SECTION 2: BOND GRAPH FUNDAMENTALS

ESE 330 – Modeling & Analysis of Dynamic Systems

Bond Graphs - Introduction

- □ As engineers, we're interested in *different types of systems*:
 - Mechanical translational
 - Mechanical rotational
 - Electrical
 - Hydraulic
- Many systems consist of *subsystems in different domains*, e.g. an electrical motor
- Common aspect to all systems is the *flow of energy and power* between components
- □ **Bond graph system models** exploit this commonality
 - Based on the flow of energy and power
 - Universal domain-independent
 - Technique used for deriving differential equations from a bond graph model is the same for any type of system

Bonds and Power Variables

- Systems are made up of *components*
 - **Power** can flow between components
 - We represent this pathway for power to flow with *bonds*

- A and B represent components, the line connecting them is a bond
- Quantity on the bond is power
 - Power flow is positive in the direction indicated arbitrary
- Each bond has two *power variables* associated with it
 Effort and *flow*

$$A \xrightarrow{e_1} B$$

The product of the power variables is power

$$\mathcal{P} = e \cdot f$$

Power Variables

Power variables, e and f, determine the *power flowing* on a bond

The rate at which energy flows between components

	Effort		Flow				
Domain	Quantity	Variable	Units	Quantity	Variable	Units	Power
General	Effort	е	-	Flow	f	-	$\mathcal{P} = e \cdot f$
Mechanical Translational	Force	F	Ν	Velocity	v	m/s	$\mathcal{P}=F\cdot v$
Mechanical Rotational	Torque	τ	N-m	Angular velocity	ω	rad/s	$\mathcal{P} = \tau \cdot \omega$
Electrical	Voltage	ν	V	Current	i	А	$\mathcal{P} = v \cdot i$
Hydraulic	Pressure	Р	Pa (N/m²)	Flow rate	Q	m³/s	$\mathcal{P}=P\cdot Q$

Energy Variables

- Bond graph models are energy-based models
- Energy in a system can be:
 - **Supplied** by external sources
 - **Stored** by system components
 - **Dissipated** by system components
 - **Transformed** or **converted** by system components
- In addition to power variables, we need two more variables to describe energy storage: *energy variables*

Momentum

Displacement

Momentum

SO

□ *Momentum* – the integral of effort

$$p(t) \equiv \int e(t)dt$$
$$e(t) = \frac{dp}{dt} = \dot{p}$$

□ For mechanical systems:

$$e = F = \frac{dp}{dt} = \frac{d}{dt}(mv) = m\frac{dv}{dt} + v\frac{dm}{dt}$$

which, for constant mass, becomes

$$F = m\frac{dv}{dt} = ma$$

Newton's second law

K. Webb

Displacement

SO

□ **Displacement** – the integral of flow

$$q(t) \equiv \int f(t)dt$$
$$f(t) = \frac{dq}{dt} = \dot{q}$$

□ For mechanical systems:

$$q(t) = x(t)$$
$$f(t) = v(t)$$
$$f(t) = \frac{dq}{dt} = v(t) = \frac{dx}{dt}$$

□ The definition of velocity

K. Webb

Energy Variables

Displacement and momentum are familiar concepts for mechanical systems

All types of systems have analogous *energy variables*

■ We'll see that these quantities are useful for describing *energy storage*

	Momentum			Displacement		
Domain	Quantity	Variable	Units	Quantity	Variable	Units
General	Momentum	p	-	Displacement	q	-
Mechanical Translational	Momentum	р	N-s	Displacement	x	m
Mechanical Rotational	Angular momentum	L	N-m-s	Angle	θ	rad
Electrical	Magnetic flux	λ	V-s	Charge	q	С
Hydraulic	Hydraulic momentum	Г	N-s/m ²	Volume	V	m ³

Energy – Kinetic Energy

10

Energy is the integral of power

$$E(t) = \int \mathcal{P}(t)dt = \int e(t)f(t)dt$$

We can relate effort to momentum

$$e(t) = \frac{dp}{dt}$$

□ So, if it is possible to *express flow as a function of momentum*, f(p), we can express *energy as a function of momentum*, E(p)

$$E(p) = \int \frac{dp}{dt} f(p)dt = \int f(p)dp$$

- This is <u>kinetic energy</u>
 - Energy expressed as a function of momentum

Energy – Potential Energy

11

Energy is the integral of power

$$E(t) = \int \mathcal{P}(t)dt = \int e(t)f(t)dt$$

We can relate flow to displacement

$$f(t) = \frac{dq}{dt}$$

So, if it is possible to *express effort as a function of displacement*, e(q), we can express *energy as a function of displacement*, E(q)

$$E(q) = \int e(q) \frac{dq}{dt} dt = \int e(q) dq$$

- This is *potential energy*
 - **D** Energy expressed as a function of displacement

Energy – Mechanical Translational

12

For a mechanical translational system

$$E(t) = \int e(t)f(t)dt = \int F(t)v(t)dt$$

and

$$F(t) = \frac{dp}{dt}$$
, $v(p) = \frac{1}{m}p$

SO

$$E(p) = \int \frac{dp}{dt} \frac{1}{m} p \, dt = \frac{1}{m} \int p \, dp = \frac{1}{2m} p^2 = \frac{1}{2m} m^2 v^2 = \frac{1}{2} m v^2 = \mathbf{K}. \mathbf{E}.$$

We can also express force and energy as a function of displacement

$$v(t) = \frac{dx}{dt}, \qquad F(x) = kx$$

SO

$$E(x) = \int kx \frac{dx}{dt} dt = k \int x \, dx = \frac{1}{2} kx^2 = \mathbf{P} \cdot \mathbf{E}$$

Energy – Electrical

For an electrical system

$$E(t) = \int e(t)f(t)dt = \int v(t) i(t)dt$$

and

$$v(t) = \frac{d\lambda}{dt}$$
, $i(\lambda) = \frac{1}{L}\lambda$

SO

$$E(\lambda) = \int \frac{d\lambda}{dt} \frac{1}{L} \lambda dt = \frac{1}{L} \int \lambda d\lambda = \frac{1}{2L} \lambda^2 = \frac{1}{2L} L^2 i^2 = \frac{1}{2} L i^2 = Mag. Energy$$

We can also express voltage and energy as a function of charge

$$i(t) = \frac{dq}{dt}, \qquad v(q) = \frac{1}{C}q$$

SO

$$E(q) = \int \frac{1}{C} q \frac{dq}{dt} dt = \frac{1}{C} \int q \, dq = \frac{1}{2C} q^2 = \frac{1}{2C} C^2 v^2 = \frac{1}{2} C v^2 = Elect. Energy$$

K. Webb

Energy – Summary

$$E(t) = \int e(t) f(t) dt$$

For some system components, *flow can be expressed as a function of momentum*

- These components store energy as a function of momentum
- This is *kinetic energy* or *magnetic energy*

$$E(p) = \int f(p) \, dp$$

- For other components, *effort can be expressed as a function of displacement*
 - These components store energy as a function of displacement
 - **D** This is *potential energy* or *electrical energy*

$$E(q) = \int e(q) \, dq$$

System Components

- 16
- System components are defined by how they affect energy flow within the system – they can:
 - 1. Supply energy
 - 2. Store energy
 - a) As a function of p kinetic or magnetic energy
 - b) As a function of q potential or electrical energy
 - 3. Dissipate energy
 - 4. Transform or convert energy
- Different bond graph elements for components in each of these categories
 - Categorized by the number of *ports* bond attachment points

Active One-Port Elements

External sources that supply energy to the system

Effort Source

Supplies a specific effort to the system

E.g., force source, voltage source, pressure source

$$S_e \xrightarrow{e_1}{f_1}$$

Flow Source

Supplies a specific flow to the system

D E.g., velocity source, current source, flow source

$$S_{f} \xrightarrow{e_1}{f_1}$$

Passive One-Port Elements

- 18
- One-port elements categorized by whether they dissipate energy or store kinetic or potential energy
- □ Three different *one-port elements*:
 - Inertia
 - Capacitor
 - **D** Resistor
- Same three elements used to model system components in all different energy domains
- Each defined by a *constitutive law*
 - A defining relation between two physical quantities two of the four energy and power variables

Inertia

Inertia – a component whose constitutive law relates flow to momentum

$$f = \frac{1}{I}p$$

where I is the relevant *inertia* of the component

- Inertias store energy as a function of momentum
- □ A *kinetic energy* storage element

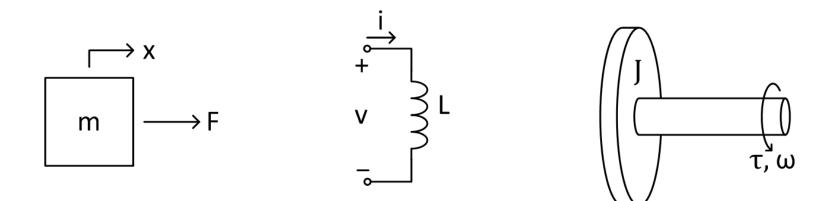
Domain	Inertia Parameter	Symbol	Units
General	Inertia	Ι	-
Translational	Mass	т	kg
Rotational	Moment of inertia	J	Kg-m ²
Electrical	Inductance	L	Н
Hydraulic	Hydraulic inertia	Ι	Kg/m ⁴

Inertia

Bond graph symbol for an inertia:

$$I_{f_1}^{e_1}$$

Physical components modeled as inertias:



Inertia – Energy Storage

21

Constitutive law:

$$f = \frac{1}{I}p$$

□ Stored energy:

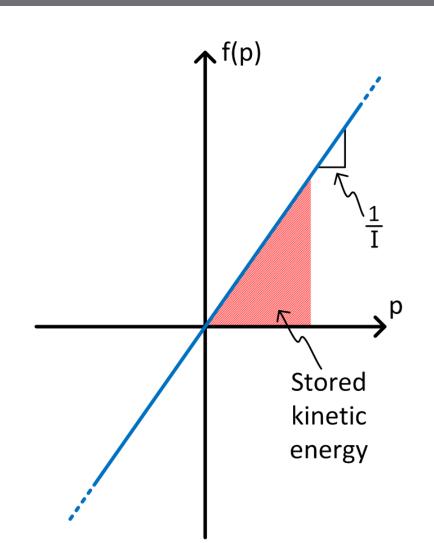
$$K.E. = E(p) = \int f(p) dp$$
$$K.E. = \frac{1}{I} \int p dp = \frac{p^2}{2I}$$

Mechanical:

$$K.E. = \frac{(mv)^2}{2m} = \frac{1}{2}mv^2$$

Electrical:

$$M.E. = \frac{(LI)^2}{2L} = \frac{1}{2}LI^2$$



Inertia – Constitutive Law

- 22
- Constitutive law for an inertia can be expressed in linear, integral, or derivative form:

	10	at	
Domain	Linear	Integral	Derivative
General	$f = \frac{1}{I}p$	$f = \frac{1}{I} \int e dt$	$e = I \frac{df}{dt}$
Translational	$v = \frac{1}{m}p$	$v = \frac{1}{m} \int F dt$	$F = m \frac{d\nu}{dt}$
Rotational	$\omega = \frac{1}{J}L$	$\omega = \frac{1}{J} \int \tau dt$	$\tau = J \frac{d\omega}{dt}$
Electrical	$i = \frac{1}{L}\lambda$	$i=\frac{1}{L}\int vdt$	$v = L \frac{di}{dt}$
Hydraulic	$Q = \frac{1}{I}\Gamma$	$Q = \frac{1}{I} \int P dt$	$P = I \frac{dQ}{dt}$

$$f = \frac{1}{I}p = \frac{1}{I}\int e \, dt$$
 or $e = I\frac{df}{dt}$

Capacitors

<u>Capacitor</u> – a component whose constitutive law relates effort to displacement

$$e = \frac{1}{C}q$$

where *C* is the relevant *capacitance* of the component

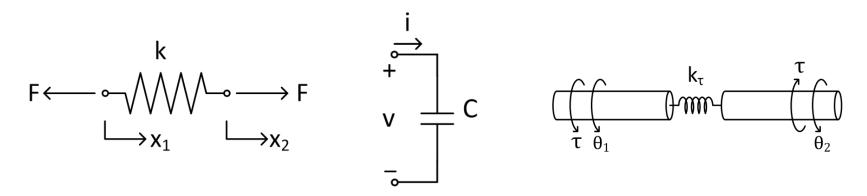
- Capacitors store energy as a function of displacement
- □ A *potential-energy*-storage element

Domain	Capacitance Parameter	Symbol	Units
General	Capacitance	С	-
Translational	Compliance	1/k	m/N
Rotational	Rotational compliance	$1/k_{\tau}$	rad/N-m
Electrical	Capacitance	С	F
Hydraulic	Hydraulic capacitance	С	m⁵/N

Bond graph symbol for a capacitor:

$$C \xrightarrow{e_1}{f_1}$$

Physical components modeled as capacitors:



 Note that spring constants are the inverse of capacitance or compliance

Capacitor – Constitutive Law

25

Constitutive law:

$$e = \frac{1}{C}q$$

□ Stored energy:

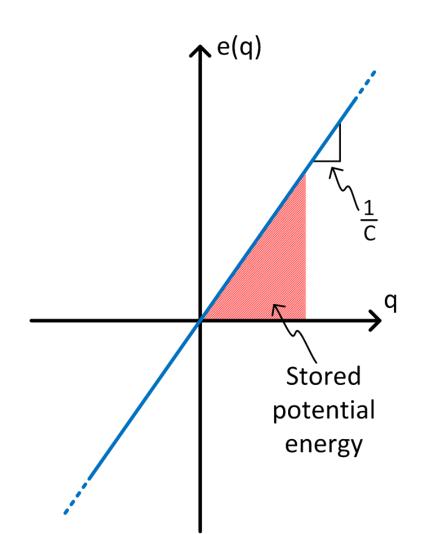
$$P.E. = E(q) = \int e(q) \, dq$$
$$P.E. = \frac{1}{C} \int q \, dq = \frac{q^2}{2C}$$

Mechanical:

$$P.E. = \frac{x^2}{2/k} = \frac{1}{2}kx^2$$

□ Electrical:

$$E.E. = \frac{(C \cdot v)^2}{2C} = \frac{1}{2}Cv^2$$



Capacitor – Constitutive Law

- 26
- Constitutive law for a capacitor can be expressed in linear, integral, or derivative form:

 $e = \frac{1}{C}q = \frac{1}{C}\int f dt$ or $f = C\frac{de}{dt}$

		uı		
Domain	Linear	Integral	Derivative	
General	$e = \frac{1}{C}q$	$e = \frac{1}{C} \int f dt$	$f = C \frac{de}{dt}$	
Translational	F = kx	$F = k \int v dt$	$v = \frac{1}{k} \frac{dF}{dt}$	
Rotational	$ au = k_{ au} heta$	$\tau = k_\tau \int \omega \ dt$	$\omega = \frac{1}{k_\tau} \frac{d\tau}{dt}$	
Electrical	$v = \frac{1}{C}q$	$v = \frac{1}{c} \int i dt$	$i = C \frac{dv}{dt}$	
Hydraulic	$P = \frac{1}{C} \mathbf{V}$	$P = \frac{1}{C} \int Q dt$	$Q = C \frac{dP}{dt}$	

Resistors

□ **<u>Resistor</u>** – a component whose constitutive law relates *flow to effort*

$$f = \frac{1}{R}e$$
 or $e = R \cdot f$

where *R* is the relevant *resistance* of the component

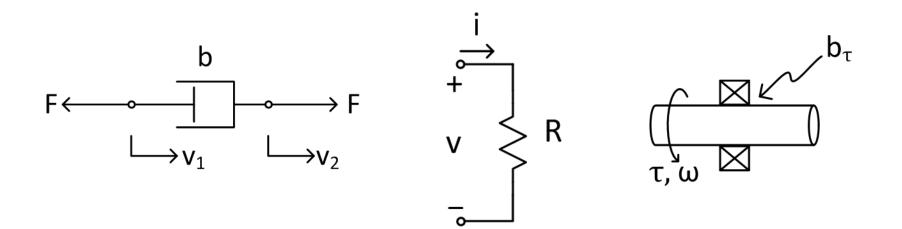
- Resistors *dissipate energy*
- A loss mechanism

Domain	Resistance Parameter	Symbol	Units
General	Resistance	R	-
Translational	Damping coefficient	b	N-s/m
Rotational	Rotational damping coeff.	$b_{ au}$	N-m-s/rad
Electrical	Resistance	R	Ω
Hydraulic	Hydraulic resistance	R	N-s/m⁵

Bond graph symbol for a resistor:

$$\mathsf{R} \stackrel{e_1}{\underset{f_1}{\checkmark}}$$

Physical components modeled as resistors:



Resistor – Power Dissipation

29

□ Constitutive law:

 $f = \frac{1}{R}e$

f

$$e = R \cdot$$

Power dissipation:

$$\mathcal{P} = e \cdot f = f^2 R = \frac{e^2}{R}$$

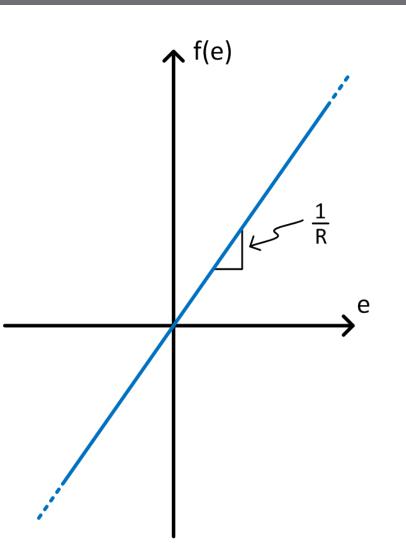
Mechanical:

or

$$\mathcal{P} = v^2 b = \frac{F^2}{b}$$

Electrical:

$$\mathcal{P} = i^2 R = \frac{\nu^2}{R}$$



Resistor – Constitutive Law

- 30
- Constitutive law for a resistor can express flow in terms of effort, or vice-versa:

$$f = \frac{1}{R}e$$
or $e = R \cdot f$ DomainFlowEffortGeneral $f = \frac{1}{R}e$ $e = R \cdot f$ Translational $v = \frac{1}{b}F$ $F = b \cdot v$ Rotational $\omega = \frac{1}{b_{\tau}}\tau$ $\tau = b_{\tau} \cdot \omega$ Electrical $i = \frac{1}{R}v$ $v = R \cdot i$

 $Q = \frac{1}{P}P$

 $P = b \cdot Q$

Hydraulic

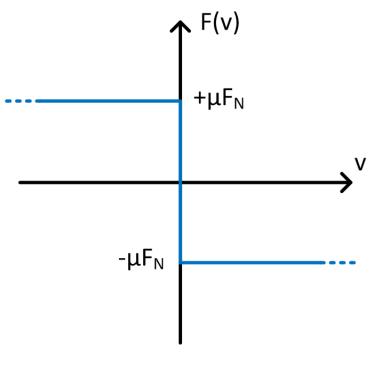
Viscous vs. Coulomb Friction

- We've assumed a specific type of mechanical resistance
 viscous friction
 - A *linear* resistance
 - Realistic? Sometimes
- Can we model *coulomb friction* as a resistor?

 $F = \mu F_N$

- Yes, if the constitutive law relates effort (F) and flow (v)
- It does velocity determines direction of the friction force

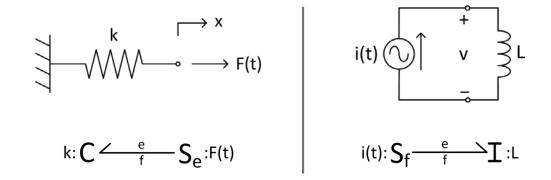
$$F = -\mu F_N \cdot sign(v)$$



³² N-Port Bond Graph Elements

Multi-Port Elements - Junctions

- 33
- So far, we have *sources* and other *one-port elements* These allow us to model things like this:



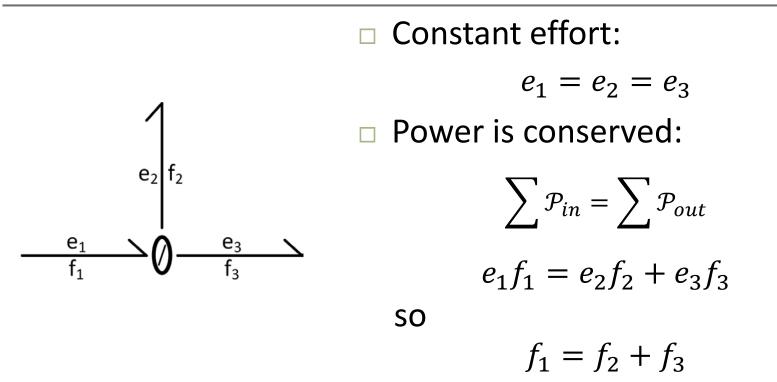
- Want to be able to model multiple interconnected components in a system
 - Need components with more than one port
 - **Junctions**: *O-junction* and *1-junction*

O-Junctions

<u>O-junction</u> – a <i>constant effort junction

All bonds connected to a 0-junction have equal effort

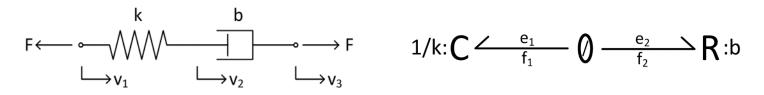
Power is conserved at a 0-junction



O-Junctions

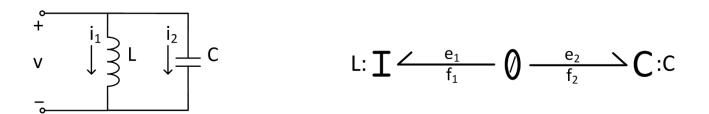
- Constant-effort 0-junction translates to different physical configurations in different domains
- Mechanical translational

Constant force – components connected in series



Electrical

Constant voltage – components connected in parallel

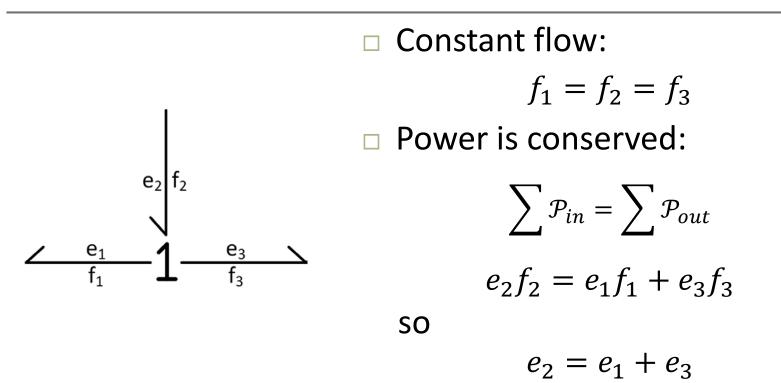


1-Junctions

<u>1-junction</u> – a *constant flow* junction

All bonds connected to a 1-junction have equal flow

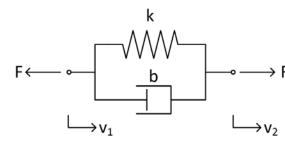
D Power is conserved at a 1-junction

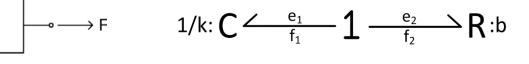


1-Junctions

- Constant-flow 1-junction translates to different physical configurations in different domains
- Mechanical translational

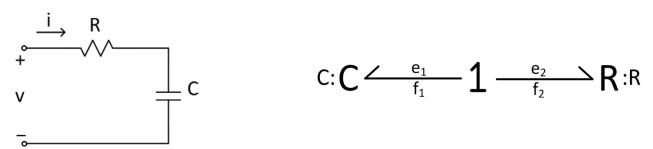
Constant velocity – components connected in parallel



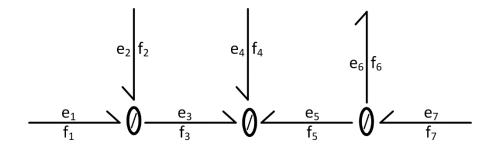


Electrical

Constant current – components connected in *series*



Cascaded O-Junctions



- Equal efforts, flows sum to zero
 - $f_1 + f_2 = f_3 \tag{1}$
 - $f_3 + f_4 + f_5 = 0 \tag{2}$
 - $f_7 = f_5 + f_6$ (3)

(4)

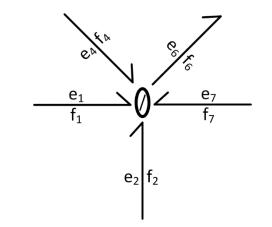
- Substitute (2) into (1)
 - $f_1 + f_2 = -f_4 f_5$

Substitute (3) into (4)

$$f_1 + f_2 = -f_4 + f_6 - f_7$$

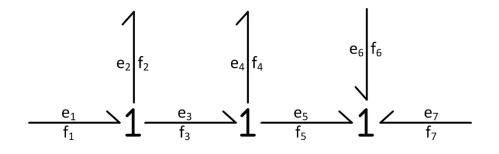
$$f_1 + f_2 + f_4 + f_7 = f_6$$

Can collapse the cascade to a single 0-junction



 Internal bond directions are irrelevant

Cascaded 1-Junctions



- Equal flow, efforts sum to zero
 - $e_1 = e_2 + e_3$ (1)

$$e_3 = e_4 + e_5$$
 (2)

 $e_5 + e_6 + e_7 = 0 \tag{3}$

(4)

Substitute (2) into (1)

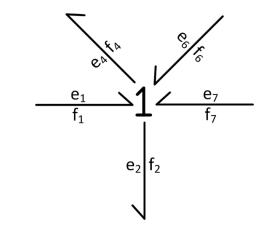
$$e_1 = e_2 + e_4 + e_5$$

Substitute (3) into (4)

$$e_1 = e_2 + e_4 - e_6 - e_7$$

$$e_1 + e_6 + e_7 = e_2 + e_4$$

Can collapse the cascade to a single 1-junction

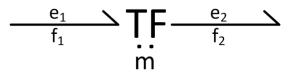


 Internal bond directions are irrelevant

Two-Port Bond Graph Elements

- Two-port elements:
 - **Transformer**
 - Gyrator
- Transmit power
- Two ports two bond connection points
- □ **Power is conserved**: $\mathcal{P}_{in} = \mathcal{P}_{out}$ □ **Ideal**, i.e. **Iossless**, elements
- May provide an *interface between energy domains* E.g. transmission of power between mechanical and electrical
 - subsystems
- Bonds always follow a *through* convention
 - One in, one out

Transformer



- Transformers relate effort at one port to effort at the other and flow at one port to flow at the other
 - Efforts and flows related through the transformer modulus, m
 - Constitutive law:

$$e_2 = me_1$$
 and $f_2 = \frac{1}{m}f_1$

Power is conserved, so

$$e_1 f_1 = e_2 f_2 = m e_1 \frac{1}{m} f_1 = e_1 f_1$$

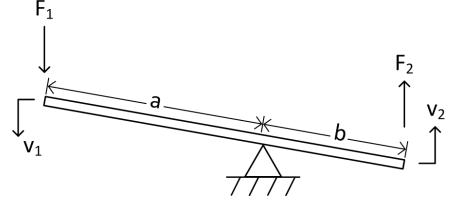
Transformer – Mechanical

Relation of efforts, F₁ and F₂
 Balance the moments:

$$aF_1 = bF_2$$
$$F_2 = \frac{a}{b}F_1$$

Relation of flows, v₁ and v₂
 Equal angular velocity all along lever arm:

$$\omega = \frac{v_1}{a} = \frac{v_2}{b}$$
$$v_2 = \frac{b}{a}v_1$$



Bond graph model:

$$\begin{array}{c|c} e_1 & & \mathbf{TF} & e_2 \\ \hline f_1 & & f_2 \\ a/b \\ e_2 = (a/b)e_1 \end{array}$$

Include effort-to-effort or flow-to-flow relationship

Transformer – Electrical

- Relation of flows, i_1 and i_2
 - Current scales with the *turns ratio*:

$$i_2 = \frac{N_1}{N_2} i_1$$

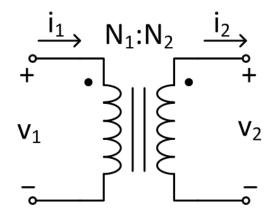
Relation of efforts, v_1 and v_2

Voltage scales with the *inverse* of the turns ratio:

$$v_2 = \frac{N_2}{N_1} v_1$$

Power is conserved

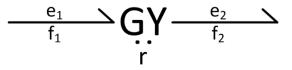
$$\mathcal{P}_{out} = i_2 v_2 = \frac{N_1}{N_2} i_1 \frac{N_2}{N_1} v_1 = i_1 v_1 = \mathcal{P}_{in}$$



Bond graph model:

$$\begin{array}{c|c} e_1 & & \prod_{f_1} e_2 \\ \hline f_1 & & f_2 \\ N_1/N_2 \\ e_2 = (N_2/N_1)e_1 \end{array}$$

 Include effort-to-effort or flow-to-flow relationship



<u>Gyrators</u> – effort at one port related to flow at the other
 Efforts and flows related through the gyrator modulus, r
 Constitutive law:

$$e_2 = rf_1$$
 and $f_2 = \frac{1}{r}e_1$

Power is conserved so

$$e_1 f_1 = e_2 f_2 = r f_1 \frac{1}{r} e_1 = e_1 f_1$$

Gyrator modulus relates effort and flow – a *resistance* Really, a *transresistance*

Gyrator - Example

Ideal electric motor

- Electrical current, a flow, converted to torque, an effort
- Current and torque related through the *motor constant*, k_m

$$\tau = k_m i$$

- Power is conserved
 - relationship between voltage and angular velocity is the inverse

$$\omega = \frac{1}{k_m} v$$

