
ESE 330 – Modeling & Analysis of Dynamic Systems

SECTION 1: 
INTRODUCTION
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Modeling and Analysis

 As engineers, we are interested in analyzing and designing physical systems

 What is a system?
 Any entity comprised of interacting components

 Systems have inputs and outputs
 Not necessarily explicit
 System characteristics determine how inputs translate to outputs

 Separable from its surroundings or environment 
 Physically or conceptually
 May interact – via inputs and outputs – with its environment

 May be composed of multiple integrated subsystems

 Examples of systems:
 Refrigeration unit
 Mobile phone
 Industrial robot
 Computer software

 Satellite
 Engine
 Stock market
 Etc…
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System Models

 Want to be able to describe these systems in a 
tractable, mathematical way

 We represent these systems with models:
 Abstracted representation of the real system
 Captures some aspects of the real system’s behavior –

the behavior we care about – while ignoring others
 Simplified in some way
 Smaller
 Less complex
 Linear
 Lossless, etc. … 
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System Models

 Model of a physical system may be:
 A physical system itself, simplified in some way
 e.g., scale model for wind-tunnel testing

 A mathematical model
 An equation or system of equations that describe the 

aspects of system behavior that interest us (while ignoring 
others)

 A physical model as an intermediate step in generating 
a mathematical model
 An abstraction of the real system, whose behavior we can 

describe with mathematical expressions 
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Analysis & Simulation

 Model used for analysis and simulation of the system 
 Analysis of system behavior
 Could be physical simulation, e.g. aerodynamic testing in a wind 

tunnel
 Here, we’re interested in mathematical simulation
 Could be either analytical or numerical

 Why simulate?
 Analysis
 How does a system respond to different types of inputs?
 How does the response depend on component parameters?...

 Design
 Modifying the system parameters to achieve desired behavior
 Control system design – adding feedback and a controller to the 

system to improve system performance
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Linear vs. Nonlinear Systems

 Systems take inputs and yield outputs
 Could be force, velocity, voltage, current, etc. …

 Transfer characteristics relate outputs to inputs These may 
be linear or nonlinear 
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Linear vs. Nonlinear Systems

 Linear systems are comprised of linear components
 I.e., those with linear transfer characteristics

 Linear systems are described by linear differential
equations, e.g.

𝑚𝑚�̈�𝑥 + 𝑏𝑏�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
 Non-linear systems are described by nonlinear

differential equations, e.g.

𝑚𝑚�̈�𝑥 + 𝑏𝑏 � 𝑙𝑙𝑙𝑙 �̇�𝑥 + 𝑘𝑘𝑥𝑥2 = 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
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Linear vs. Nonlinear Systems

 Consider, for example, a simple spring
 Transfer characteristic relating displacement to force:

 Is the spring a linear component?
 No – over a full range of force and displacement, it is clearly 

nonlinear
 Yes – for small values of force and displacement the spring is 

accurately approximated as linear
 Obeys Hooke’s law: 𝑥𝑥 = 1

𝑘𝑘
� 𝐹𝐹
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No Such Thing as a Linear System

 Truly linear systems do not exist in reality
 All systems are inherently nonlinear
 Some very nonlinear, others negligibly so 

 If stressed far enough, all systems will exhibit significant 
nonlinearity

 We will focus nearly exclusively on linear systems
 Simplifies modeling and analysis
 Many systems can be accurately modeled as linear over 

a small enough range
 Linear system theory serves as the basis for dealing 

with nonlinear systems as well
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Superposition

 The principle of superposition applies to linear systems
𝑓𝑓 𝑥𝑥1 = 𝑦𝑦1
𝑓𝑓 𝑥𝑥2 = 𝑦𝑦2
𝑓𝑓 𝛼𝛼𝑥𝑥1 + 𝛽𝛽𝑥𝑥2 = 𝛼𝛼𝑦𝑦1 + 𝛽𝛽𝑦𝑦2

 For example, a linear spring:
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Linearization – Example 

 A simple pendulum is a nonlinear system

�̈�𝜃 =
𝑔𝑔
𝑙𝑙

sin 𝜃𝜃 −
1
𝑚𝑚𝑙𝑙

𝐹𝐹𝑑𝑑 �̇�𝜃 −
1
𝑚𝑚𝑙𝑙2

𝜏𝜏𝑓𝑓 �̇�𝜃

 Nonlinear air resistance term, 𝐹𝐹𝑑𝑑 �̇�𝜃
 Neglect it altogether

 Nonlinear friction term, 𝜏𝜏𝑓𝑓 �̇�𝜃
 Treat it as linear viscous friction:

𝜏𝜏𝑓𝑓 = 𝑏𝑏𝜏𝜏�̇�𝜃

 Pendulum model becomes:

�̈�𝜃 =
𝑔𝑔
𝑙𝑙

sin 𝜃𝜃 −
1
𝑚𝑚𝑙𝑙2

𝑏𝑏𝜏𝜏�̇�𝜃

 Still have the nonlinear 𝑠𝑠𝑠𝑠𝑙𝑙 𝜃𝜃 term
 Restrict angular displacement to very small values, where sin 𝜃𝜃 ≈ 𝜃𝜃

 The linearized pendulum model

�̈�𝜃 =
𝑔𝑔
𝑙𝑙 𝜃𝜃 −

1
𝑚𝑚𝑙𝑙2 𝑏𝑏𝜏𝜏

�̇�𝜃
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Without going into the details, we’ll now walk 
through the process of modeling and simulating 
two different types of systems – the first 
mechanical, and the second electrical.

Mechanical System – Example 14
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Vehicle Suspension System

 Suppose you want to analyze the performance of a 
vehicle suspension system

 Physical system:
 Car body mass - the sprung mass
 Four contact point to the road
 Tires

 Damped compliance

Wheels, etc. – the unsprung mass
 Shock absorbers

 A spring and a damper
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Initial Physical Model

 An initial model might look something like this:



K. Webb ESE 330

17

Simplified Physical Model

 Simplify the model by considering only one contact 
point at a time – the quarter-car model

 Assume linear components – springs and dampers

 Further simplify 
by neglecting 
the tire and 
unsprung mass
 Less significant 

than suspension 
and sprung 
mass
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Bond Graph Model

 The Physical model is specific to the type of system
 Mechanical system – springs, masses, dampers

 A bond graph model is a universal model
 Independent of domain
 Based on the flows of energy within the system
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Mathematical Model

 Use the bond graph model to derive the 
mathematical model for the system
 Governing differential equations in State-variable form

�̇�𝑝2
�̇�𝑞5

=
�−𝑏𝑏 𝑚𝑚 𝑘𝑘
�−1 𝑚𝑚 0

𝑝𝑝2
𝑞𝑞5 + 𝑏𝑏

1 𝑣𝑣𝑟𝑟 𝑡𝑡

 Note that we could have derived a similar, though 
not necessarily identical, set of equations by 
skipping the bond graph model and simply applying 
Newton’s 2nd law to the mass
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Simulation

 Can now use the mathematical model to determine how the 
system will respond to various inputs, e.g.:

 How will the suspension 
respond to a 10 cm step 
displacement
 Driving over a curb

 System parameters:
 Sprung mass:       𝑚𝑚 = 500 𝑘𝑘𝑔𝑔
 Spring constant:   𝑘𝑘 = 20 𝑘𝑘𝑘𝑘

𝑚𝑚
 Damping coeff.:    𝑏𝑏 = 750𝑘𝑘�𝑠𝑠

𝑚𝑚

 Numerical simulation using 
MATLAB
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Just as we did for a mechanical system, we’ll 
now step through the modeling and simulation 
procedure for an electrical system.

Electrical System – Example 21
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RLC Circuit

 Derive a model that can be used for the numerical simulation of an 
RLC electrical circuit

 Physical system is a circuit board, including the following: 
 Resistor

 Also includes some inductance and capacitance
 Inductor

 Includes winding resistance and inter-turn capacitance 
 Capacitor

 Some equivalent series inductance and resistance
 Traces

 Small amounts of series R and L, along with some shunt C – we’ll neglect all 
trace parasitics immediately

 Connectors
 Some small amount of R and/or L and/or C, depending on type of connector 

– we’ll neglect this right away



K. Webb ESE 330

23

Initial System Model

 An all-inclusive model, accounting for component 
parasitics, may look like:
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Simplified Model

 The model is already simplified in that we’ve 
neglected any parasitics associated with the 
connector and interconnect

 Further simplify by treating R, L, and C components 
as ideal – i.e. free of parasitics and linear
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Bond Graph Model

 More natural to jump directly to the simplified RLC 
model for the electric system than for the mechanical 
system
 In both cases tradeoffs must be made between accuracy 

and simplicity.
 The bond graph model:

 Note that the bond graph is identical  
to that of the mechanical system
 A universal modeling approach
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Mathematical Model

 Again, use the bond graph model to develop a 
state-variable mathematical model for the system

�̇�𝑝2
�̇�𝑞5

=
�−𝑅𝑅
𝐿𝐿 �1

𝐶𝐶
�−1
𝐿𝐿 0

𝑝𝑝2
𝑞𝑞5 + 𝑅𝑅

1 𝑠𝑠𝑖𝑖𝑖𝑖 𝑡𝑡

 Aside from variable names, state-space model is 
identical to that of the mechanical system

 Note that, again, we could have bypassed the bond 
graph model and derived a similar set of state-
variable equations directly, though application of 
Kirchhoff’s laws
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Simulation

 Use the mathematical model to determine inductor 
current in response to a 10 mA input current step

 Numerical simulation in 
MATLAB

 Component values:

 Response is identical to 
that of the mechanical 
system
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Basic Modeling & Analysis Procedure

 Our starting point will 
generally be a simplified 
domain-specific model

 We’ll focus on a bond 
graph modeling approach
 A universal, energy-based 

approach
 One, but not the only, 

method for deriving a 
mathematical model

 Both numerical and 
analytical solution will be 
addressed
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Course Overview

 The first section of the 
course will cover bond 
graph fundamentals

 Next, we’ll learn how to 
develop a state-variable 
mathematical models from 
bond graph models

 Finally, we’ll cover how to 
use state-space models to 
determine system 
response
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Motivation

 Need to model systems in order to simulate them
 Want to simulate for two main reasons:

 Analysis
 System response to various inputs
 Dependence of response on parameters

 Design
Modifying a system to yield desired performance
 Control system design – the addition of feedback and a 

controller to the system to improve performance
 The subject of the following course in the series, ESE 430
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Control of Dynamic Systems

 Example: automobile cruise control
 Maintain a constant desired speed
 Modulate throttle position to vary speed

 Three modes of control:
 Open-loop control – set the throttle to the angle that 

corresponds to the desired speed and leave it there
 Human control – driver monitors vehicle speed and 

adjusts the throttle to maintain constant speed
 Closed-loop control – a controller monitors vehicle 

speed, compares that to the desired speed, and 
modulates throttle position accordingly
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Block Diagrams & Terminology

 We use block diagrams to represent control 
systems
 For the cruise control system:

 The plant is the system we want to control – the car
 The reference input, r(t), is the set point – the desired 

speed
 The output, y(t), is the actual speed 
 Arrows in the block diagram represent the flow of 

signals – information of some kind



K. Webb ESE 330

34

Open-Loop Control 

 Create a lookup table or formula relating throttle 
position to speed
 Test a car or sampling of cars on a track at the factory 

to gather data
 Driver sets the cruise control to go 60 MPH – vehicle 

computer sets throttle to corresponding position
or

 Set throttle position to current value when cruise 
control is set – hold it there
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Open-Loop Control – Problems 

 Plant variation
 Not all cars are the same
 Throttle position/speed relationship affected by age, 

elevation, fuel, etc. 
 Disturbances

 Hills, wind, road surface, etc.



K. Webb ESE 330

36

Human Control

 This is feedback control, but not automatic control
 Driver chooses a desired speed, r(t)
 Speedometer senses and displays current speed, y(t)
 Driver visually monitors speedometer and adjusts the 

accelerator such that y(t) ≈ r(t)

 Output is fed back 
through the driver
 Driver has some 

‘model’ of the car in 
their head

 Disturbances and 
plant variation are 
accounted for
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Closed-Loop Feedback Control

 Output fed back and subtracted from the reference
 Error signal, e(t), is input to the controller

 Controller mathematically manipulates e(t) to generate the 
control signal, u(t)

 Here, u(t) would be a signal to change the throttle position

 Disturbances and plant variation are rejected
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Closed-Loop Feedback Control

 Control system design involves designing the controller 
block to yield desired performance at y(t) – ESE 430

 Need to accurately model and simulate: 
 The plant we want to control
 The entire closed-loop control system, including the plant and the 

controller

 The goal of this course, ESE 330, is to learn to model and 
simulate the plant block of the system above

ESE 330
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