SECTION 2: BOND GRAPH
FUNDAMENTALS

- ESE 330 — Modeling & Analysis of Dynamic Systems



Bond Graphs - Introduction
e

As engineers, we're interested in different types of systems:
o Mechanical translational

o Mechanical rotational

o Electrical

o Hydraulic

Many systems consist of subsystems in different domains, e.g. an
electrical motor

Common aspect to all systems is the flow of energy and power
between components

Bond graph system models exploit this commonality
o Based on the flow of energy and power
o Universal — domain-independent

o Technique used for deriving differential equations from a bond graph
model is the same for any type of system
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Bonds and Power Variables
-

Systems are made up of components
o Power can flow between components
o We represent this pathway for power to flow with bonds

A ~B

A and B represent components, the line connecting them is a bond
Quantity on the bond is power

o Power flow is positive in the direction indicated — arbitrary

Each bond has two power variables associated with it

o Effort and flow

A——B
The product of the power variables is power

P=e-f
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Power Variables

Power variables, e and f, determine the power flowing

on a bond

o The rate at which energy flows between components

General Effort
M .

echan'lcal Force P
Translational
Mechanical Torque .
Rotational g
Electrical Voltage v
Hydraulic Pressure P
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(N/m?)

Flow
Velocity v
An

gu!ar ©
velocity
Current [
Flow rate Q

MMmm

P=F-v
P=7T-w
P=v-i
P=P-0Q
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Energy Variables
e
Bond graph models are energy-based models
Energy in a system can be:
o Supplied by external sources
o Stored by system components

o Dissipated by system components
o Transformed or converted by system components

In addition to power variables, we need two more
variables to describe energy storage: energy variables

O Momentum
o Displacement
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Momentum
I

Momentum — the integral of effort

p(t) = [ e(t)dt

SO
e(t) =—=
For mechanical systems:
dp d dv dm
e _F_E d—(mv) mot v

which, for constant mass, becomes

o dv_
—mdt—ma

Newton’s second law
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Displacement
-

Displacement — the integral of flow

qt) = [ f(t)dt

"
Fo=2=4
For mechanical systems:
q(t) = x(t)
F© = v
o = =v) =5

The definition of velocity
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Energy Variables

Displacement and momentum are familiar concepts for mechanical
systems

o All types of systems have analogous energy variables
o We'll see that these quantities are useful for describing energy storage

mm

General Momentum Displacement
Mechanical :
ec an.lca Momentum p N-s Displacement X m
Translational
i I

Mech.anlcal Angular I Vs | Ak 0 rad

Rotational momentum

Electrical Magnetic flux A V-s Charge q C
H li

Hydraulic ydraulic I N-s/m? Volume %4 m3
momentum
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Energy — Kinetic Energy
e

Energy is the integral of power
E(t) = jiP(t)dt = Je(t)f(t)dt
We can relate effort to momentum

dp
e(t) = E

So, if it is possible to express flow as a function of momentum, f (p), we
can express energy as a function of momentum, E (p)

d
E@) = | S r@de = [ rap

This is kinetic enerqy
0 Energy expressed as a function of momentum
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Energy — Potential Energy
R

Energy is the integral of power
E(t) = jiP(t)dt = Je(t)f(t)dt

We can relate flow to displacement

d
IGEEL

So, if it is possible to express effort as a function of displacement, e(q), we
can express energy as a function of displacement, E(q)

d
B(@) = | e@ hdt = [eta)dq

This is potential energy
0 Energy expressed as a function of displacement
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Energy — Mechanical Translational
e

For a mechanical translational system

E(t) = Je(t)f(t)dt = fF(t)v(t)dt

and
F@o) = 2P () =—
Cdt’ VP _mp
o)
dp 1 1 1 1 1
E = | ——pdt =— dp = —p? = —m?v? =—mv? = K.E.
(p) jdtmp mjp p 2mp mev va

We can also express force and energy as a function of displacement

©=% " Fw=k
v(t) =—, x) = kx
SO

dx

1
= = — 2:
dtdt—ijdx ka P.E.

E(x) = ka
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Energy — Electrical
e

For an electrical system

E(t) = Je(t)f(t)dt = fv(t) i(t)dt
and

0 =“ () =7
VAW =0 v =T

EQ}) = f——/ldt = —j/l dA = iAZ . — %% = 1Li2 = Mag.Energy
2L 2L 2 '

We can also express voltage and energy as a function of charge

©=21 g =+
T =
o)
1 dq, 1 PO IV
E(q)=JEqut=5Jqdq=%q —%C 2Cv = Elect. Energy
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Energy — Summary
e

E(t) = Je(t) f(t)dt

For some system components, flow can be expressed as a function of
momentum

o These components store energy as a function of momentum
o This is kinetic energy or magnetic energy

E(p) = j F () dp

For other components, effort can be expressed as a function of
displacement

0o These components store energy as a function of displacement
o This is potential energy or electrical energy

E(q) = j e(q) dg
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System Components

System components are defined by how they affect
energy flow within the system — they can:

Supply energy
Store energy
a) As a function of p — kinetic or magnetic energy
b) As a function of q — potential or electrical energy

Dissipate energy
Transform or convert energy

Different bond graph elements for components in each
of these categories

o Categorized by the number of ports - bond attachment
points
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Active One-Port Elements

.
External sources that supply energy to the system

Effort Source

o Supplies a specific effort to the system
o E.g., force source, voltage source, pressure source

Se—t—

Flow Source
o Supplies a specific flow to the system
o E.g., velocity source, current source, flow source

Sf ffll AN
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Passive One-Port Elements

One-port elements categorized by whether they
dissipate energy or store kinetic or potential energy

Three different one-port elements:
o Inertia

o Capacitor
o Resistor

Same three elements used to model system
components in all different energy domains

Each defined by a constitutive law

o A defining relation between two physical quantities — two of
the four energy and power variables
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Inertia

Inertia — a component whose constitutive law relates flow to
momentum

1
f—Ip

where [ is the relevant inertia of the component

Inertias store energy as a function of momentum
A kinetic energy storage element

m Inertia Parameter Symbol m

General Inertia

Translational Mass m kg
Rotational Moment of inertia Ji Kg-m?2
Electrical Inductance L H

Hydraulic Hydraulic inertia I Kg/m#*
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Inertia

Bond graph symbol for an inertia:

S
T+

Physical components modeled as inertias:

X h ]

m |—>F v . ( 0
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Inertia — Energy Storage

Constitutive law:

1
f—Ip

A f(p)

Stored energy:

KE=E®) = [ 10 dp
1 p?

P
Mechanical:
K E. = (mv)* — lmvz Stored
2m 2 kinetic
Electrical: energy
2
M.E.=(LI) =1 2

2L 2
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Inertia — Constitutive Law

Constitutive law for an inertia can be expressed in linear,
integral, or derivative form:

f—— =—fedt or e—If
N T TR T
G I = dt —I—

enera I fe e It

1 dv

Translational v=—p fF dt F=m—

m m dt

1 dw

Rotational w ==L a)=—j1'dt T=]—
J J

Electrical =2 ' 1j dt L&

t = — = — - J —

ectrica [ I [ I % V= It

Hydrauli —1F —1det B= IdQ

ydraulic Q = 7 Q = ] =I=
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Capacitors
e

Capacitor — a component whose constitutive law relates effort to
displacement

1

C
where C is the relevant capacitance of the component
Capacitors store energy as a function of displacement

A potential-energy-storage element

m Capacitance Parameter Symbol m

General Capacitance

Translational Compliance 1/k m/N
Rotational Rotational compliance 1/k; rad/N-m
Electrical Capacitance C F
Hydraulic Hydraulic capacitance C m>/N
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Capacitor
e

Bond graph symbol for a capacitor:
e
C—+

Physical components modeled as capacitors:

k
+ kT A
Fe—/\W\ e F le ] )

v —
IHX]_ |HX2 T 6 éz

Note that spring constants are the inverse of
capacitance or compliance
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Capacitor — Constitutive Law

Constitutive law:
Ae(q)

_1 ’
e=-q ’

Stored energy:

P.E.= E(q) = j e(q) dg

1 2
P.E.=—fqdq=q—

C 2C
. g
Mechanical:
PE = x* 1.2 Stored
2/k 2 potential
Electrical: energy
C-v)® 1 s
EE= ( v) = — ’UZ o'

2C
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Capacitor — Constitutive Law
e

Constitutive law for a capacitor can be expressed in linear,
integral, or derivative form:

1 1 de
e—Eq—Effdt or f=C—
General = _ dt = C—
=g -zl G
Translational F = kx F=k jv dt v = ld—F
k dt
1drt
Rotational = k.0 r=kfwdt =
otationa T T . W k. dt
1 1f dv
Electrical = — v=—|idt | = C —
G c T
1 1 dP
Hydraulic P=—V P = —j dt = C—
C C ¢ Q=C dt
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Resistors

-0V
Resistor — a component whose constitutive law relates flow to effort

f=%e or e=R-f

where R is the relevant resistance of the component
Resistors dissipate energy
A loss mechanism

m Resistance Parameter Symbol m

General Resistance

Translational Damping coefficient b N-s/m
Rotational Rotational damping coeff. b, N-m-s/rad
Electrical Resistance R Q
Hydraulic Hydraulic resistance R N-s/m?
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Resistor

Bond graph symbol for a resistor:
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Resistor — Power Dissipation
e

Constitutive law:
A fle)

J— 1 ’
f= R € ;

or
e=R-f
Power dissipation: 1
2 V( R

fP=e-f=f2R=e—

R
e
Mechanical: >
FZ
P =vih=—
v b
Electrical:
2
v ]
:P — .2R — "c
l R
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Resistor — Constitutive Law

Constitutive law for a resistor can express flow in terms of
effort, or vice-versa:

1
f=-e or e=R-f
R
T T T
1
General f:Ee e=R-f
) 1
Translational v = EF F=b-v
1
Rotational w=—T T=b; w
b,
Electrical | = 1 v=R-i
L= R 1%

Hydraulic Q=—=P P=b-Q
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Viscous vs. Coulomb Friction

e
We've assumed a specific type of mechanical resistance
— viscous friction
o A linear resistance
o Realistic? — Sometimes

A F(v)
Can we model coulomb friction
as a resistor? +1uFy
F=puky v

o Yes, if the constitutive law relates
effort (F) and flow (v)

o It does — velocity determines
direction of the friction force

F =—uFy-sign(v)
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Multi-Port Elements - Junctions

So far, we have sources and other one-port elements

o These allow us to model things like this:

K — *
i—\/\/\ AM— — Fy W v 3t

k:C;?Se:F(t) i(t):SfiéI:L

Want to be able to model multiple interconnected
components in a system

o Need components with more than one port
o Junctions: 0-junction and 1-junction
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O-Junctions

-0V
0-junction — a constant effort junction
o All bonds connected to a O-junction have equal effort
o Power is conserved at a O-junction

Constant effort:
61 — 62 — 63

Power is conserved:

z?in — Z:Pout
€4 \0 €3 o

f fs e1f1 = exf, +esf;
SO

fi=ft /]
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O-Junctions

Constant-effort O-junction translates to different physical
configurations in different domains

Mechanical translational
o Constant force — components connected in series

k b
Fe——MWV——"A F——F  1kCt——(Q—=—Rw
I_)\f'1 |_)"n"z |_)V3
Electrical

o Constant voltage — components connected in parallel

* i i
v f%L BN L4 () —=Cc
1 2
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1-Junctions

-0V
1-junction — a constant flow junction
o All bonds connected to a 1-junction have equal flow
o Power is conserved at a 1-junction

Constant flow:
hi=h=13

Power is conserved:

\ z?in=z?out

Z € 1 €3 \
fi fs exf, = e f1 +esfs
SO

e, = eq + ez
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1-Junctions
e

Constant-flow 1-junction translates to different physical
configurations in different domains

Mechanical translational
o Constant velocity — components connected in parallel

| e [F kG 1 Re
e T Loy,
Electrical
o Constant current — components connected in series
., R
VA

©
+

c:C4 ?11 1 ?22 SRR

\" _—

o
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Cascaded 0O-Junctions

f f Substitute (3) into (4)
EZJZ E‘J“ ;lfﬁ fth=—fatfe— 17
000 fitfotfatfr="fs

Equal efforts, flows sum to zero gﬁ%f;gjﬂﬁitﬁgﬁ cascade to 3

hth=1 (1) \ /

fi+fatfs=0 (2) e ¥

fr="Fs+ e (3)
Substitute (2) into (1) &2

it =—Ja=Js (4) Internal bond directions are

irrelevant
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Cascaded 1-Junctions

Substitute (3) into (4)
eg|fs
&|f; eu|fa e1 =6, te,—eg—ey

€ \ € N\ € N1 ~ €
fll 1 f: 1 f; 1 f77 81 + 36 + 37 — 32 + 34,

Can collapse the cascade to a
Equal flow, efforts sum to zero single 1-junction

ep = ey +e3 (1) \ S/
e3 = ey t+es (2)

ec +eg+e; =0 (3) f
Substitute (2) into (1) J
e =e, +e,+e: (4) Internal bond directions are

irrelevant
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Two-Port Bond Graph Elements

-
Two-port elements:

o Transformer
o Gyrator

Transmit power
Two ports —two bond connection points

Power is conserved: P;;, = Pyt
o Ideal, i.e. lossless, elements

May provide an interface between energy domains

o E.g. transmission of power between mechanical and electrical
subsystems

Bonds always follow a through convention
o One in, one out

K. Webb ESE 330



Transformer
X

— [F——
m

Transformers — relate effort at one port to effort at the
other and flow at one port to flow at the other

o Efforts and flows related through the transformer modulus, m

o Constitutive law:

1
€ = me; and f = ;fl

Power is conserved, so

1
e1f1 = eyf, = meyq Efl =eify
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Transformer — Mechanical
X

Relation of efforts, F, and F, F
O Balance the moments: l F,

aF; = bF, a T v
a f* ]
F2 — EFl

Relation of flows, v, and v,

) Bond graph model:
o Equal angular velocity all along
lever arm: &1 N\ &\
v % f TF 2
w = it — 2 a/b
a b e, = (a/b)e;
b

v2=_" Include effort-to-effort or
flow-to-flow relationship
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Transformer — Electrical

Relation of flows, i, and i,
o Current scales with the turns
ratio:
N; |

iz =—U
N,

Relation of efforts, v; and v,

o Voltage scales with the inverse
of the turns ratio:

N,
%) —N—lvl
Power is conserved
Pout = v =&i &v =1,V = P;
out 2Y2 N2 1]\,1 1 1Y1 in

K. Webb

[ ) [
15 NN, =

+ . o +
V1 | | V>

Bond graph model:

€ AN € N
— TF—
N1/N,
e,=(No/Np)e;

Include effort-to-effort or
flow-to-flow relationship
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Gyrator
e

QY ——
r

Gyrators — effort at one port related to flow at the other

o Efforts and flows related through the gyrator modulus, r

o Constitutive law:

1
e, =Tfy and fr = —e;

Power is conserved so

1
e1f1 = eyf; = Tf1;e1 =eify

Gyrator modulus relates effort and flow — a resistance
o Really, a transresistance
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Gyrator - Example

Ideal electric motor i

O Electrical current, a flow, converted to o
torque, an effort

Current and torque related through M io
the motor constant, k., v

T=k,i -

Power is conserved

o relationship between voltage and

angular velocity is the inverse & \GY—2 N
1 no
w=—v K
Km &2= Knf1
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