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This section of notes contains an introduction
to Laplace transforms. This should mostly be a
review of material covered in your differential
equations course.

Introduction – Transforms2
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Transforms

 What is a transform?
 A mapping of a mathematical function from one domain to 

another
 A change in perspective not a change of the function

 Why use transforms?
 Some mathematical problems are difficult to solve in their 

natural domain
 Transform to and solve in a new domain, where the problem is 

simplified
 Transform back to the original domain

 Trade off the extra effort of transforming/inverse-
transforming for simplification of the solution procedure
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Transform Example – Slide Rules

 Slide rules make use of a logarithmic transform

 Multiplication/division of large numbers is difficult
 Transform the numbers to the logarithmic domain 
 Add/subtract (easy) in the log domain to multiply/divide 

(difficult) in the linear domain
 Apply the inverse transform to get back to the original 

domain
 Extra effort is required, but the problem is simplified
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Laplace Transforms5
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Laplace Transforms

 An integral transform mapping functions from the time 
domain to the Laplace domain or s-domain

𝑔𝑔 𝑡𝑡 ↔
ℒ

𝐺𝐺 𝑠𝑠
 Time-domain functions are functions of time, 𝑡𝑡

𝑔𝑔 𝑡𝑡
 Laplace-domain functions are functions of 𝒔𝒔

𝐺𝐺 𝑠𝑠
 𝑠𝑠 is a complex variable

𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗
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Laplace Transforms – Motivation 

 We’ll use Laplace transforms to solve differential 
equations

 Differential equations in the time domain 
 difficult to solve

 Apply the Laplace transform
 Transform to the s-domain

 Differential equations become algebraic equations
 easy to solve

 Transform the s-domain solution back to the time domain

 Transforming back and forth requires extra effort, but 
the solution is greatly simplified
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Laplace Transform

 Laplace Transform:

ℒ 𝑔𝑔 𝑡𝑡 = 𝐺𝐺 𝑠𝑠 = ∫0
∞𝑔𝑔 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 (1)

 Unilateral or one-sided transform
 Lower limit of integration is 𝑡𝑡 = 0
 Assumed that the time domain function is zero for all 

negative time, i.e.

𝑔𝑔 𝑡𝑡 = 0, 𝑡𝑡 < 0
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In the following section of notes, we’ll derive a 
few important properties of the Laplace 
transform.

Laplace Transform Properties9
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Laplace Transform – Linearity 

 Say we have two time-domain functions:
𝑔𝑔1 𝑡𝑡 and  𝑔𝑔2 𝑡𝑡

 Applying the transform definition, (1)

ℒ 𝛼𝛼𝑔𝑔1 𝑡𝑡 + 𝛽𝛽𝑔𝑔2 𝑡𝑡 = �
0

∞
𝛼𝛼𝑔𝑔1 𝑡𝑡 + 𝛽𝛽𝑔𝑔2 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡

= �
0

∞
𝛼𝛼𝑔𝑔1 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 + �

0

∞
𝛽𝛽𝑔𝑔2 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡

= 𝛼𝛼�
0

∞
𝑔𝑔1 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 + 𝛽𝛽�

0

∞
𝑔𝑔2 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡

= 𝛼𝛼 � ℒ 𝑔𝑔1 𝑡𝑡 + 𝛽𝛽 � ℒ 𝑔𝑔2 𝑡𝑡

ℒ 𝛼𝛼𝑔𝑔1 𝑡𝑡 + 𝛽𝛽𝑔𝑔2 𝑡𝑡 = 𝛼𝛼𝐺𝐺1 𝑠𝑠 + 𝛽𝛽𝐺𝐺2 𝑠𝑠 (2)

 The Laplace transform is a linear operation
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Laplace Transform of a Derivative

 Of particular interest, given that we want to use Laplace 
transform to solve differential equations

ℒ �̇�𝑔 𝑡𝑡 = �
0

∞
�̇�𝑔 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡

 Use integration by parts to evaluate

∫ 𝑢𝑢𝑑𝑑𝑢𝑢 = 𝑢𝑢𝑢𝑢 − ∫ 𝑢𝑢𝑑𝑑𝑢𝑢
 Let 

𝑢𝑢 = 𝑒𝑒−𝑠𝑠𝑠𝑠 and       𝑑𝑑𝑢𝑢 = �̇�𝑔 𝑡𝑡 𝑑𝑑𝑡𝑡
then

𝑑𝑑𝑢𝑢 = −𝑠𝑠𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 and       𝑢𝑢 = 𝑔𝑔 𝑡𝑡
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Laplace Transform of a Derivative

ℒ �̇�𝑔 𝑡𝑡 = 𝑒𝑒−𝑠𝑠𝑠𝑠𝑔𝑔 𝑡𝑡 �
0

∞
− �

0

∞
𝑔𝑔 𝑡𝑡 −𝑠𝑠𝑒𝑒−𝑠𝑠𝑠𝑠 𝑑𝑑𝑡𝑡

= 0 − 𝑔𝑔 0 + 𝑠𝑠 �
0

∞
𝑔𝑔 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 = −𝑔𝑔 0 + 𝑠𝑠ℒ 𝑔𝑔 𝑡𝑡

 The Laplace transform of the derivative of a 
function is the Laplace transform of that function 
multiplied by 𝑠𝑠 minus the initial value of that 
function

ℒ �̇�𝑔 𝑡𝑡 = 𝑠𝑠𝐺𝐺 𝑠𝑠 − 𝑔𝑔(0) (3)
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Higher-Order Derivatives

 The Laplace transform of a second derivative is

ℒ �̈�𝑔 𝑡𝑡 = 𝑠𝑠2𝐺𝐺 𝑠𝑠 − 𝑠𝑠𝑔𝑔 0 − �̇�𝑔 0 (4)

 In general, the Laplace transform of the 𝒏𝒏𝒕𝒕𝒕𝒕 derivative
of a function is given by

ℒ 𝑔𝑔 𝑛𝑛 = 𝑠𝑠𝑛𝑛𝐺𝐺 𝑠𝑠 − 𝑠𝑠𝑛𝑛−1𝑔𝑔 0 − 𝑠𝑠𝑛𝑛−2�̇�𝑔 0 −⋯− 𝑔𝑔 𝑛𝑛−1 0 (5)
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Laplace Transform of an Integral

 The Laplace Transform of a definite integral of a 
function is given by 

ℒ ∫0
𝑠𝑠 𝑔𝑔 𝜏𝜏 𝑑𝑑𝜏𝜏 = 1

𝑠𝑠
𝐺𝐺 𝑠𝑠 (6)

 Differentiation in the time domain corresponds to 
multiplication by 𝒔𝒔 in the Laplace domain

 Integration in the time domain corresponds to 
division by 𝒔𝒔 in the Laplace domain
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Next, we’ll derive the Laplace transform of 
some common mathematical functions

Laplace Transforms of Common 
Functions

15
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Unit Step Function

 A useful and common way of characterizing a linear 
system is with its step response
 The system’s response (output) to a unit step input

 The unit step function or Heaviside step function:

𝑢𝑢 𝑡𝑡 = �0, 𝑡𝑡 < 0
1, 𝑡𝑡 ≥ 0
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Unit Step Function – Laplace Transform

 Using the definition of the Laplace transform

ℒ 𝑢𝑢 𝑡𝑡 = �
0

∞
𝑢𝑢 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 = �

0

∞
𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡

= −
1
𝑠𝑠
𝑒𝑒−𝑠𝑠𝑠𝑠 �

0

∞
= 0 − −

1
𝑠𝑠

=
1
𝑠𝑠

 The Laplace transform of the unit step

ℒ 𝑢𝑢 𝑡𝑡 = 1
𝑠𝑠

(7)

 Note that the unilateral Laplace transform assumes that 
the signal being transformed is zero for 𝑡𝑡 < 0
 Equivalent to multiplying any signal by a unit step
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Unit Ramp Function

 The unit ramp function is a useful input signal for 
evaluating how well a system tracks a constantly-
increasing input

 The unit ramp function:

𝑔𝑔 𝑡𝑡 = �0, 𝑡𝑡 < 0
𝑡𝑡, 𝑡𝑡 ≥ 0
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Unit Ramp Function – Laplace Transform

 Could easily evaluate the transform integral
 Requires integration by parts

 Alternatively, recognize the relationship between 
the unit ramp and the unit step
 Unit ramp is the integral of the unit step

 Apply the integration property, (6)

ℒ 𝑡𝑡 = ℒ �
0

𝑠𝑠
𝑢𝑢 𝜏𝜏 𝑑𝑑𝜏𝜏 =

1
𝑠𝑠
�

1
𝑠𝑠

ℒ 𝑡𝑡 = 1
𝑠𝑠2

(8)



K. Webb ESE 330

20

Exponential – Laplace Transform

𝑔𝑔 𝑡𝑡 = 𝑒𝑒−𝑎𝑎𝑠𝑠

 Exponentials are common components of the 
responses of dynamic systems

ℒ 𝑒𝑒−𝑎𝑎𝑠𝑠 = �
0

∞
𝑒𝑒−𝑎𝑎𝑠𝑠𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 = �

0

∞
𝑒𝑒−(𝑠𝑠+𝑎𝑎)𝑠𝑠𝑑𝑑𝑡𝑡

= −
𝑒𝑒− 𝑠𝑠+𝑎𝑎 𝑠𝑠

𝑠𝑠 + 𝑎𝑎
�
0

∞
= 0 − −

1
𝑠𝑠 + 𝑎𝑎

ℒ 𝑒𝑒−𝑎𝑎𝑠𝑠 = 1
𝑠𝑠+𝑎𝑎

(9)
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Sinusoidal functions

 Another class of commonly occurring signals, when 
dealing with dynamic systems, is sinusoidal signals –
both sin 𝑗𝑗𝑡𝑡 and cos 𝑗𝑗𝑡𝑡

𝑔𝑔 𝑡𝑡 = sin 𝑗𝑗𝑡𝑡

 Recall Euler’s formula

𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠 = cos 𝑗𝑗𝑡𝑡 + 𝑗𝑗 sin 𝑗𝑗𝑡𝑡

 From which it follows that

sin 𝑗𝑗𝑡𝑡 =
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠 − 𝑒𝑒−𝑗𝑗𝑗𝑗𝑠𝑠

2𝑗𝑗
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Sinusoidal functions

ℒ sin 𝑗𝑗𝑡𝑡 =
1
2𝑗𝑗
�
0

∞
𝑒𝑒𝑗𝑗𝑗𝑗𝑠𝑠 − 𝑒𝑒−𝑗𝑗𝑗𝑗𝑠𝑠 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡

=
1
2𝑗𝑗
�
0

∞
𝑒𝑒− 𝑠𝑠−𝑗𝑗𝑗𝑗 𝑠𝑠 − 𝑒𝑒− 𝑠𝑠+𝑗𝑗𝑗𝑗 𝑠𝑠 𝑑𝑑𝑡𝑡

=
1
2𝑗𝑗
�
0

∞
𝑒𝑒− 𝑠𝑠−𝑗𝑗𝑗𝑗 𝑠𝑠𝑑𝑑𝑡𝑡 −

1
2𝑗𝑗
�
0

∞
𝑒𝑒− 𝑠𝑠+𝑗𝑗𝑗𝑗 𝑠𝑠𝑑𝑑𝑡𝑡

=
1
2𝑗𝑗

𝑒𝑒− 𝑠𝑠−𝑗𝑗𝑗𝑗 𝑠𝑠

− 𝑠𝑠 − 𝑗𝑗𝑗𝑗 �
0

∞
−

1
2𝑗𝑗

𝑒𝑒− 𝑠𝑠+𝑗𝑗𝑗𝑗 𝑠𝑠

− 𝑠𝑠 + 𝑗𝑗𝑗𝑗 �
0

∞

=
1
2𝑗𝑗

0 +
1

𝑠𝑠 − 𝑗𝑗𝑗𝑗
−

1
2𝑗𝑗

0 +
1

𝑠𝑠 + 𝑗𝑗𝑗𝑗
=

1
2𝑗𝑗

2𝑗𝑗𝑗𝑗
𝑠𝑠2 + 𝑗𝑗2

ℒ sin 𝑗𝑗𝑡𝑡 = 𝑗𝑗
𝑠𝑠2+𝑗𝑗2 (10)
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Sinusoidal functions

 It can similarly be shown that 

ℒ cos 𝑗𝑗𝑡𝑡 = 𝑠𝑠
𝑠𝑠2+𝑗𝑗2 (11)

 Note that for neither sin(𝑗𝑗𝑡𝑡) nor cos 𝑗𝑗𝑡𝑡 is the 
function equal to zero for 𝑡𝑡 < 0 as the Laplace 
transform assumes

 Really, what we’ve derived is

ℒ 𝑢𝑢 𝑡𝑡 � sin 𝑗𝑗𝑡𝑡 and      ℒ 𝑢𝑢 𝑡𝑡 � cos 𝑗𝑗𝑡𝑡
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More Properties and Theorems24
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Multiplication by an Exponential, 𝑒𝑒−𝑎𝑎𝑠𝑠

 We’ve seen that  ℒ 𝑒𝑒−𝑎𝑎𝑠𝑠 = 1
𝑠𝑠+𝑎𝑎

 What if another function is multiplied by the 
decaying exponential term?

ℒ 𝑔𝑔 𝑡𝑡 𝑒𝑒−𝑎𝑎𝑠𝑠 = �
0

∞
𝑔𝑔 𝑡𝑡 𝑒𝑒−𝑎𝑎𝑠𝑠𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡 =�

0

∞
𝑔𝑔 𝑡𝑡 𝑒𝑒− 𝑠𝑠+𝑎𝑎 𝑠𝑠𝑑𝑑𝑡𝑡

 This is just the Laplace transform of 𝑔𝑔 𝑡𝑡 with 𝑠𝑠
replaced by 𝑠𝑠 + 𝑎𝑎

ℒ 𝑔𝑔 𝑡𝑡 𝑒𝑒−𝑎𝑎𝑠𝑠 = 𝐺𝐺 𝑠𝑠 + 𝑎𝑎 (12)
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Decaying Sinusoids

 The Laplace transform of a sinusoid is

ℒ sin 𝑗𝑗𝑡𝑡 =
𝑗𝑗

𝑠𝑠2 + 𝑗𝑗2

 And, multiplication by an decaying exponential, 
𝑒𝑒−𝑎𝑎𝑠𝑠, results in a substitution of 𝑠𝑠 + 𝑎𝑎 for 𝑠𝑠, so

ℒ 𝑒𝑒−𝑎𝑎𝑠𝑠 sin 𝑗𝑗𝑡𝑡 =
𝑗𝑗

𝑠𝑠 + 𝑎𝑎 2 + 𝑗𝑗2

and

ℒ 𝑒𝑒−𝑎𝑎𝑠𝑠 cos 𝑗𝑗𝑡𝑡 =
𝑠𝑠 + 𝑎𝑎

𝑠𝑠 + 𝑎𝑎 2 + 𝑗𝑗2
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Time Shifting

 Consider a time-domain 
function, 𝑔𝑔 𝑡𝑡

 To Laplace transform 𝑔𝑔 𝑡𝑡
we’ve assumed 𝑔𝑔 𝑡𝑡 = 0 for 
𝑡𝑡 < 0, or equivalently 
multiplied by 𝑢𝑢(𝑡𝑡)

 To shift 𝑔𝑔 𝑡𝑡 by an amount, 
𝑎𝑎, in time, we must also 
multiply by a shifted step 
function, 𝑢𝑢 𝑡𝑡 − 𝑎𝑎
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Time Shifting – Laplace Transform

 The transform of the shifted function is given by

ℒ 𝑔𝑔 𝑡𝑡 − 𝑎𝑎 � 𝑢𝑢 𝑡𝑡 − 𝑎𝑎 = �
𝑎𝑎

∞
𝑔𝑔 𝑡𝑡 − 𝑎𝑎 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑡𝑡

 Performing a change of variables, let

𝜏𝜏 = 𝑡𝑡 − 𝑎𝑎 and  𝑑𝑑𝜏𝜏 = 𝑑𝑑𝑡𝑡

 The transform becomes

ℒ 𝑔𝑔 𝜏𝜏 � 𝑢𝑢 𝜏𝜏 = �
0

∞
𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠 𝜏𝜏+𝑎𝑎 𝑑𝑑𝜏𝜏 = �

0

∞
𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑎𝑎𝑠𝑠𝑒𝑒−𝑠𝑠𝜏𝜏𝑑𝑑𝜏𝜏 = 𝑒𝑒−𝑎𝑎𝑠𝑠 �

0

∞
𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠𝜏𝜏𝑑𝑑𝜏𝜏

 A shift by 𝑎𝑎 in the time domain corresponds to multiplication by 𝑒𝑒−𝑎𝑎𝑠𝑠 in the 
Laplace domain

ℒ 𝑔𝑔 𝑡𝑡 − 𝑎𝑎 � 𝑢𝑢 𝑡𝑡 − 𝑎𝑎 = 𝑒𝑒−𝑎𝑎𝑠𝑠𝐺𝐺 𝑠𝑠 (13)



K. Webb ESE 330

29

Multiplication by time, 𝑡𝑡

 The Laplace transform of a function multiplied by time:

ℒ 𝑡𝑡 ⋅ 𝑓𝑓 𝑡𝑡 = − 𝑑𝑑
𝑑𝑑𝑠𝑠
𝐹𝐹(𝑠𝑠) (14)

 Consider a unit ramp function:

ℒ 𝑡𝑡 = ℒ 𝑡𝑡 ⋅ 𝑢𝑢 𝑡𝑡 = −
𝑑𝑑
𝑑𝑑𝑠𝑠

1
𝑠𝑠 =

1
𝑠𝑠2

 Or a parabola:
ℒ 𝑡𝑡2 = ℒ 𝑡𝑡 ⋅ 𝑡𝑡 = − 𝑑𝑑

𝑑𝑑𝑠𝑠
1
𝑠𝑠2

= 2
𝑠𝑠3

 In general

ℒ 𝑡𝑡𝑚𝑚 =
𝑚𝑚!
𝑠𝑠𝑚𝑚+1
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Initial and Final Value Theorems

 Initial Value Theorem
 Can determine the initial value of a time-domain signal or 

function from its Laplace transform

(15)

 Final Value Theorem
 Can determine the steady-state value of a time-domain 

signal or function from its Laplace transform

(16)

𝑔𝑔 0 = lim
𝑠𝑠→∞

𝑠𝑠𝐺𝐺 𝑠𝑠

𝑔𝑔 ∞ = lim
𝑠𝑠→0

𝑠𝑠𝐺𝐺 𝑠𝑠
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Convolution

 Convolution of two functions or signals is given by

𝑔𝑔 𝑡𝑡 ∗ 𝑥𝑥 𝑡𝑡 = �
0

𝑠𝑠
𝑔𝑔 𝜏𝜏 𝑥𝑥 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝜏𝜏

 Result is a function of time
 𝑥𝑥 𝜏𝜏 is flipped in time and shifted by 𝑡𝑡
 Multiply the flipped/shifted signal and the other signal
 Integrate the result from 𝜏𝜏 = 0 … 𝑡𝑡

 May seem like an odd, arbitrary function now, but we’ll later 
see why it is very important

 Convolution in the time domain corresponds to multiplication 
in the Laplace domain

ℒ 𝑔𝑔 𝑡𝑡 ∗ 𝑥𝑥 𝑡𝑡 = 𝐺𝐺 𝑠𝑠 𝑋𝑋 𝑠𝑠 (17)
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Impulse Function

 Another common way to describe a dynamic system 
is with its impulse response
 System output in response to an impulse function input

 Impulse function defined by
𝛿𝛿 𝑡𝑡 = 0, 𝑡𝑡 ≠ 0

�
−∞

∞
𝛿𝛿 𝑡𝑡 𝑑𝑑𝑡𝑡 = 1

 An infinitely tall, infinitely                                                   
narrow pulse
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Impulse Function – Laplace Transform

 To derive ℒ 𝛿𝛿 𝑡𝑡 , consider the following function

𝑔𝑔 𝑡𝑡 = �
1
𝑡𝑡0

, 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡0

0, 𝑡𝑡 < 0 or 𝑡𝑡 > 𝑡𝑡0

 Can think of 𝑔𝑔 𝑡𝑡 as the sum of two step functions:

𝑔𝑔 𝑡𝑡 =
1
𝑡𝑡0
𝑢𝑢 𝑡𝑡 −

1
𝑡𝑡0
𝑢𝑢 𝑡𝑡 − 𝑡𝑡0

 The transform of the first term is 

ℒ
1
𝑡𝑡0
𝑢𝑢 𝑡𝑡 =

1
𝑡𝑡0𝑠𝑠

 Using the time-shifting property, the second term transforms to

ℒ −
1
𝑡𝑡0
𝑢𝑢 𝑡𝑡 − 𝑡𝑡0 = −

𝑒𝑒−𝑠𝑠0𝑠𝑠

𝑡𝑡0𝑠𝑠



K. Webb ESE 330

34

Impulse Function – Laplace Transform

 In the limit, as 𝑡𝑡0 → 0, 𝑔𝑔 𝑡𝑡 → 𝛿𝛿 𝑡𝑡 , so

ℒ 𝛿𝛿 𝑡𝑡 = lim
𝑠𝑠0→0

ℒ 𝑔𝑔 𝑡𝑡

ℒ 𝛿𝛿 𝑡𝑡 = lim
𝑠𝑠0→0

1 − 𝑒𝑒−𝑠𝑠0𝑠𝑠

𝑡𝑡0𝑠𝑠

 Apply l’Hôpital’s rule

ℒ 𝛿𝛿 𝑡𝑡 = lim
𝑠𝑠0→0

𝑑𝑑
𝑑𝑑𝑡𝑡0

1 − 𝑒𝑒−𝑠𝑠0𝑠𝑠

𝑑𝑑
𝑑𝑑𝑡𝑡0

𝑡𝑡0𝑠𝑠
= lim

𝑠𝑠0→0

𝑠𝑠𝑒𝑒−𝑠𝑠0𝑠𝑠

𝑠𝑠
=
𝑠𝑠
𝑠𝑠

 The Laplace transform of an impulse function is one

ℒ 𝛿𝛿 𝑡𝑡 = 1 (18)
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Common Laplace Transforms

𝒈𝒈 𝒕𝒕 𝑮𝑮 𝒔𝒔

𝛿𝛿 𝑡𝑡 1

𝑢𝑢 𝑡𝑡 1
𝑠𝑠

𝑡𝑡 1
𝑠𝑠2

𝑡𝑡𝑚𝑚 𝑚𝑚!
𝑠𝑠𝑚𝑚+1

𝑒𝑒−𝑎𝑎𝑠𝑠 1
𝑠𝑠 + 𝑎𝑎

𝑡𝑡𝑒𝑒−𝑎𝑎𝑠𝑠
1

𝑠𝑠 + 𝑎𝑎 2

sin 𝑗𝑗𝑡𝑡
𝑗𝑗

𝑠𝑠2 + 𝑗𝑗2

cos 𝑗𝑗𝑡𝑡
𝑠𝑠

𝑠𝑠2 + 𝑗𝑗2

𝒈𝒈 𝒕𝒕 𝑮𝑮 𝒔𝒔

𝑒𝑒−𝑎𝑎𝑠𝑠 sin 𝑗𝑗𝑡𝑡
𝑗𝑗

𝑠𝑠 + 𝑎𝑎 2 + 𝑗𝑗2

𝑒𝑒−𝑎𝑎𝑠𝑠 cos 𝑗𝑗𝑡𝑡
𝑠𝑠 + 𝑎𝑎

𝑠𝑠 + 𝑎𝑎 2 + 𝑗𝑗2

�̇�𝑔(𝑡𝑡) 𝑠𝑠𝐺𝐺 𝑠𝑠 − 𝑔𝑔(0)

�̈�𝑔 𝑡𝑡 𝑠𝑠2𝐺𝐺 𝑠𝑠 − 𝑠𝑠𝑔𝑔 0 − �̇�𝑔 0

�
0

𝑠𝑠
𝑔𝑔 𝜏𝜏 𝑑𝑑𝜏𝜏

1
𝑠𝑠
𝐺𝐺 𝑠𝑠

𝑒𝑒−𝑎𝑎𝑠𝑠𝑔𝑔 𝑡𝑡 𝐺𝐺 𝑠𝑠 + 𝑎𝑎

𝑔𝑔 𝑡𝑡 − 𝑎𝑎 � 𝑢𝑢 𝑡𝑡 − 𝑎𝑎 𝑒𝑒−𝑎𝑎𝑠𝑠𝐺𝐺 𝑠𝑠

𝑡𝑡 � 𝑔𝑔 𝑡𝑡 −
𝑑𝑑
𝑑𝑑𝑠𝑠
𝐺𝐺 𝑠𝑠
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Example – Piecewise Function Laplace Transform

 Determine the Laplace transform of a piecewise function:

 A summation of functions with known transforms:
 Ramp
 Pulse – sum of positive and negative steps 

 Transform is the sum of the individual, known transforms
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 Treat the piecewise function as a sum of individual 
functions

Example – Piecewise Function Laplace Transform

𝑓𝑓 𝑡𝑡 = 𝑓𝑓1 𝑡𝑡 + 𝑓𝑓2 𝑡𝑡

 𝑓𝑓1 𝑡𝑡
 Time-shifted, gated ramp

 𝑓𝑓2 𝑡𝑡
 Time-shifted pulse
 Sum of staggered positive 

and negative steps
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Example – Piecewise Function Laplace Transform

 𝑓𝑓1 𝑡𝑡 : time-shifted, gated ramp
 Ramp w/ slope of 2:

𝑟𝑟 𝑡𝑡 = 2 ⋅ 𝑡𝑡

 Time-shifted ramp:
𝑟𝑟𝑠𝑠 𝑡𝑡 = 2 ⋅ (𝑡𝑡 − 1)

 Gating function
 Unity-amplitude pulse:

𝑔𝑔 𝑡𝑡 = 𝑢𝑢 𝑡𝑡 − 1 − 𝑢𝑢 𝑡𝑡 − 2

 Gate the shifted ramp:
𝑓𝑓1 𝑡𝑡 = 𝑟𝑟𝑠𝑠 𝑡𝑡 ⋅ 𝑔𝑔 𝑡𝑡

𝑓𝑓1 𝑡𝑡 = 2 ⋅ 𝑡𝑡 − 1 ⋅ 𝑢𝑢 𝑡𝑡 − 1 − 𝑢𝑢 𝑡𝑡 − 2
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Example – Piecewise Function Laplace Transform

 𝑓𝑓2 𝑡𝑡 : time-shifted pulse
 Sum of staggered positive and 

negative steps

 Positive step delayed by 2 sec:
𝑠𝑠2 𝑡𝑡 = 2 ⋅ 𝑢𝑢(𝑡𝑡 − 2)

 Negative step delayed by 3 sec:
𝑠𝑠3 𝑡𝑡 = −2 ⋅ 𝑢𝑢(𝑡𝑡 − 3)

 Time-shifted pulse
𝑓𝑓2 𝑡𝑡 = 𝑠𝑠2 𝑡𝑡 + 𝑠𝑠3 𝑡𝑡

𝑓𝑓2 𝑡𝑡 = 2 ⋅ 𝑢𝑢 𝑡𝑡 − 2 − 2 ⋅ 𝑢𝑢(𝑡𝑡 − 3)
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Example – Piecewise Function Laplace Transform

 Sum the two individual time-domain functions
𝑓𝑓 𝑡𝑡 = 𝑓𝑓1 𝑡𝑡 + 𝑓𝑓2 𝑡𝑡
𝑓𝑓 𝑡𝑡 = 2 ⋅ 𝑡𝑡 − 1 ⋅ 𝑢𝑢 𝑡𝑡 − 1 − 𝑢𝑢 𝑡𝑡 − 2 + 2 ⋅ 𝑢𝑢 𝑡𝑡 − 2 − 2 ⋅ 𝑢𝑢(𝑡𝑡 − 3)
𝑓𝑓 𝑡𝑡 = 2 𝑡𝑡 − 1 ⋅ 𝑢𝑢 𝑡𝑡 − 1

−2 𝑡𝑡 ⋅ 𝑢𝑢 𝑡𝑡 − 2
+4 𝑢𝑢 𝑡𝑡 − 2
−2 𝑢𝑢 𝑡𝑡 − 3

 Transform the individual terms in 𝑓𝑓 𝑡𝑡
𝐹𝐹 𝑠𝑠 = ℒ 2 𝑡𝑡 − 1 ⋅ 𝑢𝑢 𝑡𝑡 − 1

+ℒ −2 𝑡𝑡 ⋅ 𝑢𝑢 𝑡𝑡 − 2
+ℒ +4 𝑢𝑢 𝑡𝑡 − 2
+ℒ −2 𝑢𝑢 𝑡𝑡 − 3
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Example – Piecewise Function Laplace Transform

 First term is a time-shifted ramp function

ℒ 2 𝑡𝑡 − 1 ⋅ 𝑢𝑢 𝑡𝑡 − 1 =
2𝑒𝑒−𝑠𝑠

𝑠𝑠2

 The next term is a time-shifted step function 
multiplied by time

ℒ −2 𝑡𝑡 ⋅ 𝑢𝑢 𝑡𝑡 − 2 = 2
𝑑𝑑
𝑑𝑑𝑠𝑠

𝑒𝑒−2𝑠𝑠

𝑠𝑠

= −2
𝑒𝑒−2𝑠𝑠

𝑠𝑠2
+

2𝑒𝑒−2𝑠𝑠

𝑠𝑠
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Example – Piecewise Function Laplace Transform

 The last two terms are time-shifted step functions

ℒ 4 ⋅ 𝑢𝑢 𝑡𝑡 − 2 − 2 ⋅ 𝑢𝑢 𝑡𝑡 − 3 =
4𝑒𝑒−2𝑠𝑠

𝑠𝑠
−

2𝑒𝑒−3𝑠𝑠

𝑠𝑠

 The piecewise function in the Laplace domain:

𝐹𝐹 𝑠𝑠 =
2𝑒𝑒−𝑠𝑠

𝑠𝑠2
− 2

𝑒𝑒−2𝑠𝑠

𝑠𝑠2
+

2𝑒𝑒−2𝑠𝑠

𝑠𝑠
+

4𝑒𝑒−2𝑠𝑠

𝑠𝑠
−

2𝑒𝑒−3𝑠𝑠

𝑠𝑠

𝐹𝐹 𝑠𝑠 =
2𝑒𝑒−𝑠𝑠

𝑠𝑠2
−
2𝑒𝑒−2𝑠𝑠

𝑠𝑠2
−

2𝑒𝑒−3𝑠𝑠

𝑠𝑠
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We’ve just seen how time-domain functions can be
transformed to the Laplace domain. Next, we’ll look at
how we can solve differential equations in the Laplace
domain and transform back to the time domain.

Inverse Laplace Transform43
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Laplace Transforms – Differential Equations

 Consider the simple 
spring/mass/damper system from 
the previous section of notes

 State equations are:

�̇�𝑝 = − 𝑏𝑏
𝑚𝑚
𝑝𝑝 − 𝑘𝑘𝑥𝑥 + 𝐹𝐹𝑖𝑖𝑛𝑛 𝑡𝑡 (1)

�̇�𝑥 = 1
𝑚𝑚
𝑝𝑝 (2)

 Taking the displacement of the mass as the output

𝑦𝑦 = 𝑥𝑥 (3)

 Using (2) and (3) in (1) we get a single second-order differential 
equation

�̈�𝑦 + 𝑏𝑏
𝑚𝑚
�̇�𝑦 + 𝑘𝑘

𝑚𝑚
𝑦𝑦 = 1

𝑚𝑚
𝐹𝐹𝑖𝑖𝑛𝑛 𝑡𝑡 (4)
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Laplace Transforms – Differential Equations

 We’ll now use Laplace transforms to determine 
the step response of the system

 1N step force input

𝐹𝐹𝑖𝑖𝑛𝑛 𝑡𝑡 = 1𝑁𝑁 � 𝑢𝑢 𝑡𝑡 = �0𝑁𝑁, 𝑡𝑡 < 0
1𝑁𝑁, 𝑡𝑡 ≥ 0 (5)

 For the step response, we assume zero initial conditions

𝑦𝑦 0 = 0 and   �̇�𝑦 0 = 0 (6)

 Using the derivative property of the Laplace transform, (4) 
becomes

𝑠𝑠2𝑌𝑌 𝑠𝑠 − 𝑠𝑠𝑦𝑦 0 − �̇�𝑦 0 +
𝑏𝑏
𝑚𝑚
𝑠𝑠𝑌𝑌 𝑠𝑠 −

𝑏𝑏
𝑚𝑚
𝑦𝑦(0) +

𝑘𝑘
𝑚𝑚
𝑌𝑌 𝑠𝑠 =

1
𝑚𝑚
𝐹𝐹𝑖𝑖𝑛𝑛 𝑠𝑠

𝑠𝑠2𝑌𝑌 𝑠𝑠 + 𝑏𝑏
𝑚𝑚
𝑠𝑠𝑌𝑌 𝑠𝑠 + 𝑘𝑘

𝑚𝑚
𝑌𝑌 𝑠𝑠 = 1

𝑚𝑚
𝐹𝐹𝑖𝑖𝑛𝑛 𝑠𝑠 (7)
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Laplace Transforms – Differential Equations

 The input is a step, so (7) becomes

𝑠𝑠2𝑌𝑌 𝑠𝑠 + 𝑏𝑏
𝑚𝑚
𝑠𝑠𝑌𝑌 𝑠𝑠 + 𝑘𝑘

𝑚𝑚
𝑌𝑌 𝑠𝑠 = 1

𝑚𝑚
1𝑁𝑁 1

𝑠𝑠
(8)

 Solving (8) for 𝑌𝑌 𝑠𝑠

𝑌𝑌 𝑠𝑠 𝑠𝑠2 +
𝑏𝑏
𝑚𝑚 𝑠𝑠 +

𝑘𝑘
𝑚𝑚 =

1
𝑚𝑚

1
𝑠𝑠

𝑌𝑌 𝑠𝑠 = 1/𝑚𝑚

𝑠𝑠 𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

(9)

 Equation (9) is the solution to the differential equation of (4), 
given the step input and I.C.’s
 The system step response in the Laplace domain
 Next, we need to transform back to the time domain
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Laplace Transforms – Differential Equations

𝑌𝑌 𝑠𝑠 = 1/𝑚𝑚

𝑠𝑠 𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

(9)

 The form of (9) is typical of Laplace 
transforms when dealing with linear 
systems

 A rational polynomial in 𝑠𝑠
 Here, the numerator is 0th-order

𝑌𝑌 𝑠𝑠 =
𝐵𝐵 𝑠𝑠
𝐴𝐴 𝑠𝑠

 Roots of the numerator polynomial, 𝐵𝐵 𝑠𝑠 , are called the zeros of 
the function

 Roots of the denominator polynomial, 𝐴𝐴 𝑠𝑠 , are called the poles
of the function
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Inverse Laplace Transforms

𝑌𝑌 𝑠𝑠 = 1/𝑚𝑚

𝑠𝑠 𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

(9)

 To get (9) back into the time domain, we 
need to perform an inverse Laplace 
transform
 An integral inverse transform exists, but we don’t use it
 Instead, we use partial fraction expansion

 Partial fraction expansion
 Idea is to express the Laplace transform solution, (9), as a sum of 

Laplace transform terms that appear in the table
 Procedure depends on the type of roots of the denominator polynomial

 Real and distinct
 Repeated
 Complex
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Inverse Laplace Transforms – Example 1

 Consider the following system parameters
𝑚𝑚 = 1𝑘𝑘𝑔𝑔

𝑘𝑘 =
16𝑁𝑁
𝑚𝑚

𝑏𝑏 = 10
𝑁𝑁 � 𝑠𝑠
𝑚𝑚

 Laplace transform of the step response becomes

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠2+10𝑠𝑠+16

(10)

 Factoring the denominator

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠+2 𝑠𝑠+8

(11)

 In this case, the denominator polynomial has three real, distinct roots

𝑠𝑠1 = 0, 𝑠𝑠2 = −2, 𝑠𝑠3 = −8
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Inverse Laplace Transforms – Example 1

 Partial fraction expansion of (11) has the form

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠+2 𝑠𝑠+8

= 𝑟𝑟1
𝑠𝑠

+ 𝑟𝑟2
𝑠𝑠+2

+ 𝑟𝑟3
𝑠𝑠+8

(12)

 The numerator coefficients, 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3, are 
called residues

 Can already see the form of the time-domain function
 Sum of a constant and two decaying exponentials

 To determine the residues, multiply both sides of (12) by the denominator of 
the left-hand side 

1 = 𝑟𝑟1 𝑠𝑠 + 2 𝑠𝑠 + 8 + 𝑟𝑟2𝑠𝑠 𝑠𝑠 + 8 + 𝑟𝑟3𝑠𝑠 𝑠𝑠 + 2

1 = 𝑟𝑟1𝑠𝑠2 + 10𝑟𝑟1𝑠𝑠 + 16𝑟𝑟1 + 𝑟𝑟2𝑠𝑠2 + 8𝑟𝑟2𝑠𝑠 + 𝑟𝑟3𝑠𝑠2 + 2𝑟𝑟3𝑠𝑠

 Collecting terms, we have

1 = 𝑠𝑠2 𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3 + 𝑠𝑠 10𝑟𝑟1 + 8𝑟𝑟2 + 2𝑟𝑟3 + 16𝑟𝑟1 (13)
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Inverse Laplace Transforms – Example 1

 Equating coefficients of powers of 𝑠𝑠 on both 
sides of (13) gives a system of three equations 
in three unknowns

𝑠𝑠2: 𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3 = 0
𝑠𝑠1: 10𝑟𝑟1 + 8𝑟𝑟2 + 2𝑟𝑟3 = 0
𝑠𝑠0: 16𝑟𝑟1 = 1

 Solving for the residues gives
𝑟𝑟1 = 0.0625
𝑟𝑟2 = −0.0833
𝑟𝑟3 = 0.0208

 The Laplace transform of the step response is

𝑌𝑌 𝑠𝑠 = 0.0625
𝑠𝑠

− 0.0833
𝑠𝑠+2

+ 0.0208
𝑠𝑠+8

(14)

 Equation (14) can now be transformed back to the time domain using the 
Laplace transform table
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Inverse Laplace Transforms – Example 1

 The time-domain step response of the system is the sum of a constant 
term and two decaying exponentials:

𝑦𝑦 𝑡𝑡 = 0.0625 − 0.0833𝑒𝑒−2𝑠𝑠 + 0.0208𝑒𝑒−8𝑠𝑠 (15)

 Step response plotted in MATLAB

 Characteristic of a signal having 
only real poles
 No overshoot/ringing

 Steady-state displacement agrees 
with intuition
 1𝑁𝑁 force applied to a 16𝑁𝑁/𝑚𝑚

spring
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Inverse Laplace Transforms – Example 1

 Go back to (10) and apply the initial value 
theorem

𝑦𝑦 0 = lim
𝑠𝑠→∞

𝑠𝑠𝑌𝑌 𝑠𝑠 = lim
𝑠𝑠→∞

1
𝑠𝑠2 + 10𝑠𝑠 + 16

= 0𝑐𝑐𝑚𝑚

 Which is, in fact our assumed initial 
condition

 Next, apply the final value theorem to the Laplace transform step 
response, (10)

𝑦𝑦 ∞ = lim
𝑠𝑠→0

𝑠𝑠𝑌𝑌 𝑠𝑠 = lim
𝑠𝑠→0

1
𝑠𝑠2 + 10𝑠𝑠 + 16

𝑦𝑦 ∞ = 1
16

= 0.0625𝑚𝑚 = 6.25𝑐𝑐𝑚𝑚

 This final value agrees with both intuition and our numerical analysis
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Inverse Laplace Transforms – Example 2

 Reduce the damping and re-calculate the step 
response

𝑚𝑚 = 1𝑘𝑘𝑔𝑔

𝑘𝑘 =
16𝑁𝑁
𝑚𝑚

𝑏𝑏 = 8
𝑁𝑁 � 𝑠𝑠
𝑚𝑚

 Laplace transform of the step response becomes

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠2+8𝑠𝑠+16

(16)

 Factoring the denominator

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠+4 2 (17)

 In this case, the denominator polynomial has three real roots, two of which 
are identical

𝑠𝑠1 = 0, 𝑠𝑠2 = −4, 𝑠𝑠3 = −4
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 Partial fraction expansion of (17) has the 
form

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠+4 2 = 𝑟𝑟1

𝑠𝑠
+ 𝑟𝑟2

𝑠𝑠+4
+ 𝑟𝑟3

𝑠𝑠+4 2 (18)

 Again, find residues by multiplying both sides of (18) by the left-
hand side denominator  

1 = 𝑟𝑟1 𝑠𝑠 + 4 2 + 𝑟𝑟2𝑠𝑠 𝑠𝑠 + 4 + 𝑟𝑟3𝑠𝑠

1 = 𝑟𝑟1𝑠𝑠2 + 8𝑟𝑟1𝑠𝑠 + 16𝑟𝑟1 + 𝑟𝑟2𝑠𝑠2 + 4𝑟𝑟2𝑠𝑠 + 𝑟𝑟3𝑠𝑠

 Collecting terms, we have

1 = 𝑠𝑠2 𝑟𝑟1 + 𝑟𝑟2 + 𝑠𝑠 8𝑟𝑟1 + 4𝑟𝑟2 + 𝑟𝑟3 + 16𝑟𝑟1 (19)
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Inverse Laplace Transforms – Example 2

 Equating coefficients of powers of 𝑠𝑠 on both 
sides of (19) gives a system of three equations 
in three unknowns

𝑠𝑠2: 𝑟𝑟1 + 𝑟𝑟2 = 0
𝑠𝑠1: 8𝑟𝑟1 + 4𝑟𝑟2 + 𝑟𝑟3 = 0
𝑠𝑠0: 16𝑟𝑟1 = 1

 Solving for the residues gives
𝑟𝑟1 = 0.0625
𝑟𝑟2 = −0.0625
𝑟𝑟3 = −0.2500

 The Laplace transform of the step response is

𝑌𝑌 𝑠𝑠 = 0.0625
𝑠𝑠

− 0.0625
𝑠𝑠+4

− 0.25
𝑠𝑠+4 2 (20)

 Equation (20) can now be transformed back to the time domain using the 
Laplace transform table
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 The time-domain step response of the system is the sum of a constant, a 
decaying exponential, and a decaying exponential scaled by time:

𝑦𝑦 𝑡𝑡 = 0.0625 − 0.0625𝑒𝑒−4𝑠𝑠 − 0. 25𝑡𝑡𝑒𝑒−4𝑠𝑠 (21)

 Step response plotted in MATLAB

 Again, characteristic of a signal 
having only real poles

 Similar to the last case

 A bit faster – slow pole at 𝑠𝑠 = −2
was eliminated
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Inverse Laplace Transforms – Example 3

 Reduce the damping even further and go 
through the process once again

𝑚𝑚 = 1𝑘𝑘𝑔𝑔

𝑘𝑘 =
16𝑁𝑁
𝑚𝑚

𝑏𝑏 = 4
𝑁𝑁 � 𝑠𝑠
𝑚𝑚

 Laplace transform of the step response becomes

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠2+4𝑠𝑠+16

(22)

 The second-order term in the denominator now has complex roots, so we 
won’t factor any further

 The denominator polynomial still has a root at zero and now has two roots 
which are a complex-conjugate pair

𝑠𝑠1 = 0, 𝑠𝑠2 = −2 + 𝑗𝑗𝑗.464, 𝑠𝑠3 = −2 − 𝑗𝑗𝑗.464
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 Want to cast the  partial fraction terms into 
forms that appear in the Laplace transform 
table

 Second-order terms should be of the form  

𝑟𝑟𝑖𝑖(𝑠𝑠+𝜎𝜎)+𝑟𝑟𝑖𝑖+1𝑗𝑗
𝑠𝑠+𝜎𝜎 2+𝑗𝑗2 (23)

 This will transform into the sum of damped sine and cosine terms

ℒ−1 𝑟𝑟𝑖𝑖
𝑠𝑠 + 𝜎𝜎

𝑠𝑠 + 𝜎𝜎 2 + 𝑗𝑗2 + 𝑟𝑟𝑖𝑖+1
𝑗𝑗

𝑠𝑠 + 𝜎𝜎 2 + 𝑗𝑗2 = 𝑟𝑟𝑖𝑖𝑒𝑒−𝜎𝜎𝑠𝑠 cos 𝑗𝑗𝑡𝑡 + 𝑟𝑟𝑖𝑖+1𝑒𝑒−𝜎𝜎𝑠𝑠 sin 𝑗𝑗𝑡𝑡

 To get the second-order term in the denominator of (22) into the form of 
(23), complete the square, to give the following partial fraction expansion

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠 𝑠𝑠2+4𝑠𝑠+16

= 𝑟𝑟1
𝑠𝑠

+ 𝑟𝑟2 𝑠𝑠+2 +𝑟𝑟3 3.464
𝑠𝑠+2 2+ 3.464 2 (24)
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 Note that the 𝜎𝜎 and 𝑗𝑗 terms in (23) and 
(24) are the real and imaginary parts of 
the complex-conjugate denominator roots 

𝑠𝑠2,3 = −𝜎𝜎 ± 𝑗𝑗𝑗𝑗 = −2 ± 𝑗𝑗𝑗.464

 Multiplying both sides of (24) by the left-hand-side denominator, 
equate coefficients and solve for residues as before:

𝑟𝑟1 = 0.0625
𝑟𝑟2 = −0.0625
𝑟𝑟3 = −0.0361

 Laplace transform of the step response is

𝑌𝑌 𝑠𝑠 = 0.0625
𝑠𝑠

− 0.0625 𝑠𝑠+2
𝑠𝑠+2 2+ 3.464 2 −

0.0361 3.464
𝑠𝑠+2 2+ 3.464 2 (25)
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 The time-domain step response of the system is the sum of a constant and 
two decaying sinusoids:

𝑦𝑦 𝑡𝑡 = 0.0625 − 0.0625𝑒𝑒−2𝑠𝑠 cos 3.464𝑡𝑡 − 0.0361𝑒𝑒−2𝑠𝑠sin(3.464𝑡𝑡) (26)

 Step response and 
individual components 
plotted in MATLAB

 Characteristic of a signal 
having complex poles

 Sinusoidal terms result in 
overshoot and (possibly) 
ringing
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Laplace-Domain Signals with Complex Poles

 The Laplace transform of the step response in the last example had 
complex poles
 A complex-conjugate pair:  𝑠𝑠 = −𝜎𝜎 ± 𝑗𝑗𝑗𝑗

 Results in sine and cosine terms in 
the time domain

𝐴𝐴𝑒𝑒−𝜎𝜎𝑠𝑠 cos 𝑗𝑗𝑡𝑡 + 𝐵𝐵𝑒𝑒−𝜎𝜎𝑠𝑠 sin 𝑗𝑗𝑡𝑡

 Imaginary part of the roots, 𝑗𝑗
 Frequency of oscillation of sinusoidal 

components of the signal

 Real part of the roots, 𝜎𝜎, 
 Rate of decay of the sinusoidal 

components

 Much more on this later
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