SECTION 2: BOND GRAPH FUNDAMENTALS

ESE 330 - Modeling \& Analysis of Dynamic Systems

Bond Graphs - Introduction

\square As engineers, we're interested in different types of systems:

- Mechanical translational
- Mechanical rotational
- Electrical
- Hydraulic
\square Many systems consist of subsystems in different domains, e.g. an electrical motor
\square Common aspect to all systems is the flow of energy and power between components
\square Bond graph system models exploit this commonality
- Based on the flow of energy and power
- Universal - domain-independent
- Technique used for deriving differential equations from a bond graph model is the same for any type of system

Power and Energy Variables

Bonds and Power Variables

\square Systems are made up of components

- Power can flow between components
- We represent this pathway for power to flow with bonds

$$
\mathrm{A} \longrightarrow \mathrm{~B}
$$

$\square \mathbf{A}$ and \mathbf{B} represent components, the line connecting them is a bond
\square Quantity on the bond is power

- Power flow is positive in the direction indicated - arbitrary
\square Each bond has two power variables associated with it
- Effort and flow

$$
\mathrm{A} \xrightarrow[\mathrm{f}_{1}]{\frac{e_{1}}{\mathrm{f}_{1}}} \mathrm{~B}
$$

\square The product of the power variables is power

$$
\mathcal{P}=e \cdot f
$$

Power Variables

\square Power variables, e and f, determine the power flowing on a bond

- The rate at which energy flows between components

Domain	Effort			Flow			Power
	Quantity	Variable	Units	Quantity	Variable	Units	
General	Effort	e	-	Flow	f	-	$\mathcal{P}=e \cdot f$
Mechanical Translational	Force	F	N	Velocity	v	m / s	$\mathcal{P}=F \cdot v$
Mechanical Rotational	Torque	τ	N-m	Angular velocity	ω	$\mathrm{rad} / \mathrm{s}$	$\mathcal{P}=\tau \cdot \omega$
Electrical	Voltage	v	V	Current	i	A	$\mathcal{P}=v \cdot i$
Hydraulic	Pressure	P	$\begin{gathered} \mathrm{Pa} \\ \left(\mathrm{~N} / \mathrm{m}^{2}\right) \end{gathered}$	Flow rate	Q	$\mathrm{m}^{3} / \mathrm{s}$	$\mathcal{P}=P \cdot Q$

Energy Variables

\square Bond graph models are energy-based models
\square Energy in a system can be:

- Supplied by external sources
- Stored by system components
- Dissipated by system components
- Transformed or converted by system components
\square In addition to power variables, we need two more variables to describe energy storage: energy variables
- Momentum
- Displacement

Momentum

\square Momentum - the integral of effort
$p(t) \equiv \int e(t) d t$
so

$$
e(t)=\frac{d p}{d t}=\dot{p}
$$

\square For mechanical systems:

$$
e=F=\frac{d p}{d t}=\frac{d}{d t}(m v)=m \frac{d v}{d t}+v \frac{d m}{d t}
$$

which, for constant mass, becomes

$$
F=m \frac{d v}{d t}=m a
$$

\square Newton's second law

Displacement

- Displacement - the integral of flow

so \quad| $q(t) \equiv \int f(t) d t$ |
| :--- |
| $f(t)=\frac{d q}{d t}=\dot{q}$ |

\square For mechanical systems:

$$
\begin{aligned}
q(t) & =x(t) \\
f(t) & =v(t) \\
f(t)=\frac{d q}{d t} & =v(t)=\frac{d x}{d t}
\end{aligned}
$$

\square The definition of velocity

Energy Variables

\square Displacement and momentum are familiar concepts for mechanical systems

- All types of systems have analogous energy variables
- We'll see that these quantities are useful for describing energy storage

Domain	Momentum			Displacement		
	Quantity	Variable	Units	Quantity	Variable	Units
General	Momentum	p	-	Displacement	q	-
Mechanical Translational	Momentum	p	N-S	Displacement	x	m
Mechanical Rotational	Angular momentum	L	N-m-s	Angle	θ	rad
Electrical	Magnetic flux	λ	V-s	Charge	q	C
Hydraulic	Hydraulic momentum	Γ	$\mathrm{N}-\mathrm{s} / \mathrm{m}^{2}$	Volume	V	m^{3}

Energy - Kinetic Energy

\square Energy is the integral of power

$$
E(t)=\int \mathcal{P}(t) d t=\int e(t) f(t) d t
$$

\square We can relate effort to momentum

$$
e(t)=\frac{d p}{d t}
$$

\square So, if it is possible to express flow as a function of momentum, $f(p)$, we can express energy as a function of momentum, $E(p)$

$$
E(p)=\int \frac{d p}{d t} f(p) d t=\int f(p) d p
$$

\square This is kinetic energy

- Energy expressed as a function of momentum

Energy - Potential Energy

\square Energy is the integral of power

$$
E(t)=\int \mathcal{P}(t) d t=\int e(t) f(t) d t
$$

\square We can relate flow to displacement

$$
f(t)=\frac{d q}{d t}
$$

\square So, if it is possible to express effort as a function of displacement, $e(q)$, we can express energy as a function of displacement, $E(q)$

$$
E(q)=\int e(q) \frac{d q}{d t} d t=\int e(q) d q
$$

\square This is potential energy

- Energy expressed as a function of displacement

Energy - Mechanical Translational

\square For a mechanical translational system

$$
E(t)=\int e(t) f(t) d t=\int F(t) v(t) d t
$$

and

$$
F(t)=\frac{d p}{d t}, \quad v(p)=\frac{1}{m} p
$$

so

$$
E(p)=\int \frac{d p}{d t} \frac{1}{m} p d t=\frac{1}{m} \int p d p=\frac{1}{2 m} p^{2}=\frac{1}{2 m} m^{2} v^{2}=\frac{1}{2} m v^{2}=\boldsymbol{K} . \boldsymbol{E} .
$$

\square We can also express force and energy as a function of displacement

$$
v(t)=\frac{d x}{d t}, \quad F(x)=k x
$$

so

$$
E(x)=\int k x \frac{d x}{d t} d t=k \int x d x=\frac{1}{2} k x^{2}=\boldsymbol{P} . \boldsymbol{E} .
$$

Energy - Electrical

\square For an electrical system

$$
E(t)=\int e(t) f(t) d t=\int v(t) i(t) d t
$$

and

$$
v(t)=\frac{d \lambda}{d t}, \quad i(\lambda)=\frac{1}{L} \lambda
$$

so

$$
E(\lambda)=\int \frac{d \lambda}{d t} \frac{1}{L} \lambda d t=\frac{1}{L} \int \lambda d \lambda=\frac{1}{2 L} \lambda^{2}=\frac{1}{2 L} L^{2} i^{2}=\frac{1}{2} L i^{2}=\boldsymbol{M a g} \cdot \boldsymbol{E n e r} \boldsymbol{g} \boldsymbol{y}
$$

\square We can also express voltage and energy as a function of charge

$$
i(t)=\frac{d q}{d t}, \quad v(q)=\frac{1}{C} q
$$

so

$$
E(q)=\int \frac{1}{C} q \frac{d q}{d t} d t=\frac{1}{C} \int q d q=\frac{1}{2 C} q^{2}=\frac{1}{2 C} C^{2} v^{2}=\frac{1}{2} C v^{2}=\text { Elect. Energy }
$$

Energy - Summary

$$
E(t)=\int e(t) f(t) d t
$$

\square For some system components, flow can be expressed as a function of momentum

- These components store energy as a function of momentum
- This is kinetic energy or magnetic energy

$$
E(p)=\int f(p) d p
$$

\square For other components, effort can be expressed as a function of displacement

- These components store energy as a function of displacement
- This is potential energy or electrical energy

$$
E(q)=\int e(q) d q
$$

15
 One-Port Bond Graph Elements

System Components

\square System components are defined by how they affect energy flow within the system - they can:

1. Supply energy
2. Store energy
a) As a function of p - kinetic or magnetic energy
b) As a function of q - potential or electrical energy
3. Dissipate energy
4. Transform or convert energy
\square Different bond graph elements for components in each of these categories
\square Categorized by the number of ports - bond attachment points

Active One-Port Elements

\square External sources that supply energy to the system
\square Effort Source
\square Supplies a specific effort to the system
\square E.g., force source, voltage source, pressure source

$$
\mathrm{S}_{\mathrm{e}} \xrightarrow{\mathrm{e}_{1}} \mathrm{f}_{1}
$$

\square Flow Source
\square Supplies a specific flow to the system
\square E.g., velocity source, current source, flow source

$$
\mathrm{S}_{\mathrm{f}} \xrightarrow[\mathrm{f}_{1}]{\mathrm{f}_{1}}
$$

Passive One-Port Elements

\square One-port elements categorized by whether they dissipate energy or store kinetic or potential energy
\square Three different one-port elements:

- Inertia
- Capacitor
- Resistor
\square Same three elements used to model system components in all different energy domains
\square Each defined by a constitutive law
- A defining relation between two physical quantities - two of the four energy and power variables

Inertia

\square Inertia - a component whose constitutive law relates flow to momentum

$$
f=\frac{1}{I} p
$$

where I is the relevant inertia of the component
\square Inertias store energy as a function of momentum
\square A kinetic energy storage element

Domain	Inertia Parameter	Symbol	Units
General	Inertia	I	-
Translational	Mass	m	kg
Rotational	Moment of inertia	J	$\mathrm{Kg-m}{ }^{2}$
Electrical	Inductance	L	H
Hydraulic	Hydraulic inertia	I	$\mathrm{Kg} / \mathrm{m}^{4}$

Inertia

\square Bond graph symbol for an inertia:

\square Physical components modeled as inertias:

Inertia - Energy Storage

\square Constitutive law:

$$
f=\frac{1}{I} p
$$

\square Stored energy:

$$
\begin{gathered}
K . E .=E(p)=\int f(p) d p \\
K . E \cdot=\frac{1}{I} \int p d p=\frac{p^{2}}{2 I}
\end{gathered}
$$

\square Mechanical:

$$
K . E .=\frac{(m v)^{2}}{2 m}=\frac{1}{2} m v^{2}
$$

\square Electrical:

$$
\text { M.E. }=\frac{(L I)^{2}}{2 L}=\frac{1}{2} L I^{2}
$$

Inertia - Constitutive Law

\square Constitutive law for an inertia can be expressed in linear, integral, or derivative form:

$$
f=\frac{1}{I} p=\frac{1}{I} \int e d t \quad \text { or } \quad e=I \frac{d f}{d t}
$$

Domain	Linear	Integral	Derivative
General	$f=\frac{1}{I} p$	$f=\frac{1}{I} \int e d t$	$e=I \frac{d f}{d t}$
Translational	$v=\frac{1}{m} p$	$v=\frac{1}{m} \int F d t$	$F=m \frac{d v}{d t}$
Rotational	$\omega=\frac{1}{J} L$	$\omega=\frac{1}{J} \int \tau d t$	$\tau=J \frac{d \omega}{d t}$
Electrical	$i=\frac{1}{L} \lambda$	$i=\frac{1}{L} \int v d t$	$v=L \frac{d i}{d t}$
Hydraulic	$Q=\frac{1}{I} \Gamma$	$Q=\frac{1}{I} \int P d t$	$P=I \frac{d Q}{d t}$

Capacitors

Capacitor - a component whose constitutive law relates effort to displacement

$$
e=\frac{1}{C} q
$$

where C is the relevant capacitance of the component
\square Capacitors store energy as a function of displacement
\square A potential-energy-storage element

Domain	Capacitance Parameter	Symbol	Units
General	Capacitance	C	-
Translational	Compliance	$1 / k$	$\mathrm{~m} / \mathrm{N}$
Rotational	Rotational compliance	$1 / k_{\tau}$	$\mathrm{rad} / \mathrm{N}-\mathrm{m}$
Electrical	Capacitance	C	F
Hydraulic	Hydraulic capacitance	C	$\mathrm{~m}^{5} / \mathrm{N}$

Capacitor

\square Bond graph symbol for a capacitor:

$$
C<\frac{\mathrm{e}_{1}}{\mathrm{f}_{1}}
$$

\square Physical components modeled as capacitors:

\square Note that spring constants are the inverse of capacitance or compliance

Capacitor - Constitutive Law

\square Constitutive law:

$$
e=\frac{1}{C} q
$$

\square Stored energy:

$$
\begin{gathered}
\text { P.E. }=E(q)=\int e(q) d q \\
\text { P.E. }=\frac{1}{C} \int q d q=\frac{q^{2}}{2 C}
\end{gathered}
$$

\square Mechanical:

$$
\text { P.E. }=\frac{x^{2}}{2 / k}=\frac{1}{2} k x^{2}
$$

Electrical:

$$
\text { E.E. }=\frac{(C \cdot v)^{2}}{2 C}=\frac{1}{2} C v^{2}
$$

Capacitor - Constitutive Law

\square Constitutive law for a capacitor can be expressed in linear, integral, or derivative form:

$$
e=\frac{1}{C} q=\frac{1}{C} \int f d t \quad \text { or } \quad f=C \frac{d e}{d t}
$$

Domain	Linear	Integral	Derivative
General	$e=\frac{1}{C} q$	$e=\frac{1}{C} \int f d t$	$f=C \frac{d e}{d t}$
Translational	$F=k x$	$F=k \int v d t$	$v=\frac{1}{k} \frac{d F}{d t}$
Rotational	$\tau=k_{\tau} \theta$	$\tau=k_{\tau} \int \omega d t$	$\omega=\frac{1}{k_{\tau}} \frac{d \tau}{d t}$
Electrical	$v=\frac{1}{C} q$	$v=\frac{1}{c} \int i d t$	$i=C \frac{d v}{d t}$
Hydraulic	$P=\frac{1}{C} \mathrm{~V}$	$P=\frac{1}{C} \int Q d t$	$Q=C \frac{d P}{d t}$

Resistors

\square Resistor - a component whose constitutive law relates flow to effort

$$
f=\frac{1}{R} e \quad \text { or } \quad e=R \cdot f
$$

where R is the relevant resistance of the component
\square Resistors dissipate energy
\square A loss mechanism

Domain	Resistance Parameter	Symbol	Units
General	Resistance	R	-
Translational	Damping coefficient	b	$\mathrm{~N}-\mathrm{s} / \mathrm{m}$
Rotational	Rotational damping coeff.	b_{τ}	$\mathrm{N}-\mathrm{m}-\mathrm{s} / \mathrm{rad}$
Electrical	Resistance	R	Ω
Hydraulic	Hydraulic resistance	R	$\mathrm{~N}-\mathrm{s} / \mathrm{m}^{5}$

Resistor

\square Bond graph symbol for a resistor:

$$
R<\frac{e_{1}}{f_{1}}
$$

\square Physical components modeled as resistors:

Resistor - Power Dissipation

\square Constitutive law:

$$
f=\frac{1}{R} e
$$

or

$$
e=R \cdot f
$$

\square Power dissipation:

$$
\mathcal{P}=e \cdot f=f^{2} R=\frac{e^{2}}{R}
$$

\square Mechanical:

$$
\mathcal{P}=v^{2} b=\frac{F^{2}}{b}
$$

\square Electrical:

$$
\mathcal{P}=i^{2} R=\frac{v^{2}}{R}
$$

Resistor - Constitutive Law

\square Constitutive law for a resistor can express flow in terms of effort, or vice-versa:

$$
f=\frac{1}{R} e \quad \text { or } \quad e=R \cdot f
$$

Domain	Flow	Effort
General	$f=\frac{1}{R} e$	$e=R \cdot f$
Translational	$v=\frac{1}{b} F$	$F=b \cdot v$
Rotational	$\omega=\frac{1}{b_{\tau}} \tau$	$\tau=b_{\tau} \cdot \omega$
Electrical	$i=\frac{1}{R} v$	$v=R \cdot i$
Hydraulic	$Q=\frac{1}{R} P$	$P=b \cdot Q$

Viscous vs. Coulomb Friction

\square We've assumed a specific type of mechanical resistance - viscous friction

- A linear resistance
- Realistic? - Sometimes
\square Can we model coulomb friction as a resistor?

$$
F=\mu F_{N}
$$

- Yes, if the constitutive law relates effort (F) and flow (v)
- It does - velocity determines direction of the friction force

$$
F=-\mu F_{N} \cdot \operatorname{sign}(v)
$$

N-Port Bond Graph Elements

Multi-Port Elements - Junctions

\square So far, we have sources and other one-port elements

- These allow us to model things like this:

$$
\mathrm{k}: \mathrm{C} \leftharpoonup \stackrel{e}{f} \mathrm{~S}_{\mathrm{e}} \mathrm{~F}(\mathrm{Ft})
$$

\square Want to be able to model multiple interconnected components in a system
\square Need components with more than one port
\square Junctions: 0 -junction and 1-junction

0-Junctions

$\square \underline{0}$-junction - a constant effort junction
\square All bonds connected to a 0 -junction have equal effort
\square Power is conserved at a 0-junction
\square Constant effort:

$$
e_{1}=e_{2}=e_{3}
$$

\square Power is conserved:

$$
\begin{gathered}
\sum \mathcal{P}_{\text {in }}=\sum \mathcal{P}_{\text {out }} \\
e_{1} f_{1}=e_{2} f_{2}+e_{3} f_{3}
\end{gathered}
$$

SO

$$
f_{1}=f_{2}+f_{3}
$$

O-Junctions

\square Constant-effort 0-junction translates to different physical configurations in different domains
\square Mechanical translational

- Constant force - components connected in series

$$
1 / k: C<\frac{e_{1}}{f_{1}} 0 \xrightarrow[f_{2}]{e_{2}} \sim R: b
$$

\square Electrical

- Constant voltage - components connected in parallel

$$
L: I \leftharpoonup \frac{e_{1}}{f_{1}} 0 \xrightarrow{e_{2}} t_{2} \rightharpoonup C: C
$$

1-Junctions

\square 1-junction - a constant flow junction

- All bonds connected to a 1-junction have equal flow
\square Power is conserved at a 1-junction
\square Constant flow:

$$
f_{1}=f_{2}=f_{3}
$$

\square Power is conserved:

$$
\begin{gathered}
\sum \mathcal{P}_{\text {in }}=\sum \mathcal{P}_{\text {out }} \\
e_{2} f_{2}=e_{1} f_{1}+e_{3} f_{3}
\end{gathered}
$$

SO

$$
e_{2}=e_{1}+e_{3}
$$

1-Junctions

\square Constant-flow 1-junction translates to different physical configurations in different domains
\square Mechanical translational

- Constant velocity - components connected in parallel

$$
1 / k: C<\frac{e_{1}}{f_{1}} 1 \xrightarrow[f_{2}]{f_{2}} \stackrel{e_{2}}{f_{2}} \text { R }
$$

\square Electrical

- Constant current - components connected in series

$$
\mathrm{C}: \mathrm{C}<\underset{\mathrm{f}_{1}}{\mathrm{e}_{1}} 1 \underset{\mathrm{f}_{2}}{\mathrm{e}_{2}} \rightharpoonup \mathrm{R}: \mathrm{R}
$$

Cascaded 0-Junctions

\square Equal efforts, flows sum to zero

$$
\begin{align*}
& f_{1}+f_{2}=f_{3} \tag{1}\\
& f_{3}+f_{4}+f_{5}=0 \tag{2}\\
& f_{7}=f_{5}+f_{6} \tag{3}
\end{align*}
$$

\square Substitute (2) into (1)

$$
\begin{equation*}
f_{1}+f_{2}=-f_{4}-f_{5} \tag{4}
\end{equation*}
$$

\square Substitute (3) into (4)

$$
\begin{aligned}
& f_{1}+f_{2}=-f_{4}+f_{6}-f_{7} \\
& f_{1}+f_{2}+f_{4}+f_{7}=f_{6}
\end{aligned}
$$

\square Can collapse the cascade to a single 0-junction

\square Internal bond directions are irrelevant

Cascaded 1-Junctions

\square Equal flow, efforts sum to zero

$$
\begin{align*}
& e_{1}=e_{2}+e_{3} \tag{1}\\
& e_{3}=e_{4}+e_{5} \tag{2}\\
& e_{5}+e_{6}+e_{7}=0 \tag{3}
\end{align*}
$$

\square Substitute (2) into (1)

$$
\begin{equation*}
e_{1}=e_{2}+e_{4}+e_{5} \tag{4}
\end{equation*}
$$

\square Substitute (3) into (4)

$$
\begin{aligned}
& e_{1}=e_{2}+e_{4}-e_{6}-e_{7} \\
& e_{1}+e_{6}+e_{7}=e_{2}+e_{4}
\end{aligned}
$$

Can collapse the cascade to a single 1-junction

\square Internal bond directions are irrelevant

40

Two-Port Bond Graph Elements

Two-Port Bond Graph Elements

\square Two-port elements:

- Transformer
- Gyrator
\square Transmit power
\square Two ports - two bond connection points
\square Power is conserved: $\mathcal{P}_{\text {in }}=\mathcal{P}_{\text {out }}$
- Ideal, i.e. lossless, elements
\square May provide an interface between energy domains
- E.g. transmission of power between mechanical and electrical subsystems
\square Bonds always follow a through convention
- One in, one out

Transformer

$$
\begin{gathered}
\mathrm{e}_{1} \\
\mathrm{f}_{1} \\
\underset{\mathrm{~m}}{\mathrm{~m}}
\end{gathered}
$$

\square Transformers - relate effort at one port to effort at the other and flow at one port to flow at the other

- Efforts and flows related through the transformer modulus, \boldsymbol{m}
- Constitutive law:

$$
e_{2}=m e_{1} \quad \text { and } \quad f_{2}=\frac{1}{m} f_{1}
$$

\square Power is conserved, so

$$
e_{1} f_{1}=e_{2} f_{2}=m e_{1} \frac{1}{m} f_{1}=e_{1} f_{1}
$$

Transformer - Mechanical

\square Relation of efforts, F_{1} and F_{2}

- Balance the moments:

$$
\begin{gathered}
a F_{1}=b F_{2} \\
F_{2}=\frac{a}{b} F_{1}
\end{gathered}
$$

\square Relation of flows, v_{1} and v_{2}

- Equal angular velocity all along lever arm:

$$
\begin{gathered}
\omega=\frac{v_{1}}{a}=\frac{v_{2}}{b} \\
v_{2}=\frac{b}{a} v_{1}
\end{gathered}
$$

\square Bond graph model:

$$
e_{2}=(a / b) e_{1}
$$

\square Include effort-to-effort or flow-to-flow relationship

Transformer - Electrical

\square Relation of flows, i_{1} and i_{2}

- Current scales with the turns ratio:

$$
i_{2}=\frac{N_{1}}{N_{2}} i_{1}
$$

\square Relation of efforts, v_{1} and v_{2}

- Voltage scales with the inverse of the turns ratio:

$$
v_{2}=\frac{N_{2}}{N_{1}} v_{1}
$$

\square Power is conserved

$$
\mathcal{P}_{\text {out }}=i_{2} v_{2}=\frac{N_{1}}{N_{2}} i_{1} \frac{N_{2}}{N_{1}} v_{1}=i_{1} v_{1}=\mathcal{P}_{\text {in }}
$$

Bond graph model:

\square Include effort-to-effort or flow-to-flow relationship

Gyrator

\square Gyrators - effort at one port related to flow at the other

- Efforts and flows related through the gyrator modulus, r
- Constitutive law:

$$
e_{2}=r f_{1} \quad \text { and } \quad f_{2}=\frac{1}{r} e_{1}
$$

\square Power is conserved so

$$
e_{1} f_{1}=e_{2} f_{2}=r f_{1} \frac{1}{r} e_{1}=e_{1} f_{1}
$$

\square Gyrator modulus relates effort and flow - a resistance

- Really, a transresistance

Gyrator - Example

\square Ideal electric motor

- Electrical current, a flow, converted to torque, an effort
\square Current and torque related through the motor constant, k_{m}

$$
\tau=k_{m} i
$$

\square Power is conserved

- relationship between voltage and angular velocity is the inverse

$$
\omega=\frac{1}{k_{m}} v
$$

