SECTION 5: LAPLACE TRANSFORMS

ESE 330 - Modeling \& Analysis of Dynamic Systems

Introduction - Transforms

This section of notes contains an introduction to Laplace transforms. This should mostly be a review of material covered in your differential equations course.

Transforms

\square What is a transform?

- A mapping of a mathematical function from one domain to another
\square A change in perspective not a change of the function
\square Why use transforms?
\square Some mathematical problems are difficult to solve in their natural domain
- Transform to and solve in a new domain, where the problem is simplified
- Transform back to the original domain
- Trade off the extra effort of transforming/inversetransforming for simplification of the solution procedure

Transform Example - Slide Rules

\square Slide rules make use of a logarithmic transform

\square Multiplication/division of large numbers is difficult

- Transform the numbers to the logarithmic domain
- Add/subtract (easy) in the log domain to multiply/divide (difficult) in the linear domain
- Apply the inverse transform to get back to the original domain
\square Extra effort is required, but the problem is simplified

Laplace Transforms

Laplace Transforms

\square An integral transform mapping functions from the time domain to the Laplace domain or s-domain

$$
g(t) \stackrel{\mathcal{L}}{\leftrightarrow} G(s)
$$

- Time-domain functions are functions of time, t

$$
g(t)
$$

\square Laplace-domain functions are functions of \boldsymbol{s}

$$
G(s)
$$

$\square S$ is a complex variable

$$
s=\sigma+j \omega
$$

Laplace Transforms - Motivation

\square We'll use Laplace transforms to solve differential equations

- Differential equations in the time domain
- difficult to solve
- Apply the Laplace transform
- Transform to the s-domain
- Differential equations become algebraic equations
- easy to solve
- Transform the s-domain solution back to the time domain
\square Transforming back and forth requires extra effort, but the solution is greatly simplified

Laplace Transform

\square Laplace Transform:

$$
\begin{equation*}
\mathcal{L}\{g(t)\}=G(s)=\int_{0}^{\infty} g(t) e^{-s t} d t \tag{1}
\end{equation*}
$$

\square Unilateral or one-sided transform

- Lower limit of integration is $t=0$
\square Assumed that the time domain function is zero for all negative time, i.e.

$$
g(t)=0, \quad t<0
$$

9

 Laplace Transform Properties

 Laplace Transform Properties}

In the following section of notes, we'll derive a few important properties of the Laplace transform.

Laplace Transform - Linearity

\square Say we have two time-domain functions:

$$
g_{1}(t) \text { and } g_{2}(t)
$$

\square Applying the transform definition, (1)

$$
\begin{aligned}
& \mathcal{L}\left\{\alpha g_{1}(\right.t) \\
&\left.=\beta g_{2}(t)\right\}=\int_{0}^{\infty}\left(\alpha g_{1}(t)+\beta g_{2}(t)\right) e^{-s t} d t \\
&= \int_{0}^{\infty} \alpha g_{1}(t) e^{-s t} d t+\int_{0}^{\infty} \beta g_{2}(t) e^{-s t} d t \\
&= \alpha \int_{0}^{\infty} g_{1}(t) e^{-s t} d t+\beta \int_{0}^{\infty} g_{2}(t) e^{-s t} d t \\
&= \alpha \cdot \mathcal{L}\left\{g_{1}(t)\right\}+\beta \cdot \mathcal{L}\left\{g_{2}(t)\right\}
\end{aligned}
$$

$$
\begin{equation*}
\mathcal{L}\left\{\alpha g_{1}(t)+\beta g_{2}(t)\right\}=\alpha G_{1}(s)+\beta G_{2}(s) \tag{2}
\end{equation*}
$$

\square The Laplace transform is a linear operation

Laplace Transform of a Derivative

\square Of particular interest, given that we want to use Laplace transform to solve differential equations

$$
\mathcal{L}\{\dot{g}(t)\}=\int_{0}^{\infty} \dot{g}(t) e^{-s t} d t
$$

\square Use integration by parts to evaluate

$$
\int u d v=u v-\int v d u
$$

\square Let

$$
u=e^{-s t} \quad \text { and } \quad d v=\dot{g}(t) d t
$$

then

$$
d u=-s e^{-s t} d t \quad \text { and } \quad v=g(t)
$$

Laplace Transform of a Derivative

$$
\begin{aligned}
& \mathcal{L}\{\dot{g}(t)\}=\left.e^{-s t} g(t)\right|_{0} ^{\infty}-\int_{0}^{\infty} g(t)\left(-s e^{-s t}\right) d t \\
& \quad=0-g(0)+s \int_{0}^{\infty} g(t) e^{-s t} d t=-g(0)+s \mathcal{L}\{g(t)\}
\end{aligned}
$$

\square The Laplace transform of the derivative of a function is the Laplace transform of that function multiplied by s minus the initial value of that function

$$
\begin{equation*}
\mathcal{L}\{\dot{g}(t)\}=s G(s)-g(0) \tag{3}
\end{equation*}
$$

Higher-Order Derivatives

\square The Laplace transform of a second derivative is

$$
\begin{equation*}
\mathcal{L}\{\ddot{g}(t)\}=s^{2} G(s)-s g(0)-\dot{g}(0) \tag{4}
\end{equation*}
$$

\square In general, the Laplace transform of the $\boldsymbol{n}^{\text {th }}$ derivative of a function is given by

$$
\begin{equation*}
\mathcal{L}\left\{g^{(n)}\right\}=s^{n} G(s)-s^{n-1} g(0)-s^{n-2} \dot{g}(0)-\cdots-g^{(n-1)}(0) \tag{5}
\end{equation*}
$$

Laplace Transform of an Integral

\square The Laplace Transform of a definite integral of a function is given by

$$
\begin{equation*}
\mathcal{L}\left\{\int_{0}^{t} g(\tau) d \tau\right\}=\frac{1}{s} G(s) \tag{6}
\end{equation*}
$$

\square Differentiation in the time domain corresponds to multiplication by \boldsymbol{s} in the Laplace domain
\square Integration in the time domain corresponds to division by \boldsymbol{s} in the Laplace domain

Laplace Transforms of Common Functions

Next, we'll derive the Laplace transform of some common mathematical functions

Unit Step Function

\square A useful and common way of characterizing a linear system is with its step response

- The system's response (output) to a unit step input
\square The unit step function or Heaviside step function:

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t \geq 0\end{cases}
$$

Unit Step Function - Laplace Transform

\square Using the definition of the Laplace transform

$$
\begin{aligned}
& \mathcal{L}\{u(t)\}=\int_{0}^{\infty} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{-s t} d t \\
& \quad=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=0-\left(-\frac{1}{s}\right)=\frac{1}{s}
\end{aligned}
$$

\square The Laplace transform of the unit step

$$
\begin{equation*}
\mathcal{L}\{u(t)\}=\frac{1}{s} \tag{7}
\end{equation*}
$$

\square Note that the unilateral Laplace transform assumes that the signal being transformed is zero for $t<0$
\square Equivalent to multiplying any signal by a unit step

Unit Ramp Function

\square The unit ramp function is a useful input signal for evaluating how well a system tracks a constantlyincreasing input
\square The unit ramp function:

$$
g(t)= \begin{cases}0, & t<0 \\ t, & t \geq 0\end{cases}
$$

Unit Ramp Function - Laplace Transform

\square Could easily evaluate the transform integral
\square Requires integration by parts
\square Alternatively, recognize the relationship between the unit ramp and the unit step
\square Unit ramp is the integral of the unit step
\square Apply the integration property, (6)

$$
\begin{gather*}
\mathcal{L}\{t\}=\mathcal{L}\left\{\int_{0}^{t} u(\tau) d \tau\right\}=\frac{1}{s} \cdot \frac{1}{s} \\
\mathcal{L}\{t\}=\frac{1}{s^{2}} \tag{8}
\end{gather*}
$$

Exponential - Laplace Transform

$$
g(t)=e^{-a t}
$$

\square Exponentials are common components of the responses of dynamic systems

$$
\begin{gather*}
\mathcal{L}\left\{e^{-a t}\right\}=\int_{0}^{\infty} e^{-a t} e^{-s t} d t=\int_{0}^{\infty} e^{-(s+a) t} d t \\
=-\left.\frac{e^{-(s+a) t}}{s+a}\right|_{0} ^{\infty}=0-\left(-\frac{1}{s+a}\right) \\
\mathcal{L}\left\{e^{-a t}\right\}=\frac{1}{s+a} \tag{9}
\end{gather*}
$$

Sinusoidal functions

\square Another class of commonly occurring signals, when dealing with dynamic systems, is sinusoidal signals both $\sin (\omega t)$ and $\cos (\omega t)$

$$
g(t)=\sin (\omega t)
$$

\square Recall Euler's formula

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

\square From which it follows that

$$
\sin (\omega t)=\frac{e^{j \omega t}-e^{-j \omega t}}{2 j}
$$

Sinusoidal functions

$$
\begin{align*}
& \mathcal{L}\{\sin (\omega t)\}=\frac{1}{2 j} \int_{0}^{\infty}\left(e^{j \omega t}-e^{-j \omega t}\right) e^{-s t} d t \\
& \quad=\frac{1}{2 j} \int_{0}^{\infty}\left(e^{-(s-j \omega) t}-e^{-(s+j \omega) t}\right) d t \\
& \quad=\frac{1}{2 j} \int_{0}^{\infty} e^{-(s-j \omega) t} d t-\frac{1}{2 j} \int_{0}^{\infty} e^{-(s+j \omega) t} d t \\
& \quad=\left.\frac{1}{2 j} \frac{\left(e^{-(s-j \omega) t}\right)}{-(s-j \omega)}\right|_{0} ^{\infty}-\left.\frac{1}{2 j} \frac{\left(e^{-(s+j \omega) t}\right)}{-(s+j \omega)}\right|_{0} ^{\infty} \\
& \quad=\frac{1}{2 j}\left[0+\frac{1}{s-j \omega}\right]-\frac{1}{2 j}\left[0+\frac{1}{s+j \omega}\right]=\frac{1}{2 j} \frac{2 j \omega}{s^{2}+\omega^{2}} \\
& \tag{10}\\
& \mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
\end{align*}
$$

Sinusoidal functions

\square It can similarly be shown that

$$
\begin{equation*}
\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}} \tag{11}
\end{equation*}
$$

\square Note that for neither $\sin (\omega t)$ nor $\cos (\omega t)$ is the function equal to zero for $t<0$ as the Laplace transform assumes
\square Really, what we've derived is

$$
\mathcal{L}\{u(t) \cdot \sin (\omega t)\} \quad \text { and } \quad \mathcal{L}\{u(t) \cdot \cos (\omega t)\}
$$

More Properties and Theorems

Multiplication by an Exponential, $e^{-a t}$

\square We've seen that $\mathcal{L}\left\{e^{-a t}\right\}=\frac{1}{s+a}$
\square What if another function is multiplied by the decaying exponential term?

$$
\mathcal{L}\left\{g(t) e^{-a t}\right\}=\int_{0}^{\infty} g(t) e^{-a t} e^{-s t} d t=\int_{0}^{\infty} g(t) e^{-(s+a) t} d t
$$

\square This is just the Laplace transform of $g(t)$ with s replaced by $(s+a)$

$$
\begin{equation*}
\mathcal{L}\left\{g(t) e^{-a t}\right\}=G(s+a) \tag{12}
\end{equation*}
$$

Decaying Sinusoids

\square The Laplace transform of a sinusoid is

$$
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
$$

\square And, multiplication by an decaying exponential, $e^{-a t}$, results in a substitution of $(s+a)$ for s, so

$$
\mathcal{L}\left\{e^{-a t} \sin (\omega t)\right\}=\frac{\omega}{(s+a)^{2}+\omega^{2}}
$$

and

$$
\mathcal{L}\left\{e^{-a t} \cos (\omega t)\right\}=\frac{s+a}{(s+a)^{2}+\omega^{2}}
$$

Time Shifting

\square Consider a time-domain function, $g(t)$

\square To Laplace transform $g(t)$ we've assumed $g(t)=0$ for $t<0$, or equivalently multiplied by $u(t)$

\square To shift $g(t)$ by an amount, a, in time, we must also multiply by a shifted step function, $u(t-a)$

Time Shifting - Laplace Transform

- The transform of the shifted function is given by

$$
\mathcal{L}\{g(t-a) \cdot u(t-a)\}=\int_{a}^{\infty} g(t-a) e^{-s t} d t
$$

\square Performing a change of variables, let

$$
\tau=(t-a) \text { and } d \tau=d t
$$

\square The transform becomes
$\mathcal{L}\{g(\tau) \cdot u(\tau)\}=\int_{0}^{\infty} g(\tau) e^{-s(\tau+a)} d \tau=\int_{0}^{\infty} g(\tau) e^{-a s} e^{-s \tau} d \tau=e^{-a s} \int_{0}^{\infty} g(\tau) e^{-s \tau} d \tau$
\square A shift by a in the time domain corresponds to multiplication by $e^{-a s}$ in the Laplace domain

$$
\begin{equation*}
\mathcal{L}\{g(t-a) \cdot u(t-a)\}=e^{-a s} G(s) \tag{13}
\end{equation*}
$$

Multiplication by time, t

\square The Laplace transform of a function multiplied by time:

$$
\begin{equation*}
\mathcal{L}\{t \cdot f(t)\}=-\frac{d}{d s} F(s) \tag{14}
\end{equation*}
$$

\square Consider a unit ramp function:

$$
\mathcal{L}\{t\}=\mathcal{L}\{t \cdot u(t)\}=-\frac{d}{d s}\left(\frac{1}{s}\right)=\frac{1}{s^{2}}
$$

\square Or a parabola:

$$
\mathcal{L}\left\{t^{2}\right\}=\mathcal{L}\{t \cdot t\}=-\frac{d}{d s}\left(\frac{1}{s^{2}}\right)=\frac{2}{s^{3}}
$$

\square In general

$$
\mathcal{L}\left\{t^{m}\right\}=\frac{m!}{s^{m+1}}
$$

Initial and Final Value Theorems

\square Initial Value Theorem

- Can determine the initial value of a time-domain signal or function from its Laplace transform

$$
\begin{equation*}
g(0)=\lim _{s \rightarrow \infty} s G(s) \tag{15}
\end{equation*}
$$

\square Final Value Theorem

- Can determine the steady-state value of a time-domain signal or function from its Laplace transform

$$
\begin{equation*}
g(\infty)=\lim _{s \rightarrow 0} s G(s) \tag{16}
\end{equation*}
$$

Convolution

\square Convolution of two functions or signals is given by

$$
g(t) * x(t)=\int_{0}^{t} g(\tau) x(t-\tau) d \tau
$$

\square Result is a function of time

- $x(\tau)$ is flipped in time and shifted by t
\square Multiply the flipped/shifted signal and the other signal
- Integrate the result from $\tau=0 \ldots t$
\square May seem like an odd, arbitrary function now, but we'll later see why it is very important
\square Convolution in the time domain corresponds to multiplication in the Laplace domain

$$
\begin{equation*}
\mathcal{L}\{g(t) * x(t)\}=G(s) X(s) \tag{17}
\end{equation*}
$$

Impulse Function

\square Another common way to describe a dynamic system is with its impulse response
\square System output in response to an impulse function input
\square Impulse function defined by

$$
\begin{aligned}
& \delta(t)=0, \quad t \neq 0 \\
& \int_{-\infty}^{\infty} \delta(t) d t=1
\end{aligned}
$$

- An infinitely tall, infinitely narrow pulse

Impulse Function - Laplace Transform

\square To derive $\mathcal{L}\{\delta(t)\}$, consider the following function

$$
g(t)=\left\{\begin{array}{lr}
\frac{1}{t_{0}}, & 0 \leq t \leq t_{0} \\
0, & t<0 \text { or } t>t_{0}
\end{array}\right.
$$

\square Can think of $g(t)$ as the sum of two step functions:

$$
g(t)=\frac{1}{t_{0}} u(t)-\frac{1}{t_{0}} u\left(t-t_{0}\right)
$$

\square The transform of the first term is

$$
\mathcal{L}\left\{\frac{1}{t_{0}} u(t)\right\}=\frac{1}{t_{0} s}
$$

\square Using the time-shifting property, the second term transforms to

$$
\mathcal{L}\left\{-\frac{1}{t_{0}} u\left(t-t_{0}\right)\right\}=-\frac{e^{-t_{0} s}}{t_{0} s}
$$

Impulse Function - Laplace Transform

\square In the limit, as $t_{0} \rightarrow 0, g(t) \rightarrow \delta(t)$, so

$$
\begin{aligned}
\mathcal{L}\{\delta(t)\} & =\lim _{t_{0} \rightarrow 0} \mathcal{L}\{g(t)\} \\
\mathcal{L}\{\delta(t)\} & =\lim _{t_{0} \rightarrow 0} \frac{1-e^{-t_{0} s}}{t_{0} s}
\end{aligned}
$$

\square Apply l'Hôpital's rule

$$
\mathcal{L}\{\delta(t)\}=\lim _{t_{0} \rightarrow 0} \frac{\frac{d}{d t_{0}}\left(1-e^{-t_{0} s}\right)}{\frac{d}{d t_{0}}\left(t_{0} s\right)}=\lim _{t_{0} \rightarrow 0} \frac{s e^{-t_{0} s}}{s}=\frac{s}{s}
$$

\square The Laplace transform of an impulse function is one

$$
\begin{equation*}
\mathcal{L}\{\delta(t)\}=1 \tag{18}
\end{equation*}
$$

Common Laplace Transforms

$g(t)$	$G(s)$	$g(t)$	$G(s)$
$\delta(t)$	1	$e^{-a t} \sin (\omega t)$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
$u(t)$	$\frac{1}{s}$	$e^{-a t} \cos (\omega t)$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
t	$\frac{1}{s^{2}}$	$\dot{g}(t)$	$s G(s)-g(0)$
t^{m+1}	$\frac{1}{s+a}$	$\int_{0}^{t} g(\tau) d \tau$	$s^{2} G(s)-s g(0)-\dot{g}(0)$
$e^{-a t}$	$\frac{1}{(s+a)^{2}}$	$e^{-a t} g(t)$	$\frac{1}{s} G(s)$
$t e^{-a t}$	$\frac{\omega}{s^{2}+\omega^{2}}$	$g(t-a) \cdot u(t-a)$	$e^{-a s} G(s)$
$\sin (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$	$t \cdot g(t)$	$-\frac{d}{d s} G(s)$
$\cos (\omega t)$			

Example - Piecewise Function Laplace Transform

\square Determine the Laplace transform of a piecewise function:

\square A summation of functions with known transforms:

- Ramp
- Pulse - sum of positive and negative steps
\square Transform is the sum of the individual, known transforms

Example - Piecewise Function Laplace Transform

\square Treat the piecewise function as a sum of individual functions

$$
f(t)=f_{1}(t)+f_{2}(t)
$$

$\square f_{1}(t)$

- Time-shifted, gated ramp
$\square f_{2}(t)$
- Time-shifted pulse
\square Sum of staggered positive and negative steps

Example - Piecewise Function Laplace Transform

$\square f_{1}(t)$: time-shifted, gated ramp
\square Ramp w/ slope of 2:

$$
r(t)=2 \cdot t
$$

\square Time-shifted ramp:

$$
r_{s}(t)=2 \cdot(t-1)
$$

\square Gating function

- Unity-amplitude pulse:

$$
g(t)=u(t-1)-u(t-2)
$$

\square Gate the shifted ramp:

$$
\begin{aligned}
& f_{1}(t)=r_{s}(t) \cdot g(t) \\
& f_{1}(t)=2 \cdot(t-1) \cdot[u(t-1)-u(t-2)]
\end{aligned}
$$

Example - Piecewise Function Laplace Transform

$\square f_{2}(t)$: time-shifted pulse

- Sum of staggered positive and negative steps
\square Positive step delayed by 2 sec:

$$
s_{2}(t)=2 \cdot u(t-2)
$$

\square Negative step delayed by 3 sec:

$$
s_{3}(t)=-2 \cdot u(t-3)
$$

\square Time-shifted pulse

$$
\begin{aligned}
& f_{2}(t)=s_{2}(t)+s_{3}(t) \\
& f_{2}(t)=2 \cdot u(t-2)-2 \cdot u(t-3)
\end{aligned}
$$

Example - Piecewise Function Laplace Transform

\square Sum the two individual time-domain functions

$$
\begin{aligned}
f(t)= & f_{1}(t)+f_{2}(t) \\
f(t)= & 2 \cdot(t-1) \cdot[u(t-1)-u(t-2)]+2 \cdot u(t-2)-2 \cdot u(t-3) \\
f(t)= & 2[(t-1) \cdot u(t-1)] \\
& -2[t \cdot u(t-2)] \\
& +4[u(t-2)] \\
& -2[u(t-3)]
\end{aligned}
$$

\square Transform the individual terms in $f(t)$

$$
\begin{aligned}
F(s)= & \mathcal{L}\{2[(t-1) \cdot u(t-1)]\} \\
& +\mathcal{L}\{-2[t \cdot u(t-2)]\} \\
& +\mathcal{L}\{+4[u(t-2)]\} \\
& +\mathcal{L}\{-2[u(t-3)]\}
\end{aligned}
$$

Example - Piecewise Function Laplace Transform

\square First term is a time-shifted ramp function

$$
\mathcal{L}\{2[(t-1) \cdot u(t-1)]\}=\frac{2 e^{-s}}{s^{2}}
$$

\square The next term is a time-shifted step function multiplied by time

$$
\begin{aligned}
\mathcal{L}\{-2[t \cdot u(t-2)]\} & =2 \frac{d}{d s}\left[\frac{e^{-2 s}}{s}\right] \\
& =-2\left[\frac{e^{-2 s}}{s^{2}}+\frac{2 e^{-2 s}}{s}\right]
\end{aligned}
$$

Example - Piecewise Function Laplace Transform

\square The last two terms are time-shifted step functions

$$
\mathcal{L}\{4 \cdot u(t-2)-2 \cdot u(t-3)\}=\frac{4 e^{-2 s}}{s}-\frac{2 e^{-3 s}}{s}
$$

\square The piecewise function in the Laplace domain:

$$
\begin{aligned}
& F(s)=\frac{2 e^{-s}}{s^{2}}-2\left[\frac{e^{-2 s}}{s^{2}}+\frac{2 e^{-2 s}}{s}\right]+\frac{4 e^{-2 s}}{s}-\frac{2 e^{-3 s}}{s} \\
& F(s)=\frac{2 e^{-s}}{s^{2}}-\frac{2 e^{-2 s}}{s^{2}}-\frac{2 e^{-3 s}}{s}
\end{aligned}
$$

Inverse Laplace Transform

We've just seen how time-domain functions can be transformed to the Laplace domain. Next, we'll look at how we can solve differential equations in the Laplace domain and transform back to the time domain.

Laplace Transforms - Differential Equations

\square Consider the simple spring/mass/damper system from the previous section of notes
\square State equations are:

$$
\begin{align*}
& \dot{p}=-\frac{b}{m} p-k x+F_{i n}(t) \tag{1}\\
& \dot{x}=\frac{1}{m} p \tag{2}
\end{align*}
$$

\square Taking the displacement of the mass as the output

$$
\begin{equation*}
y=x \tag{3}
\end{equation*}
$$

\square Using (2) and (3) in (1) we get a single second-order differential equation

$$
\begin{equation*}
\ddot{y}+\frac{b}{m} \dot{y}+\frac{k}{m} y=\frac{1}{m} F_{i n}(t) \tag{4}
\end{equation*}
$$

Laplace Transforms - Differential Equations

\square We'll now use Laplace transforms to determine the step response of the system
$\square 1 \mathrm{~N}$ step force input

$$
F_{i n}(t)=1 N \cdot u(t)= \begin{cases}0 N, & t<0 \tag{5}\\ 1 N, & t \geq 0\end{cases}
$$

\square For the step response, we assume zero initial conditions

$$
\begin{equation*}
y(0)=0 \text { and } \dot{y}(0)=0 \tag{6}
\end{equation*}
$$

\square Using the derivative property of the Laplace transform, (4) becomes

$$
\begin{align*}
& s^{2} Y(s)-s y(0)-\dot{y}(0)+\frac{b}{m} s Y(s)-\frac{b}{m} y(0)+\frac{k}{m} Y(s)=\frac{1}{m} F_{i n}(s) \\
& s^{2} Y(s)+\frac{b}{m} s Y(s)+\frac{k}{m} Y(s)=\frac{1}{m} F_{i n}(s) \tag{7}
\end{align*}
$$

Laplace Transforms - Differential Equations

\square The input is a step, so (7) becomes

$$
\begin{equation*}
s^{2} Y(s)+\frac{b}{m} s Y(s)+\frac{k}{m} Y(s)=\frac{1}{m} 1 N \frac{1}{s} \tag{8}
\end{equation*}
$$

\square Solving (8) for $Y(s)$

$$
\begin{align*}
& Y(s)\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)=\frac{1}{m} \frac{1}{s} \\
& Y(s)=\frac{1 / m}{s\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)} \tag{9}
\end{align*}
$$

\square Equation (9) is the solution to the differential equation of (4), given the step input and I.C.'s

- The system step response in the Laplace domain
- Next, we need to transform back to the time domain

Laplace Transforms - Differential Equations

$$
\begin{equation*}
Y(s)=\frac{1 / m}{s\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)} \tag{9}
\end{equation*}
$$

 systems

- A rational polynomial in s
- Here, the numerator is $0^{\text {th }}$-order

$$
Y(s)=\frac{B(s)}{A(s)}
$$

\square Roots of the numerator polynomial, $B(s)$, are called the zeros of the function
\square Roots of the denominator polynomial, $A(s)$, are called the poles of the function

Inverse Laplace Transforms

$$
\begin{equation*}
Y(s)=\frac{1 / m}{s\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)} \tag{9}
\end{equation*}
$$

\square To get (9) back into the time domain, we need to perform an inverse Laplace transform

- An integral inverse transform exists, but we don't use it
- Instead, we use partial fraction expansion
\square Partial fraction expansion
- Idea is to express the Laplace transform solution, (9), as a sum of Laplace transform terms that appear in the table
- Procedure depends on the type of roots of the denominator polynomial
- Real and distinct
- Repeated
- Complex

Inverse Laplace Transforms - Example 1

\square Consider the following system parameters

$$
\begin{aligned}
& m=1 \mathrm{~kg} \\
& k=\frac{16 \mathrm{~N}}{\mathrm{~m}} \\
& b=10 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}
\end{aligned}
$$

\square Laplace transform of the step response becomes

$$
\begin{equation*}
Y(s)=\frac{1}{s\left(s^{2}+10 s+16\right)} \tag{10}
\end{equation*}
$$

\square Factoring the denominator

$$
\begin{equation*}
Y(s)=\frac{1}{s(s+2)(s+8)} \tag{11}
\end{equation*}
$$

\square In this case, the denominator polynomial has three real, distinct roots

$$
s_{1}=0, \quad s_{2}=-2, \quad s_{3}=-8
$$

Inverse Laplace Transforms - Example 1

\square Partial fraction expansion of (11) has the form

$$
\begin{equation*}
Y(s)=\frac{1}{s(s+2)(s+8)}=\frac{r_{1}}{s}+\frac{r_{2}}{s+2}+\frac{r_{3}}{s+8} \tag{12}
\end{equation*}
$$

- The numerator coefficients, r_{1}, r_{2}, and r_{3}, are called residues

\square Can already see the form of the time-domain function
- Sum of a constant and two decaying exponentials
\square To determine the residues, multiply both sides of (12) by the denominator of the left-hand side

$$
\begin{aligned}
& 1=r_{1}(s+2)(s+8)+r_{2} s(s+8)+r_{3} s(s+2) \\
& 1=r_{1} s^{2}+10 r_{1} s+16 r_{1}+r_{2} s^{2}+8 r_{2} s+r_{3} s^{2}+2 r_{3} s
\end{aligned}
$$

\square Collecting terms, we have

$$
\begin{equation*}
1=s^{2}\left(r_{1}+r_{2}+r_{3}\right)+s\left(10 r_{1}+8 r_{2}+2 r_{3}\right)+16 r_{1} \tag{13}
\end{equation*}
$$

Inverse Laplace Transforms - Example 1

\square Equating coefficients of powers of s on both sides of (13) gives a system of three equations in three unknowns

$$
\begin{array}{ll}
s^{2}: & r_{1}+r_{2}+r_{3}=0 \\
s^{1}: & 10 r_{1}+8 r_{2}+2 r_{3}=0 \\
s^{0}: & 16 r_{1}=1
\end{array}
$$

\square Solving for the residues gives

$$
\begin{aligned}
& r_{1}=0.0625 \\
& r_{2}=-0.0833 \\
& r_{3}=0.0208
\end{aligned}
$$

\square The Laplace transform of the step response is

$$
\begin{equation*}
Y(s)=\frac{0.0625}{s}-\frac{0.0833}{s+2}+\frac{0.0208}{s+8} \tag{14}
\end{equation*}
$$

\square Equation (14) can now be transformed back to the time domain using the Laplace transform table

Inverse Laplace Transforms - Example 1

\square The time-domain step response of the system is the sum of a constant term and two decaying exponentials:

$$
\begin{equation*}
y(t)=0.0625-0.0833 e^{-2 t}+0.0208 e^{-8 t} \tag{15}
\end{equation*}
$$

\square Step response plotted in MATLAB
\square Characteristic of a signal having only real poles

- No overshoot/ringing
\square Steady-state displacement agrees with intuition
- 1 N force applied to a $16 \mathrm{~N} / \mathrm{m}$ spring

Inverse Laplace Transforms - Example 1

\square Go back to (10) and apply the initial value theorem

$$
y(0)=\lim _{s \rightarrow \infty} s Y(s)=\lim _{s \rightarrow \infty} \frac{1}{\left(s^{2}+10 s+16\right)}=0 c m
$$

\square Which is, in fact our assumed initial
 condition
\square Next, apply the final value theorem to the Laplace transform step response, (10)

$$
\begin{aligned}
& y(\infty)=\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0} \frac{1}{\left(s^{2}+10 s+16\right)} \\
& y(\infty)=\frac{1}{16}=0.0625 \mathrm{~m}=6.25 \mathrm{~cm}
\end{aligned}
$$

\square This final value agrees with both intuition and our numerical analysis

Inverse Laplace Transforms - Example 2

\square Reduce the damping and re-calculate the step response

$$
\begin{aligned}
& m=1 \mathrm{~kg} \\
& k=\frac{16 \mathrm{~N}}{\mathrm{~m}} \\
& b=8 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}
\end{aligned}
$$

\square Laplace transform of the step response becomes

$$
\begin{equation*}
Y(s)=\frac{1}{s\left(s^{2}+8 s+16\right)} \tag{16}
\end{equation*}
$$

\square Factoring the denominator

$$
\begin{equation*}
Y(s)=\frac{1}{s(s+4)^{2}} \tag{17}
\end{equation*}
$$

\square In this case, the denominator polynomial has three real roots, two of which are identical

$$
s_{1}=0, \quad s_{2}=-4, \quad s_{3}=-4
$$

Inverse Laplace Transforms - Example 2

\square Partial fraction expansion of (17) has the form

$$
\begin{equation*}
Y(s)=\frac{1}{s(s+4)^{2}}=\frac{r_{1}}{s}+\frac{r_{2}}{s+4}+\frac{r_{3}}{(s+4)^{2}} \tag{18}
\end{equation*}
$$

\square Again, find residues by multiplying both sides of (18) by the lefthand side denominator

$$
\begin{aligned}
& 1=r_{1}(s+4)^{2}+r_{2} s(s+4)+r_{3} s \\
& 1=r_{1} s^{2}+8 r_{1} s+16 r_{1}+r_{2} s^{2}+4 r_{2} s+r_{3} s
\end{aligned}
$$

\square Collecting terms, we have

$$
\begin{equation*}
1=s^{2}\left(r_{1}+r_{2}\right)+s\left(8 r_{1}+4 r_{2}+r_{3}\right)+16 r_{1} \tag{19}
\end{equation*}
$$

Inverse Laplace Transforms - Example 2

\square Equating coefficients of powers of s on both sides of (19) gives a system of three equations in three unknowns

$$
\begin{array}{ll}
s^{2}: & r_{1}+r_{2}=0 \\
s^{1}: & 8 r_{1}+4 r_{2}+r_{3}=0 \\
s^{0}: & 16 r_{1}=1
\end{array}
$$

\square Solving for the residues gives

$$
\begin{aligned}
& r_{1}=0.0625 \\
& r_{2}=-0.0625 \\
& r_{3}=-0.2500
\end{aligned}
$$

\square The Laplace transform of the step response is

$$
\begin{equation*}
Y(s)=\frac{0.0625}{s}-\frac{0.0625}{s+4}-\frac{0.25}{(s+4)^{2}} \tag{20}
\end{equation*}
$$

\square Equation (20) can now be transformed back to the time domain using the Laplace transform table

Inverse Laplace Transforms - Example 2

\square The time-domain step response of the system is the sum of a constant, a decaying exponential, and a decaying exponential scaled by time:

$$
\begin{equation*}
y(t)=0.0625-0.0625 e^{-4 t}-0.25 t e^{-4 t} \tag{21}
\end{equation*}
$$

\square Step response plotted in MATLAB
\square Again, characteristic of a signal having only real poles

- Similar to the last case
- A bit faster - slow pole at $s=-2$ was eliminated

Step Response

Inverse Laplace Transforms - Example 3

\square Reduce the damping even further and go through the process once again

$$
\begin{aligned}
m & =1 \mathrm{~kg} \\
k & =\frac{16 \mathrm{~N}}{\mathrm{~m}} \\
b & =4 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}
\end{aligned}
$$

\square Laplace transform of the step response becomes

$$
\begin{equation*}
Y(s)=\frac{1}{s\left(s^{2}+4 s+16\right)} \tag{22}
\end{equation*}
$$

\square The second-order term in the denominator now has complex roots, so we won't factor any further
\square The denominator polynomial still has a root at zero and now has two roots which are a complex-conjugate pair

$$
s_{1}=0, \quad s_{2}=-2+j 3.464, \quad s_{3}=-2-j 3.464
$$

Inverse Laplace Transforms - Example 3

\square Want to cast the partial fraction terms into forms that appear in the Laplace transform table
\square Second-order terms should be of the form

$$
\begin{equation*}
\frac{r_{i}(s+\sigma)+r_{i+1} \omega}{(s+\sigma)^{2}+\omega^{2}} \tag{23}
\end{equation*}
$$

\square This will transform into the sum of damped sine and cosine terms

$$
\mathcal{L}^{-1}\left\{r_{i} \frac{(s+\sigma)}{(s+\sigma)^{2}+\omega^{2}}+r_{i+1} \frac{\omega}{(s+\sigma)^{2}+\omega^{2}}\right\}=r_{i} e^{-\sigma t} \cos (\omega t)+r_{i+1} e^{-\sigma t} \sin (\omega t)
$$

\square To get the second-order term in the denominator of (22) into the form of (23), complete the square, to give the following partial fraction expansion

$$
\begin{equation*}
Y(s)=\frac{1}{s\left(s^{2}+4 s+16\right)}=\frac{r_{1}}{s}+\frac{r_{2}(s+2)+r_{3}(3.464)}{(s+2)^{2}+(3.464)^{2}} \tag{24}
\end{equation*}
$$

Inverse Laplace Transforms - Example 3

\square Note that the σ and ω terms in (23) and (24) are the real and imaginary parts of the complex-conjugate denominator roots

$$
s_{2,3}=-\sigma \pm j \omega=-2 \pm j 3.464
$$

\square Multiplying both sides of (24) by the left-hand-side denominator, equate coefficients and solve for residues as before:

$$
\begin{aligned}
& r_{1}=0.0625 \\
& r_{2}=-0.0625 \\
& r_{3}=-0.0361
\end{aligned}
$$

\square Laplace transform of the step response is

$$
\begin{equation*}
Y(s)=\frac{0.0625}{s}-\frac{0.0625(s+2)}{(s+2)^{2}+(3.464)^{2}}-\frac{0.0361(3.464)}{(s+2)^{2}+(3.464)^{2}} \tag{25}
\end{equation*}
$$

Inverse Laplace Transforms - Example 3

\square The time-domain step response of the system is the sum of a constant and two decaying sinusoids:

$$
\begin{equation*}
y(t)=0.0625-0.0625 e^{-2 t} \cos (3.464 t)-0.0361 e^{-2 t} \sin (3.464 t) \tag{26}
\end{equation*}
$$

\square Step response and individual components plotted in MATLAB
\square Characteristic of a signal having complex poles

- Sinusoidal terms result in overshoot and (possibly) ringing

Laplace-Domain Signals with Complex Poles

\square The Laplace transform of the step response in the last example had complex poles

- A complex-conjugate pair: $s=-\sigma \pm j \omega$
\square Much more on this later

