SECTION 4: MATHEMATICAL MODELING

ESE 330 - Modeling \& Analysis of Dynamic Systems

Introduction

In the last section of notes, we saw how to create a bond graph model from a physical system model.
The next step in the modeling process is the creation of a mathematical model

Mathematical Modeling - Introduction

\square You're already familiar with some techniques for creating mathematical models for physical systems
\square For example:

\square First, create a free-body diagram:

Mathematical Modeling - Introduction

Next, apply Newton's $2^{\text {nd }}$ law

$$
\begin{aligned}
& \Sigma F=m a \\
& F_{i n}(t)-k x-b \dot{x}=m \ddot{x}
\end{aligned}
$$

rearranging:

$$
\begin{equation*}
m \ddot{x}+b \dot{x}+k x=F_{i n}(t) \tag{1}
\end{equation*}
$$

\square This is a mathematical model
\square A second-order, linear, constant-coefficient, ordinary differential equation

Reduction to a System of $1^{\text {st }}$-Order ODE's

\square Can reduce this $2^{\text {nd }}-$ order ODE to a system of two $1^{\text {st- }}$-order ODE's
\square We know that

$$
\begin{equation*}
\dot{x}=v \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{x}=a=\dot{v} \tag{3}
\end{equation*}
$$

\square Using (2) and (3), rewrite (1), the original ODE

$$
m \dot{v}+b v+k x=F_{i n}(t)
$$

where

$$
v=\dot{x}
$$

Reduction to a System of $1^{\text {st }}$-Order ODE's

\square Equations (4) is a system of first-order ODE's that is equivalent to (1)
\square Rearranging (4):

$$
\begin{align*}
\dot{v} & =-\frac{k}{m} x-\frac{b}{m} v+\frac{1}{m} F_{i n}(t) \\
\dot{x} & =v \tag{5}
\end{align*}
$$

\square These equations can be put into matrix form :

$$
\left[\begin{array}{c}
\dot{x} \tag{6}\\
\dot{v}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{b}{m}
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] F_{i n}(t)
$$

Reduction to a System of $1^{\text {st }}$-Order ODE's

\square Let's say we want to consider the displacement of the mass as the output of the system
\square We can add an output equation to the mathematical model

$$
\begin{equation*}
y=x \tag{7}
\end{equation*}
$$

\square We can rewrite (7) in a matrix form similar to (6):

$$
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \tag{8}\\
v
\end{array}\right]+[0] F_{\text {in }}(t)
$$

Mathematical Model

\square Together, (6) and (8) comprise the mathematical model for our mechanical system:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{b}{m}
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] F_{\text {in }}(t)} \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right] \tag{9}
\end{align*}
$$

\square Note that \dot{x}, \dot{v}, x, v, and y are all functions of time

- The (t) is dropped to simplify the notation
\square The convention used here is to only include the (t) for inputs, e.g. $F_{\text {in }}(t)$

State-Space Representation

\square The system model of (9) is the state-space representation of the system, or the state-variable equations for the system
\square Can be expressed in generic form as

$$
\begin{align*}
& \dot{\mathbf{x}}=A \mathbf{x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \tag{10}
\end{align*}
$$

where
$\square \mathbf{x}$: the state vector
$\square \dot{\text { x }}$: derivative of the state
$\square \mathbf{u}$: vector of inputs
$\square \mathbf{y}$: vector of outputs

- A: system matrix
\square B: input matrix
\square C: output matrix
- D: feed-through matrix

MIMO vs. SISO Systems

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \tag{10}
\end{align*}
$$

\square Note that the state-space model (10) allows for vectors of inputs and outputs, \mathbf{u} and \mathbf{y}
\square Multi-input, multi-output (MIMO) systems
$\square \mathbf{u}$ and \mathbf{y} will be vectors
\square Single-input, single-output (SISO) systems

- u and y will be scalars
\square In this course, we'll mostly focus on SISO systems
\square For now, we'll assume the more general MIMO case

System State and State Variables

\square The vector \mathbf{x} is the state vector

- Elements of \mathbf{x} are the state variables of the system
\square The state of the system is a complete description of the current condition of the system
\square From our energy-based perspective, the state describes all of the energy in a system, i.e. where it is stored, at a given point in time
\square The state variables are a (not the) minimum set of system variables required to completely describe the state of a system

State Variables are Not Unique

\square The state vector, i.e. the choice of state variables, for a system is not unique

- In this example, we have chosen displacement and velocity as the state variables, i.e.

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
v
\end{array}\right]
$$

\square Could have chosen other quantities - later, we will
\square State variables need not even have direct physical significance
\square Different state-space representations for the same system are related by similarity transforms
\square Beyond the scope of this class

The Feed-Through Matrix

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \tag{10}
\end{align*}
$$

$\square \mathbf{D}$ is the feed-through or feed-forward matrix

- Very often zero for physical systems, as in our example
\square Non-zero D implies that the input affects the output instantaneously
- There exists a direct feed-through path from the input to the output

State-Space Vector and Matrix Dimensions

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \tag{10}
\end{align*}
$$

\square Assume the state space model of (10) represents an $n^{\text {th }}$-order, m-input, p-output MIMO system
\square The state vector is an $n \times 1$ column vector
\square The system has m inputs, so the input vector is an $m \times 1$ column vector
\square There are p outputs, so the output vector is a $p \times 1$ column vector

State-Space Vector and Matrix Dimensions

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \tag{10}
\end{align*}
$$

\square If \mathbf{x} is $n \times 1$, then its derivative, $\dot{\mathbf{x}}$, is also $n \times 1$
\square The product $\mathbf{A x}$ must have the same dimensions as $\dot{\mathbf{x}}, n \times 1$
\square The system matrix, \mathbf{A}, is a square $n \times n$ matrix
\square The product Bu must also be $n \times 1$
\square The vector of inputs, \mathbf{u}, is $m \times 1$, so \mathbf{B} is $n \times m$

State-Space Vector and Matrix Dimensions

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \tag{10}
\end{align*}
$$

\square The vector of p outputs, \mathbf{y}, is $p \times 1$
\square The product $\mathbf{C x}$ must also have dimension $p \times 1$
$\square \mathbf{x}$ is $n \times 1$, so \mathbf{C} must be $p \times n$
\square The product Du must also have the same dimension as $\mathbf{y}, p \times 1$

- The vector of inputs, \mathbf{u}, is $m \times 1$, so \mathbf{D} is $p \times m$

State-Space Vector and Matrix Dimensions

\square For an m-input, p-output, MIMO system:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \mathbf{u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

Term	Dimension
\mathbf{u}	$m \times 1$
\mathbf{y}	$p \times 1$
\mathbf{x}	$n \times 1$
$\dot{\mathbf{x}}$	$n \times 1$

Term	Dimension
\mathbf{A}	$n \times n$
\mathbf{B}	$n \times m$
\mathbf{C}	$p \times n$
\boldsymbol{D}	$p \times m$

State-Space Vector and Matrix Dimensions

\square For SISO system, u and y , as well as D, are scalars:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B} u \\
& y=\mathbf{C} \mathbf{x}+D u
\end{aligned}
$$

Term	Dimension
u	1×1
y	1×1
\mathbf{x}	$n \times 1$
$\dot{\mathbf{x}}$	$n \times 1$

Term	Dimension
A	$n \times n$
B	$n \times 1$
C	$1 \times n$
D	1×1

State-Space Model Explained

\square Remember, our reason for modeling a system is to enable the analysis of its dynamic behavior
\square Basic idea of the state space model:

- If the current state of a system is known, and the current and future values of the inputs are known, then the trajectory of the system (i.e. the time-evolution of its state variables) can be determined
- Don't need explicit knowledge of the history of the system or its inputs - no past information
- All history is accounted for in the current value of the state

State-Space Model - Physical Significance

\square Consider the physical meaning of the state-space system model

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

\square The time derivative of a system's state variables can be expressed as a linear combination of the current state variables and the current inputs
\square The outputs of a system can be expressed as a linear combination of the current state and the current inputs

State-Space Model - Utility

\square Again, our goal is to analyze a system's timedomain behavior - the time-evolution of its state variables
\square Knowledge of the current state
variables, as well as the current rate of change of those state variables, allows us to do this

Where We're Going

\square In the previous example, we derived the state-space model for a mechanical system by applying Newton's $2^{\text {nd }}$ law

- For an electrical system we could have applied Kirchhoff's and Ohm's laws
- Can always derive a mathematical model by applying domain-specific laws to the physical model
\square Our approach will be to derive state equations from bond-graph system models

State Equations from Bond-Graph Models

\square Bond graphs are energy-based models

- Our choice of state variables will be those that describe the storage of energy within a system at a given instant in time
\square State variables will be energy variables of the independent energy-storage elements in a system
- Displacements of capacitors
- Momenta of inertias
\square Only independent I's and C's
- State variables represent a minimum set of system variables needed to completely describe the state

State Equation Derivation

Deriving State Equations from Bond Graphs

\square Start with the same mechanical system model:

\square The computational bond graph:

\square Two independent energy-storage elements

- State variables will be the energy variables associated with these two elements:

$$
\mathbf{x}=\left[\begin{array}{l}
p_{2} \\
q_{4}
\end{array}\right]
$$

State Equation Derivation - State Variables

\square State equation will be of the form:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B} u \\
& {\left[\begin{array}{l}
\dot{p}_{2} \\
\dot{q}_{4}
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
p_{2} \\
q_{4}
\end{array}\right]+\mathbf{B} e_{1}(t)}
\end{aligned}
$$

\square In general, state variables will be momenta and displacements

- Their derivatives will be efforts and flows, respectively
- For this example:

$$
\left[\begin{array}{l}
\dot{p}_{2} \\
\dot{q}_{4}
\end{array}\right]=\left[\begin{array}{l}
e_{2} \\
f_{4}
\end{array}\right]
$$

State Equation Derivation - Preparation

\square Annotate the computational bond graph with state variable derivatives

- Efforts on the independent Inertias and the flows on the independent Capacitors
\square Apply constitutive laws to annotate the other power variables on the I 's and C 's
\square Annotate the known source power variables and indicate as functions of time

State Equation Derivation - Procedure

\square Objective: derive a set of n equations, each expressing a state variable derivative as a linear combination of state variables and inputs

- Determine the \mathbf{A} and \mathbf{B} matrices
\square First, choose a state variable and write its derivative as an effort or flow:

$$
\begin{equation*}
\dot{p}_{2}=e_{2} \tag{1}
\end{equation*}
$$

\square Next, use the causality assigned to the bond graph to work from (1) to a state equation

- Express \dot{p}_{2} as a linear combination of states and inputs
- Will ultimately relate an effort or flow to a state variable by applying a constitutive relationship for an energy-storage element

State Equation Derivation

$\square e_{2}$ is an effort on a 1-jct

- Caused by e_{1}, e_{3}, and e_{4}, and e_{1} is known, so

$$
\begin{equation*}
\dot{p}_{2}=e_{2}=e_{1}(t)-e_{3}-e_{4} \tag{2}
\end{equation*}
$$

\square Relate e_{3} to f_{3} using the const. law for the resistor

$$
\begin{equation*}
e_{3}=R_{3} f_{3} \tag{3}
\end{equation*}
$$

$\square f_{3}$ is the flow on a 1 -jct, set by f_{2}, related to s.v. p_{2} by the const. law for the inertia

$$
\begin{equation*}
f_{3}=f_{2}=\frac{1}{I_{2}} p_{2} \tag{4}
\end{equation*}
$$

State Equation Derivation - Procedure

\square Substituting (4) into (3)

$$
\begin{equation*}
e_{3}=\frac{R_{3}}{I_{2}} p_{2} \tag{5}
\end{equation*}
$$

\square And substituting (5) back into (2)

$$
\begin{equation*}
\dot{p}_{2}=e_{1}(t)-\frac{R_{3}}{I_{2}} p_{2}-e_{4} \tag{6}
\end{equation*}
$$

\square Still need to eliminate e_{4}

- e_{4} related to state variable q_{4} through constitutive law for the capacitor

$$
\begin{equation*}
e_{4}=\frac{1}{C_{4}} q_{4} \tag{7}
\end{equation*}
$$

State Equation Derivation

\square Substituting (7) into (6) yields the first of two state equations

$$
\dot{p}_{2}=-\frac{R_{3}}{I_{2}} p_{2}-\frac{1}{C_{4}} q_{4}+e_{1}(t)
$$

\square Next, follow a similar procedure for q_{4}

$$
\begin{equation*}
\dot{q}_{4}=f_{4} \tag{9}
\end{equation*}
$$

$\square f_{4}$ is the flow on a 1-jct, set by f_{2}, related to state variable p_{2} by the const. law for the inertia

$$
\begin{equation*}
f_{4}=f_{2}=\frac{1}{I_{2}} p_{2} \tag{10}
\end{equation*}
$$

State Equation Derivation

\square Substituting (10) into (9) yields the second of two state equations

$$
\begin{equation*}
\dot{q}_{4}=\frac{1}{I_{2}} p_{2} \tag{11}
\end{equation*}
$$

\square Combine (8) and (11) into the state-variable model for our system in matrix form

$$
\left[\begin{array}{l}
\dot{p}_{2} \tag{12}\\
\dot{q}_{4}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{3}}{I_{2}} & -\frac{1}{C_{4}} \\
\frac{1}{I_{2}} & 0
\end{array}\right]\left[\begin{array}{l}
p_{2} \\
q_{4}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] e_{1}(t)
$$

State Equation Derivation

\square Can now replace the computational bond graph parameters in (12) with physical system parameters

$$
\left[\begin{array}{l}
\dot{p} \tag{13}\\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(t)
$$

State Equation Derivation - Output Equation

\square Can also define an output equation as part of our state-space model
\square Suppose we want to consider the velocity of the mass as our output

- Constitutive relation relates an inertia's flow to its momentum:

$$
\begin{equation*}
f_{2}=v=\frac{1}{I_{2}} p_{2}=\frac{1}{m} p \tag{14}
\end{equation*}
$$

\square The output equation would be:

$$
y=\left[\begin{array}{ll}
1 / m & 0
\end{array}\right]\left[\begin{array}{l}
p \tag{15}\\
x
\end{array}\right]
$$

\square Equations (13) and (15) comprise the complete state-space system model

State Equation Derivation - Output Equation

\square Perhaps, instead, we want to consider the displacement of the mass as our output

- Same as spring displacement-a
 state variable
\square State-space model, including output equation, becomes:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{p} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(t)} \\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right] \tag{16}
\end{align*}
$$

State Equation Derivation - Causality

\square In this example, assignment of causality yielded the simplest result:

- All energy-storage elements ended up in integral causality - all were independent
- No resistors had their causality arbitrarily assigned
\square Lack of derivative causality and/or algebraic loops (resistor fields) results in straightforward state equation derivation
- Unfortunately, the inverse is also true
\square Next, we'll look at two more examples without derivative causality or algebraic loops

State Equation Derivation - Example 1

\square Consider the mechanical example from Section 3
\square Four independent energy-storage elements

- Fourth-order system
- Four state variables:

$$
\mathbf{x}=\left[\begin{array}{c}
p_{3} \\
q_{5} \\
q_{8} \\
p_{10}
\end{array}\right]
$$

State Equation Derivation - Example 1

\square Annotate the bond graph:
\square State variable derivatives

- Efforts on independent inertias
- Flows on independent capacitors
- Use constitutive laws and state variables to express:
- Flows on independent inertias
- Efforts on independent capacitors
- Known source quantities

State Equation Derivation - Example 1

\square Choose a state variable derivative and express it as an effort or a flow

$$
\begin{equation*}
\dot{p}_{3}=e_{3}=e_{1}(t)-e_{2}(t)-e_{4} \tag{1}
\end{equation*}
$$

\square Known source efforts can remain

- Need to eliminate e_{4}
- Effort on a 0-jct, set by e_{5}

$$
\begin{equation*}
e_{4}=e_{5}=\frac{1}{C_{5}} q_{5} \tag{2}
\end{equation*}
$$

\square Substituting (2) into (1) yields the first of four state equations

$$
\begin{equation*}
\dot{p}_{3}=-\frac{1}{c_{5}} q_{5}+e_{1}(t)-e_{2}(t) \tag{3}
\end{equation*}
$$

State Equation Derivation - Example 1

\square Move on to the next state variable

$$
\begin{equation*}
\dot{q}_{5}=f_{5}=f_{4}-f_{6} \tag{4}
\end{equation*}
$$

$\square f_{4}$ and f_{6} are both flows on 1-jct's set by f_{3} and f_{10}, respectively

$$
\begin{align*}
& f_{4}=f_{3}=\frac{1}{I_{3}} p_{3} \tag{5}\\
& f_{6}=f_{10}=\frac{1}{I_{10}} p_{10} \tag{6}
\end{align*}
$$

\square Substituting (6) and (5) into (4) yields the second state equation

$$
\begin{equation*}
\dot{q}_{5}=\frac{1}{I_{3}} p_{3}-\frac{1}{I_{10}} p_{10} \tag{7}
\end{equation*}
$$

State Equation Derivation - Example 1

\square Move on to \dot{q}_{8}

$$
\begin{equation*}
\dot{q}_{8}=f_{8}=f_{10}=\frac{1}{I_{10}} p_{10} \tag{8}
\end{equation*}
$$

which gives the third state equation

$$
\begin{equation*}
\dot{q}_{8}=\frac{1}{I_{10}} p_{10} \tag{9}
\end{equation*}
$$

\square Finally, derive the equation for \dot{p}_{10}

$$
\begin{equation*}
\dot{p}_{10}=e_{10}=e_{6}-e_{7}(t)-e_{8}-e_{9} \tag{10}
\end{equation*}
$$

$\square e_{6}$ is the effort on a 0 -jct, set by e_{5}

$$
\begin{equation*}
e_{6}=e_{5}=\frac{1}{C_{5}} q_{5} \tag{11}
\end{equation*}
$$

State Equation Derivation - Example 1

$\square e_{8}$ is related to state variable q_{8}

$$
\begin{equation*}
e_{8}=\frac{1}{c_{8}} q_{8} \tag{12}
\end{equation*}
$$

$\square e_{9}$ can be related to f_{9} using the constitutive law for resistor R_{9}

$$
\begin{equation*}
e_{9}=R_{9} f_{9} \tag{13}
\end{equation*}
$$

\square And, f_{9} is the flow on a 1 -jct, set by f_{10}

$$
\begin{equation*}
e_{9}=R_{9} f_{10}=R_{9} \frac{1}{I_{10}} p_{10} \tag{14}
\end{equation*}
$$

\square Substituting (11), (12), and (14) into (10) yields the final state equation

$$
\begin{equation*}
\dot{p}_{10}=\frac{1}{C_{5}} q_{5}-\frac{1}{C_{8}} q_{8}-\frac{R_{9}}{I_{10}} p_{10}-e_{7}(t) \tag{15}
\end{equation*}
$$

State Equation Derivation - Example 1

\square Combine the state equations into matrix form

$$
\left[\begin{array}{c}
\dot{p}_{3} \tag{16}\\
\dot{q}_{5} \\
\dot{q}_{8} \\
\dot{p}_{10}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -\frac{1}{C_{5}} & 0 & 0 \\
\frac{1}{I_{3}} & 0 & 0 & -\frac{1}{I_{10}} \\
0 & 0 & 0 & \frac{1}{I_{10}} \\
0 & \frac{1}{C_{5}} & -\frac{1}{C_{8}} & -\frac{R_{9}}{I_{10}}
\end{array}\right]\left[\begin{array}{c}
p_{3} \\
q_{5} \\
q_{8} \\
p_{10}
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
e_{1}(t) \\
e_{2}(t) \\
e_{7}(t)
\end{array}\right]
$$

State Equation Derivation - Example 1

\square Let the position of each mass to be our outputs

- Two outputs
\square Displacement of $m_{2}\left(I_{10}\right)$ is the displacement of the upper spring

$$
\begin{equation*}
x_{2}=q_{8} \tag{17}
\end{equation*}
$$

\square Displacement of m_{1} is the sum of the spring displacements

$$
\begin{equation*}
x_{1}=q_{5}+q_{8} \tag{18}
\end{equation*}
$$

State Equation Derivation - Example 1

\square Combine (17) and (18) into our output equation

- Multiple outputs, so C will be a matrix
\square Complete state-space model, including output equation:
$\dot{\mathbf{x}}=\left[\begin{array}{c}\dot{p}_{3} \\ \dot{q}_{5} \\ \dot{q}_{8} \\ \dot{p}_{10}\end{array}\right]=\left[\begin{array}{cccc}0 & -\frac{1}{C_{5}} & 0 & 0 \\ \frac{1}{I_{3}} & 0 & 0 & -\frac{1}{I_{10}} \\ 0 & 0 & 0 & \frac{1}{I_{10}} \\ 0 & \frac{1}{C_{5}} & -\frac{1}{C_{8}} & -\frac{R_{9}}{I_{10}}\end{array}\right]\left[\begin{array}{c}p_{3} \\ q_{5} \\ q_{8} \\ p_{10}\end{array}\right]+\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}e_{1}(t) \\ e_{2}(t) \\ e_{7}(t)\end{array}\right]$

$\mathbf{y}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}p_{3} \\ q_{5} \\ q_{8} \\ p_{10}\end{array}\right]$

State Equation Derivation - Example 1

\square Can rewrite our state-space model, substituting in physical parameters

- q_{1} and q_{2} are the displacements of springs k_{1} and k_{2}, respectively
$\dot{\mathbf{x}}=\left[\begin{array}{l}\dot{p}_{1} \\ \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{p}_{2}\end{array}\right]=\left[\begin{array}{cccc}0 & -k_{1} & 0 & 0 \\ \frac{1}{m_{1}} & 0 & 0 & -\frac{1}{m_{2}} \\ 0 & 0 & 0 & \frac{1}{m_{2}} \\ 0 & k_{1} & -k_{2} & -\frac{b}{m_{2}}\end{array}\right]\left[\begin{array}{l}p_{1} \\ q_{1} \\ q_{2} \\ p_{2}\end{array}\right]+\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{c}F_{\text {in }}(t) \\ m_{1} g \\ m_{2} g\end{array}\right]$

$$
\mathbf{y}=\left[\begin{array}{l}
x_{1} \tag{21}\\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
q_{1} \\
q_{2} \\
p_{2}
\end{array}\right]
$$

State Equation Derivation - Example 2

\square A slightly modified version of the electrical circuit from Section 3:

\square The computational bond graph for this circuit:

State Equation Derivation - Example 2

\square Three independent energy-storage elements

- Third order
\square State variables:

$$
\mathbf{x}=\left[\begin{array}{l}
p_{3} \\
q_{5} \\
q_{9}
\end{array}\right]
$$

\square Annotate the computational bond graph

State Equation Derivation - Example 2

\square Begin with equation for \dot{p}_{3}

$$
\begin{aligned}
& \dot{p}_{3}=e_{3}=e_{1}(t)-e_{2}-e_{4} \\
& e_{2}=R_{2} f_{2}=R_{2} f_{3}=R_{2} \frac{1}{I_{3}} p_{3}
\end{aligned}
$$

$\square e_{4}$ is the effort on a 0 -jct, set by the effort on C_{5}

$$
\begin{equation*}
e_{4}=e_{5}=\frac{1}{C_{5}} q_{5} \tag{3}
\end{equation*}
$$

\square Substituting (2) and (3) into (1) gives the first of three state equations

$$
\begin{equation*}
\dot{p}_{3}=-\frac{R_{2}}{I_{3}} p_{3}-\frac{1}{C_{5}} q_{5}+e_{1}(t) \tag{4}
\end{equation*}
$$

State Equation Derivation - Example 2

\square Next, move on to \dot{q}_{5}

$$
\begin{equation*}
\dot{q}_{5}=f_{5}=f_{4}-f_{6} \tag{5}
\end{equation*}
$$

$\square f_{4}$ is set by f_{3}

$$
\begin{equation*}
f_{4}=f_{3}=\frac{1}{I_{3}} p_{3} \tag{6}
\end{equation*}
$$

\square The transformer modulus relates f_{6} to f_{7}, which is the flow on a 1-jct, set by f_{8}

$$
\begin{equation*}
f_{6}=\frac{N_{2}}{N_{1}} f_{7}=\frac{N_{2}}{N_{1}} f_{8}=\frac{N_{2}}{N_{1}} \frac{1}{R_{8}} e_{8} \tag{7}
\end{equation*}
$$

$\square e_{8}$ is algebraically related to e_{7} and e_{9}

$$
\begin{equation*}
e_{8}=e_{7}-e_{9}=e_{7}-\frac{1}{C_{9}} q_{9} \tag{8}
\end{equation*}
$$

State Equation Derivation - Example 2

\square The transformer relates e_{7} back to e_{6}, which is set by e_{5}

$$
\begin{equation*}
e_{7}=\frac{N_{2}}{N_{1}} e_{6}=\frac{N_{2}}{N_{1}} e_{5}=\frac{N_{2}}{N_{1}} \frac{1}{C_{5}} q_{5} \tag{9}
\end{equation*}
$$

\square Substituting (9) into (8) gives

$$
\begin{equation*}
e_{8}=\frac{N_{2}}{N_{1}} \frac{1}{C_{5}} q_{5}-\frac{1}{C_{9}} q_{9} \tag{10}
\end{equation*}
$$

\square Equation (10) can be substituted into (7)

$$
\begin{equation*}
f_{6}=\frac{N_{2}}{N_{1}} \frac{1}{R_{8}}\left(\frac{N_{2}}{N_{1}} \frac{1}{C_{5}} q_{5}-\frac{1}{C_{9}} q_{9}\right) \tag{11}
\end{equation*}
$$

$\square \quad$ Using (11) and (6) in (5) gives us our second state equation

$$
\begin{equation*}
\dot{q}_{5}=\frac{1}{I_{3}} p_{3}-\left(\frac{N_{2}}{N_{1}}\right)^{2} \frac{1}{R_{8} C_{5}} q_{5}+\frac{N_{2}}{N_{1}} \frac{1}{R_{8} C_{9}} q_{9} \tag{12}
\end{equation*}
$$

State Equation Derivation - Example 2

\square Finally, derive the equation for \dot{q}_{9}

$$
\begin{equation*}
\dot{q}_{9}=f_{9} \tag{13}
\end{equation*}
$$

$\square f_{9}$ is the flow on a 1-jct, which is set by f_{8}

$$
\begin{equation*}
f_{9}=f_{8}=\frac{1}{R_{8}} e_{8} \tag{14}
\end{equation*}
$$

\square Substituting (10) into (14)

$$
\begin{equation*}
f_{9}=\frac{1}{R_{8}}\left(\frac{N_{2}}{N_{1}} \frac{1}{C_{5}} q_{5}-\frac{1}{C_{9}} q_{9}\right) \tag{15}
\end{equation*}
$$

\square Substituting (15) in (13) gives us our third state equation

$$
\begin{equation*}
\dot{q}_{9}=\frac{N_{2}}{N_{1}} \frac{1}{R_{8} C_{5}} q_{5}-\frac{1}{R_{8} C_{9}} q_{9} \tag{16}
\end{equation*}
$$

State Equation Derivation - Example 2

\square Combine the state equations in matrix form

$$
\dot{\mathbf{x}}=\left[\begin{array}{c}
\dot{p}_{3} \tag{17}\\
\dot{q}_{5} \\
\dot{q}_{9}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{R_{2}}{I_{3}} & -\frac{1}{C_{5}} & 0 \\
\frac{1}{I_{3}} & -\left(\frac{N_{2}}{N_{1}}\right)^{2} \frac{1}{R_{8} C_{5}} & \frac{N_{2}}{N_{1}} \frac{1}{R_{8} C_{9}} \\
0 & \frac{N_{2}}{N_{1}} \frac{1}{R_{8} C_{5}} & -\frac{1}{R_{8} C_{9}}
\end{array}\right]\left[\begin{array}{l}
p_{3} \\
q_{5} \\
q_{9}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] e_{1}(t)
$$

\square Replacing computational bond graph parameters with physical parameters

$$
\dot{\mathbf{x}}=\left[\begin{array}{c}
\dot{\lambda}_{1} \tag{18}\\
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{R_{1}}{L_{1}} & -\frac{1}{C_{1}} & 0 \\
\frac{1}{L_{1}} & -\left(\frac{N_{2}}{N_{1}}\right)^{2} \frac{1}{R_{3} C_{1}} & \frac{N_{2}}{N_{1}} \frac{1}{R_{3} C_{2}} \\
0 & \frac{N_{2}}{N_{1}} \frac{1}{R_{3} C_{1}} & -\frac{1}{R_{3} C_{2}}
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
q_{1} \\
q_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] v_{i n}(t)
$$

State Equation Derivation - Example 2

\square Choosing the voltage across C_{2} as our output, the complete statespace system representation is

$$
\begin{align*}
& \dot{\mathbf{x}}=\left[\begin{array}{l}
\dot{\lambda}_{1} \\
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{R_{1}}{L_{1}} & -\frac{1}{C_{1}} & 0 \\
\frac{1}{L_{1}} & -\left(\frac{N_{2}}{N_{1}}\right)^{2} \frac{1}{R_{3} C_{1}} & \frac{N_{2}}{N_{1}} \frac{1}{R_{3} C_{2}} \\
0 & \frac{N_{2}}{N_{1}} \frac{1}{R_{3} C_{1}} & -\frac{1}{R_{3} C_{2}}
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
q_{1} \\
q_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] v_{i n}(t) \\
& y=v_{d}=\left[\begin{array}{lll}
0 & 0 & 1 / C_{2}
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
q_{1} \\
q_{2}
\end{array}\right] \tag{19}
\end{align*}
$$

State Equation Derivation - Example 2

\square Instead let the voltage across $\boldsymbol{L}_{\mathbf{1}}$ be the system output

- That is, the effort associated with L_{1}
- Effort is the time derivative of momentum, so

$$
\begin{equation*}
y=v_{L 1}=v_{a}-v_{b}=\dot{\lambda}_{1} \tag{20}
\end{equation*}
$$

\square The output equation can be extracted from (19)

$$
y=v_{L 1}=\left[\begin{array}{lll}
-\frac{R_{1}}{L_{1}} & -\frac{1}{c_{1}} & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \tag{21}\\
q_{1} \\
q_{2}
\end{array}\right]+v_{\text {in }}(t)
$$

\square Note that, in this case, the feed-through term, D, is non-zero

Algebraic Loops or Resistor Fields

Algebraic Loops - Example 1

\square Consider the following electrical circuit

\square Causality assignment is completed by arbitrarily assigning the causality of resistor R_{2} (or R_{6})

- System contains an algebraic loop (resistor field)

\square Presence of the algebraic loop will complicate the state equation derivation a bit

Algebraic Loops - Example 1

\square Second-order system

- State variables are:

$$
\mathbf{x}=\left[\begin{array}{l}
p_{4} \\
q_{7}
\end{array}\right]
$$

\square Begin deriving equations as usual

$$
\begin{gather*}
\dot{p}_{4}=e_{4}=e_{1}(t)-e_{2}=e_{1}(t)-R_{2} f_{2} \tag{1}\\
f_{2}=f_{3}=\frac{1}{I_{4}} p_{4}+f_{5}=\frac{1}{I_{4}} p_{4}+f_{6} \tag{2}\\
f_{6}=\frac{1}{R_{6}} e_{6}=\frac{1}{R_{6}}\left(e_{5}-\frac{1}{c_{7}} q_{7}\right) \tag{3}\\
f_{6}=\frac{1}{R_{6}}\left(e_{3}-\frac{1}{c_{7}} q_{7}\right) \tag{4}
\end{gather*}
$$

$\square e_{3}$ has reentered the formulation, and we're back where we started in (1)

- An algebraic loop

Algebraic Loops - Procedure

1. The output of the resistor whose causality was arbitrarily assigned - e_{2} in this case, though f_{6} would work equally well - is the auxiliary variable
2. Derive an expression relating the auxiliary variable to the state variables, inputs, and to itself
3. Proceed with the state equation derivation as usual, but leave the auxiliary variable in the formulation along with state variables and inputs
4. Substitute the result from step 2 into the result from step 3
\square One auxiliary variable for each algebraic loop present

- Multiple loops require solution of a system of equations
\square Apply this procedure first, whenever causality assignment involves an arbitrary assignment of resistor causality

Algebraic Loops - Example 1

\square Follow causality to derive an expression for auxiliary variable e_{2}

$$
\begin{gather*}
e_{2}=R_{2} f_{2}=R_{2} f_{3}=R_{2}\left(\frac{1}{I_{4}} p_{4}+f_{5}\right) \tag{5}\\
f_{5}=f_{6}=\frac{1}{R_{6}} e_{6}=\frac{1}{R_{6}}\left(e_{5}-\frac{1}{c_{7}} q_{7}\right) \tag{6}\\
e_{5}=e_{3}=e_{1}(t)-e_{2} \tag{7}
\end{gather*}
$$

$\square e_{2}$ is the aux. variable, so it can remain in the expression
\square Substituting (7) into (6) into (5)

$$
\begin{align*}
& e_{2}=\frac{R_{2}}{I_{4}} p_{4}+\frac{R_{2}}{R_{6}} e_{1}(t)-\frac{R_{2}}{R_{6}} e_{2}-\frac{R_{2}}{R_{6} C_{7}} q_{7} \tag{8}\\
& e_{2} \frac{R_{2}+R_{6}}{R_{6}}=\frac{R_{2}}{I_{4}} p_{4}-\frac{R_{2}}{R_{6} C_{7}} q_{7}+\frac{R_{2}}{R_{6}} e_{1}(t) \tag{9}
\end{align*}
$$

Algebraic Loops - Example 1

\square Solve (9) for e_{2}

$$
\begin{equation*}
e_{2}=\frac{R_{2} R_{6}}{R_{2}+R_{6}} \frac{1}{I_{4}} p_{4}-\frac{R_{2}}{\left(R_{2}+R_{6}\right) C_{7}} q_{7}+\frac{R_{2}}{R_{2}+R_{6}} e_{1}(t) \tag{10}
\end{equation*}
$$

\square Now, whenever e_{2} appears in the formulation, substitute in the expression in (10)

\square Going back to (1), we had

$$
\begin{equation*}
\dot{p}_{4}=e_{1}(t)-e_{2} \tag{1}
\end{equation*}
$$

\square Substituting in (10) yields the first state equation

$$
\begin{equation*}
\dot{p}_{4}=-\frac{R_{2} R_{6}}{R_{2}+R_{6}} \frac{1}{I_{4}} p_{4}+\frac{R_{2}}{\left(R_{2}+R_{6}\right) C_{7}} q_{7}+\frac{R_{6}}{R_{2}+R_{6}} e_{1}(t) \tag{11}
\end{equation*}
$$

Algebraic Loops - Example 1

\square Moving on to \dot{q}_{7}

$$
\begin{equation*}
\dot{q}_{7}=f_{7}=f_{6} \tag{12}
\end{equation*}
$$

\square We already have an expression for f_{6} in (6) and (7)

$$
\begin{equation*}
\dot{q}_{7}=\frac{1}{R_{6}} e_{1}(t)-\frac{1}{R_{6}} e_{2}-\frac{1}{R_{6} C_{7}} q_{7} \tag{13}
\end{equation*}
$$

\square Substituting in (10) to eliminate e_{2}

$$
\dot{q}_{7}=\frac{1}{R_{6}} e_{1}(t)-\frac{R_{2}}{R_{2}+R_{6}} \frac{1}{I_{4}} p_{4}+\frac{R_{2}}{\left(R_{2}+R_{6}\right) R_{6} C_{7}} q_{7}-\frac{R_{2}}{\left(R_{2}+R_{6}\right) R_{6}} e_{1}(t)-\frac{1}{R_{6} C_{7}} q_{7}
$$

\square Rearranging gives the second state equation

$$
\begin{equation*}
\dot{q}_{7}=-\frac{R_{2}}{R_{2}+R_{6}} \frac{1}{I_{4}} p_{4}-\frac{1}{\left(R_{2}+R_{6}\right) C_{7}} q_{7}+\frac{1}{R_{2}+R_{6}} e_{1}(t) \tag{14}
\end{equation*}
$$

Algebraic Loops - Example 1

\square Assembling (11) and (14) in matrix form gives our state variable system model

$$
\left[\begin{array}{l}
\dot{p}_{4} \tag{15}\\
\dot{q}_{7}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{2} R_{6}}{R_{2}+R_{6}} \frac{1}{I_{4}} & \frac{R_{2}}{\left(R_{2}+R_{6}\right) C_{7}} \\
-\frac{R_{2}}{R_{2}+R_{6}} \frac{1}{I_{4}} & -\frac{1}{\left(R_{2}+R_{6}\right) C_{7}}
\end{array}\right]\left[\begin{array}{l}
p_{4} \\
q_{7}
\end{array}\right]+\left[\begin{array}{c}
\frac{R_{6}}{R_{2}+R_{6}} \\
\frac{1}{R_{2}+R_{6}}
\end{array}\right] e_{1}(t)
$$

Algebraic Loops - Example 1

\square Substitute in physical parameters and define an output equation for the voltage across the capacitor, v_{b}

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{\lambda} \\
\dot{q}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{1} R_{2}}{R_{1}+R_{2}} \frac{1}{L} & \frac{R_{1}}{\left(R_{1}+R_{2}\right) C} \\
-\frac{R_{1}}{R_{1}+R_{2}} \frac{1}{L} & -\frac{1}{\left(R_{1}+R_{2}\right) C}
\end{array}\right]\left[\begin{array}{l}
\lambda \\
q
\end{array}\right]+\left[\begin{array}{c}
\frac{R_{2}}{R_{1}+R_{2}} \\
\frac{1}{R_{1}+R_{2}}
\end{array}\right] v_{i n}(t)} \\
& y=\left[\begin{array}{ll}
0 & 1 / C
\end{array}\right]\left[\begin{array}{l}
\lambda \\
q
\end{array}\right]
\end{aligned}
$$

Algebraic Loops - Example 2

\square Next, consider a mechanical system

\square Causality assignment is completed by arbitrarily assigning the causality of resistor R_{2} (or R_{4})
\square A very similar bond graph to the electrical circuit in the previous example

Algebraic Loops - Example 2

\square A second-order system with state variables:

$$
\mathbf{x}=\left[\begin{array}{l}
q_{1} \\
p_{6}
\end{array}\right]
$$

\square A second-order system with state variables:

$$
\mathbf{x}=\left[\begin{array}{l}
q_{1} \\
p_{6}
\end{array}\right]
$$

\square An algebraic loop is present, so we'll immediately go to the procedure outlined in the previous example
\square Auxiliary variable is f_{2}

- Express f_{2} in terms of state variables, inputs, and itself

$$
\begin{align*}
& f_{2}=\frac{1}{R_{2}} e_{2}=\frac{1}{R_{2}}\left(e_{3}-e_{1}\right)=\frac{1}{R_{2}}\left(e_{4}-\frac{1}{C_{1}} q_{1}\right) \tag{1}\\
& \quad e_{4}=R_{4} f_{4}=R_{4}\left(f_{5}-f_{3}\right)=R_{4}\left(\frac{1}{l_{6}} p_{6}-f_{2}\right) \tag{2}
\end{align*}
$$

$\square f_{2}$ is the auxiliary variable, so it can remain in the expression

Algebraic Loops - Example 2

\square Substitute (2) into (1)

$$
\begin{equation*}
f_{2}=\frac{R_{4}}{R_{2}} \frac{1}{I_{6}} p_{6}-\frac{R_{4}}{R_{2}} f_{2}-\frac{1}{R_{2} C_{1}} q_{1} \tag{3}
\end{equation*}
$$

\square Then solve for f_{2}

$$
\begin{align*}
& f_{2}\left(\frac{R_{2}+R_{4}}{R_{2}}\right)=-\frac{1}{R_{2} C_{1}} q_{1}+\frac{R_{4}}{R_{2}} \frac{1}{I_{6}} p_{6} \tag{4}\\
& f_{2}=-\frac{1}{\left(R_{2}+R_{4}\right) C_{1}} q_{1}+\frac{R_{4}}{R_{2}+R_{4}} \frac{1}{I_{6}} p_{6} \tag{5}
\end{align*}
$$

\square Now, Proceed with the state equation derivation

- Whenever the auxiliary variable, f_{2}, appears in the formulation, it will be replaced with (5)

Algebraic Loops - Example 2

\square Start with \dot{q}_{1}

$$
\dot{q}_{1}=f_{1}=f 2
$$

\square Substituting (5) into (6) gives the first state equation

$$
\begin{equation*}
\dot{q}_{1}=-\frac{1}{\left(R_{2}+R_{4}\right) C_{1}} q_{1}+\frac{R_{4}}{R_{2}+R_{4}} \frac{1}{I_{6}} p_{6} \tag{7}
\end{equation*}
$$

\square Moving on to \dot{p}_{6}

$$
\begin{align*}
\dot{p}_{6}=e_{6} & =e_{7}(t)-e_{5}=e_{7}(t)-e_{4} \tag{8}\\
& e_{4}=R_{4} f_{4}=R_{4}\left(f_{5}-f_{3}\right)=R_{4}\left(\frac{1}{I_{6}} p_{6}-f_{2}\right) \tag{9}
\end{align*}
$$

Algebraic Loops - Example 2

\square Substitute (9) into (8)

$$
\begin{equation*}
\dot{p}_{6}=e_{7}(t)-\frac{R_{4}}{I_{6}} p_{6}+R_{4} f_{2} \tag{10}
\end{equation*}
$$

\square Substituting (5) in for f_{2} gives the
 second state equation

$$
\begin{equation*}
\dot{p}_{6}=e_{7}(t)-\frac{R_{4}}{I_{6}} p_{6}+R_{4}\left(-\frac{1}{\left(R_{2}+R_{4}\right) C_{1}} q_{1}+\frac{R_{4}}{R_{2}+R_{4}} \frac{1}{I_{6}} p_{6}\right) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\dot{p}_{6}=-\frac{R_{4}}{\left(R_{2}+R_{4}\right) C_{1}} q_{1}-\frac{R_{2} R_{4}}{R_{2}+R_{4}} \frac{1}{I_{6}} p_{6}+e_{7}(t) \tag{12}
\end{equation*}
$$

\square In matrix form:

$$
\left[\begin{array}{c}
\dot{q}_{1} \tag{13}\\
\dot{p}_{6}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{\left(R_{2}+R_{4}\right) C_{1}} & \frac{R_{4}}{R_{2}+R_{4}} \frac{1}{I_{6}} \\
-\frac{R_{4}}{\left(R_{2}+R_{4}\right) C_{1}} & -\frac{R_{2} R_{4}}{R_{2}+R_{4}} \frac{1}{I_{6}}
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
p_{6}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] e_{7}(t)
$$

Algebraic Loops - Example 2

\square Note that the origin of the algebraic loop in this example was a modeling assumption

- The connection point between the spring and dampers was considered massless
- Instead we could account for the mass of this junction

\square Now, there are no arbitrary causality assignments and no algebraic loops

\square State equation derivation will be greatly simplified

Algebraic Loops - Example 2

\square System is now third-order, due to the additional independent energy-storage element

\square State equation, after replacing physical parameters:

$$
\left[\begin{array}{l}
\dot{x}_{2} \tag{14}\\
\dot{p}_{1} \\
\dot{p}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & \frac{1}{m_{2}} \\
0 & -\frac{b_{2}}{m_{1}} & \frac{b_{2}}{m_{1}} \\
-k & \frac{b_{2}}{m_{1}} & -\frac{b_{1}+b_{2}}{m_{2}}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
p_{1} \\
p_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] F_{\text {in }}(t)
$$

\square Looks very different from the original second order model, but if $m_{2} \ll m_{1}$, their behaviors are nearly identical

72
 Derivative Causality

Derivative Causality - Example

\square Consider the mechanical system from Section 3
\square The computational bond graph:

\square Two independent energy-storage elements

- Second-order
- State variables are:

$$
\mathbf{x}=\left[\begin{array}{l}
p_{2} \\
q_{7}
\end{array}\right]
$$

Derivative Causality - Example

$\square I_{6}$ is in derivative Causality
\square Not independent
\square Does not contribute a state

- Its energy variable p_{6} (would be a q for an C-element) is algebraically related to the state variables
\square Annotate the bond graph
- Include the energy variable annotation for the dependent inertia

Derivative Causality - Example

$\square p_{6}$ is not a state variable
\square State equation derivation requires first determining the algebraic relationship between p_{6} and the state variables, p_{2} and q_{7}
\square When p_{6} or \dot{p}_{6} enters the formulation, substitute in this relationship or its derivative

Derivative Causality - Procedure

1. For the dependent energy-storage element, apply the constitutive law 'backwards' - i.e. express the energy variable as a function of a power variable
a. Inertia: express momentum as a function of flow
b. Capacitor: express displacement as a function of effort
2. Follow causality to relate that power variable to the state variables and inputs
3. Substitute the expression from step 2 into that from step 1
4. When the energy variable (or its derivative) enters the formulation, substitute in the expression from step 3

Derivative Causality - Example

\square Apply the constitutive law for I_{6} 'backwards'

- Express p_{6} as a function of f_{6}

$$
\begin{equation*}
p_{6}=I_{6} f_{6} \tag{1}
\end{equation*}
$$

\square Follow causality to express f_{6} in terms of state variables and inputs

$$
\begin{equation*}
f_{6}=f_{4}=\frac{b}{a} f_{3}=\frac{b}{a} \frac{1}{I_{2}} p_{2} \tag{2}
\end{equation*}
$$

\square Substituting (2) into (1)

$$
\begin{equation*}
p_{6}=\frac{b}{a} \frac{I_{6}}{I_{2}} p_{2} \tag{3}
\end{equation*}
$$

\square Now proceed with derivation, using (3) when needed

Derivative Causality - Example

\square Begin state equation derivation with \dot{p}_{2}

$$
\begin{equation*}
\dot{p}_{2}=e_{2}=e_{1}(t)-e_{3} \tag{4}
\end{equation*}
$$

$\square T F$ relates e_{3} to e_{4}

$$
\begin{gather*}
\dot{p}_{2}=e_{1}(t)-\frac{b}{a} e_{4}=e_{1}(t)-\frac{b}{a}\left(e_{5}+\dot{p}_{6}+\frac{1}{c_{7}} q_{7}\right) \tag{5}\\
e_{5}=R_{5} f_{5}=R_{5} f_{4}=R_{5} \frac{b}{a} f_{3}=R_{5} \frac{b}{a} \frac{1}{I_{2}} p_{2} \tag{6}
\end{gather*}
$$

\square Substituting (6) into (5)

$$
\begin{align*}
& \dot{p}_{2}=e_{1}(t)-\frac{b}{a}\left(\frac{b}{a} \frac{R_{5}}{I_{2}} p_{2}+\dot{p}_{6}+\frac{1}{C_{7}} q_{7}\right) \\
& \dot{p}_{2}=e_{1}(t)-\left(\frac{b}{a}\right)^{2} \frac{R_{5}}{I_{2}} p_{2}-\frac{b}{a} \dot{p}_{6}-\frac{b}{a} \frac{1}{c_{7}} q_{7} \tag{7}
\end{align*}
$$

Derivative Causality - Example

$\square \mathrm{A} \dot{p}_{6}$ term has entered the formulation

- Differentiate (3)

$$
\begin{equation*}
\dot{p}_{6}=\frac{b}{a} \frac{I_{6}}{I_{2}} \dot{p}_{2} \tag{8}
\end{equation*}
$$

\square Substitute (8) into (7)

$$
\begin{equation*}
\dot{p}_{2}=e_{1}(t)-\left(\frac{b}{a}\right)^{2} \frac{R_{5}}{I_{2}} p_{2}-\left(\frac{b}{a}\right)^{2} \frac{I_{6}}{I_{2}} \dot{p}_{2}-\frac{b}{a} \frac{1}{c_{7}} q_{7} \tag{9}
\end{equation*}
$$

\square Solve (9) for \dot{p}_{2}

$$
\begin{equation*}
\dot{p}_{2}\left(\frac{I_{2}+(b / a)^{2} I_{6}}{I_{2}}\right)=e_{1}(t)-\left(\frac{b}{a}\right)^{2} \frac{R_{5}}{I_{2}} p_{2}-\frac{b}{a} \frac{1}{C_{7}} q_{7} \tag{10}
\end{equation*}
$$

Derivative Causality - Example

\square Rearranging (10) gives the first of two state equations:

$$
\begin{equation*}
\dot{p}_{2}=-\frac{\left(\frac{b}{a}\right)^{2} R_{5}}{I_{2}+\left(\frac{b}{a}\right)^{2} I_{6}} p_{2}-\frac{\left(\frac{b}{a}\right) I_{2}}{\left(I_{2}+\left(\frac{b}{a}\right)^{2} I_{6}\right) c_{7}} q_{7}+\frac{I_{2}}{I_{2}+\left(\frac{b}{a}\right)^{2} I_{6}} e_{1}(t) \tag{11}
\end{equation*}
$$

\square Next, move on to \dot{q}_{7}

$$
\begin{equation*}
\dot{q}_{7}=f_{7}=f_{4}=\frac{b}{a} f_{3} \tag{12}
\end{equation*}
$$

\square The second state equation:

$$
\begin{equation*}
\dot{q}_{7}=\frac{b}{a} \frac{1}{I_{2}} p_{2} \tag{9}
\end{equation*}
$$

Derivative Causality - Example

\square The state-space system model:

$$
\left[\begin{array}{c}
\dot{p}_{2} \\
\dot{q}_{7}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{\left(\frac{b}{a}\right)^{2} R_{5}}{I_{2}+\left(\frac{b}{a}\right)^{2} I_{6}} & -\frac{\left(\frac{b}{a}\right) I_{2}}{\left(I_{2}+\left(\frac{b}{a}\right)^{2} I_{6}\right) C_{7}} \\
\frac{b}{a} \frac{1}{I_{2}} & 0
\end{array}\right]\left[\begin{array}{c}
{\left[_{p_{2}}\right.} \\
q_{7}
\end{array}\right]+\left[\begin{array}{c}
\frac{I_{2}}{I_{2}+\left(\frac{b}{a}\right)^{2} I_{6}} \\
0
\end{array}\right] e_{1}(t)
$$

\square With physical parameters:

$$
\left[\begin{array}{cc}
\dot{p}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{\left(\frac{b}{a}\right)^{2} b}{m_{1}+\left(\frac{b}{a}\right)^{2} m_{2}} & -\frac{\left(\frac{b}{a}\right) m_{1} k}{\left(m_{1}+\left(\frac{b}{a}\right)^{2} m_{2}\right)} \\
\frac{b}{a} \frac{1}{m_{1}} & 0
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{m_{1}}{m_{1}+\left(\frac{b}{a}\right)^{2} m_{2}} \\
0
\end{array}\right] F_{i n}(t)
$$

Derivative Causality - Example

\square Derivative causality in this case resulted from a modeling decision

- The lever was assumed to be rigid
- Adding some compliance to the lever arm eliminates derivative causality (see Section 3 notes)
- Increases system model to fourth-order
- Equation derivation simplified at the cost of model complexity
\square In general, derive an expression for the energy variable of each energy-storage element in derivative causality
- Multiple elements in derivative-causality will require solution of a system of equations

