SECTION 4: MATHEMATICAL
MODELING

- ESE 330 — Modeling & Analysis of Dynamic Systems



- Introduction

K. Webb

In the last section of notes, we saw how to
create a bond graph model from a physical
system model.

The next step in the modeling process is the
creation of a mathematical model
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Mathematical Modeling — Introduction

You’'re already familiar with some techniques for
creating mathematical models for physical systems

. X
For example: y —

— b m |— Fin(t)

|
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O O
JTT77777777 777777777

First, create a free-body diagram:

— X

kX «—

bx — | ™ — Fin(t)
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Mathematical Modeling — Introduction

.
Next, apply Newton’s 2" |aw

— X
kx «—
bx «— m |— Fin(t)
2F =ma

Fi,(t) — kx — bx = mi

rearranging:
mx + bx + kx = F;,,(t) (1)
This is a mathematical model

o A second-order, linear, constant-coefficient, ordinary
differential equation
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Reduction to a System of 15-Order ODE’s
e

Can reduce this 2"%-order ODE to a system of two
15t-order ODE’s

We know that

X =7 (2)
and

X=a=v (3)

Using (2) and (3), rewrite (1), the original ODE

mv + bv + kx = F;,, (t)
where (4)
V=X
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Reduction to a System of 15-Order ODE’s
e

Equations (4) is a system of first-order ODE’s that is
equivalent to (1)

Rearranging (4):

: k b 1
VUV = —EX — EU + aFin(t)
X=v (5)
These equations can be put into matrix form :
- 0 1 ] 0]
x| X _
HE kb o+ 1Fin® ®
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Reduction to a System of 15-Order ODE’s
e

Let’s say we want to consider the displacement of
the mass as the output of the system

We can add an output equation to the
mathematical model

y =X (7)

We can rewrite (7) in @ matrix form similar to (6):

y=[1 ol |+ [0]Fu(® ®)
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Mathematical Model

Together, (6) and (8) comprise the mathematical model
for our mechanical system:

[0 1° 0
b S [ A PAE
Tlm T m.

y=[1 o] (9)

Note that x, v, x, v, and y are all functions of time
o The (t) is dropped to simplify the notation

O The convention used here is to only include the (t) for
inputs, e.g. F;,,(t)
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State-Space Representation

The system model of (9) is the state-space
representation of the system, or the state-variable
equations for the system

Can be expressed in generic form as

X = Ax + Bu
y = CxX + Du (10)
where
O X: the state vector O A: system matrix

O X: derivative of the state @ B: input matrix
o u: vector of inputs o C: output matrix
o y: vector of outputs o D: feed-through matrix
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MIMO vs. SISO Systems
R
X = Ax + Bu
y = Cx + Du (10)

Note that the state-space model (10) allows for vectors
of inputs and outputs, u and y

Multi-input, multi-output (MIMO) systems
o u and y will be vectors
Single-input, single-output (SISO) systems
o u and y will be scalars

In this course, we’ll mostly focus on SISO systems
o For now, we’ll assume the more general MIMO case
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System State and State Variables
e

The vector X is the state vector

o Elements of X are the state variables of the system

The state of the system is a complete description of
the current condition of the system

o From our energy-based perspective, the state describes
all of the energy in a system, i.e. where it is stored, at a
given point in time

The state variables are a (not the) minimum set of
system variables required to completely describe
the state of a system
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State Variables are Not Unique

The state vector, i.e. the choice of state variables, for a
system is not unique

o In this example, we have chosen displacement and velocity
as the state variables, i.e.

[

o Could have chosen other quantities — later, we will

o State variables need not even have direct physical
significance

Different state-space representations for the same
system are related by similarity transforms

o Beyond the scope of this class
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The Feed-Through Matrix
R

X = Ax + Bu
y = CxX + Du (10)

D is the feed-through or feed-forward matrix
o Very often zero for physical systems, as in our example

Non-zero D implies that the input affects the output
instantaneously

O There exists a direct feed-through path from the input
to the output
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State-Space Vector and Matrix Dimensions
e
X = AXx + Bu
y = Cx + Du (10)

Assume the state space model of (10) represents an
nt"-order, m-input, p-output MIMO system

The state vector is an n X 1 column vector

The system has m inputs, so the input vector is an
m X 1 column vector

There are p outputs, so the output vectorisap X 1
column vector
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State-Space Vector and Matrix Dimensions

X = AXx + Bu
y = Cx + Du (10)

If Xisn X 1, then its derivative, X, isalson X 1

The product AX must have the same dimensions as
X, nX1
O The system matrix, A, is a square n X n matrix

The product Bu must alsoben X 1
o The vector of inputs,u,ism X 1,soBisn Xm
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State-Space Vector and Matrix Dimensions
e
X = AXx + Bu
y = Cx + Du (10)

The vector of p outputs, y,isp X 1

The product Cx must also have dimensionp X 1
oxisnX1,soCmustbep Xn

The product Du must also have the same
dimensionasy,p X 1

o The vector of inputs, u,ism X 1,soDisp Xm
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State-Space Vector and Matrix Dimensions

For an m-input, p-output, MIMO system:

X = AX + Bu
y = Cx + Du

mX 1 nXxn
p X1 B nxm
nx1 C pXn
X nx1 D p Xm
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State-Space Vector and Matrix Dimensions

For SISO system, u and y, as well as D, are scalars:

X = AX + Bu
y =Cx+ Du

1x1 nxn
1x1 B nxl1
nxl1 C 1Xn
X nxl1 D 1x1
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State-Space Model Explained
R

Remember, our reason for modeling a system is to
enable the analysis of its dynamic behavior

Basic idea of the state space model:

o If the current state of a system is known, and the
current and future values of the inputs are known, then
the trajectory of the system (i.e. the time-evolution of
its state variables) can be determined

o Don’t need explicit knowledge of the history of the
system or its inputs — no past information

All history is accounted for in the current value of the state
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State-Space Model — Physical Significance

Consider the physical meaning of the state-space
system model

X = AXx + Bu

y = CxX + Du

The time derivative of a system’s state variables
can be expressed as a linear combination of the
current state variables and the current inputs

The outputs of a system can be expressed as a
linear combination of the current state and the
current inputs
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State-Space Model — Utility
e

Again, our goal is to analyze a system’s time-
domain behavior — the time-evolution of its state
variables

x(t)/

Knowledge of the . Xiy  Xit3
current state
variables, as well as
the current rate of
change of those state
variables, allows us to
do this

4

. |
ti+1 ti+2 ti+3
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Where We're Going
R

In the previous example, we derived the state-space
model for a mechanical system by applying
Newton’s 2"9 [aw

o For an electrical system we could have applied
Kirchhoff’s and Ohm’s laws

o Can always derive a mathematical model by applying
domain-specific laws to the physical model

Our approach will be to derive state equations from
bond-graph system models
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State Equations from Bond-Graph Models
e

Bond graphs are energy-based models

o Our choice of state variables will be those that describe the
storage of energy within a system at a given instant in time

State variables will be energy variables of the
independent energy-storage elements in a system

o Displacements of capacitors
o Momenta of inertias

Only independent I's and C’s

O State variables represent a minimum set of system variables
needed to completely describe the state
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Equation Derivation



Deriving State Equations from Bond Graphs
-~
Start with the same mechanical system model.

K —VY
W
; _)Fin
g E|:, m (t) R
2 OO
TIT7 7777777777777 3
° 1 |4
The computational bond graph: Se =—1——C

H

Two independent energy-storage elements

o State variables will be the energy variables associated
with these two elements: ",
CI4]
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State Equation Derivation — State Variables

.
State equation will be of the form:

x = Ax + Bu
P2 . [P2
C.M] = A[7?] + Bey®

In general, state variables will be momenta and
displacements

o Their derivatives will be efforts and flows, respectively

o For this example:
p2] _ [€2
514] - [f4]
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State Equation Derivation — Preparation

Annotate the computational bond graph with state
variable derivatives

O Efforts on the independent Inertias and the flows on
the independent Capacitors

R
Apply constitutive laws to 1
3
1

annotate the other power

variables on the I’s and C’s C,
ariables on the I's S. es(t) . 1 .; \C
4

Annotate the known source R
power variables and P21
indicate as functions of time ‘f

P2
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State Equation Derivation — Procedure

Objective: derive a set of n equations, each expressing a
state variable derivative as a linear combination of state
variables and inputs

o Determine the A and B matrices

First, choose a state variable and write its derivative as an
effort or flow:

P2 = € (1)
Next, use the causality assigned to the bond graph to work
from (1) to a state equation

O Express p, as a linear combination of states and inputs

o Will ultimately relate an effort or flow to a state variable by

applying a constitutive relationship for an energy-storage
element

K. Webb ESE 330



State Equation Derivation
e

e, is an effort on a 1-jct R
o Caused by eq, e3, and e,, and eq is 3
known, so ¢ e Lo
€1 AN
P2 =e; =ei(t) —e3—e, (2) : 11 N ¢

Relate e; to f3 using the const. law for
the resistor T

es; = R;3f3 (3)
f3 is the flow on a 1-jct, set by f,, related to s.v. p, by

the const. law for the inertia

1
fz = /> :I_Pz (4)
2
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State Equation Derivation — Procedure
e
Substituting (4) into (3)

R
ez = I—jpz (5)

And substituting (5) back into (2)

: R
D2 = ey (t) — 1—23292 — €y (6)
R
Still need to eliminate e,
O e, related to state variable g4 through ’ 1
. . . —0a
constitutive law for the capacitor S, eq(t) N 1= Cz: N C
Q4
— i 7 . 1
€4 = Ca q4 (7) 2| P2
I
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State Equation Derivation
e

Substituting (7) into (6) yields the first R
of two state equations ;
1
= Qa4
D2 = _$P2_%Q4+91(t) 8) Se = N——C
2 4 Qs

Next, follow a similar procedure for g,
qs = fa ()

f4 is the flow on a 1-jct, set by f,, related to state
variable p, by the const. law for the inertia

1
fa =1 =EP2 (10)
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State Equation Derivation
e

Substituting (10) into (9) yields the second of two
state equations

. 1
qa = x P2 (11)
2

Combine (8) and (11) into the state-variable model
for our system in matrix form

- Ry 11

gj: llz 064 [Zﬂ_l_[(l)] e1(t) (12)
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State Equation Derivation

R
7
K —V 3
A lq
A—WW— 0 7"
g . E Se N 11 : N C
g b m Finlt) 1 b4
- ] . 1
g O O P2 | P2
JT7777777777 777777777 (2
I

Can now replace the computational bond graph
parameters in (12) with physical system parameters

-y

b
m

]+ [(1)] Fin(£) (13)

1
| m
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State Equation Derivation — Output Equation
-0V

Can also define an output equation as ’ —V

part of our state-space model 1 MA— -
. 7 b M |—Fin

Suppose we want to consider the ] S

velocity of the mass as our output T T I T T T T T T

o Constitutive relation relates an inertia’s flow to its momentum:

1 1
f2 =V=17D2 =0 (14)

m

The output equation would be:
y=[1/m 0[] (15)

Equations (13) and (15) comprise the complete state-space
system model
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State Equation Derivation — Output Equation

e
Perhaps, instead, we want to K =X

consider the displacement of the T—NW— I
mass as our output 1 10 "

, : g O O
O Same as spring displacement — a TTTTTTTTTTTTTTTTTT77

state variable

State-space model, including output equation, becomes:

o |-= -k
-7 B e
L m i

(16)
y=to )
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State Equation Derivation — Causality

In this example, assignment of causality yielded the
simplest result:

o All energy-storage elements ended up in integral causality
— all were independent

o No resistors had their causality arbitrarily assigned

Lack of derivative causality and/or algebraic loops
(resistor fields) results in straightforward state equation
derivation

o Unfortunately, the inverse is also true

Next, we'll look at two more examples without
derivative causality or algebraic loops

K. Webb ESE 330



State Equation Derivation — Example 1

Consider the mechanical example

from Section 3 CX‘-’?\V R

Four independent energy-storage &\1%

elements S T I
6

o Fourth-order system :
0> ~C
/]

o Four state variables:
4

_ _ Se
P3 %i— 3 I
X = CI5 y\vl

ds S

e
P10
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State Equation Derivation — Example 1

Annotate the bond graph:

O State variable derivatives
Efforts on independent inertias
Flows on independent capacitors

0 Use constitutive laws and state
variables to express:

Flows on independent inertias
Efforts on independent capacitors

o Known source quantities

K. Webb
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State Equation Derivation — Example 1

Choose a state variable derivative and
express it as an effort or a flow

p3 = e3 = ey (t) —ey(t) — ey (1) \/ /

e,(t)

Known source efforts can remain S¢ M\ T Iy
0 Need to eliminate e, |
o Effort on a O-jct, set by ex O C

/] Qs

1
€4 = €5 = Gs (2) Se% 4
Substituting (2) into (1) yields the first 1;%1|I
of four state equations eilt) -
S¢

pr=—rdsta®—e® | @)
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State Equation Derivation — Example 1

Move on to the next state variable

qs = fs = fa — fe (4) C\ég':}s /R
f. and f, are both flows on 1-jct’s o) 1 LS b
set by f3 and fi, respectively Se%\ 7 ToyI

f4 = f3 = ip3 (5) @ %S.qs C

/] Us

fe = f10 =ILP10 (6) S .

10 e%__ |
Substituting (6) and (5) into (4) 1—ENT
vields the second state equation V‘ R

1 1 S¢

qs :EP3 _Epm (7)
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State Equation Derivation — Example 1

Move on to gg

ds = fs = f10 =ip1o (8)
which gives the third state equation

. 1

dg = Epm (9)

Finally, derive the equation for p4

P10 = €10 = € —e7(t) —eg—eg  (10)
e¢ is the effort on a O-jct, set by ec
1
€6 = €5 = (s (11)
5

K. Webb

\/

7(t)
SEM\ T
lo
6
1
@ ES'QS C
/l és
4

Se< o
ewIMI

T
es(t) I3 >

S¢
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State Equation Derivation — Example 1

eg is related to state variable gg
eg = (s (12)

Qs
eq can be related to fq using the constitutive erlt)
law for resistor Rq Se%\

€9 = Rofq (13) |
And, fq is the flow on a 1-jct, set by f;, bl
1
€9 = Rof19 = R9EP10 (14) Sew/ )
Ps
Substituting (11), (12), and (14) into (10) yields the 1%:[
final state equation EV 7, P

. 1 1 R
Pro =505 — ¢ 98 — 7 P1o—er (1) | (19

K. Webb ESE 330



State Equation Derivation — Example 1
e

Combine the state equations into matrix form

0 —— 0 0
e - Cs o ]
D3 LR 0o _L P3 1 -1 O e, (t)
ds I RE I19 ds 0 0 0
1e | 1 + e,(t) (16)
ds 0 0 0 1 || 48 0 O 0 (t)
P10 Lo |lP1o] o o —1]Lé7\t.
0 =+ _1 _BR
s Cs Cg I
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State Equation Derivation — Example 1

Let the position of each

mass to be our outputs %ﬁﬁ @ R
o Two outputs “ T T C<in /

Displacement of m; (I;) o “ Ml_N,I
is the displacement of 1 e T
the upper spring me | %1 0 g;-qs c

xz — CI8 (17) m; jvl Se ez(t)]j |
Displacement of my is ne | { ey‘l_t; 1
the sum of the spring o S¢

displacements

X1 = (s + (g (18)
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State Equation Derivation — Example 1

Combine (17) and (18) into our output equation

o Multiple outputs, so C will be a matrix ké % .
Complete state-space model, including output 1
equation: : sz
ngl %kl
0 —Ci 0 0
. 5 . ,
_p3- i _i _p3_ 1 _1 0‘ e (t 1 jl
X = C:IS _ I3 0 0 I1o qs n 0 0 0 e:gtg mlgl [
s o o o0 |9 0 0 0[] s I
P10. . . ’113 P10l lo o —1]L¢” ;
9
0 4 & The
(21)
-
%1110 1 1 01]94
y_[xz]_[o 0 1 o] qs
| P10
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State Equation Derivation — Example 1

Can rewrite our state-space model, substituting in
physical parameters

O g4 and g, are the displacements of springs k; and k-,

respectively

0 —ky
p1 mi )

91| |

=g, 710 o
P2 0 ki

v=lal=[0 o

K. Webb

Dy

D2 ]

d1
)

F in (t)
myg
myg
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State Equation Derivation — Example 2

A slightly modified version of the electrical circuit from
Section 3:

L
PRy Vb NiN, Ve + Rs o vy

Vin(t)TC@T l::Jrc1 l %% T l:+C2

v

The computational bond graph for this circuit:

/R R
. 2__ A e; = Ny/Nj-eq 8
Se—1——0—/—ITF——11+——C
3 5
%
1 C
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State Equation Derivation — Example 2

Three independent R R
energy-storage 2 NN Ts
elements S.—L N4 NTF——N1——C
o Third order .
3
State variables: 1
o I C
P3
X = |45 R R
_q9_ 2/ 8
L = Na/Nveg I
Annotate the Se—~N1——0——TF——¥1=—~C
computational bond ola l_q_[ds
graph Lo
I C
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State Equation Derivation — Example 2
R

Begin with equation for P R R
Pz =e3=e (t) —e; — e, (1) S 2 N — 6 \=N-|-/T: N1y %: Ne
e; = Ryf, =Ry f3 = Rzim (2) : '1 o
I C
e, is the effort on a O-jct, set by the effort on (s
1
€4 = €5 = (s (3)

Substituting (2) and (3) into (1) gives the first of three state
equations

. R 1
D3 =—,—jp3—c—5q5+el(t) (4)
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State Equation Derivation — Example 2
R

Next, move on to gx R R
ds=fs = fo— fs o, 2_1_ N, 18
N . y1F=—C
fu is set by f5 j 1. T 7 )
. | LP gas| 9
fa=1fz= PLE (6) T C

The transformer modulus relates f¢ to f-, which is the flow on
a 1-jct, set by f3

_ N2 _No o _ Nz 1
f6_N1 7—N1f8—N1R8€8 (7)

eg is algebraically related to e; and eq

1
€g = €7 =69 = €7 = Ao (8)
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State Equation Derivation — Example 2
R

The transformer relates e, back to B R
€, Which is set by ec 2

N, N, N, 1 Se—U N ) —TF—1Fe—C
e — £ —jnl —_ 4 9 6 7 do
7 N1 6 N1 5 Ny Cs s ( ) b | Loy Lol
. . . L -
Substituting (9) into (8) gives T C
Ny 1 1

eg :N_ic_5q5 AL (10)
Equation (10) can be substituted into (7)
_ N1 (N21 1

fo = N. Re (N1 57 ¢ CI9) (11)

Using (11) and (6) in (5) gives us our second state equation

. NZ)Z 1 N, 1

1
s = 7.P3 — (N1 roc: 15 1 N Rac, 99 (12)
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State Equation Derivation — Example 2

Finally, derive the equation for gq B R

ds = fo (13) ) o o e

fo is the flow on a 1-jct, which is

set by f3 e
1 I C
fo="fs =€z (14)
8
Substituting (10) into (14)
_ 1 (N1 1
fo = Re (N1 R C19) (15)

Substituting (15) in (13) gives us our third state equation

: Ny 1 1 (16)
o = N, RSCSCI RqCo do
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State Equation Derivation — Example 2

Combine the state equations in matrix form

_Ra _1 0
D3 s s P3 1
2
c=lag.l=| L _(N2\"_1 Ny 1
X= lqs] | L (Nl) RgCs N; RgCo 95|+ [0fe(t) (17)
o & 1 B 1 do 0
N; RgCs RgCo |

Replacing computational bond graph parameters
with physical parameters

_R _1 0
M 1L1 N C21 1 N, 1 & L
¢ — | A - | = — (22 2 )
=1~ (Nl) RsC; Ny R3Cy Q1|+ [0 vin(t) (18)
d; N, 1 1 q; 0
N_1R3C1 _R3C2

ESE 330
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State Equation Derivation — Example 2

m(t)f@T L::Tcl ! H T; B l:+cz

v

Choosing the voltage across C, as our output, the complete state-
space system representation is

T Ry 1 0
i Ly Cy .

1 2 1 1
X=|q,|= i — N2 1 N, 1 q1|+ 0| v (t)
q°2 L1 Nl R3cl Nl R3C2 q2 0

0 N, 1 1

(19)

A
y=va=[0 0 1/C] [Ch]
q>
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State Equation Derivation — Example 2
R

Rl*Va+

L
A fYYlY\“ Vb NpN, Ve + Rs o vy
— —

+ L ]

Vin(t)i-(@T L::Tcl l H TJ, B l:+C2

v

Instead let the voltage across L, be the system output
O That s, the effort associated with Ly
o Effortis the time derivative of momentum, so

y=UL1=Va—Ub=/i1 (20)

The output equation can be extracted from (19)

A
qd1
q>

+ Vin (t) (21)

Note that, in this case, the feed-through term, D, is non-zero
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Algebraic Loops or Resistor Fields
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Algebraic Loops — Example 1
R

Consider the following electrical circuit

+Ri_ vy Ry
VA VA
— ,

vin(t)f(@ | | §_L

v

Causality assignment is completed by arbitrarily assigning the
causality of resistor R, (or R)

o System contains an algebraic loop (resistor field)

e [ ‘1
T

Presence of the algebraic loop will complicate the state
equation derivation a bit
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Algebraic Loops — Example 1

Second-order system " ; 5 1
o State variables are: Se— N1 NQ ol y > C
p4] 2 [54 ll'pa 6
X = ¢
[CI7
R I R
Begin deriving equations as usual
Dy = €4 :(?_:’3:‘,': e1(t) —e; = e (t) — Ry f, (1)
1 1
fa=fs=7Ps+fs =—Datfo (2)
4 4
1 1 1
fe—R_6€6—R6(95—C_7617) (3)
1 e, 1
fo = x @) (4)
6

e; has reentered the formulation, and we’re back where we started in (1)
o An algebraic loop
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Algebraic Loops — Procedure

The output of the resistor whose causality was arbitrarily assigned

— e, in this case, though f¢ would work equally well —is the
auxiliary variable

Derive an expression relating the auxiliary variable to the state
variables, inputs, and to itself

Proceed with the state equation derivation as usual, but leave the

auxiliary variable in the formulation along with state variables and
inputs

Substitute the result from step 2 into the result from step 3

One auxiliary variable for each algebraic loop present
O Multiple loops require solution of a system of equations

Apply this procedure first, whenever causality assignment involves
an arbitrary assignment of resistor causality
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Algebraic Loops — Example 1

Follow causality to derive an
expression for auxiliary variable e,

ez = Ryfs = Ryfs = Ry (im +f5) (5) R 1 R
f5=f6=Ri6€6=Ri6(5_Ci7q7) (6)
es = e3 = e, (t) — e, (7)

e, is the aux. variable, so it can remain in the expression
Substituting (7) into (6) into (5)

_ R Ry _ R Ry
ey = I Pa + R e1(t) R e ReCo q7 (8)
RytRe _ Ry R Ry
2 R L P4 TR q7; + R e, (t) (9)
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Algebraic Loops — Example 1
R

Solve (9) for e,

R,Rs 1 R
&y = ————Dpy — ——qy; + e, (t) (10)
Ry+Rg Iy (Ry+Rg)Cy R,+Rg

Now, whenever e, appears in q) a3 a5 i ST

. . . Se ’1 'O ) C
the formulation, substitute in the .
expression in (10) '

Going back to (1), we had
Ps = e1(t) — e, (1)

Substituting in (10) yields the first state equation

. _ _ RyRg 1 R,
Pa = R,+Rg I, Py T (R2+R6)C7q R, +R e1(t) (11)
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Algebraic Loops — Example 1

Moving on to ¢, S.— N —N()——N—— C
a7 = f7 = fe (12) 2 e
R I R
We already have an expression for f in (6) and (7)
C.I7=Rie1(t)—iez_ﬁch (13)

Substituting in (10) to eliminate e,
1 Rz 1 Rz RZ

17 = —e1(t) — — — e1(t) —

17 Re 1(t) Ry + Re 1y Pat (R2 + Rg)R4Cy 1 (R2 + Re)Rs 1(t) R6C7
Rearranging gives the second state equation

. _ Ry 1 1

U7 = T R+R. L P4 T (Ry+Ro)C, q7 + R,+Rg e1(t) (14)
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Algebraic Loops — Example 1

+;{\}\ Va +\/R\?}\ Vp Se ea(t) \I:I_ 3 \:0 > \:1: E;.q N C
— —
+ + + 5 S EFS
Vin(t) @ T l% L J,::C la
) ) ) R I R

A4

Assembling (11) and (14) in matrix form gives our state
variable system model

RyRs 1 R, . - R
) R,+Rg I (Ry+Rg)C D4 R,+R
2?4 — 2THRe 14 2TRe)L7 ]_I_ 2THRe el(t) (15)
q7 R 1 1 q7 1
R2+Rg I4 (R2+Rg)C7 ] | R2+Rg |
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Algebraic Loops — Example 1
R

=

NG sty s
— —_—
+ + + 2 Ds l-p4 6
Vin(t) @ T l% L l::c I
] ) ] R I R

A4

Substitute in physical parameters and define an output
equation for the voltage across the capacitor, vy,

RiR, 1 R4 7 "~ R,
[)l] | Ri+R; L (Ri+R)C [/1] 4 [RitRe | (®)
9 R in
g Ry 11 q 1

Ri+R, L (R{+R>)C. R{+R, |

(16)
y=10 1cif]
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Algebraic Loops — Example 2
R

Next, consider a mechanical system

— V2 = VL

b,
e b, :l_ m — Fip(t)
min

\\\\\\%\\\\

QO
TT7T777777777777777 777777777

Causality assignment is completed by arbitrarily assigning the
causality of resistor R, (or R,)

1

C+s T : _(/i/ 5 iJlj Mg,
R R I

A very similar bond graph to the electrical circuit in the
previous example
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Algebraic Loops — Example 2
R

A second-order system with A second-order system with
state variables: state variables:
¥ = CI1] % = ‘h]
Pe De

An algebraic loop is present, so we’ll immediately go to the
procedure outlined in the previous example

Auxiliary variable is f,
O Express f, in terms of state variables, inputs, and itself

fzzRiZez=R—12(33—31):R_12(e4_ci1‘h) (1)
es = Ryfa = Ry(fs — f3) = R4 (ipe — fz) (2)

f> is the auxiliary variable, so it can remain in the expression
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Algebraic Loops — Example 2
R

Substitute (2) into (1) C< ¢ E— 04—
G I e
.y ST T A
R R I
Then solve for f,
RatRe) _ _ 1 Ra 1
f> ( R, ) = Tra + WAL (4)
— 1 Ry, 1
f2 = Ry +RC, 11 T Ry 4R, 1. P6 (5)

Now, Proceed with the state equation derivation

o Whenever the auxiliary variable, f,, appears in the formulation, it
will be replaced with (5)
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Algebraic Loops — Example 2

-
Start W|th ql C/ - =1|/ 3 0/ 5 =1|/ e4(t) Se

i1 =fi = f2 (6) L [ J;
T

Substituting (5) into (6) gives the R R
first state equation

£
Cl 1

. 1 R, 1
A = (R2+R4)Cq T Ry+Ry Ig Pe

(7)

Moving on to pg
Do = €6 = e7(t) —es = e;(t) — ey (8)

es = Ryfs = Ra(fs — f3) = Ry (ipe—fz) (9)
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Algebraic Loops — Example 2

-0V
Substitute (9) into (8) C,é-m VPR VEEE PRI
611 | | e

. R
Dg = €;(t) — I_:P6 + R, f7 (10) ZJ( 4—[ bﬁJjE.pﬁ

Substituting (5) in for f, gives the R R T
second state equation

. Ry _ 1 Ry, 1

De = €7(t) 1. Ps + R, ( ®rroc 1 + RytRy I Pe) (11)
. _ Ry _ RpR4 1

Po = ~mrroc. 1t " mer, 1 Pe T er(t) (12)

In matrix form:

1 R, 1 1

q1 . _(R2+R4)C1 R2+R4Z q1 0

pJ T|__Re _ ReRy 1 p) + 1] e ® (13)
| (Ra+R4)C Ry+Ry g |
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Algebraic Loops — Example 2
R

Note that the origin of the algebraic loop in this example was a modeling
assumption

o The connection point between the spring and dampers was considered massless
o Instead we could account for the mass of this junction

-~ k "._. ...... ",." 1 k

S —) by

-] . -1 ] )

- A 1 I P
A e ; \
g OO g OO OO (1)
TTTTTTT 777777777777 777777777 TTTTT 7777777777 7777777777 7777777

Now, there are no arbitrary causality assignments and no algebraic loops

C/ Cl 1|/ e;(t)

T

State equation derivation will be greatly simplified
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Algebraic Loops — Example 2
R

System is now third-order, due to ) — V) — V1
the additional independent M b2

b, | My 11— my [—Finlt)

AN

energy-storage element

OO O QO
TT77T7777777777777777777777777777

State equation, after replacing physical parameters:

. [o o -
2 b, 71?22 X2 0
=0 -2 = |||+ |1|Fa@ (14)
D2 | g b _bith P21 10
mq m

Looks very different from the original second order model, but
if m, << my, their behaviors are nearly identical
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Derivative Causality
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Derivative Causality — Example
-

Consider the mechanical system
from Section 3

The computational bond graph: Sl MM
R ” - R
5 |
[0 7777 ~
Se——N1H STF— \1< b :
2 4 3 -I;7 I |
Two independent energy-storage a
elements .
o Second-order -
o State variables are: T ™
¥ = Pz]
q7
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Derivative Causality — Example

T
I¢ is in derivative Causality

o Not independent 3 % R
1 N N | 4 N
o Does not contribute a state  Se— 11— TF+ 1/6\\
2 [7 I

O Its energy variable p¢ (would
be a g for an C-element) is I C
algebraically related to the
state variables

Annotate the bond graph \7R
a Include the energy variable  Se= 11— TFF \1/\1\
. B, liz_pz 1 s Ps I
annotation for the Qq[q

dependent inertia T C
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Derivative Causality — Example
e

. >R
Se—1 = \TF#l\ﬁ
szj-pz nben . _l:,p\\]:
1 C
D¢ IS NOt a state variable

O State equation derivation requires first determining the
algebraic relationship between pg and the state
variables, p, and g~

0 When pg or pg enters the formulation, substitute in this
relationship or its derivative
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Derivative Causality — Procedure

For the dependent energy-storage element, apply the
constitutive law ‘backwards’ - i.e. express the energy
variable as a function of a power variable

a. Inertia: express momentum as a function of flow
b. Capacitor: express displacement as a function of effort

Follow causality to relate that power variable to the
state variables and inputs

Substitute the expression from step 2 into that from
step 1

When the energy variable (or its derivative) enters the
formulation, substitute in the expression from step 3

K. Webb ESE 330



Derivative Causality — Example
e

Apply the constitutive law for \yR
I¢ ‘backwards’ Se=NL TR 1
O Express pg as a function of fg b | e o %_q%y P NT
Ps = l6fe (1) I C
Follow causality to express f in terms of state variables and inputs
fo=fa=12fs=opP2 2)
Substituting (2) into (1)
_Dbls
Pe = 1, P2 (3)

Now proceed with derivation, using (3) when needed
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Derivative Causality — Example
e

Begin state equation derivation . >R
with p, 20N 2 \fTbE' : \1\{
D2 =e; =e;1(t) —e3 ijp %,-[ﬁ’pe I
TF relates e3 to e, I C
252=91(15)—%34=e1(t)—§(35+256+ci7€h) (5)
es = Rsfs = Rs /4 =R5§f3 =R5§ipz (6)

Substituting (6) into (5)

. bR
P2 = eq(1) ——(——sz + D6+ q7)

. 2 R b . b1
D2 =91(t)—(g) I_zspz——Pé—;CjCh (7)

a
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Derivative Causality — Example
-

A P term has entered the \yR
formulation a0 N 2 \TF' s \1/\1\
o Differentiate (3) ba |1P: o 1 -[q e N1
. blg .
Pe = L 12P2 @ : C

Substitute (8) into (7)

. b\ R b\ I . b1
Py = eq(t) — (g) 1—25292 — (g) ipz “ao ¥ (9)
Solve (9) for p,
2 2
D2 (Iz+(bléa) 16) = e (t) — (S) %Pz — gé% (10)
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Derivative Causality — Example

-0V
Rearranging (10) gives the first of two state equations:

(&) xs (&)

I
, = ——a > g ; +—2 e (t 11
P2 Iz+(§) . P2 (12+(§) I6>C7 47 Iz+(§) . e1(t) (11)
o 5 R
Next, move on to g, o 1 2 NTE \1\/1
| . . lp fa=bfa-f; 1 /pe\I\I
@& =fr=fa=2fs (12) ' cy“[q’
I C

The second state equation:

7 = .1, P2 (9)
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Derivative Causality — Example
e

The state-space system model:

b\? b ]

(a) Rs (a) & o

— — 2

. 2 2

p2] _ b b P2 b\?

q7] = 12 + (a) 16 (IZ + (a) IG) C7 [q7] + 12 _|_ (a) 16 el(t)
b1 ! 0

- 0

al,

With physical parameters:
N ) L

o - 2 2
% b b P1 b\2
x;] =| my+ (a) m, <m1 + (E) mz) xz] +|my + (E) m, F;, (t)
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Derivative Causality — Example

Derivative causality in this case resulted from a
modeling decision

o The lever was assumed to be rigid

o Adding some compliance to the lever arm eliminates
derivative causality (see Section 3 notes)

Increases system model to fourth-order
Equation derivation simplified at the cost of model complexity

In general, derive an expression for the energy variable
of each energy-storage element in derivative causality

o Multiple elements in derivative-causality will require
solution of a system of equations
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