## SECTION 5: LAPLACE TRANSFORMS

ESE 330 – Modeling & Analysis of Dynamic Systems

## <sup>2</sup> Introduction – Transforms

This section of notes contains an introduction to Laplace transforms. This should mostly be a review of material covered in your differential equations course.

## Transforms

#### What is a transform?

- A mapping of a mathematical function from one domain to another
- A change in *perspective* not a change of the function

#### Why use transforms?

- Some mathematical problems are difficult to solve in their natural domain
  - Transform to and solve in a new domain, where the problem is simplified
  - Transform back to the original domain
- Trade off the extra effort of transforming/inversetransforming for simplification of the solution procedure

## Transform Example – Slide Rules

#### Slide rules make use of a logarithmic transform



Multiplication/division of large numbers is difficult

- Transform the numbers to the logarithmic domain
- Add/subtract (easy) in the log domain to multiply/divide (difficult) in the linear domain
- Apply the inverse transform to get back to the original domain
- Extra effort is required, but the problem is simplified



## Laplace Transforms

6

An *integral transform* mapping functions from the *time domain* to the *Laplace domain* or *s-domain* 

$$g(t) \stackrel{\mathcal{L}}{\leftrightarrow} G(s)$$

Time-domain functions are functions of time, t

#### g(t)

Laplace-domain functions are functions of s

G(s)

**s** is a complex variable

$$s = \sigma + j\omega$$

## Laplace Transforms – Motivation

#### We'll use Laplace transforms to solve differential equations

#### **Differential equations** in the **time domain**

- difficult to solve
- Apply the Laplace transform
  - Transform to the s-domain

#### Differential equations become algebraic equations

- easy to solve
- Transform the s-domain solution back to the time domain
- Transforming back and forth requires extra effort, but the solution is greatly simplified

## Laplace Transform

#### Laplace Transform:

$$\mathcal{L}\{g(t)\} = G(s) = \int_0^\infty g(t)e^{-st}dt$$

(1)

#### Unilateral or one-sided transform

- **\Box** Lower limit of integration is t = 0
- Assumed that the time domain function is zero for all negative time, i.e.

$$g(t) = 0, \qquad t < 0$$

## Laplace Transform Properties

In the following section of notes, we'll derive a few important properties of the Laplace transform.

## Laplace Transform – Linearity

10

Say we have two time-domain functions:

 $g_1(t)$  and  $g_2(t)$ 

Applying the transform definition, (1)

$$\begin{aligned} \mathcal{L}\{\alpha g_1(t) + \beta g_2(t)\} &= \int_0^\infty (\alpha g_1(t) + \beta g_2(t)) e^{-st} dt \\ &= \int_0^\infty \alpha g_1(t) e^{-st} dt + \int_0^\infty \beta g_2(t) e^{-st} dt \\ &= \alpha \int_0^\infty g_1(t) e^{-st} dt + \beta \int_0^\infty g_2(t) e^{-st} dt \\ &= \alpha \cdot \mathcal{L}\{g_1(t)\} + \beta \cdot \mathcal{L}\{g_2(t)\} \end{aligned}$$

$$\mathcal{L}\{\alpha g_1(t) + \beta g_2(t)\} = \alpha G_1(s) + \beta G_2(s)$$

(2)

The Laplace transform is a *linear operation* 

## Laplace Transform of a Derivative

- 11
- Of particular interest, given that we want to use Laplace transform to solve differential equations

$$\mathcal{L}\{\dot{g}(t)\} = \int_0^\infty \dot{g}(t)e^{-st}dt$$

Use *integration by parts* to evaluate

$$\int u dv = uv - \int v du$$

🗆 Let

$$u = e^{-st}$$
 and  $dv = \dot{g}(t)dt$   
then

$$du = -se^{-st}dt$$
 and  $v = g(t)$ 

## Laplace Transform of a Derivative

$$\mathcal{L}\{\dot{g}(t)\} = e^{-st}g(t)\Big|_{0}^{\infty} - \int_{0}^{\infty} g(t)(-se^{-st})dt$$
$$= 0 - g(0) + s\int_{0}^{\infty} g(t)e^{-st}dt = -g(0) + s\mathcal{L}\{g(t)\}$$

The Laplace transform of the derivative of a function is the Laplace transform of that function multiplied by s minus the initial value of that function

$$\mathcal{L}\{\dot{g}(t)\} = sG(s) - g(0) \tag{3}$$

## **Higher-Order Derivatives**

#### The Laplace transform of a *second derivative* is

$$\mathcal{L}\{\ddot{g}(t)\} = s^2 G(s) - sg(0) - \dot{g}(0)$$
(4)

 In general, the Laplace transform of the n<sup>th</sup> derivative of a function is given by

$$\mathcal{L}\left\{g^{(n)}\right\} = s^n G(s) - s^{n-1} g(0) - s^{n-2} \dot{g}(0) - \dots - g^{(n-1)}(0)$$
(5)

## Laplace Transform of an Integral

14

The Laplace Transform of a *definite integral* of a function is given by

$$\mathcal{L}\left\{\int_0^t g(\tau)d\tau\right\} = \frac{1}{s}G(s) \tag{6}$$

- Differentiation in the time domain corresponds to multiplication by s in the Laplace domain
- Integration in the time domain corresponds to division by s in the Laplace domain

## Laplace Transforms of Common Functions

Next, we'll derive the Laplace transform of some common mathematical functions

15

## **Unit Step Function**

- 16
- A useful and common way of characterizing a linear system is with its step response
  - The system's response (output) to a unit step input
- The unit step function or Heaviside step function:

$$u(t) = \begin{cases} 0, & t < 0\\ 1, & t \ge 0 \end{cases}$$



## Unit Step Function – Laplace Transform

17

Using the definition of the Laplace transform

$$\mathcal{L}\{u(t)\} = \int_0^\infty u(t)e^{-st}dt = \int_0^\infty e^{-st}dt$$
$$= -\frac{1}{s}e^{-st}\Big|_0^\infty = 0 - \left(-\frac{1}{s}\right) = \frac{1}{s}$$

The Laplace transform of the unit step

$$\mathcal{L}\{u(t)\} = \frac{1}{s} \tag{7}$$

Note that the unilateral Laplace transform assumes that the signal being transformed is zero for t < 0</li>
 Equivalent to multiplying any signal by a unit step

## **Unit Ramp Function**

- The unit ramp function is a useful input signal for evaluating how well a system tracks a constantlyincreasing input
- The unit ramp function:



### Unit Ramp Function – Laplace Transform

- Could easily evaluate the transform integral
   Requires integration by parts
- Alternatively, recognize the relationship between the unit ramp and the unit step
  - Unit ramp is the integral of the unit step
- Apply the integration property, (6)

$$\mathcal{L}{t} = \mathcal{L}\left\{\int_{0}^{t} u(\tau)d\tau\right\} = \frac{1}{s} \cdot \frac{1}{s}$$
$$\mathcal{L}{t} = \frac{1}{s^{2}}$$

(8)

### Exponential – Laplace Transform

$$g(t) = e^{-at}$$

Exponentials are common components of the responses of dynamic systems

$$\mathcal{L}\lbrace e^{-at}\rbrace = \int_0^\infty e^{-at} e^{-st} dt = \int_0^\infty e^{-(s+a)t} dt$$
$$= -\frac{e^{-(s+a)t}}{s+a} \Big|_0^\infty = 0 - \left(-\frac{1}{s+a}\right)$$

$$\mathcal{L}\{e^{-at}\} = \frac{1}{s+a}$$

20

(9)

## Sinusoidal functions

 Another class of commonly occurring signals, when dealing with dynamic systems, is *sinusoidal signals* – both sin(ωt) and cos(ωt)

$$g(t) = \sin(\omega t)$$

Recall Euler's formula

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

From which it follows that

$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

### Sinusoidal functions

 $\mathcal{L}\{\sin(\omega t)\} = \frac{1}{2i} \int_{0}^{\infty} \left(e^{j\omega t} - e^{-j\omega t}\right) e^{-st} dt$  $=\frac{1}{2i}\int_{0}^{\infty} \left(e^{-(s-j\omega)t}-e^{-(s+j\omega)t}\right)dt$  $=\frac{1}{2i}\int_{0}^{\infty}e^{-(s-j\omega)t}dt-\frac{1}{2i}\int_{0}^{\infty}e^{-(s+j\omega)t}dt$  $=\frac{1}{2i}\frac{\left(e^{-(s-j\omega)t}\right)}{-(s-j\omega)}\Big|_{0}^{\infty}-\frac{1}{2i}\frac{\left(e^{-(s+j\omega)t}\right)}{-(s+j\omega)}\Big|_{0}^{\infty}$  $= \frac{1}{2i} \left[ 0 + \frac{1}{s - i\omega} \right] - \frac{1}{2i} \left[ 0 + \frac{1}{s + i\omega} \right] = \frac{1}{2i} \frac{2j\omega}{s^2 + \omega^2}$  $\int \mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2}$ 

K. Webb

22

(10)

## Sinusoidal functions

#### It can similarly be shown that

$$\mathcal{L}\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2} \tag{11}$$

- Note that for neither sin(ωt) nor cos(ωt) is the function equal to zero for t < 0 as the Laplace transform assumes</li>
- Really, what we've derived is

 $\mathcal{L}{u(t) \cdot \sin(\omega t)}$  and  $\mathcal{L}{u(t) \cdot \cos(\omega t)}$ 

# <sup>24</sup> More Properties and Theorems

## Multiplication by an Exponential, $e^{-at}$

- □ We've seen that  $\mathcal{L}\{e^{-at}\} = \frac{1}{s+a}$
- What if another function is multiplied by the decaying exponential term?

$$\mathcal{L}\lbrace g(t)e^{-at}\rbrace = \int_0^\infty g(t)e^{-at}e^{-st}dt = \int_0^\infty g(t)e^{-(s+a)t}dt$$

□ This is just the Laplace transform of g(t) with s replaced by (s + a)

$$\mathcal{L}\{g(t)e^{-at}\} = G(s+a)$$

(12)

## **Decaying Sinusoids**

26

The Laplace transform of a sinusoid is

$$\mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2}$$

□ And, multiplication by an decaying exponential,  $e^{-at}$ , results in a substitution of (s + a) for s, so

$$\mathcal{L}\{e^{-at}\sin(\omega t)\} = \frac{\omega}{(s+a)^2 + \omega^2}$$

and

$$\mathcal{L}\{e^{-at}\cos(\omega t)\} = \frac{s+a}{(s+a)^2 + \omega^2}$$

## **Time Shifting**

- Consider a time-domain function, g(t)
- To Laplace transform g(t)
   we've assumed g(t) = 0 for
   t < 0, or equivalently</li>
   multiplied by u(t)
- □ To shift g(t) by an amount,
   a, in time, we must also
   multiply by a shifted step
   function, u(t − a)



## Time Shifting – Laplace Transform

28

The transform of the shifted function is given by

$$\mathcal{L}\{g(t-a)\cdot u(t-a)\} = \int_{a}^{\infty} g(t-a)e^{-st}dt$$

Performing a change of variables, let

$$\tau = (t - a)$$
 and  $d\tau = dt$ 

The transform becomes

$$\mathcal{L}\{g(\tau)\cdot u(\tau)\} = \int_0^\infty g(\tau)e^{-s(\tau+a)}d\tau = \int_0^\infty g(\tau)e^{-as}e^{-s\tau}d\tau = e^{-as}\int_0^\infty g(\tau)e^{-s\tau}d\tau$$

□ A shift by a in the time domain corresponds to multiplication by  $e^{-as}$  in the Laplace domain

$$\mathcal{L}\{g(t-a) \cdot u(t-a)\} = e^{-as}G(s)$$
(13)

## Multiplication by time, t

29

#### The Laplace transform of a function multiplied by time:

$$\mathcal{L}\{t \cdot f(t)\} = -\frac{d}{ds}F(s)$$
(14)

Consider a unit ramp function:

$$\mathcal{L}{t} = \mathcal{L}{t \cdot u(t)} = -\frac{d}{ds}\left(\frac{1}{s}\right) = \frac{1}{s^2}$$

Or a parabola:

$$\mathcal{L}{t^2} = \mathcal{L}{t \cdot t} = -\frac{d}{ds}\left(\frac{1}{s^2}\right) = \frac{2}{s^3}$$

In general

$$\mathcal{L}\{t^m\} = \frac{m!}{s^{m+1}}$$

## Initial and Final Value Theorems

#### Initial Value Theorem

Can determine the initial value of a time-domain signal or function from its Laplace transform

$$g(0) = \lim_{s \to \infty} sG(s)$$

(15)

#### Final Value Theorem

Can determine the steady-state value of a time-domain signal or function from its Laplace transform

$$g(\infty) = \lim_{s \to 0} sG(s)$$
(16)

## Convolution

**Convolution** of two functions or signals is given by

$$g(t) * x(t) = \int_0^t g(\tau) x(t-\tau) d\tau$$

- Result is a function of time
  - **•**  $x(\tau)$  is *flipped* in time and *shifted* by t
  - Multiply the flipped/shifted signal and the other signal

• Integrate the result from  $\tau = 0 \dots t$ 

 May seem like an odd, arbitrary function now, but we'll later see why it is very important

 Convolution in the time domain corresponds to multiplication in the Laplace domain

$$\mathcal{L}\{g(t) * x(t)\} = G(s)X(s)$$
(17)

## Impulse Function

# Another common way to describe a dynamic system is with its *impulse response*

- System output in response to an impulse function input
- Impulse function defined by

$$\delta(t) = 0, \qquad t \neq 0$$
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

An infinitely tall, infinitely narrow pulse



## Impulse Function – Laplace Transform

To derive  $\mathcal{L}{\delta(t)}$ , consider the following function

$$g(t) = \begin{cases} \frac{1}{t_0}, & 0 \le t \le t_0 \\ 0, & t < 0 \text{ or } t > t_0 \end{cases}$$

 $\Box$  Can think of g(t) as the sum of two step functions:

$$g(t) = \frac{1}{t_0}u(t) - \frac{1}{t_0}u(t - t_0)$$



The transform of the first term is

$$\mathcal{L}\left\{\frac{1}{t_0}u(t)\right\} = \frac{1}{t_0s}$$

Using the time-shifting property, the second term transforms to

$$\mathcal{L}\left\{-\frac{1}{t_0}u(t-t_0)\right\} = -\frac{e^{-t_0s}}{t_0s}$$

## Impulse Function – Laplace Transform

34

In the limit, as 
$$t_0 \rightarrow 0$$
,  $g(t) \rightarrow \delta(t)$ , so

$$\mathcal{L}\{\delta(t)\} = \lim_{t_0 \to 0} \mathcal{L}\{g(t)\}$$
$$\mathcal{L}\{\delta(t)\} = \lim_{t_0 \to 0} \frac{1 - e^{-t_0 s}}{t_0 s}$$

Apply l'Hôpital's rule

$$\mathcal{L}\{\delta(t)\} = \lim_{t_0 \to 0} \frac{\frac{d}{dt_0}(1 - e^{-t_0 s})}{\frac{d}{dt_0}(t_0 s)} = \lim_{t_0 \to 0} \frac{s e^{-t_0 s}}{s} = \frac{s}{s}$$

The Laplace transform of an impulse function is one

$$\mathcal{L}\{\delta(t)\} = 1 \tag{18}$$

## **Common Laplace Transforms**

35

| g(t)              | G(s)                            | g(t)                     | G(s)                              |
|-------------------|---------------------------------|--------------------------|-----------------------------------|
| $\delta(t)$       | 1                               | $e^{-at}\sin(\omega t)$  | $\frac{\omega}{(s+a)^2+\omega^2}$ |
| u(t)              | $\frac{1}{s}$                   | $e^{-at}\cos(\omega t)$  | $\frac{s+a}{(s+a)^2+\omega^2}$    |
| t                 | $\frac{1}{s^2}$                 | $\dot{g}(t)$             | sG(s) - g(0)                      |
| $t^m$             | $\frac{m!}{s^{m+1}}$            | $\ddot{g}(t)$            | $s^2G(s) - sg(0) - \dot{g}(0)$    |
| e <sup>-at</sup>  | $\frac{1}{s+a}$                 | $\int_0^t g(\tau) d\tau$ | $\frac{1}{s}G(s)$                 |
| te <sup>-at</sup> | $\frac{1}{(s+a)^2}$             | $e^{-at}g(t)$            | G(s+a)                            |
| $sin(\omega t)$   | $\frac{\omega}{s^2 + \omega^2}$ | $g(t-a)\cdot u(t-a)$     | $e^{-as}G(s)$                     |
| $\cos(\omega t)$  | $\frac{s}{s^2 + \omega^2}$      | $t \cdot g(t)$           | $-\frac{d}{ds}G(s)$               |

Determine the Laplace transform of a piecewise function:



- A summation of functions with known transforms:
  - Ramp
  - Pulse sum of positive and negative steps
- Transform is the sum of the individual, known transforms

- 37
- Treat the piecewise function as a sum of individual functions

 $f(t) = f_1(t) + f_2(t)$ 

- $\Box f_1(t)$ 
  - Time-shifted, gated ramp
- $\Box f_2(t)$ 
  - Time-shifted pulse
    - Sum of staggered positive and negative steps



- □  $f_1(t)$ : time-shifted, gated ramp
- Ramp w/ slope of 2:

$$r(t) = 2 \cdot t$$

Time-shifted ramp:

$$r_s(t) = 2 \cdot (t-1)$$

- Gating function
  - Unity-amplitude pulse:

$$g(t) = u(t-1) - u(t-2)$$

Gate the shifted ramp:

$$f_1(t) = r_s(t) \cdot g(t)$$
  
$$f_1(t) = 2 \cdot (t-1) \cdot [u(t-1) - u(t-2)]$$



f<sub>2</sub>(t): time-shifted pulse
 Sum of staggered positive and negative steps

Positive step delayed by 2 sec:

 $s_2(t) = 2 \cdot u(t-2)$ 

Negative step delayed by 3 sec:

$$s_3(t) = -2 \cdot u(t-3)$$

Time-shifted pulse

$$f_2(t) = s_2(t) + s_3(t)$$
  
$$f_2(t) = 2 \cdot u(t-2) - 2 \cdot u(t-3)$$





10

#### Sum the two individual time-domain functions

$$f(t) = f_1(t) + f_2(t)$$
  

$$f(t) = 2 \cdot (t-1) \cdot [u(t-1) - u(t-2)] + 2 \cdot u(t-2) - 2 \cdot u(t-3)$$
  

$$f(t) = 2[(t-1) \cdot u(t-1)]$$
  

$$-2[t \cdot u(t-2)]$$
  

$$+4[u(t-2)]$$
  

$$-2[u(t-3)]$$

 $\Box$  Transform the individual terms in f(t)

$$F(s) = \mathcal{L}\{2[(t-1) \cdot u(t-1)]\} + \mathcal{L}\{-2[t \cdot u(t-2)]\} + \mathcal{L}\{+4[u(t-2)]\} + \mathcal{L}\{-2[u(t-3)]\}$$

First term is a time-shifted ramp function

$$\mathcal{L}\{2[(t-1) \cdot u(t-1)]\} = \frac{2e^{-s}}{s^2}$$

The next term is a time-shifted step function multiplied by time

$$\mathcal{L}\left\{-2\left[t \cdot u(t-2)\right]\right\} = 2\frac{d}{ds}\left[\frac{e^{-2s}}{s}\right]$$
$$= -2\left[\frac{e^{-2s}}{s^2} + \frac{2e^{-2s}}{s}\right]$$

The last two terms are time-shifted step functions

$$\mathcal{L}\{4 \cdot u(t-2) - 2 \cdot u(t-3)\} = \frac{4e^{-2s}}{s} - \frac{2e^{-3s}}{s}$$

The piecewise function in the Laplace domain:

$$F(s) = \frac{2e^{-s}}{s^2} - 2\left[\frac{e^{-2s}}{s^2} + \frac{2e^{-2s}}{s}\right] + \frac{4e^{-2s}}{s} - \frac{2e^{-3s}}{s}$$

$$F(s) = \frac{2e^{-s}}{s^2} - \frac{2e^{-2s}}{s^2} - \frac{2e^{-3s}}{s}$$

## Inverse Laplace Transform

We've just seen how time-domain functions can be transformed to the Laplace domain. Next, we'll look at how we can solve differential equations in the Laplace domain and transform back to the time domain.

#### K. Webb

#### Laplace Transforms – Differential Equations

- 44
- Consider the simple spring/mass/damper system from the previous section of notes
- State equations are:

$$k \longrightarrow V, X$$

$$p = -\frac{1}{m}p - kx + F_{in}(t)$$

$$\dot{x} = \frac{1}{m}p$$
(1)
(2)

Taking the displacement of the mass as the output

· b · · · · · · · ·

$$y = x \tag{3}$$

Using (2) and (3) in (1) we get a single second-order differential equation

$$\ddot{y} + \frac{b}{m}\dot{y} + \frac{k}{m}y = \frac{1}{m}F_{in}(t) \tag{4}$$

1 ....

### Laplace Transforms – Differential Equations

- 45
- We'll now use Laplace transforms to determine the *step response* of the system
- □ 1N step force input

$$F_{in}(t) = 1N \cdot u(t) = \begin{cases} 0N, \ t < 0\\ 1N, \ t \ge 0 \end{cases}$$



□ For the step response, we assume *zero initial conditions* 

$$y(0) = 0$$
 and  $\dot{y}(0) = 0$  (6)

 Using the derivative property of the Laplace transform, (4) becomes

$$s^{2}Y(s) - sy(0) - \dot{y}(0) + \frac{b}{m}sY(s) - \frac{b}{m}y(0) + \frac{k}{m}Y(s) = \frac{1}{m}F_{in}(s)$$

$$s^{2}Y(s) + \frac{b}{m}sY(s) + \frac{k}{m}Y(s) = \frac{1}{m}F_{in}(s)$$
(7)

### Laplace Transforms – Differential Equations

16

The input is a step, so (7) becomes

$$s^{2}Y(s) + \frac{b}{m}sY(s) + \frac{k}{m}Y(s) = \frac{1}{m}1N\frac{1}{s}$$

□ Solving (8) for Y(s)



$$Y(s)\left(s^{2} + \frac{b}{m}s + \frac{k}{m}\right) = \frac{1}{m}\frac{1}{s}$$
$$Y(s) = \frac{1/m}{s\left(s^{2} + \frac{b}{m}s + \frac{k}{m}\right)}$$
(9)

- Equation (9) is the solution to the differential equation of (4), given the step input and I.C.'s
  - The system step response in the Laplace domain
  - Next, we need to transform back to the time domain

### Laplace Transforms – Differential Equations

$$Y(s) = \frac{1/m}{s\left(s^2 + \frac{b}{m}s + \frac{k}{m}\right)}$$

 The form of (9) is typical of Laplace transforms when dealing with linear systems



#### A rational polynomial in s

■ Here, the numerator is 0<sup>th</sup>-order

$$Y(s) = \frac{B(s)}{A(s)}$$

- □ Roots of the numerator polynomial, B(s), are called the **zeros** of the function
- Roots of the denominator polynomial, A(s), are called the **poles** of the function

## Inverse Laplace Transforms

$$Y(s) = \frac{1/m}{s\left(s^2 + \frac{b}{m}s + \frac{k}{m}\right)}$$

 To get (9) back into the time domain, we need to perform an *inverse Laplace transform*



• An integral inverse transform exists, but we don't use it

■ Instead, we use *partial fraction expansion* 

#### Partial fraction expansion

- Idea is to express the Laplace transform solution, (9), as a sum of Laplace transform terms that appear in the table
- Procedure depends on the type of roots of the denominator polynomial
  - Real and distinct
  - Repeated
  - Complex

- 49
- Consider the following system parameters

$$m = 1kg$$
$$k = \frac{16N}{m}$$
$$b = 10\frac{N \cdot s}{m}$$



Laplace transform of the step response becomes

$$Y(s) = \frac{1}{s(s^2 + 10s + 16)}$$
(10)

Factoring the denominator

$$Y(s) = \frac{1}{s(s+2)(s+8)}$$
(11)

□ In this case, the denominator polynomial has three *real, distinct roots* 

$$s_1 = 0, \qquad s_2 = -2, \qquad s_3 = -8$$

- 50
- Partial fraction expansion of (11) has the form

$$Y(s) = \frac{1}{s(s+2)(s+8)} = \frac{r_1}{s} + \frac{r_2}{s+2} + \frac{r_3}{s+8}$$

The numerator coefficients, r<sub>1</sub>, r<sub>2</sub>, and r<sub>3</sub>, are called *residues* 



- Can already see the form of the time-domain function
   Sum of a *constant* and *two decaying exponentials*
- To determine the residues, multiply both sides of (12) by the denominator of the left-hand side

$$1 = r_1(s+2)(s+8) + r_2s(s+8) + r_3s(s+2)$$
  
$$1 = r_1s^2 + 10r_1s + 16r_1 + r_2s^2 + 8r_2s + r_3s^2 + 2r_3s$$

Collecting terms, we have

$$1 = s^{2}(r_{1} + r_{2} + r_{3}) + s(10r_{1} + 8r_{2} + 2r_{3}) + 16r_{1}$$
(13)

- 51
- Equating coefficients of powers of s on both sides of (13) gives a system of three equations in three unknowns

$$s^{2}: \quad r_{1} + r_{2} + r_{3} = 0$$
  

$$s^{1}: \quad 10r_{1} + 8r_{2} + 2r_{3} = 0$$
  

$$s^{0}: \quad 16r_{1} = 1$$



Solving for the residues gives

$$r_1 = 0.0625$$
  
 $r_2 = -0.0833$   
 $r_3 = 0.0208$ 

The Laplace transform of the step response is

$$Y(s) = \frac{0.0625}{s} - \frac{0.0833}{s+2} + \frac{0.0208}{s+8}$$
(14)

 Equation (14) can now be transformed back to the time domain using the Laplace transform table

#### K. Webb

#### Inverse Laplace Transforms – Example 1

- 52
- The time-domain step response of the system is the *sum of a constant* term and two decaying exponentials:

$$y(t) = 0.0625 - 0.0833e^{-2t} + 0.0208e^{-8t}$$

- Step response plotted in MATLAB  $\square$
- Characteristic of a signal having only real poles
  - No overshoot/ringing
- Steady-state displacement agrees with intuition
  - 1N force applied to a 16N/mspring





(15)

ESE 330

#### Inverse Laplace Transforms – Example 1

53

condition

 Go back to (10) and apply the *initial value theorem*

$$y(0) = \lim_{s \to \infty} sY(s) = \lim_{s \to \infty} \frac{1}{(s^2 + 10s + 16)} = 0cm$$

Which is, in fact our assumed initial

 $m \longrightarrow F_{in}(t)$ 

k

 $\rightarrow$  V, X

Next, apply the *final value theorem* to the Laplace transform step response, (10)

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{1}{(s^2 + 10s + 16)}$$

$$y(\infty) = \frac{1}{16} = 0.0625m = 6.25cm$$

This final value agrees with both intuition and our numerical analysis

- 54
- *Reduce the damping* and re-calculate the step response





Laplace transform of the step response becomes

$$Y(s) = \frac{1}{s(s^2 + 8s + 16)}$$
 (16)

□ Factoring the denominator

$$Y(s) = \frac{1}{s(s+4)^2}$$
 (17)

 In this case, the denominator polynomial has three *real roots*, two of which are *identical*

$$s_1 = 0$$
,  $s_2 = -4$ ,  $s_3 = -4$ 

- 55
- Partial fraction expansion of (17) has the form
  - $Y(s) = \frac{1}{s(s+4)^2} = \frac{r_1}{s} + \frac{r_2}{s+4} + \frac{r_3}{(s+4)^2}$

e  $k \rightarrow V, X$ (18)  $b \rightarrow F_{in}(t)$ 

 Again, find residues by multiplying both sides of (18) by the lefthand side denominator

$$1 = r_1(s+4)^2 + r_2s(s+4) + r_3s$$
  
$$1 = r_1s^2 + 8r_1s + 16r_1 + r_2s^2 + 4r_2s + r_3s$$

□ Collecting terms, we have

$$1 = s^{2}(r_{1} + r_{2}) + s(8r_{1} + 4r_{2} + r_{3}) + 16r_{1}$$
(19)

- 56
- Equating coefficients of powers of s on both sides of (19) gives a system of three equations in three unknowns

$$s^{2}: \quad r_{1} + r_{2} = 0$$
  

$$s^{1}: \quad 8r_{1} + 4r_{2} + r_{3} = 0$$
  

$$s^{0}: \quad 16r_{1} = 1$$



Solving for the residues gives

$$r_1 = 0.0625$$
  
 $r_2 = -0.0625$   
 $r_3 = -0.2500$ 

□ The Laplace transform of the step response is

$$Y(s) = \frac{0.0625}{s} - \frac{0.0625}{s+4} - \frac{0.25}{(s+4)^2}$$
(20)

 Equation (20) can now be transformed back to the time domain using the Laplace transform table

- 57
- The time-domain step response of the system is the sum of a constant, a decaying exponential, and a decaying exponential scaled by time:

$$y(t) = 0.0625 - 0.0625e^{-4t} - 0.25te^{-4t}$$

- □ Step response plotted in MATLAB
- Again, characteristic of a signal having *only real poles*
  - Similar to the last case
  - A bit faster slow pole at s = -2 was eliminated



58

*Reduce the damping even further* and go through the process once again





Laplace transform of the step response becomes

$$Y(s) = \frac{1}{s(s^2 + 4s + 16)}$$
 (22)

- The second-order term in the denominator now has *complex roots*, so we won't factor any further
- The denominator polynomial still has a root at zero and now has two roots which are a *complex-conjugate pair*

$$s_1 = 0$$
,  $s_2 = -2 + j3.464$ ,  $s_3 = -2 - j3.464$ 

- 59
- Want to cast the partial fraction terms into forms that appear in the Laplace transform table
- Second-order terms should be of the form

$$\frac{r_i(s+\sigma)+r_{i+1}\omega}{(s+\sigma)^2+\omega^2}$$
(23)



This will transform into the sum of *damped sine* and *cosine* terms

$$\mathcal{L}^{-1}\left\{r_i\frac{(s+\sigma)}{(s+\sigma)^2+\omega^2}+r_{i+1}\frac{\omega}{(s+\sigma)^2+\omega^2}\right\}=r_ie^{-\sigma t}\cos(\omega t)+r_{i+1}e^{-\sigma t}\sin(\omega t)$$

To get the second-order term in the denominator of (22) into the form of (23), *complete the square*, to give the following partial fraction expansion

$$Y(s) = \frac{1}{s(s^2 + 4s + 16)} = \frac{r_1}{s} + \frac{r_2(s+2) + r_3(3.464)}{(s+2)^2 + (3.464)^2}$$
(24)

- 60
- Note that the σ and ω terms in (23) and
   (24) are the *real* and *imaginary parts* of the complex-conjugate denominator roots

$$s_{2,3} = -\sigma \pm j\omega = -2 \pm j3.464$$



 Multiplying both sides of (24) by the left-hand-side denominator, equate coefficients and solve for residues as before:

$$r_1 = 0.0625$$
  
 $r_2 = -0.0625$   
 $r_3 = -0.0361$ 

□ Laplace transform of the step response is

$$Y(s) = \frac{0.0625}{s} - \frac{0.0625(s+2)}{(s+2)^2 + (3.464)^2} - \frac{0.0361(3.464)}{(s+2)^2 + (3.464)^2}$$
(25)

- 61
- The time-domain step response of the system is the sum of a constant and two decaying sinusoids:

 $y(t) = 0.0625 - 0.0625e^{-2t}\cos(3.464t) - 0.0361e^{-2t}\sin(3.464t)$ 

- Step response and individual components plotted in MATLAB
- Characteristic of a signal having *complex poles*
  - Sinusoidal terms result in overshoot and (possibly) ringing



### Laplace-Domain Signals with Complex Poles

- The Laplace transform of the step response in the last example had complex poles
  - A complex-conjugate pair:  $s = -\sigma \pm j\omega$
- Results in sine and cosine terms in the time domain

 $Ae^{-\sigma t}\cos(\omega t) + Be^{-\sigma t}\sin(\omega t)$ 

- $\Box$  Imaginary part of the roots,  $\omega$ 
  - Frequency of oscillation of sinusoidal components of the signal
- $\square \quad \textit{Real part} \text{ of the roots, } \sigma,$ 
  - Rate of decay of the sinusoidal components
- Much more on this later

