 Spring constant:   𝑘𝑘 = 20 𝑘𝑘𝑘𝑘

𝑚𝑚
 Damping coeff.:    𝑏𝑏 = 750𝑁𝑁�𝑠𝑠

𝑚𝑚

 Numerical simulation using 
MATLAB
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Just as we did for a mechanical system, we’ll 
now step through the modeling and simulation 
procedure for an electrical system.

Electrical System – Example 21
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RLC Circuit

 Derive a model that can be used for the numerical simulation of an 
RLC electrical circuit

 Physical system is a circuit board, including the following: 
 Resistor

 Also includes some inductance and capacitance
 Inductor

 Includes winding resistance and inter-turn capacitance 
 Capacitor

 Some equivalent series inductance and resistance
 Traces

 Small amounts of series R and L, along with some shunt C – we’ll neglect all 
trace parasitics immediately

 Connectors
 Some small amount of R and/or L and/or C, depending on type of connector 

– we’ll neglect this right away
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Initial System Model

 An all-inclusive model, accounting for component 
parasitics, may look like:
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Simplified Model

 The model is already simplified in that we’ve 
neglected any parasitics associated with the 
connector and interconnect

 Further simplify by treating R, L, and C components 
as ideal – i.e. free of parasitics and linear
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Bond Graph Model

 More natural to jump directly to the simplified RLC 
model for the electric system than for the mechanical 
system
 In both cases tradeoffs must be made between accuracy 

and simplicity.
 The bond graph model:

 Note that the bond graph is identical  
to that of the mechanical system
 A universal modeling approach
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Mathematical Model

 Again, use the bond graph model to develop a 
state-variable mathematical model for the system

𝑝̇𝑝2
𝑞̇𝑞5

=
�−𝑅𝑅
𝐿𝐿 �1

𝐶𝐶
�−1
𝐿𝐿 0

𝑝𝑝2
𝑞𝑞5 + 𝑅𝑅

1 𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡

 Aside from variable names, state-space model is 
identical to that of the mechanical system

 Note that, again, we could have bypassed the bond 
graph model and derived a similar set of state-
variable equations directly, though application of 
Kirchhoff’s laws
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Simulation

 Use the mathematical model to determine inductor 
current in response to a 10 mA input current step

 Numerical simulation in 
MATLAB

 Component values:

 Response is identical to 
that of the mechanical 
system
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Basic Modeling & Analysis Procedure

 Our starting point will 
generally be a simplified 
domain-specific model

 We’ll focus on a bond 
graph modeling approach
 A universal, energy-based 

approach
 One, but not the only, 

method for deriving a 
mathematical model

 Both numerical and 
analytical solution will be 
addressed
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Course Overview

 The first section of the 
course will cover bond 
graph fundamentals

 Next, we’ll learn how to 
develop a state-variable 
mathematical models from 
bond graph models

 Finally, we’ll cover how to 
use state-space models to 
determine system 
response
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Motivation

 Need to model systems in order to simulate them
 Want to simulate for two main reasons:

 Analysis
 System response to various inputs
 Dependence of response on parameters

 Design
Modifying a system to yield desired performance
 Control system design – the addition of feedback and a 

controller to the system to improve performance
 The subject of the following course in the series, ESE 430
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Control of Dynamic Systems

 Example: automobile cruise control
 Maintain a constant desired speed
 Modulate throttle position to vary speed

 Three modes of control:
 Open-loop control – set the throttle to the angle that 

corresponds to the desired speed and leave it there
 Human control – driver monitors vehicle speed and 

adjusts the throttle to maintain constant speed
 Closed-loop control – a controller monitors vehicle 

speed, compares that to the desired speed, and 
modulates throttle position accordingly
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Block Diagrams & Terminology

 We use block diagrams to represent control 
systems
 For the cruise control system:

 The plant is the system we want to control – the car
 The reference input, r(t), is the set point – the desired 

speed
 The output, y(t), is the actual speed 
 Arrows in the block diagram represent the flow of 

signals – information of some kind
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Open-Loop Control 

 Create a lookup table or formula relating throttle 
position to speed
 Test a car or sampling of cars on a track at the factory 

to gather data
 Driver sets the cruise control to go 60 MPH – vehicle 

computer sets throttle to corresponding position
or

 Set throttle position to current value when cruise 
control is set – hold it there
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Open-Loop Control – Problems 

 Plant variation
 Not all cars are the same
 Throttle position/speed relationship affected by age, 

elevation, fuel, etc. 
 Disturbances

 Hills, wind, road surface, etc.
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Human Control

 This is feedback control, but not automatic control
 Driver chooses a desired speed, r(t)
 Speedometer senses and displays current speed, y(t)
 Driver visually monitors speedometer and adjusts the 

accelerator such that y(t) ≈ r(t)

 Output is fed back 
through the driver
 Driver has some 

‘model’ of the car in 
their head

 Disturbances and 
plant variation are 
accounted for
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Closed-Loop Feedback Control

 Output fed back and subtracted from the reference
 Error signal, e(t), is input to the controller

 Controller mathematically manipulates e(t) to generate the 
control signal, u(t)

 Here, u(t) would be a signal to change the throttle position

 Disturbances and plant variation are rejected
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Closed-Loop Feedback Control

 Control system design involves designing the controller 
block to yield desired performance at y(t) – ESE 430

 Need to accurately model and simulate: 
 The plant we want to control
 The entire closed-loop control system, including the plant and the 

controller

 The goal of this course, ESE 330, is to learn to model and 
simulate the plant block of the system above

ESE 330
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