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SECTION 4: MATHEMATICAL 
MODELING
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In the last section of notes, we saw how to 
create a bond graph model from a physical 
system model. 
The next step in the modeling process is the 
creation of a mathematical model

Introduction2
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Mathematical Modeling – Introduction 

 You’re already familiar with some techniques for 
creating mathematical models for physical systems

 For example:

 First, create a free-body diagram:
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Mathematical Modeling – Introduction 

 Next, apply Newton’s 2nd law

Σ𝐹𝐹 = 𝑚𝑚𝑚𝑚
𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 − 𝑘𝑘𝑘𝑘 − 𝑏𝑏𝑥̇𝑥 = 𝑚𝑚𝑥̈𝑥

rearranging:
𝑚𝑚𝑥̈𝑥 + 𝑏𝑏𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 = 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 (1)

 This is a mathematical model
 A second-order, linear, constant-coefficient, ordinary 

differential equation



K. Webb ESE 330

5

Reduction to a System of 1st-Order ODE’s

 Can reduce this 2nd-order ODE to a system of two 
1st-order ODE’s

 We know that
𝑥̇𝑥 = 𝑣𝑣 (2)

and
𝑥̈𝑥 = 𝑎𝑎 = 𝑣̇𝑣 (3)

 Using (2) and (3), rewrite (1), the original ODE

𝑚𝑚𝑣̇𝑣 + 𝑏𝑏𝑏𝑏 + 𝑘𝑘𝑘𝑘 = 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
where (4)

𝑣𝑣 = 𝑥̇𝑥
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Reduction to a System of 1st-Order ODE’s

 Equations (4) is a system of first-order ODE’s that is 
equivalent to (1)

 Rearranging (4):

𝑣̇𝑣 = − 𝑘𝑘
𝑚𝑚
𝑥𝑥 − 𝑏𝑏

𝑚𝑚
𝑣𝑣 + 1

𝑚𝑚
𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡

𝑥̇𝑥 = 𝑣𝑣 (5)

 These equations can be put into matrix form :

𝑥̇𝑥
𝑣̇𝑣 =

0 1
− 𝑘𝑘

𝑚𝑚
− 𝑏𝑏
𝑚𝑚

𝑥𝑥
𝑣𝑣 +

0
1
𝑚𝑚
𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 (6)
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Reduction to a System of 1st-Order ODE’s

 Let’s say we want to consider the displacement of 
the mass as the output of the system

 We can add an output equation to the 
mathematical model

𝑦𝑦 = 𝑥𝑥 (7)

 We can rewrite (7) in a matrix form similar to (6):

𝑦𝑦 = 1 0
𝑥𝑥
𝑣𝑣 + 0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 (8)
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Mathematical Model

 Together, (6) and (8) comprise the mathematical model 
for our mechanical system:

𝑥̇𝑥
𝑣̇𝑣 =

0 1

−
𝑘𝑘
𝑚𝑚

−
𝑏𝑏
𝑚𝑚

𝑥𝑥
𝑣𝑣 +

0
1
𝑚𝑚

𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡

𝑦𝑦 = 1 0
𝑥𝑥
𝑣𝑣 (9)

 Note that 𝑥̇𝑥, 𝑣̇𝑣, 𝑥𝑥,  𝑣𝑣, and 𝑦𝑦 are all functions of time
 The 𝑡𝑡 is dropped to simplify the notation
 The convention used here is to only include the 𝑡𝑡 for 

inputs, e.g. 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
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State-Space Representation

 The system model of (9) is the state-space 
representation of the system, or the state-variable 
equations for the system

 Can be expressed in generic form as

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃 (10)

where

 𝐱𝐱: the state vector
 𝐱̇𝐱: derivative of the  state 
 𝐮𝐮: vector of inputs
 𝐲𝐲: vector of outputs

 𝐀𝐀: system matrix
 𝐁𝐁: input matrix
 𝐂𝐂: output matrix
 𝐃𝐃: feed-through matrix
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MIMO vs. SISO Systems

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃 (10)

 Note that the state-space model (10) allows for vectors 
of inputs and outputs, 𝐮𝐮 and 𝐲𝐲

 Multi-input, multi-output (MIMO) systems
 𝐮𝐮 and 𝐲𝐲 will be vectors

 Single-input, single-output (SISO) systems
 𝑢𝑢 and 𝑦𝑦 will be scalars

 In this course, we’ll mostly focus on SISO systems 
 For now, we’ll assume the more general MIMO case
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System State and State Variables

 The vector 𝐱𝐱 is the state vector
 Elements of 𝐱𝐱 are the state variables of the system 

 The state of the system is a complete description of 
the current condition of the system
 From our energy-based perspective, the state describes 

all of the energy in a system, i.e. where it is stored, at a 
given point in time

 The state variables are a (not the) minimum set of 
system variables required to completely describe 
the state of a system
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State Variables are Not Unique

 The state vector, i.e. the choice of state variables, for a 
system is not unique
 In this example, we have chosen displacement and velocity 

as the state variables, i.e.

𝐱𝐱 = 𝑥𝑥
𝑣𝑣

 Could have chosen other quantities – later, we will
 State variables need not even have direct physical 

significance

 Different state-space representations for the same 
system are related by similarity transforms
 Beyond the scope of this class
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The Feed-Through Matrix

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃 (10)

 𝐃𝐃 is the feed-through or feed-forward matrix
 Very often zero for physical systems, as in our example

 Non-zero 𝐃𝐃 implies that the input affects the output 
instantaneously 
 There exists a direct feed-through path from the input 

to the output
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State-Space Vector and Matrix Dimensions

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃 (10)

 Assume the state space model of (10) represents an 
𝑛𝑛𝑡𝑡𝑡-order, 𝑚𝑚-input, 𝑝𝑝-output MIMO system

 The state vector is an 𝑛𝑛 × 1 column vector

 The system has 𝑚𝑚 inputs, so the input vector is an 
𝑚𝑚 × 1 column vector

 There are 𝑝𝑝 outputs, so the output vector is a 𝑝𝑝 × 1
column vector
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State-Space Vector and Matrix Dimensions

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃 (10)

 If 𝐱𝐱 is 𝑛𝑛 × 1, then its derivative, 𝐱̇𝐱, is also 𝑛𝑛 × 1
 The product 𝐀𝐀𝐀𝐀 must have the same dimensions as 
𝐱̇𝐱, 𝑛𝑛 × 1
 The system matrix, 𝐀𝐀, is a square 𝑛𝑛 × 𝑛𝑛 matrix

 The product 𝐁𝐁𝐁𝐁 must also be 𝑛𝑛 × 1
 The vector of inputs, 𝐮𝐮, is 𝑚𝑚 × 1, so 𝐁𝐁 is 𝑛𝑛 × 𝑚𝑚
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State-Space Vector and Matrix Dimensions

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃 (10)

 The vector of 𝑝𝑝 outputs, 𝐲𝐲, is 𝑝𝑝 × 1
 The product 𝐂𝐂𝐂𝐂 must also have dimension 𝑝𝑝 × 1

 𝐱𝐱 is 𝑛𝑛 × 1, so 𝐂𝐂 must be 𝑝𝑝 × 𝑛𝑛

 The product 𝐃𝐃𝐃𝐃 must also have the same 
dimension as 𝐲𝐲, 𝑝𝑝 × 1
 The vector of inputs, 𝐮𝐮, is 𝑚𝑚 × 1, so 𝐃𝐃 is 𝑝𝑝 × 𝑚𝑚
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State-Space Vector and Matrix Dimensions

 For an 𝑚𝑚-input, 𝑝𝑝-output, MIMO system:

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃

Term Dimension

𝐮𝐮 𝑚𝑚 × 1

𝐲𝐲 𝑝𝑝 × 1

𝐱𝐱 𝑛𝑛 × 1

𝐱̇𝐱 𝑛𝑛 × 1

Term Dimension

𝐀𝐀 𝑛𝑛 × 𝑛𝑛

𝐁𝐁 𝑛𝑛 × 𝑚𝑚

𝐂𝐂 𝑝𝑝 × 𝑛𝑛

𝑫𝑫 𝑝𝑝 × 𝑚𝑚
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State-Space Vector and Matrix Dimensions

 For SISO system, u and y, as well as 𝐷𝐷, are scalars:

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝑢𝑢
𝑦𝑦 = 𝐂𝐂𝐂𝐂 + 𝐷𝐷𝐷𝐷

Term Dimension

𝑢𝑢 1 × 1

𝑦𝑦 1 × 1

𝐱𝐱 𝑛𝑛 × 1

𝐱̇𝐱 𝑛𝑛 × 1

Term Dimension

𝐀𝐀 𝑛𝑛 × 𝑛𝑛

𝐁𝐁 𝑛𝑛 × 1

𝐂𝐂 1 × 𝑛𝑛

𝐷𝐷 1 × 1
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State-Space Model Explained

 Remember, our reason for modeling a system is to 
enable the analysis of its dynamic behavior 

 Basic idea of the state space model:
 If the current state of a system is known, and the 

current and future values of the inputs are known, then 
the trajectory of the system (i.e. the time-evolution of 
its state variables) can be determined

 Don’t need explicit knowledge of the history of the 
system or its inputs – no past information
 All history is accounted for in the current value of the state
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State-Space Model – Physical Significance

 Consider the physical meaning of the state-space 
system model

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃

 The time derivative of a system’s state variables 
can be expressed as a linear combination of the 
current state variables and the current inputs

 The outputs of a system can be expressed as a 
linear combination of the current state and the 
current inputs
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State-Space Model – Utility

 Again, our goal is to analyze a system’s time-
domain behavior – the time-evolution of its state 
variables

 Knowledge of the 
current state 
variables, as well as 
the current rate of 
change of those state 
variables, allows us to 
do this
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Where We’re Going

 In the previous example, we derived the state-space 
model for a mechanical system by applying 
Newton’s 2nd law
 For an electrical system we could have applied 

Kirchhoff’s and Ohm’s laws
 Can always derive a mathematical model by applying 

domain-specific laws to the physical model

 Our approach will be to derive state equations from 
bond-graph system models
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State Equations from Bond-Graph Models

 Bond graphs are energy-based models
 Our choice of state variables will be those that describe the 

storage of energy within a system at a given instant in time

 State variables will be energy variables of the 
independent energy-storage elements in a system
 Displacements of capacitors
 Momenta of inertias

 Only independent 𝐼𝐼’s and 𝐶𝐶’s 
 State variables represent a minimum set of system variables 

needed to completely describe the state
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State Equation Derivation24
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Deriving State Equations from Bond Graphs

 Start with the same mechanical system model:

 Two independent energy-storage elements
 State variables will be the energy variables associated 

with these two elements:

 The computational bond graph:

𝐱𝐱 =
𝑝𝑝2
𝑞𝑞4
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State Equation Derivation – State Variables

 State equation will be of the form:

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝑢𝑢

𝑝̇𝑝2
𝑞̇𝑞4

= 𝐀𝐀
𝑝𝑝2
𝑞𝑞4 + 𝐁𝐁𝑒𝑒1 𝑡𝑡

 In general, state variables will be momenta and 
displacements
 Their derivatives will be efforts and flows, respectively
 For this example:

𝑝̇𝑝2
𝑞̇𝑞4

=
𝑒𝑒2
𝑓𝑓4
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State Equation Derivation – Preparation

 Annotate the computational bond graph with state 
variable derivatives
 Efforts on the independent Inertias and the flows on 

the independent Capacitors

 Apply constitutive laws to 
annotate the other power 
variables on the 𝐼𝐼’s and 𝐶𝐶’s

 Annotate the known source 
power variables and 
indicate as functions of time
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State Equation Derivation – Procedure

 Objective: derive a set of 𝑛𝑛 equations, each expressing a 
state variable derivative as a linear combination of state 
variables and inputs
 Determine the 𝐀𝐀 and 𝐁𝐁 matrices

 First, choose a state variable and write its derivative as an 
effort or flow:

𝑝̇𝑝2 = 𝑒𝑒2 (1)

 Next, use the causality assigned to the bond graph to work 
from (1) to a state equation
 Express 𝑝̇𝑝2 as a linear combination of states and inputs
 Will ultimately relate an effort or flow to a state variable by 

applying a constitutive relationship  for an energy-storage 
element



K. Webb ESE 330

29

State Equation Derivation

 𝑒𝑒2 is an effort on a 1-jct
 Caused by 𝑒𝑒1, 𝑒𝑒3, and 𝑒𝑒4, and 𝑒𝑒1 is 

known, so
𝑝̇𝑝2 = 𝑒𝑒2 = 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒3 − 𝑒𝑒4 (2)

 Relate 𝑒𝑒3 to 𝑓𝑓3 using the const. law for 
the resistor

𝑒𝑒3 = 𝑅𝑅3𝑓𝑓3 (3)

 𝑓𝑓3 is the flow on a 1-jct, set by 𝑓𝑓2, related to s.v. 𝑝𝑝2 by 
the const. law for the inertia

𝑓𝑓3 = 𝑓𝑓2 = 1
𝐼𝐼2
𝑝𝑝2 (4)



K. Webb ESE 330

30

State Equation Derivation – Procedure

 Still need to eliminate 𝑒𝑒4
 𝑒𝑒4 related to state variable 𝑞𝑞4 through 

constitutive law for the capacitor

𝑒𝑒4 = 1
𝐶𝐶4
𝑞𝑞4 (7)

 Substituting (4) into (3) 

𝑒𝑒3 = 𝑅𝑅3
𝐼𝐼2
𝑝𝑝2 (5)

 And substituting (5) back into (2)

𝑝̇𝑝2 = 𝑒𝑒1 𝑡𝑡 − 𝑅𝑅3
𝐼𝐼2
𝑝𝑝2 − 𝑒𝑒4 (6)
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State Equation Derivation

 Substituting (7) into (6) yields the first 
of two state equations

𝑝̇𝑝2 = −𝑅𝑅3
𝐼𝐼2
𝑝𝑝2 −

1
𝐶𝐶4
𝑞𝑞4 + 𝑒𝑒1 𝑡𝑡 (8)

 Next, follow a similar procedure for 𝑞𝑞4
𝑞̇𝑞4 = 𝑓𝑓4 (9)

 𝑓𝑓4 is the flow on a 1-jct, set by 𝑓𝑓2, related to state 
variable 𝑝𝑝2 by the const. law for the inertia

𝑓𝑓4 = 𝑓𝑓2 = 1
𝐼𝐼2
𝑝𝑝2 (10)
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State Equation Derivation

 Substituting (10) into (9) yields the second of two 
state equations

𝑞̇𝑞4 = 1
𝐼𝐼2
𝑝𝑝2 (11)

 Combine (8) and (11) into the state-variable model 
for our system in matrix form

𝑝̇𝑝2
𝑞̇𝑞4

=
−𝑅𝑅3

𝐼𝐼2
− 1

𝐶𝐶4
1
𝐼𝐼2

0
𝑝𝑝2
𝑞𝑞4 + 1

0 𝑒𝑒1 𝑡𝑡 (12)
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State Equation Derivation

 Can now replace the computational bond graph 
parameters in (12) with physical system parameters

𝑝̇𝑝
𝑥̇𝑥 =

− 𝑏𝑏
𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0
𝑝𝑝
𝑥𝑥 + 1

0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 (13)
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State Equation Derivation – Output Equation

 Can also define an output equation as 
part of our state-space model

 Suppose we want to consider the 
velocity of the mass as our output
 Constitutive relation relates an inertia’s flow to its momentum: 

𝑓𝑓2 = 𝑣𝑣 = 1
𝐼𝐼2
𝑝𝑝2 = 1

𝑚𝑚
𝑝𝑝 (14)

 The output equation would be:

𝑦𝑦 = 1/𝑚𝑚 0 𝑝𝑝
𝑥𝑥 (15)

 Equations (13) and (15) comprise the complete state-space 
system model
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State Equation Derivation – Output Equation

 Perhaps, instead, we want to 
consider the displacement of the 
mass as our output
 Same as spring displacement – a 

state variable
 State-space model, including output equation, becomes: 

𝑝̇𝑝
𝑥̇𝑥 =

−
𝑏𝑏
𝑚𝑚

−𝑘𝑘

1
𝑚𝑚

0

𝑝𝑝
𝑥𝑥 + 1

0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡

(16)

𝑦𝑦 = 0 1
𝑝𝑝
𝑥𝑥
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State Equation Derivation – Causality

 In this example, assignment of causality yielded the 
simplest result:
 All energy-storage elements ended up in integral causality 

– all were independent
 No resistors had their causality arbitrarily assigned

 Lack of derivative causality and/or algebraic loops 
(resistor fields) results in straightforward state equation 
derivation
 Unfortunately, the inverse is also true

 Next, we’ll look at two more examples without 
derivative causality or algebraic loops
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State Equation Derivation – Example 1

 Consider the mechanical example 
from Section 3

 Four independent energy-storage 
elements
 Fourth-order system
 Four state variables:

𝐱𝐱 =

𝑝𝑝3
𝑞𝑞5
𝑞𝑞8
𝑝𝑝10
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State Equation Derivation – Example 1

 Annotate the bond graph:
 State variable derivatives
 Efforts on independent inertias 
 Flows on independent capacitors

 Use constitutive laws and state 
variables to express:
 Flows on independent inertias
 Efforts on independent capacitors

 Known source quantities
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State Equation Derivation – Example 1

 Choose a state variable derivative and 
express it as an effort or a flow

𝑝̇𝑝3 = 𝑒𝑒3 = 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒2 𝑡𝑡 − 𝑒𝑒4 (1)

 Known source efforts can remain 
 Need to eliminate 𝑒𝑒4
 Effort on a 0-jct, set by 𝑒𝑒5
𝑒𝑒4 = 𝑒𝑒5 = 1

𝐶𝐶5
𝑞𝑞5 (2)

 Substituting (2) into (1) yields the first 
of four state equations

𝑝̇𝑝3 = − 1
𝐶𝐶5
𝑞𝑞5 + 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒2 𝑡𝑡 (3)
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 Move on to the next state variable

𝑞̇𝑞5 = 𝑓𝑓5 = 𝑓𝑓4 − 𝑓𝑓6 (4)

 𝑓𝑓4 and 𝑓𝑓6 are both flows on 1-jct’s 
set by 𝑓𝑓3 and 𝑓𝑓10, respectively

𝑓𝑓4 = 𝑓𝑓3 = 1
𝐼𝐼3
𝑝𝑝3 (5)

𝑓𝑓6 = 𝑓𝑓10 = 1
𝐼𝐼10
𝑝𝑝10 (6)

 Substituting (6) and (5) into (4) 
yields the second state equation

𝑞̇𝑞5 = 1
𝐼𝐼3
𝑝𝑝3 −

1
𝐼𝐼10
𝑝𝑝10 (7)
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 Move on to 𝑞̇𝑞8
𝑞̇𝑞8 = 𝑓𝑓8 = 𝑓𝑓10 = 1

𝐼𝐼10
𝑝𝑝10 (8)

which gives the third state equation

𝑞̇𝑞8 = 1
𝐼𝐼10
𝑝𝑝10 (9)

 Finally, derive the equation for 𝑝̇𝑝10
𝑝̇𝑝10 = 𝑒𝑒10 = 𝑒𝑒6 − 𝑒𝑒7 𝑡𝑡 − 𝑒𝑒8 − 𝑒𝑒9 (10)

 𝑒𝑒6 is the effort on a 0-jct, set by 𝑒𝑒5
𝑒𝑒6 = 𝑒𝑒5 = 1

𝐶𝐶5
𝑞𝑞5 (11)
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 𝑒𝑒8 is related to state variable 𝑞𝑞8

𝑒𝑒8 = 1
𝐶𝐶8
𝑞𝑞8 (12)

 𝑒𝑒9 can be related to 𝑓𝑓9 using the constitutive 
law for resistor 𝑅𝑅9

𝑒𝑒9 = 𝑅𝑅9𝑓𝑓9 (13)

 And, 𝑓𝑓9 is the flow on a 1-jct, set by 𝑓𝑓10

𝑒𝑒9 = 𝑅𝑅9𝑓𝑓10 = 𝑅𝑅9
1
𝐼𝐼10
𝑝𝑝10 (14)

 Substituting (11), (12), and (14) into (10) yields the 
final state equation 

𝑝̇𝑝10 = 1
𝐶𝐶5
𝑞𝑞5 −

1
𝐶𝐶8
𝑞𝑞8 −

𝑅𝑅9
𝐼𝐼10
𝑝𝑝10 − 𝑒𝑒7 𝑡𝑡 (15)
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 Combine the state equations into matrix form

𝑝̇𝑝3
𝑞̇𝑞5
𝑞̇𝑞8
𝑝̇𝑝10

=

0 − 1
𝐶𝐶5

0 0
1
𝐼𝐼3

0 0 − 1
𝐼𝐼10

0 0 0 1
𝐼𝐼10

0 1
𝐶𝐶5

− 1
𝐶𝐶8

− 𝑅𝑅9
𝐼𝐼10

𝑝𝑝3
𝑞𝑞5
𝑞𝑞8
𝑝𝑝10

+

1 −1 0
0 0 0
0 0 0
0 0 −1

𝑒𝑒1 𝑡𝑡
𝑒𝑒2 𝑡𝑡
𝑒𝑒7 𝑡𝑡

(16)
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 Let the position of each 
mass to be our outputs
 Two outputs

 Displacement of 𝑚𝑚2 (𝐼𝐼10) 
is the displacement of 
the upper spring

𝑥𝑥2 = 𝑞𝑞8 (17)

 Displacement of 𝑚𝑚1 is 
the sum of the spring 
displacements 

𝑥𝑥1 = 𝑞𝑞5 + 𝑞𝑞8 (18)
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 Combine (17) and (18) into our output equation 
 Multiple outputs, so 𝐂𝐂 will be a matrix 

 Complete state-space model, including output 
equation:

𝐱̇𝐱 =

𝑝̇𝑝3
𝑞̇𝑞5
𝑞̇𝑞8
𝑝̇𝑝10

=

0 − 1
𝐶𝐶5

0 0
1
𝐼𝐼3

0 0 − 1
𝐼𝐼10

0 0 0 1
𝐼𝐼10

0 1
𝐶𝐶5

− 1
𝐶𝐶8

− 𝑅𝑅9
𝐼𝐼10

𝑝𝑝3
𝑞𝑞5
𝑞𝑞8
𝑝𝑝10

+

1 −1 0
0 0 0
0 0 0
0 0 −1

𝑒𝑒1 𝑡𝑡
𝑒𝑒2 𝑡𝑡
𝑒𝑒7 𝑡𝑡

(21)

𝐲𝐲 =
𝑥𝑥1
𝑥𝑥2 = 0 1 1 0

0 0 1 0

𝑝𝑝3
𝑞𝑞5
𝑞𝑞8
𝑝𝑝10
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 Can rewrite our state-space model, substituting in 
physical parameters 
 𝑞𝑞1 and 𝑞𝑞2 are the displacements of springs 𝑘𝑘1 and 𝑘𝑘2, 

respectively

𝐱̇𝐱 =

𝑝̇𝑝1
𝑞̇𝑞1
𝑞̇𝑞2
𝑝̇𝑝2

=

0 −𝑘𝑘1 0 0
1
𝑚𝑚1

0 0 − 1
𝑚𝑚2

0 0 0 1
𝑚𝑚2

0 𝑘𝑘1 −𝑘𝑘2 − 𝑏𝑏
𝑚𝑚2

𝑝𝑝1
𝑞𝑞1
𝑞𝑞2
𝑝𝑝2

+

1 −1 0
0 0 0
0 0 0
0 0 −1

𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
𝑚𝑚1𝑔𝑔
𝑚𝑚2𝑔𝑔

(21)

𝐲𝐲 =
𝑥𝑥1
𝑥𝑥2 = 0 1 1 0

0 0 1 0

𝑝𝑝1
𝑞𝑞1
𝑞𝑞2
𝑝𝑝2
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 A slightly modified version of the electrical circuit from 
Section 3:

 The computational bond graph for this circuit:
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 Three independent 
energy-storage 
elements
 Third order

 State variables:

𝐱𝐱 =
𝑝𝑝3
𝑞𝑞5
𝑞𝑞9

 Annotate the 
computational bond 
graph
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 Begin with equation for 𝑝̇𝑝3
𝑝̇𝑝3 = 𝑒𝑒3 = 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒2 − 𝑒𝑒4 (1)

𝑒𝑒2 = 𝑅𝑅2𝑓𝑓2 = 𝑅𝑅2𝑓𝑓3 = 𝑅𝑅2
1
𝐼𝐼3
𝑝𝑝3 (2)

 𝑒𝑒4 is the effort on a 0-jct, set by the effort on 𝐶𝐶5

𝑒𝑒4 = 𝑒𝑒5 = 1
𝐶𝐶5
𝑞𝑞5 (3)

 Substituting (2) and (3) into (1) gives the first of three state 
equations

𝑝̇𝑝3 = −𝑅𝑅2
𝐼𝐼3
𝑝𝑝3 −

1
𝐶𝐶5
𝑞𝑞5 + 𝑒𝑒1 𝑡𝑡 (4)
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 Next, move on to 𝑞̇𝑞5
𝑞̇𝑞5 = 𝑓𝑓5 = 𝑓𝑓4 − 𝑓𝑓6 (5)

 𝑓𝑓4 is set by 𝑓𝑓3
𝑓𝑓4 = 𝑓𝑓3 = 1

𝐼𝐼3
𝑝𝑝3 (6)

 The transformer modulus relates 𝑓𝑓6 to 𝑓𝑓7, which is the flow on 
a 1-jct, set by 𝑓𝑓8

𝑓𝑓6 = 𝑁𝑁2
𝑁𝑁1
𝑓𝑓7 = 𝑁𝑁2

𝑁𝑁1
𝑓𝑓8 = 𝑁𝑁2

𝑁𝑁1

1
𝑅𝑅8
𝑒𝑒8 (7)

 𝑒𝑒8 is algebraically related to 𝑒𝑒7 and 𝑒𝑒9

𝑒𝑒8 = 𝑒𝑒7 − 𝑒𝑒9 = 𝑒𝑒7 −
1
𝐶𝐶9
𝑞𝑞9 (8)
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 The transformer relates 𝑒𝑒7 back to 
𝑒𝑒6, which is set by 𝑒𝑒5

𝑒𝑒7 = 𝑁𝑁2
𝑁𝑁1
𝑒𝑒6 = 𝑁𝑁2

𝑁𝑁1
𝑒𝑒5 = 𝑁𝑁2

𝑁𝑁1

1
𝐶𝐶5
𝑞𝑞5 (9)

 Substituting (9) into (8) gives

𝑒𝑒8 = 𝑁𝑁2
𝑁𝑁1

1
𝐶𝐶5
𝑞𝑞5 −

1
𝐶𝐶9
𝑞𝑞9 (10)

 Equation (10) can be substituted into (7)

𝑓𝑓6 = 𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅8

𝑁𝑁2
𝑁𝑁1

1
𝐶𝐶5
𝑞𝑞5 −

1
𝐶𝐶9
𝑞𝑞9 (11)

 Using (11) and (6) in (5) gives us our second state equation

𝑞̇𝑞5 = 1
𝐼𝐼3
𝑝𝑝3 −

𝑁𝑁2
𝑁𝑁1

2 1
𝑅𝑅8𝐶𝐶5

𝑞𝑞5 + 𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅8𝐶𝐶9

𝑞𝑞9 (12)
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 Finally, derive the equation for 𝑞̇𝑞9
𝑞̇𝑞9 = 𝑓𝑓9 (13)

 𝑓𝑓9 is the flow on a 1-jct, which is 
set by 𝑓𝑓8

𝑓𝑓9 = 𝑓𝑓8 = 1
𝑅𝑅8
𝑒𝑒8 (14)

 Substituting (10) into (14) 

𝑓𝑓9 = 1
𝑅𝑅8

𝑁𝑁2
𝑁𝑁1

1
𝐶𝐶5
𝑞𝑞5 −

1
𝐶𝐶9
𝑞𝑞9 (15)

 Substituting (15) in (13) gives us our third state equation

𝑞̇𝑞9 = 𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅8𝐶𝐶5

𝑞𝑞5 −
1

𝑅𝑅8𝐶𝐶9
𝑞𝑞9 (16)
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 Combine the state equations in matrix form

𝐱̇𝐱 =
𝑝̇𝑝3
𝑞̇𝑞5
𝑞̇𝑞9

=

−𝑅𝑅2
𝐼𝐼3

− 1
𝐶𝐶5

0

1
𝐼𝐼3

− 𝑁𝑁2
𝑁𝑁1

2 1
𝑅𝑅8𝐶𝐶5

𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅8𝐶𝐶9

0 𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅8𝐶𝐶5

− 1
𝑅𝑅8𝐶𝐶9

𝑝𝑝3
𝑞𝑞5
𝑞𝑞9

+
1
0
0
𝑒𝑒1 𝑡𝑡 (17)

 Replacing computational bond graph parameters 
with physical parameters

𝐱̇𝐱 =
𝜆̇𝜆1
𝑞̇𝑞1
𝑞̇𝑞2

=

−𝑅𝑅1
𝐿𝐿1

− 1
𝐶𝐶1

0

1
𝐿𝐿1

− 𝑁𝑁2
𝑁𝑁1

2 1
𝑅𝑅3𝐶𝐶1

𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅3𝐶𝐶2

0 𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅3𝐶𝐶1

− 1
𝑅𝑅3𝐶𝐶2

𝜆𝜆1
𝑞𝑞1
𝑞𝑞2

+
1
0
0
𝑣𝑣𝑖𝑖𝑖𝑖 𝑡𝑡 (18)
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 Choosing the voltage across 𝐶𝐶2 as our output, the complete state-
space system representation is

𝐱̇𝐱 =
𝜆̇𝜆1
𝑞̇𝑞1
𝑞̇𝑞2

=

−
𝑅𝑅1
𝐿𝐿1

−
1
𝐶𝐶1

0

1
𝐿𝐿1

−
𝑁𝑁2
𝑁𝑁1

2 1
𝑅𝑅3𝐶𝐶1

𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅3𝐶𝐶2

0
𝑁𝑁2
𝑁𝑁1

1
𝑅𝑅3𝐶𝐶1

−
1

𝑅𝑅3𝐶𝐶2

𝜆𝜆1
𝑞𝑞1
𝑞𝑞2

+
1
0
0
𝑣𝑣𝑖𝑖𝑖𝑖 𝑡𝑡

(19)

𝑦𝑦 = 𝑣𝑣𝑑𝑑 = 0 0 1/𝐶𝐶2
𝜆𝜆1
𝑞𝑞1
𝑞𝑞2



K. Webb ESE 330

55

State Equation Derivation – Example 2

 Instead let the voltage across 𝑳𝑳𝟏𝟏 be the system output
 That is, the effort associated with 𝐿𝐿1
 Effort is the time derivative of momentum, so

𝑦𝑦 = 𝑣𝑣𝐿𝐿𝐿 = 𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏 = 𝜆̇𝜆1 (20)

 The output equation can be extracted from (19)

𝑦𝑦 = 𝑣𝑣𝐿𝐿𝐿 = −𝑅𝑅1
𝐿𝐿1

− 1
𝐶𝐶1

0
𝜆𝜆1
𝑞𝑞1
𝑞𝑞2

+ 𝑣𝑣𝑖𝑖𝑖𝑖 𝑡𝑡 (21)

 Note that, in this case, the feed-through term, 𝐷𝐷, is non-zero
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Algebraic Loops – Example 1

 Consider the following electrical circuit

 Causality assignment is completed by arbitrarily assigning the 
causality of resistor 𝑅𝑅2 (or 𝑅𝑅6)
 System contains an algebraic loop (resistor field)

 Presence of the algebraic loop will complicate the state 
equation derivation a bit
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 Second-order system
 State variables are:

𝐱𝐱 =
𝑝𝑝4
𝑞𝑞7

 Begin deriving equations as usual

𝑝̇𝑝4 = 𝑒𝑒4 = 𝑒𝑒3 = 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒2 = 𝑒𝑒1 𝑡𝑡 − 𝑅𝑅2𝑓𝑓2 (1)

𝑓𝑓2 = 𝑓𝑓3 = 1
𝐼𝐼4
𝑝𝑝4 + 𝑓𝑓5 = 1

𝐼𝐼4
𝑝𝑝4 + 𝑓𝑓6 (2)

𝑓𝑓6 = 1
𝑅𝑅6
𝑒𝑒6 = 1

𝑅𝑅6
𝑒𝑒5 −

1
𝐶𝐶7
𝑞𝑞7 (3)

𝑓𝑓6 = 1
𝑅𝑅6

𝑒𝑒3 −
1
𝐶𝐶7
𝑞𝑞7 (4)

 𝑒𝑒3 has reentered the formulation, and we’re back where we started in (1)
 An algebraic loop
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1. The output of the resistor whose causality was arbitrarily assigned 
– 𝑒𝑒2 in this case, though 𝑓𝑓6 would work equally well – is the 
auxiliary variable

2. Derive an expression relating the auxiliary variable to the state 
variables, inputs, and to itself 

3. Proceed with the state equation derivation as usual, but leave the 
auxiliary variable in the formulation along with state variables and 
inputs

4. Substitute the result from step 2 into the result from step 3

 One auxiliary variable for each algebraic loop present 
 Multiple loops require solution of a system of equations

 Apply this procedure first, whenever causality assignment involves 
an arbitrary assignment of resistor causality
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 Follow causality to derive an 
expression for auxiliary variable 𝑒𝑒2

𝑒𝑒2 = 𝑅𝑅2𝑓𝑓2 = 𝑅𝑅2𝑓𝑓3 = 𝑅𝑅2
1
𝐼𝐼4
𝑝𝑝4 + 𝑓𝑓5 (5)

𝑓𝑓5 = 𝑓𝑓6 = 1
𝑅𝑅6
𝑒𝑒6 = 1

𝑅𝑅6
𝑒𝑒5 −

1
𝐶𝐶7
𝑞𝑞7 (6)

𝑒𝑒5 = 𝑒𝑒3 = 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒2 (7)

 𝑒𝑒2 is the aux. variable, so it can remain in the expression
 Substituting (7) into (6) into (5) 

𝑒𝑒2 = 𝑅𝑅2
𝐼𝐼4
𝑝𝑝4 + 𝑅𝑅2

𝑅𝑅6
𝑒𝑒1 𝑡𝑡 − 𝑅𝑅2

𝑅𝑅6
𝑒𝑒2 −

𝑅𝑅2
𝑅𝑅6𝐶𝐶7

𝑞𝑞7 (8)

𝑒𝑒2
𝑅𝑅2+𝑅𝑅6
𝑅𝑅6

= 𝑅𝑅2
𝐼𝐼4
𝑝𝑝4 −

𝑅𝑅2
𝑅𝑅6𝐶𝐶7

𝑞𝑞7 + 𝑅𝑅2
𝑅𝑅6
𝑒𝑒1 𝑡𝑡 (9)
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 Solve (9) for 𝑒𝑒2

𝑒𝑒2 = 𝑅𝑅2𝑅𝑅6
𝑅𝑅2+𝑅𝑅6

1
𝐼𝐼4
𝑝𝑝4 −

𝑅𝑅2
𝑅𝑅2+𝑅𝑅6 𝐶𝐶7

𝑞𝑞7 + 𝑅𝑅2
𝑅𝑅2+𝑅𝑅6

𝑒𝑒1 𝑡𝑡 (10)

 Going back to (1), we had

𝑝̇𝑝4 = 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒2 (1)

 Substituting in (10) yields the first state equation

𝑝̇𝑝4 = − 𝑅𝑅2𝑅𝑅6
𝑅𝑅2+𝑅𝑅6

1
𝐼𝐼4
𝑝𝑝4 + 𝑅𝑅2

𝑅𝑅2+𝑅𝑅6 𝐶𝐶7
𝑞𝑞7 + 𝑅𝑅6

𝑅𝑅2+𝑅𝑅6
𝑒𝑒1 𝑡𝑡 (11)

 Now, whenever 𝑒𝑒2 appears in 
the formulation, substitute in the 
expression in (10)
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 Moving on to 𝑞̇𝑞7
𝑞̇𝑞7 = 𝑓𝑓7 = 𝑓𝑓6 (12)

 We already have an expression for 𝑓𝑓6 in (6) and (7)

𝑞̇𝑞7 = 1
𝑅𝑅6
𝑒𝑒1 𝑡𝑡 − 1

𝑅𝑅6
𝑒𝑒2 −

1
𝑅𝑅6𝐶𝐶7

𝑞𝑞7 (13)

 Substituting in (10) to eliminate 𝑒𝑒2

𝑞̇𝑞7 =
1
𝑅𝑅6

𝑒𝑒1 𝑡𝑡 −
𝑅𝑅2

𝑅𝑅2 + 𝑅𝑅6
1
𝐼𝐼4
𝑝𝑝4 +

𝑅𝑅2
𝑅𝑅2 + 𝑅𝑅6 𝑅𝑅6𝐶𝐶7

𝑞𝑞7 −
𝑅𝑅2

𝑅𝑅2 + 𝑅𝑅6 𝑅𝑅6
𝑒𝑒1 𝑡𝑡 −

1
𝑅𝑅6𝐶𝐶7

𝑞𝑞7

 Rearranging gives the second state equation

𝑞̇𝑞7 = − 𝑅𝑅2
𝑅𝑅2+𝑅𝑅6

1
𝐼𝐼4
𝑝𝑝4 −

1
𝑅𝑅2+𝑅𝑅6 𝐶𝐶7

𝑞𝑞7 + 1
𝑅𝑅2+𝑅𝑅6

𝑒𝑒1 𝑡𝑡 (14)
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 Assembling (11) and (14) in matrix form gives our state 
variable system model

𝑝̇𝑝4
𝑞̇𝑞7

=
− 𝑅𝑅2𝑅𝑅6

𝑅𝑅2+𝑅𝑅6

1
𝐼𝐼4

𝑅𝑅2
𝑅𝑅2+𝑅𝑅6 𝐶𝐶7

− 𝑅𝑅2
𝑅𝑅2+𝑅𝑅6

1
𝐼𝐼4

− 1
𝑅𝑅2+𝑅𝑅6 𝐶𝐶7

𝑝𝑝4
𝑞𝑞7 +

𝑅𝑅6
𝑅𝑅2+𝑅𝑅6
1

𝑅𝑅2+𝑅𝑅6

𝑒𝑒1 𝑡𝑡 (15)
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 Substitute in physical parameters and define an output 
equation for the voltage across the capacitor, 𝑣𝑣𝑏𝑏

𝜆̇𝜆
𝑞̇𝑞 =

− 𝑅𝑅1𝑅𝑅2
𝑅𝑅1+𝑅𝑅2

1
𝐿𝐿

𝑅𝑅1
𝑅𝑅1+𝑅𝑅2 𝐶𝐶

− 𝑅𝑅1
𝑅𝑅1+𝑅𝑅2

1
𝐿𝐿

− 1
𝑅𝑅1+𝑅𝑅2 𝐶𝐶

𝜆𝜆
𝑞𝑞 +

𝑅𝑅2
𝑅𝑅1+𝑅𝑅2
1

𝑅𝑅1+𝑅𝑅2

𝑣𝑣𝑖𝑖𝑖𝑖 𝑡𝑡

(16)

𝑦𝑦 = 0 1/𝐶𝐶 𝜆𝜆
𝑞𝑞
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 Next, consider a mechanical system

 Causality assignment is completed by arbitrarily assigning the 
causality of resistor 𝑅𝑅2 (or 𝑅𝑅4)

 A very similar bond graph to the electrical circuit in the 
previous example
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 A second-order system with 
state variables:

𝐱𝐱 =
𝑞𝑞1
𝑝𝑝6

 An algebraic loop is present, so we’ll immediately go to the 
procedure outlined in the previous example

 Auxiliary variable is 𝑓𝑓2
 Express 𝑓𝑓2 in terms of state variables, inputs, and itself

𝑓𝑓2 = 1
𝑅𝑅2
𝑒𝑒2 = 1

𝑅𝑅2
𝑒𝑒3 − 𝑒𝑒1 = 1

𝑅𝑅2
𝑒𝑒4 −

1
𝐶𝐶1
𝑞𝑞1 (1)

𝑒𝑒4 = 𝑅𝑅4𝑓𝑓4 = 𝑅𝑅4 𝑓𝑓5 − 𝑓𝑓3 = 𝑅𝑅4
1
𝐼𝐼6
𝑝𝑝6 − 𝑓𝑓2 (2)

 𝑓𝑓2 is the auxiliary variable, so it can remain in the expression
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 Substitute (2) into (1)

𝑓𝑓2 = 𝑅𝑅4
𝑅𝑅2

1
𝐼𝐼6
𝑝𝑝6 −

𝑅𝑅4
𝑅𝑅2
𝑓𝑓2 −

1
𝑅𝑅2𝐶𝐶1

𝑞𝑞1 (3)

 Then solve for 𝑓𝑓2

𝑓𝑓2
𝑅𝑅2+𝑅𝑅4
𝑅𝑅2

= − 1
𝑅𝑅2𝐶𝐶1

𝑞𝑞1 + 𝑅𝑅4
𝑅𝑅2

1
𝐼𝐼6
𝑝𝑝6 (4)

𝑓𝑓2 = − 1
𝑅𝑅2+𝑅𝑅4 𝐶𝐶1

𝑞𝑞1 + 𝑅𝑅4
𝑅𝑅2+𝑅𝑅4

1
𝐼𝐼6
𝑝𝑝6 (5)

 Now, Proceed with the state equation derivation
 Whenever the auxiliary variable, 𝑓𝑓2, appears in the formulation, it 

will be replaced with (5)
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 Start with 𝑞̇𝑞1
𝑞̇𝑞1 = 𝑓𝑓1 = 𝑓𝑓𝑓 (6)

 Substituting (5) into (6) gives the 
first state equation

𝑞̇𝑞1 = − 1
𝑅𝑅2+𝑅𝑅4 𝐶𝐶1

𝑞𝑞1 + 𝑅𝑅4
𝑅𝑅2+𝑅𝑅4

1
𝐼𝐼6
𝑝𝑝6 (7)

 Moving on to 𝑝̇𝑝6
𝑝̇𝑝6 = 𝑒𝑒6 = 𝑒𝑒7 𝑡𝑡 − 𝑒𝑒5 = 𝑒𝑒7 𝑡𝑡 − 𝑒𝑒4 (8)

𝑒𝑒4 = 𝑅𝑅4𝑓𝑓4 = 𝑅𝑅4 𝑓𝑓5 − 𝑓𝑓3 = 𝑅𝑅4
1
𝐼𝐼6
𝑝𝑝6 − 𝑓𝑓2 (9)
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 Substitute (9) into (8)

𝑝̇𝑝6 = 𝑒𝑒7 𝑡𝑡 − 𝑅𝑅4
𝐼𝐼6
𝑝𝑝6 + 𝑅𝑅4𝑓𝑓2 (10)

 Substituting (5) in for 𝑓𝑓2 gives the 
second state equation 

𝑝̇𝑝6 = 𝑒𝑒7 𝑡𝑡 − 𝑅𝑅4
𝐼𝐼6
𝑝𝑝6 + 𝑅𝑅4 − 1

𝑅𝑅2+𝑅𝑅4 𝐶𝐶1
𝑞𝑞1 + 𝑅𝑅4

𝑅𝑅2+𝑅𝑅4

1
𝐼𝐼6
𝑝𝑝6 (11)

𝑝̇𝑝6 = − 𝑅𝑅4
𝑅𝑅2+𝑅𝑅4 𝐶𝐶1

𝑞𝑞1 −
𝑅𝑅2𝑅𝑅4
𝑅𝑅2+𝑅𝑅4

1
𝐼𝐼6
𝑝𝑝6 + 𝑒𝑒7 𝑡𝑡 (12)

 In matrix form:

𝑞̇𝑞1
𝑝̇𝑝6

=
− 1

𝑅𝑅2+𝑅𝑅4 𝐶𝐶1

𝑅𝑅4
𝑅𝑅2+𝑅𝑅4

1
𝐼𝐼6

− 𝑅𝑅4
𝑅𝑅2+𝑅𝑅4 𝐶𝐶1

− 𝑅𝑅2𝑅𝑅4
𝑅𝑅2+𝑅𝑅4

1
𝐼𝐼6

𝑞𝑞1
𝑝𝑝6 + 0

1 𝑒𝑒7 𝑡𝑡 (13)
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 Note that the origin of the algebraic loop in this example was a modeling 
assumption
 The connection point between the spring and dampers was considered massless
 Instead we could account for the mass of this junction

 Now, there are no arbitrary causality assignments and no algebraic loops

 State equation derivation will be greatly simplified
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 System is now third-order, due to 
the additional independent 
energy-storage element

 State equation, after replacing physical parameters: 

𝑥̇𝑥2
𝑝̇𝑝1
𝑝̇𝑝2

=

0 0 1
𝑚𝑚2

0 − 𝑏𝑏2
𝑚𝑚1

𝑏𝑏2
𝑚𝑚1

−𝑘𝑘 𝑏𝑏2
𝑚𝑚1

− 𝑏𝑏1+𝑏𝑏2
𝑚𝑚2

𝑥𝑥2
𝑝𝑝1
𝑝𝑝2

+
0
1
0
𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 (14)

 Looks very different from the original second order model, but 
if 𝑚𝑚2 ≪ 𝑚𝑚1, their behaviors are nearly identical
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 Consider the mechanical system 
from Section 3

 The computational bond graph:

 Two independent energy-storage 
elements
 Second-order
 State variables are:

𝐱𝐱 =
𝑝𝑝2
𝑞𝑞7
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 𝐼𝐼6 is in derivative Causality
 Not independent
 Does not contribute a state
 Its energy variable 𝑝𝑝6 (would 

be a 𝑞𝑞 for an 𝐶𝐶-element) is 
algebraically related to the 
state variables

 Annotate the bond graph
 Include the energy variable 

annotation for the 
dependent inertia
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 𝑝𝑝6 is not a state variable
 State equation derivation requires first determining the 

algebraic relationship between 𝑝𝑝6 and the state 
variables, 𝑝𝑝2 and 𝑞𝑞7

 When 𝑝𝑝6 or 𝑝̇𝑝6 enters the formulation, substitute in this 
relationship or its derivative
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1. For the dependent energy-storage element, apply the 
constitutive law ‘backwards’ - i.e. express the energy 
variable as a function of a power variable

a. Inertia: express momentum as a function of flow
b. Capacitor: express displacement as a function of effort

2. Follow causality to relate that power variable to the 
state variables and inputs

3. Substitute the expression from step 2 into that from 
step 1

4. When the energy variable (or its derivative) enters the 
formulation, substitute in the expression from step 3
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 Apply the constitutive law for 
𝐼𝐼6 ‘backwards’
 Express 𝑝𝑝6 as a function of 𝑓𝑓6

𝑝𝑝6 = 𝐼𝐼6𝑓𝑓6 (1)

 Follow causality to express 𝑓𝑓6 in terms of state variables and inputs

𝑓𝑓6 = 𝑓𝑓4 = 𝑏𝑏
𝑎𝑎
𝑓𝑓3 = 𝑏𝑏

𝑎𝑎
1
𝐼𝐼2
𝑝𝑝2 (2)

 Substituting (2) into (1)

𝑝𝑝6 = 𝑏𝑏
𝑎𝑎
𝐼𝐼6
𝐼𝐼2
𝑝𝑝2 (3)

 Now proceed with derivation, using (3) when needed
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 Begin state equation derivation 
with 𝑝̇𝑝2

𝑝̇𝑝2 = 𝑒𝑒2 = 𝑒𝑒1 𝑡𝑡 − 𝑒𝑒3 (4)

 𝑇𝑇𝑇𝑇 relates 𝑒𝑒3 to 𝑒𝑒4

𝑝̇𝑝2 = 𝑒𝑒1 𝑡𝑡 − 𝑏𝑏
𝑎𝑎
𝑒𝑒4 = 𝑒𝑒1 𝑡𝑡 − 𝑏𝑏

𝑎𝑎
𝑒𝑒5 + 𝑝̇𝑝6 + 1

𝐶𝐶7
𝑞𝑞7 (5)

𝑒𝑒5 = 𝑅𝑅5𝑓𝑓5 = 𝑅𝑅5𝑓𝑓4 = 𝑅𝑅5
𝑏𝑏
𝑎𝑎
𝑓𝑓3 = 𝑅𝑅5

𝑏𝑏
𝑎𝑎
1
𝐼𝐼2
𝑝𝑝2 (6)

 Substituting (6) into (5)

𝑝̇𝑝2 = 𝑒𝑒1 𝑡𝑡 − 𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎
𝑅𝑅5
𝐼𝐼2
𝑝𝑝2 + 𝑝̇𝑝6 + 1

𝐶𝐶7
𝑞𝑞7

𝑝̇𝑝2 = 𝑒𝑒1 𝑡𝑡 − 𝑏𝑏
𝑎𝑎

2 𝑅𝑅5
𝐼𝐼2
𝑝𝑝2 −

𝑏𝑏
𝑎𝑎
𝑝̇𝑝6 −

𝑏𝑏
𝑎𝑎
1
𝐶𝐶7
𝑞𝑞7 (7)
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 A 𝑝̇𝑝6 term has entered the 
formulation
 Differentiate (3)

𝑝̇𝑝6 = 𝑏𝑏
𝑎𝑎
𝐼𝐼6
𝐼𝐼2
𝑝̇𝑝2 (8)

 Substitute (8) into (7)

𝑝̇𝑝2 = 𝑒𝑒1 𝑡𝑡 − 𝑏𝑏
𝑎𝑎

2 𝑅𝑅5
𝐼𝐼2
𝑝𝑝2 −

𝑏𝑏
𝑎𝑎

2 𝐼𝐼6
𝐼𝐼2
𝑝̇𝑝2 −

𝑏𝑏
𝑎𝑎
1
𝐶𝐶7
𝑞𝑞7 (9)

 Solve (9) for 𝑝̇𝑝2

𝑝̇𝑝2
𝐼𝐼2+ 𝑏𝑏/𝑎𝑎 2𝐼𝐼6

𝐼𝐼2
= 𝑒𝑒1 𝑡𝑡 − 𝑏𝑏

𝑎𝑎

2 𝑅𝑅5
𝐼𝐼2
𝑝𝑝2 −

𝑏𝑏
𝑎𝑎
1
𝐶𝐶7
𝑞𝑞7 (10)
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 Rearranging (10) gives the first of two state equations:

𝑝̇𝑝2 = −
𝑏𝑏
𝑎𝑎

2
𝑅𝑅5

𝐼𝐼2+
𝑏𝑏
𝑎𝑎

2
𝐼𝐼6
𝑝𝑝2 −

𝑏𝑏
𝑎𝑎 𝐼𝐼2

𝐼𝐼2+
𝑏𝑏
𝑎𝑎

2
𝐼𝐼6 𝐶𝐶7

𝑞𝑞7 + 𝐼𝐼2

𝐼𝐼2+
𝑏𝑏
𝑎𝑎

2
𝐼𝐼6
𝑒𝑒1 𝑡𝑡 (11)

 Next, move on to 𝑞̇𝑞7

𝑞̇𝑞7 = 𝑓𝑓7 = 𝑓𝑓4 = 𝑏𝑏
𝑎𝑎
𝑓𝑓3 (12)

 The second state equation:

𝑞̇𝑞7 = 𝑏𝑏
𝑎𝑎
1
𝐼𝐼2
𝑝𝑝2 (9)
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 The state-space system model:

𝑝̇𝑝2
𝑞̇𝑞7

=
−

𝑏𝑏
𝑎𝑎

2
𝑅𝑅5

𝐼𝐼2 + 𝑏𝑏
𝑎𝑎

2
𝐼𝐼6

−

𝑏𝑏
𝑎𝑎 𝐼𝐼2

𝐼𝐼2 + 𝑏𝑏
𝑎𝑎

2
𝐼𝐼6 𝐶𝐶7

𝑏𝑏
𝑎𝑎

1
𝐼𝐼2

0

𝑝𝑝2
𝑞𝑞7 +

𝐼𝐼2

𝐼𝐼2 + 𝑏𝑏
𝑎𝑎

2
𝐼𝐼6

0

𝑒𝑒1 𝑡𝑡

 With physical parameters:

𝑝̇𝑝1
𝑥̇𝑥2

=
−

𝑏𝑏
𝑎𝑎

2
𝑏𝑏

𝑚𝑚1 + 𝑏𝑏
𝑎𝑎

2
𝑚𝑚2

−

𝑏𝑏
𝑎𝑎 𝑚𝑚1𝑘𝑘

𝑚𝑚1 + 𝑏𝑏
𝑎𝑎

2
𝑚𝑚2

𝑏𝑏
𝑎𝑎

1
𝑚𝑚1

0

𝑝𝑝1
𝑥𝑥2 +

𝑚𝑚1

𝑚𝑚1 + 𝑏𝑏
𝑎𝑎

2
𝑚𝑚2

0

𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
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 Derivative causality in this case resulted from a 
modeling decision
 The lever was assumed to be rigid
 Adding some compliance to the lever arm eliminates 

derivative causality (see Section 3 notes)
 Increases system model to fourth-order
 Equation derivation simplified at the cost of model complexity

 In general, derive an expression for the energy variable 
of each energy-storage element in derivative causality
 Multiple elements in derivative-causality will require 

solution of a system of equations
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