SECTION 1:
INTRODUCTION

- ESE 330 — Modeling & Analysis of Dynamic Systems
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Modeling and Analysis
R

As engineers, we are interested in analyzing and designing physical systems
What is a system?
o Any entity comprised of interacting components

o Systems have inputs and outputs
Not necessarily explicit
System characteristics determine how inputs translate to outputs

o Separable from its surroundings or environment
Physically or conceptually
May interact — via inputs and outputs — with its environment

o May be composed of multiple integrated subsystems

Examples of systems:

o Refrigeration unit o Satellite

o Mobile phone o Engine

o Industrial robot o Stock market
o Computer software o Etc...
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System Models
e

Want to be able to describe these systems in a
tractable, mathematical way

We represent these systems with models:
O Abstracted representation of the real system

o Captures some aspects of the real system’s behavior —
the behavior we care about — while ignoring others

o Simplified in some way
Smaller
Less complex
Linear
Lossless, etc. ...
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System Models
e

Model of a physical system may be:

O A physical system itself, simplified in some way
e.g., scale model for wind-tunnel testing

o A mathematical model

An equation or system of equations that describe the
aspects of system behavior that interest us (while ignoring
others)
o A physical model as an intermediate step in generating
a mathematical model

An abstraction of the real system, whose behavior we can
describe with mathematical expressions
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Analysis & Simulation

Model used for analysis and simulation of the system
o Analysis of system behavior

o Could be physical simulation, e.g. aerodynamic testing in a wind
tunnel

o Here, we're interested in mathematical simulation
Could be either analytical or numerical

Why simulate?

o Analysis

How does a system respond to different types of inputs?

How does the response depend on component parameters?...
o Design

Modifying the system parameters to achieve desired behavior

Control system design — adding feedback and a controller to the
system to improve system performance
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Linear vs. Nonlinear Systems

Input Output

System ——=Y

Systems take inputs and yield outputs
o Could be force, velocity, voltage, current, etc. ...

Transfer characteristics relate outputs to inputs These may
be linear or nonlinear
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Linear vs. Nonlinear Systems
e

Linear systems are comprised of linear components
o l.e., those with linear transfer characteristics

Linear systems are described by linear differential
equations, e.g.

mx + bx + kx = F;,,(t)
Non-linear systems are described by nonlinear
differential equations, e.g.

mx + b - In(x) + kx? = F,,(¢t)
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Linear vs. Nonlinear Systems

Consider, for example, a simple spring
o Transfer characteristic relating displacement to force:
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Is the spring a linear component?

o No — over a full range of force and displacement, it is clearly
nonlinear

o Yes — for small values of force and displacement the spring is
accurately approximated as linear

Obeys Hooke’s law: x = % - F
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No Such Thing as a Linear System
R

Truly linear systems do not exist in reality
o All systems are inherently nonlinear
Some very nonlinear, others negligibly so

o If stressed far enough, all systems will exhibit significant
nonlinearity

We will focus nearly exclusively on linear systems
o Simplifies modeling and analysis

o Many systems can be accurately modeled as linear over
a small enough range

O Linear system theory serves as the basis for dealing
with nonlinear systems as well
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Superposition
e

The principle of superposition applies to linear systems

Input Linear Output f(xl) =1
* R f(x2) =y,
Yo flax, + Bx;) = ay; + By,

For example, a linear spring:
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Linearization — Example
R

A simple pendulum is a nonlinear system

. g . 1 : 1 :
6 = 7511’1(0) - ﬁFd(g) - er(g)

o Nonlinear air resistance term, F; (9)
Neglect it altogether

o Nonlinear friction term, Tf(é)
Treat it as linear viscous friction:

e

Tf = bTQ
Pendulum model becomes:
. g . 1 :
6 = TSIH(Q) - Wbre -

Still have the nonlinear sin(0) term
o Restrict angular displacement to very small values, where sin(0) =~ 6
The linearized pendulum model

g

) 1.
6 =0~ —5b0

K. Webb ESE 330



n Mechanical System — Example

Without going into the details, we’ll now walk
through the process of modeling and simulating
two different types of systems — the first
mechanical, and the second electrical.
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Vehicle Suspension System
e

Suppose you want to analyze the performance of a
vehicle suspension system

Physical system:
o Car body mass - the sprung mass

o Four contact point to the road

Tires
Damped compliance

Wheels, etc. —the unsprung mass

Shock absorbers
A spring and a damper
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Initial Physical Model
-

An initial model might look something like this:
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Simplified Physical Model
R

Simplify the model by considering only one contact
point at a time — the quarter-car model

Assume linear components — springs and dampers

ms/4 Tx{t} . .
Further simplify
. % mpt by ngglecting
the tire and /4 Tm
. Txusiﬂ UNSPrung mass 5
o Less significant K % b
than suspension

{0
and sprung j
mass M

K. Webb ESE 330




Bond Graph Model

The Physical model is specific to the type of system
o Mechanical system — springs, masses, dampers

A bond graph model is a universal model
0 Independent of domain
0 Based on the flows of energy within the system

T:m

P2 fa e
o
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Mathematical Model

Use the bond graph model to derive the
mathematical model for the system

O Governing differential equations in State-variable form

: —b K
o IV SEH PC

Note that we could have derived a similar, though
not necessarily identical, set of equations by
skipping the bond graph model and simply applying
Newton’s 2"9 |aw to the mass
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Simulation

Can now use the mathematical model to determine how the
system will respond to various inputs, e.g.:

H OW Wi | | t h e S u S p e n S i O n 01 Suspelnsiun Respnnlse to a 1l]chStep Displac:ament

respond to a 10 cm step |
displacement T

o Driving over a curb

=
.
=

o
.
I

System parameters:
O Sprung mass:  m =500kg .|
o Spring constant: k = 20 " 1 u
o Damping coeff.: b= 7507'5

=
.

displacement  [m]

0.04

Numerical simulation using o
MATLAB :

1 | 1 1
1] 2 4 5 g 10
time [sec]
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Electrical System — Example

Just as we did for a mechanical system, we’ll
now step through the modeling and simulation
procedure for an electrical system.
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RLC Circuit
e

Derive a model that can be used for the numerical simulation of an
RLC electrical circuit

Physical system is a circuit board, including the following:

O Resistor
Also includes some inductance and capacitance
o Inductor
Includes winding resistance and inter-turn capacitance
o Capacitor
Some equivalent series inductance and resistance
o Traces

Small amounts of series R and L, along with some shunt C — we’ll neglect all
trace parasitics immediately

o Connectors

Some small amount of R and/or L and/or C, depending on type of connector
— we’ll neglect this right away
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Initial System Model
-

An all-inclusive model, accounting for component
parasitics, may look like:
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Simplified Model

The model is already simplified in that we've
neglected any parasitics associated with the
connector and interconnect

Further simplify by treating R, L, and C components
as ideal —i.e. free of parasitics and linear
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Bond Graph Model

More natural to jump directly to the simplified RLC
model for the electric system than for the mechanical
system

o In both cases tradeoffs must be made between accuracy
and simplicity. I
L

The bond graph model: T R:R
P2 |f2 ey,

n(t): S¢ o 0——>1

aQ.
(3¢}

Note that the bond graph is identical
to that of the mechanical system

o A universal modeling approach
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Mathematical Model

Again, use the bond graph model to develop a
state-variable mathematical model for the system

] [ /L /c] P2) 1 [B] i 0

Aside from variable names, state-space model is
identical to that of the mechanical system

Note that, again, we could have bypassed the bond
graph model and derived a similar set of state-

variable equations directly, though application of
Kirchhoff’s laws
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Simulation

Use the mathematical model to determine inductor
current in response to a 10 mA input current step

Numerical simulation in

RLC Circuit Response to a 10mA Step
0.18 T T T T

MATLAB ool |
Component values:
o \/Ii/\ 012F
3.75Q

01f —

—C
iin(t) J’)T 10mA-1(t) L g 2.5H 100mF

0.08+

inductor current  [mA]

- o .06 H U
Response is identical to w
that of the mechanical o : 1.1 : |
System time [sec]
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Basic Modeling & Analysis Procedure
e

Our starting point will
generally be a simplified
domain-specific model

We'll focus on a bond
graph modeling approach

o A universal, energy-based
approach

o One, but not the only,
method for deriving a
mathematical model

Both numerical and
analytical solution will be
addressed

K. Webb

~ Physical System ~—-)

Create a simplified
domain-specific
model

I

v

Create a bond graph
model ‘

Derive a
mathematical state-
‘space system model
from the bond graph ‘

mathematical model

|

|Mathematical model

!

Numerical solution

!

| Analytical solution ‘

N

|
|

l

| Simulation results |
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Course Overview

.\ Create a simplified .
_ Physical System ——» doma I n-specific
\ model

The first section of the

}/ course will cover bond

graph fundamentals

Create a bond graph
model

|

o Next, we'll learn how to
/ develop a state-variable

space system model
from the bond graph ‘

. [ mathematical models from
l bond graph models

|Mathematical model}

—-—

I — | Finally, we’ll cover how to
I — / use state-space models to
| ‘ | . determine system
| l _ response
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Motivation
-
Need to model systems in order to simulate them

Want to simulate for two main reasons:

o Analysis
System response to various inputs
Dependence of response on parameters

o Design

Modifying a system to yield desired performance

Control system design — the addition of feedback and a
controller to the system to improve performance
The subject of the following course in the series, ESE 430
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Control of Dynamic Systems

-
Example: automobile cruise control

o Maintain a constant desired speed
o Modulate throttle position to vary speed

Three modes of control:

o Open-loop control — set the throttle to the angle that
corresponds to the desired speed and leave it there

o Human control — driver monitors vehicle speed and
adjusts the throttle to maintain constant speed

o Closed-loop control — a controller monitors vehicle
speed, compares that to the desired speed, and
modulates throttle position accordingly
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Block Diagrams & Terminology

-
We use block diagrams to represent control

systems

o For the cruise control system:

Reference

r(t)

Plant

Output

——— vit)

The plant is the system we want to control — the car
The reference input, r(t), is the set point — the desired

speed

The output, y(t), is the actual speed

Arrows in the block diagram represent the flow of
signals — information of some kind

K. Webb
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Open-Loop Control
R

Create a lookup table or formula relating throttle
position to speed

O Test a car or sampling of cars on a track at the factory
to gather data

Driver sets the cruise control to go 60 MPH — vehicle
computer sets throttle to corresponding position

or

Set throttle position to current value when cruise
control is set — hold it there
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Open-Loop Control — Problems
R
Plant variation

o Not all cars are the same

o Throttle position/speed relationship affected by age,
elevation, fuel, etc.

Disturbances
o Hills, wind, road surface, etc.

Disturbance
w(t)

Reference fL Speed
r(t) Car + A (Z) > y(t)
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Human Control

This is feedback control, but not automatic control

o Driver chooses a desired speed, r(t)

o Speedometer senses and displays current speed, y(t)

o Driver visually monitors speedometer and adjusts the
accelerator such that y(t) = r(t)

Output is fed back

through the driver Disturbance

o Driver has some __ o
‘model’ of the car in Reference BFeeen fL Speetd
their head r(t) Car+A (2) > y(t)

o Disturbances and
plant variation are
accounted for
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Closed-Loop Feedback Control
e

w(t)

Vel uft fL R
r(t) > Controller Car+A @ > y(t)

Output fed back and subtracted from the reference
Error signal, e(t), is input to the controller

o Controller mathematically manipulates e(t) to generate the
control signal, u(t)

o Here, u(t) would be a signal to change the throttle position

Disturbances and plant variation are rejected
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Closed-Loop Feedback Control

wit

Plant

Controller

ESE 330

Control system design involves designing the controller
block to yield desired performance at y(t) — ESE 430

Need to accurately model and simulate:

o The plant we want to control

o The entire closed-loop control system, including the plant and the
controller

The goal of this course, ESE 330, is to learn to model and
simulate the plant block of the system above
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