SECTION 3: BOND GRAPH SYNTHESIS

ESE 330 - Modeling \& Analysis of Dynamic Systems

Introduction

\square Goal of this section of notes is learn how to generate a bond graph model for a physical system

- Map system components to bond graph elements - I's, C's, R's, sources, etc.
\square Starting point will be a physical system model
\square A schematic
- Not the real system
- All modeling decisions have already been made at this point
- What to include in the model, what to neglect
\square From here on out, we'll focus primarily on mechanical and electrical systems
- Easily extended to other energy domains, e.g. fluid systems

3

Mechanical Systems

Bond Graphs of Mechanical Systems

\square The following bond graph synthesis techniques apply equally to both translational and rotational mechanical systems
\square Illustrate the procedure with a simple example

- Translational spring/mass/damper system
\square Starting from a schematic diagram
- Already a system model
- Real, physical system components have been reduced to springs, masses, and dampers
- Some aspects have surely been neglected

Mechanical Systems - Step 1

\square Identify and label all distinct, non-zero, absolute velocities (flows) in the physical model (schematic)

- Velocities of masses
\square Velocities at the ends of springs and dampers
- Indicate the arbitrarily-assumed positive velocity directions
- Relative to an inertial reference
- Choose the relative velocities of the springs and dampers to be positive either in compression or in tension
- Indicate on the schematic as either +T or +C
- Gravitational forces noted as well

Mechanical Systems - Step 2

\square List all one- and two-port elements along with their relevant velocities (flows)

- Include all TF and GY equations
- Map physical components to one-port bond graph components
- Include component values
- Define relative velocities as differences between absolute velocities
\square Sources move with the components to which they're connected
- Include bonds connected to one-ports
- Bonds point in toward all I's, R's, and C's
- Direction of source bonds determined by power convention

Mechanical Systems - Step 2

\square Input effort source acts in the same direction as v1, so its bond points out
\square Gravitational effort sources oppose v1 and v2 - bonds point in

Element	Velocity
$m_{1}: I \leftharpoonup$	v_{1}
$1 / k_{1}: C \leftharpoonup$	$v_{s 1}=v_{1}-v_{2}$
$m_{2}: I \leftharpoonup$	v_{2}
$1 / k_{2}: C \leftharpoonup$	v_{2}
$b: R \leftharpoonup$	v_{2}
$m_{1} g: S_{e} \leftharpoonup$	v_{1}
$m_{2} g: S_{e} \leftharpoonup$	v_{2}
$F_{i n}(t): S_{e} \sim$	v_{1}

Mechanical Systems - Step 3

\square Place a 1-junction for each distinct velocity (flow)
\square Both absolute and relative velocities

$$
\begin{array}{cc}
\stackrel{v_{2}}{1} & \\
1 & \\
& \\
& v_{s 1} \\
& \\
\hline
\end{array}
$$

- Label the velocity of each 1-junction on the bond graph

Mechanical Systems - Step 4

\square Relate velocities (flows, 1-jct.'s) together using 0junctions, transformers, and gyrators
\square Rewrite relative velocity equations from step 2, eliminating negative signs

- Think of as 'ins' = 'outs'

$$
v_{1}=v_{s 1}+v_{2}
$$

- Use 0-junctions to sum absolute velocities, yielding relative velocities
- Write TF and GY equations

Mechanical Systems - Step 5

Attach one-port elements to appropriate

 1-junctions\square Bonds point in toward I's, C's, and R's
\square Bond direction of sources dependent on power convention

- As determined in step 2

Mechanical Systems - Step 6

\square Simplify the bond graph

- Eliminate any two-port 0 - or 1-junctions with through power, e.g.

not

- Replace with a single bond
\square Collapse cascaded 0 - and
 1-junctions

Mechanical Systems - Bond Graph

\square The complete bond graph

- Understand how bond graph relates to physical system:
- All components connected to a 1-junction move at the same velocity
- C's and R's in parallel
- Spring's velocity is the difference between the velocities of its end points
- Attached to a 0-jct between its
 connection-point velocities

Mechanical System - Example

\square Rack-and-pinion system

- A hybrid rotational/ translational system
\square Step 1: identify and label all distinct, non-zero, absolute velocities on the schematic diagram
\square Angular velocity of the pinion gear, ω_{1}
\square Linear velocity of the rack, v_{1}
- Compression chosen to be positive

Mechanical System - Example

\square Step 2: list all one- and twoport elements and their velocities

- Include TF and GY equations

Element	Velocity
$J: I \leftharpoonup$	ω_{1}
$m: I \leftharpoonup$	v_{1}
$1 / k: C \leftharpoonup$	v_{1}
$b: R \leftharpoonup$	v_{1}
$\tau_{i n}(t): S_{e}-$	ω_{1}
$\rightharpoonup T F \rightharpoonup$	ω_{1}
$v_{1}=r \cdot \omega_{1}$	v_{1}

Bond points out of
effort source because it
adds energy to the
system

Mechanical System - Example

\square Step 3: place a 1-jct for each distinct velocity

- Only two distinct velocities: v_{1} and ω_{1}

$$
\begin{gathered}
w_{1} \\
\cdots \\
\underline{1}
\end{gathered}
$$

Mechanical System - Example

\square Step 4: relate velocities to each other using 0-jct's, transformers, and gyrators

$$
\stackrel{\omega_{1}}{\ddot{1} \longrightarrow} \xrightarrow[v_{1}=r \cdot \omega_{1}]{\rightharpoonup} \mathrm{TF} \stackrel{\mathrm{v}_{1}}{\stackrel{1}{1}}
$$

Mechanical System - Example

\square Step 5: attach 1-port elements to the appropriate 1-jct’s
\square Step6: simplify

- No simplifications

Element	Velocity
$J: I \leftharpoonup$	ω_{1}
$m: I \leftharpoonup$	v_{1}
$1 / k: C \leftharpoonup$	v_{1}
$b: R \leftharpoonup$	v_{1}
$\tau_{i n}(t): S_{e} \rightharpoonup$	ω_{1}
$\rightharpoonup T F \rightharpoonup$	ω_{1}
$v_{1}=r \cdot \omega_{1}$	v_{1}

Mechanical System - Example

\square Now, imagine that we want to modify the physical model to account for friction of a bearing
\square No problem, simply add a resistor with flow ω_{1}

19
 Electrical Systems

Bond Graphs of Electrical Systems

\square Similar bond graph synthesis technique presented for electrical systems

- A duality exists between mechanical and electrical systems
- Series-connected components constant effort in mechanical systems, constant flow in electrical
- Parallel-connected components constant flow in mechanical, constant effort in electrical
- Relations of efforts and flows to the physical topology are swapped
- Again, starting point is a schematic
 diagram

Electrical Systems - Step 1

\square Identify all distinct node voltages (efforts) in the circuit and label them on the schematic
\square All node voltages are relative to the ground node - OV

- Just as all mechanical velocities are relative to an inertial reference
- Label an assumed voltage polarity across each component
- Arbitrary - need not be correct
- Label an assumed current direction through each component
- Assume flow from high to low voltage

Electrical Systems - Step 2

\square List all one-and two-port elements along with their relevant voltages (efforts)

- Map physical components to oneand two-port bond graph components
- Include component values and TF/GY equations
- Define differential voltages as differences between node voltages
- Include bonds connected to oneports
- Bonds point in toward all I's, R's, and
 C's
- Direction of two-port and source bonds determined by power convention

Electrical Systems - Step 2

\square Here, current flows out of the current source's assumed positive voltage terminal

- Assumed to be supplying power
- Bond points outward, away from the source

Electrical Systems - Step 3

\square Place a 0 -junction for all distinct node voltages

- Voltages in the table from step 2
- Node voltages
- Differential voltages
- Label the voltage of each 0junction on the bond graph

$$
v_{b}: 0
$$

Electrical Systems - Step 4

\square Relate voltages (efforts, 0-jct.'s) together using 1junctions, transformers, and gyrators

- Rewrite relative voltage equations from step 2, eliminating negative signs
- Think of as 'ins' = 'outs'

$$
v_{a}=v_{L 1}+v_{b}
$$

- Use 1-junctions to sum node voltages, yielding differential voltages
- Annotate with TF and GY equations

Electrical Systems - Step 5

Attach one-port elements to appropriate O-junctions

- Elements attach to the voltage that appears across them
- Bonds point in toward I's, C's, and R's
\square Bond direction of sources dependent on power convention
- As determined in step 2

Electrical Systems - Step 6

\square Simplify the bond graph
\square Eliminate any two-port
0 - or 1-junctions with through power

- Replace with a single bond
- Collapse cascaded 0 - and 1-junctions

$$
\mathrm{i}_{\mathrm{n}(\mathrm{t})}: \mathrm{S}_{\mathrm{f}} \longrightarrow \stackrel{\mathrm{v}_{\mathrm{a}}}{0} \longrightarrow \mathrm{R}: \mathrm{R}_{1}
$$

Electrical Systems - Bond Graph

\square The complete bond graph

- Understand how bond graph relates to physical system:
- Series-connected components connected to common 1-junctions
- Equal current (flow) through components in

$$
\mathrm{i}_{\mathrm{in}}(\mathrm{t}): \mathrm{S}_{\mathrm{f}} \longrightarrow \underset{\sim}{\ddot{0}} \xrightarrow{\square} \xrightarrow{\mathrm{v}_{\mathrm{a}}} \longrightarrow \mathrm{R}_{1}
$$

- Parallel connected components connected to common 0junctions
- Equal voltage across components connected in parallel

Electrical System - Example

\square RLC circuit with a transformer
\square Step 1: identify and label all distinct, non-zero, absolute voltages on the schematic diagram
\square Indicate assumed voltage polarities and directions of current flow

Electrical System - Example

\square Step 2: list all oneand two-port elements and their voltages

Element	Voltage
$v_{i n}(t): S_{e} \rightharpoonup$	$v_{i n}$
$R_{1}: R \leftharpoonup$	$v_{R 1}=v_{i n}-v_{a}$
$L_{1}: I \leftharpoonup$	$v_{L 1}=v_{a}-v_{b}$
$C_{1}: C \leftharpoonup$	v_{b}

Element	Voltage
$R_{2}: R \leftharpoonup$	$v_{R 2}=-v_{d}$
$R_{3}: R \leftharpoonup$	$v_{R 3}=v_{c}-v_{e}$
$C_{2}: C \leftharpoonup$	v_{e}
$-T F \rightharpoonup$	v_{b}
$v_{2}=N_{2} / N_{1} v_{b}$	$v_{2}=v_{c}-v_{d}$

Electrical System - Example

Step 3: place a 0-jct for each distinct voltage listed in the table from step 2

$v_{R 1}: 0$

$\stackrel{V_{L 1}}{\dddot{0}}$
$\mathrm{v}_{\mathrm{R} 3}: 0$
$v_{\text {in }}$
$\ddot{0}$
v_{a}
0
0
v_{b}
0
0
v_{c}
$\ddot{0}$
v_{e}
0
0
$\underset{\ddot{v}_{2}}{0}$
$v_{d}: 0$

Electrical System - Example

\square Step 4: relate voltages to one another using 1-jct's, transformers, and gyrators

Electrical System - Example

Step 5: attach 1-port elements to the appropriate 0-jct's

Electrical System - Example

\square Step 6: simplify the bond graph

- Eliminate any 0- or 1-junctions with through power
- Note that the $R_{2} 1$-junction does not have through power

Electrical System - Example

\square Step 6: simplify the bond graph

- Collapse any cascaded 0- or 1-junctions

Electrical System - Example

\square The final bond graph model:

\square Think about how this model relates to the circuit

- E.g., series combination of source, R_{1}, and L_{1} is in parallel with C_{1} and the primary side of the transformer, etc.

37

Augmenting the Bond Graph

Our goal in creating a bond graph system model is to use it to generate a mathematical system model. Next, we'll augment the bond graph to facilitate that task.

Augmenting the Bond Graph

1) Redraw a computational bond graph

- Number the bonds sequentially
- Assignment is arbitrary
\square Drop the values associated with each element
\square Now, C_{1} is the capacitor connected to bond $1, R_{3}$ is the resistor connected to bond 3 , etc.
- Element names on the computational bond graph and physical schematic may not agree

2) Assign causality to each bond

- Indicate causality by adding a causal stroke to each bond

39
 Causality

Causality

\square Bonds have associated effort and flow
\square A component can set either the effort on a bond or the flow on a bond - not both
\square E.g., if you push a car, you can either determine how hard to push (effort), or you can determine how fast to push (flow)

- You determine one quantity, and the car determines the other

The Causal Stroke

\square Causality indicated by the addition of a causal stroke to the end of each bond

$$
A \longmapsto B \quad \text { or } \quad A \longrightarrow B
$$

\square Flow is determined by the element near the causal stroke
\square A determines flow, B determines effort:

$$
\mathrm{A} \longmapsto \mathrm{~B}
$$

\square Effort is determined by the element away from the causal stroke

- A determines effort, B determines flow:

$$
A \longrightarrow B
$$

Five Types of Causality

1) Required
2) Restricted
3) Integral
4) Derivative
5) Arbitrary
\square Required causality - Sources
\square Effort sources can determine effort only

- Flow sources can determine flow only

$$
\mathrm{S}_{\mathrm{e}} \longrightarrow \quad \mathrm{~S}_{\mathrm{f}} \longmapsto
$$

Restricted Causality

\square Restricted causality - two-port elements and n-port junctions

- 0-junctions
- 1-junctions
- Transformers
- Gyrators
- Causality for all connected bonds and elements determined by the causality of one connected bond and element

Restricted Causality

\square O-junction

- Constant effort, so only one element can set the effort
\square Only one causal stroke will be near the 0-junction

\square 1-junction
- Constant flow, so only one element can set the flow
- All causal strokes, except for one, will be near the 1-junction

Restricted Causality

\square Transformer

- Effort/flow at one port determines effort/flow at the other
- If TF determines effort at one port, it will determine flow at the other
- Only one causal stroke near the TF

or
$\mathrm{A} \longmapsto \mathrm{TF} \longmapsto \mathrm{B}$

or
$A \longrightarrow G Y \longmapsto D$

Integral Causality

\square Integral Causality - independent energy-storage elements (I's and C's)

- A component in integral causality will either:
- Integrate effort to determine flow, or
- Integrate flow to determine effort
\square Independent energy-storage elements:
- Energy storage not directly tied to - not algebraically determined by - any other energy-storage element
- Elements that are not independent:

Integral Causality

\square Inertia

$$
f=\frac{1}{I} p=\frac{1}{I} \int e d t
$$

\square Inertias in integral causality integrate applied effort to determine flow

$$
A \longrightarrow I
$$

\square Capacitor

$$
e=\frac{1}{C} q=\frac{1}{C} \int f d t
$$

\square Capacitors in integral causality integrate applied flow to determine effort

$$
A \longmapsto C
$$

Derivative Causality

\square Derivative Causality - dependent energy-storage elements (I's and C's)

- A component in derivative causality will either:
- Differentiate effort to determine flow, or
- Differentiate flow to determine effort
\square Dependent energy-storage elements:
- Energy storage directly tied to - algebraically related to another energy-storage element
- Dependent energy storage elements:

Derivative Causality

\square Inertia

$$
e=\frac{d p}{d t}=I \frac{d f}{d t}
$$

- Inertias in derivative causality differentiate applied flow to determine effort
- Flow determined by associated inertia in integral causality

$$
A \longmapsto I
$$

\square Capacitor

$$
f=\frac{d q}{d t}=C \frac{d e}{d t}
$$

- Capacitors in derivative causality differentiate applied effort to determine flow
- Effort determined by associated capacitor in integral causality

$$
A \longrightarrow C
$$

Arbitrary Causality

Arbitrary Causality - resistors

\square Causality assigned to resistors is determined by the rest of the system

- Constitutive law for resistors

$$
e=f \cdot R \quad \text { or } \quad f=\frac{1}{R} e
$$

\square Resistors can determine effort from an applied flow

$$
\mathrm{A} \longmapsto \mathrm{R}
$$

- Or, determine flow from an applied effort

$$
A \longrightarrow R
$$

51

Assigning Causality

Assigning Causality

\square Starting with a simplified bond graph system model, assign causality to each element

- Causality indicated by the addition of a causal stroke to each bond
\square Follow a sequential causality assignment procedure
- Procedure is complete once a causal stroke has been assigned to all bonds in the model

Assigning Causality - Procedure

1) Pick a source and assign its required causality
a) Follow through with any implicated restricted causal assignments (i.e. at 0 -jct., 1 -jct., TF, GY), extending these through the bond graph as far as possible
b) Repeat for all unassigned sources
2) Pick an energy-storage element (I or C) and assign integral (i.e. preferred) causality
a) Follow through with any implicated restricted causal assignments (i.e. at 0-jct., 1-jct., TF, GY), extending these through the bond graph as far as possible
b) Repeat for all unassigned energy-storage elements

Assigning Causality - Procedure

\square Often, the procedure is complete following step 2

- If not, proceed to step 3:

3) Pick an unassigned resistor, and arbitrarily assign causality
a) Follow through with any implicated restricted causal assignments (i.e. at 0-jct., 1-jct., TF, GY), extending these through the bond graph as far as possible
b) Repeat for all unassigned resistors

Causality Assignment - Results

\square Four possible scenarios:

1) All energy-storage elements in integral causality

- All causality assigned following step 2

2) Causality assignment completed by arbitrarily assigning causality of some R-elements

- Indicates the presence of algebraic loops or resistor fields

3) Some energy-storage elements forced into derivative causality in step 2

This scenario referred to as derivative causality
4) Combination of 2 and 3, algebraic loops and derivative causality

Assigning Causality - Example 1

\square Mechanical system from the beginning of the section
\square First, generate a computational bond graph

- Arbitrarily number the bonds
- Drop the physical values associated with each element

Assigning Causality - Example 1

\square Assign causality to the computational bond graph
\square Step 1: pick a source and assign the required causality
$\square S_{e 1}$ is an effort source

- Causal stroke away from the source
\square Can have multiple causal strokes at the 1-jct, so can't go any further

Assigning Causality - Example 1

\square Pick an unassigned source and assign the required causality

- Gravitational effort source acting on $m_{1}, S_{e 2}$
\square Causal stroke at 1-jct side of the bond
\square Still two unassigned bonds at 1-jct
- Only one will set the flow for the 1-jct, but don't yet know which one
- Can't proceed any further

Assigning Causality - Example 1

\square Pick an unassigned source and assign the required causality
\square Gravitational effort source acting on $m_{2}, S_{e 7}$
\square Causal stroke at 1-jct side of the bond
\square Again, can't proceed any further

- Causality of all sources assigned
- Proceed to step 2

Assigning Causality - Example 1

\square Step 2: pick an energy-storage element and assign integral causality

- Inertia, I_{3}
- Causal stroke near I_{3}
$\square I_{3}$ sets the flow for its 1-jct
\square Bond 4 cannot determine flow for the 1-jct
\square Causal stroke on bond 4 near the 1-jct
- Can't proceed any further

Assigning Causality - Example 1

\square Pick an unassigned energystorage element and assign integral causality

- Capacitor C_{5}
- Causal stroke away from C_{5}
$\square C_{5}$ sets the effort for the 0 -jct
\square Bond 6 cannot determine effort for the 0-jct
\square Causal stroke on bond 6 near its 1-jct
- Can't proceed any further

Assigning Causality - Example 1

\square Pick an unassigned energystorage element and assign integral causality
\square Capacitor C_{8}
\square Causal stroke away from C_{8}
\square Still don't know what element determines the flow for the v_{2} 1-jct

- Could be R_{9} or I_{10}
\square Move on to the next energy storage element

Assigning Causality - Example 1

\square Pick an unassigned energystorage element and assign integral causality

- Inertia I_{10}
- Causal stroke near from I_{10}
- I I_{10} sets the flow for its 1 -jct
$\square R_{9}$ cannot set the flow for the 1-jct
- Causal stroke away from R_{9}
\square Causality assignment complete following step 2

Assigning Causality - Example 2

\square Consider a Wheatstone bridge circuit driving a capacitive load

- Generate the bond graph and assign causality

\square First, identify and label all distinct node voltages on the schematic
- Indicate voltage polarities and current directions

Assigning Causality - Example 2

\square List all one and two-port elements along with their relevant voltages

Element	Voltage
$V_{s}: S_{e} \rightharpoonup$	v_{a}
$R_{1}: R \leftharpoonup$	$v_{R 1}=v_{a}-v_{b}$
$R_{2}: R \leftharpoonup$	v_{b}
$R_{3}: R \leftharpoonup$	$v_{R 3}=v_{a}-v_{c}$
$R_{4}: R \leftharpoonup$	v_{c}
$C_{L}: C \leftharpoonup$	$v_{\text {out }}=v_{b}-v_{c}$

Assigning Causality - Example 2

\square Using the list of elements and voltages, generate the bond graph model for the circuit

Element	Voltage
$V_{s}: S_{e}-$	v_{a}
$R_{1}: R \leftharpoonup$	$v_{R 1}=v_{a}-v_{b}$
$R_{2}: R \leftharpoonup$	v_{b}
$R_{3}: R \leftharpoonup$	$v_{R 3}=v_{a}-v_{c}$
$R_{4}: R \leftharpoonup$	v_{c}
$C_{L}: C \leftharpoonup$	$v_{\text {out }}=v_{b}-v_{c}$

Assigning Causality - Example 2

\square Simplify and create the computational bond graph

Assigning Causality - Example 2

\square Assign causality to the computational bond graph
\square Step 1: pick a source and assign the required causality
$\square S_{e 1}$ is an effort source

- Causal stroke away from the source
$\square S_{e 1}$ sets the effort on its attached zero junction
- Causal strokes on bonds 2 and 4 are near their respective 1-junctions

- Can't proceed any further
- Move on to step 2

Assigning Causality - Example 2

\square Step 2: pick an energy-storage element and assign integral causality
$\square C_{12}$ is the only energy-storage element

- Causal stroke away capacitor for integral causality
- Can have more than one causal stroke near the attached 1-jct
- Can't proceed any further

- Move on to step 3

Assigning Causality - Example 2

\square Step 3: pick a resistor and arbitrarily assign causality

- Start with R_{3}
- Choosing R_{3} to determine effort means bond 6 must set the flow on the attached 1-jct
- Bond 6 sets the effort on its 0 -jct
- Bonds 8 and 9 cannot - their causal strokes are away from the 0-jct
- Bonds 9 and 12 determine effort on their 1-jct
- Bond 10 must determine flow
- Bond 10 sets the effort for its $0-j c t$
- Causal stroke on bonds 7 and 11 are away from the 0-jct
- Bond 7 determines effort on its 1 -jct
- Bond 5 must set the flow for that 1 -jct

Causality assignment required arbitrary assignment of resistor causality

- Algebraic Loops are present

Assigning Causality - Example 3

\square Spring/mass/damper system
\square Really only translational

- No elements exist in the rotational domain
- Massless, frictionless lever
\square First, label all distinct non-zero velocities and select positive relative velocity reference for springs and dampers (tension, here)

Assigning Causality - Example 3

\square Next, tabulate all one- and two-port elements and their corresponding velocities

Element	Velocity
$m_{1}: I \leftharpoonup$	v_{1}
$m_{2}: I \leftharpoonup$	v_{2}
$1 / k: C \leftharpoonup$	v_{2}
$b: R \leftharpoonup$	v_{2}
$F_{i n}(t): S_{e} \sim$	v_{1}
$\sim T F-$	v_{1}
$v_{2}=b / a \cdot v_{1}$	v_{2}

Assigning Causality - Example 3

\square Generate the bond graph
\square As always, annotate with the $T F$ equation

Element	Velocity
$m_{1}: I \leftharpoonup$	v_{1}
$m_{2}: I \leftharpoonup$	v_{2}
$1 / k: C \leftharpoonup$	v_{2}
$b: R \leftharpoonup$	v_{2}
$F_{i n}(t): S_{e} \rightharpoonup$	v_{1}
$\rightharpoonup T F \rightharpoonup$	v_{1}
$v_{2}=b / a \cdot v_{1}$	v_{2}

Assigning Causality - Example 3

\square Generate a computational bond graph and begin assigning causality
\square Step 1: pick a source and assign the required causality

- $S_{e 1}$ is an effort source
- Causal stroke away from the source
- $S_{e 1}$ applies effort to its attached one junction
- Bonds 2 or 3 could also apply effort to the 1-jct
- Can't proceed any further
- Move on to step 2

Assigning Causality - Example 3

\square Step 2: pick an energy-storage element and assign integral causality

- Inertia element I_{2}
- Causal stroke near I_{2}
- I_{2} determines the flow on its 1 -jct
- Bond 3 must apply effort to the 1 -jct
- Bond 3 determines flow at the transformer
- Bond 4 must determine effort at the transformer
- Bond 4 sets the flow on its 1-jct
- Bonds 5, 6, and 7 must all apply effort to the 1 -jct

$\square I_{6}$ is in derivative causality
$\square I_{2}$ and $I_{6}\left(m_{1}\right.$ and $\left.m_{2}\right)$ are not independent

Assigning Causality - Example 3

\square The physical model resulted in a bond graph with derivative causality
\square Presence of derivative causality is due to a modeling decision

- Lever was assumed to be perfectly rigid

Assigning Causality - Example 4

\square Let's say we want to model some compliance of the lever

- Add a torsional spring at the fulcrum
\square Now the system includes both translational and rotational components
\square Must include angular velocities, ω_{1} and ω_{2}
$\square m_{1}$ and m_{2} are now independent inertias
$\square v_{1}$ and v_{2} are independent

Assigning Causality - Example 4

\square Capacitor added to the model to account for lever compliance
\square Transformers translate between translational and rotational domains

Element	Velocity
$m_{1}: I \leftharpoonup$	v_{1}
$m_{2}: I \leftharpoonup$	v_{2}
$1 / k: C \leftharpoonup$	v_{2}
$b: R \leftharpoonup$	v_{2}
$F_{i n}(t): S_{e} \rightharpoonup$	v_{1}
$1 / k_{\tau}: C \leftharpoonup$	$\omega_{s}=\omega_{1}-\omega_{2}$
$\rightarrow T F \rightharpoonup$	v_{1}
$\omega_{1}=1 / a \cdot v_{1}$	ω_{1}
$\rightharpoonup T F \rightharpoonup$	ω_{2}
$v_{2}=b \cdot \omega_{2}$	v_{2}

Assigning Causality - Example 4

Element	Velocity
$m_{1}: I \leftharpoonup$	v_{1}
$m_{2}: I \leftharpoonup$	v_{2}
$1 / k_{\tau}: C \leftharpoonup$	$\omega_{s}=\omega_{1}-\omega_{2}$
$1 / k: C \leftharpoonup$	v_{2}
$b: R \leftharpoonup$	v_{2}
$F_{i n}(t): S_{e}-$	v_{1}
$\rightharpoonup T F \rightharpoonup$	v_{1}
$\omega_{1}=1 / a \cdot v_{1}$	ω_{1}
$-T F \rightharpoonup$	ω_{2}
$v_{2}=b \cdot \omega_{2}$	v_{2}

\square Generate the bond graph

- Capacitor added in the rotational domain

Assigning Causality - Example 4

\square Simplify, generate a computational bond graph, and assign causality
\square A few more iterations of step 2 (assigning causality to energy-storage elements) are required
\square Result now is a bond graph model where all energy storage elements are in integral causality

- All energy-storage elements are independent

