SECTION 5: LAPLACE
TRANSFORMS

- ESE 330 — Modeling & Analysis of Dynamic Systems



- Introduction — Transforms

This section of notes contains an introduction
to Laplace transforms. This should mostly be a

review of material covered in your differential
equations course.
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Transforms
e
What is a transform?

o A mapping of a mathematical function from one domain to
another

o A change in perspective not a change of the function

Why use transforms?
o Some mathematical problems are difficult to solve in their
natural domain
Transform to and solve in a new domain, where the problem is
simplified
Transform back to the original domain

o Trade off the extra effort of transforming/inverse-
transforming for simplification of the solution procedure

K. Webb ESE 330



Transform Example — Slide Rules
-
Slide rules make use of a logarithmic transform

A | 2 3
(L ttedslatl Jan

Multiplication/division of large numbers is difficult
o Transform the numbers to the logarithmic domain

o Add/subtract (easy) in the log domain to multiply/divide
(difficult) in the linear domain

o Apply the inverse transform to get back to the original
domain

Extra effort is required, but the problem is simplified
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- Laplace Transforms
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Laplace Transforms

An integral transform mapping functions from the time
domain to the Laplace domain or s-domain

L
gt) o G(s)

o Time-domain functions are functions of time, t

g(t)

o Laplace-domain functions are functions of s

G(s)
O s is a complex variable
S=0+jw
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Laplace Transforms — Motivation

We'll use Laplace transforms to solve differential
equations

o Differential equations in the time domain
difficult to solve

o Apply the Laplace transform
Transform to the s-domain

o Differential equations become algebraic equations
easy to solve

o Transform the s-domain solution back to the time domain

Transforming back and forth requires extra effort, but
the solution is greatly simplified
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Laplace Transform
e

Laplace Transform:

LG} = G(s) = [ g®e s dt |

Unilateral or one-sided transform
o Lower limit of integrationist = 0

o Assumed that the time domain function is zero for all
negative time, i.e.

g(t) =0, t <0
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- Laplace Transform Properties

In the following section of notes, we’ll derive a
few important properties of the Laplace
transform.
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Laplace Transform — Linearity
R

Say we have two time-domain functions:

g1(t) and g,(t)
Applying the transform definition, (1)

L{ag,(t) + Bg.()} = J (“91(0 + ﬁgz(t))e_“dt
0
= Jooagl(t)e‘“dt + fooﬁgz(t)e‘“dt
0 0

= af g1(t)estdt +,8J g, (e Stdt
0 0

=a-L{g. ()} + B - L{g,(t)}

Liagi(t) + Bg2(0)} = aGi(s) + BG(s) (2)

The Laplace transform is a linear operation
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Laplace Transform of a Derivative

Of particular interest, given that we want to use Laplace
transform to solve differential equations

0.0)

L{G(D)} = f G(Destde

0
Use integration by parts to evaluate
[udv =uv — [ vdu
Let
u=-=e
then

—st and dv = g(t)dt

du = —se Stdt and v = g(t)
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Laplace Transform of a Derivative
R

(0]

L@} =e=tg@| - | g@(=seds

0

(0]

= 0—g(0) +s f g(Destde = —g(0) + sL{g(6)}
0

The Laplace transform of the derivative of a
function is the Laplace transform of that function
multiplied by s minus the initial value of that
function

L{g(t)} = sG(s) — g(0) 3)
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Higher-Order Derivatives

The Laplace transform of a second derivative is

L{G()} = s*G(s) — sg(0) — g(0)

(4)

In general, the Laplace transform of the nt" derivative

of a function is given by

£{g™} = s"G(s) — s""1g(0) — s"2G(0) — - — g™V (0)

K. Webb
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Laplace Transform of an Integral
R

The Laplace Transform of a definite integral of a
function is given by

L{f, 9@dz} = 36(s) @

Differentiation in the time domain corresponds to
multiplication by s in the Laplace domain

Integration in the time domain corresponds to
division by s in the Laplace domain
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n Laplace Transforms of Common
Functions

Next, we’ll derive the Laplace transform of
some common mathematical functions
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Unit Step Function

A useful and common way of characterizing a linear
system is with its step response

o The system’s response (output) to a unit step input
The unit step function or Heaviside step function:

0, t <0
1, t=0

u(t) = {

N

1 R

V

K. Webb ESE 330



Unit Step Function — Laplace Transform

e
Using the definition of the Laplace transform

(00} (00}

u(t)e‘“dtzj e Stdt
0

c=o-(+9)=3
=0—-—-—=]=-
0 S S

The Laplace transform of the unit step

Lfu(@) = |

0

— _ st

S

L{u(®)} = - (7)

Note that the unilateral Laplace transform assumes that
the signal being transformed is zero fort < 0

o Equivalent to multiplying any signal by a unit step
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Unit Ramp Function

The unit ramp function is a useful input signal for

evaluating how well a system tracks a constantly-
Increasing input

The unit ramp function:

(0, t<o0 Nl
g(t)_{t, t >0
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Unit Ramp Function — Laplace Transform
e

Could easily evaluate the transform integral
o Requires integration by parts

Alternatively, recognize the relationship between
the unit ramp and the unit step

o Unit ramp is the integral of the unit step
Apply the integration property, (6)

‘ 1 1
L{t} ZL{f U(T)d’t'} :EE
0

L{t} = Siz 8)
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Exponential — Laplace Transform
-

gt) =e ™

Exponentials are common components of the
responses of dynamic systems

(0] (0.0]

e—ate—stdtzj e—(s+a)tdt
0

 =0-(-+2)
=0—-(—
0 S+ a

L{e~ %} = 1 (9)

S+a

re=y = |

0

e—(s+a)t

S+ a
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Sinusoidal functions

Another class of commonly occurring signals, when
dealing with dynamic systems, is sinusoidal signals —
both sin(wt) and cos(wt)

g(t) = sin(wt)
Recall Euler’s formula
e/®t = cos(wt) + j sin(wt)
From which it follows that
elwt _ p—jwt

2J
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Sinusoidal functions
-

1 7%, . .
L{Sln(a)t)} = Zj (e]wt — e—]wt)e—Stdt
0

= i r (e_(s_ja))t — e—(S+ja))t)dt
2] Jo

= i r _(5 Jw)tdt — i —(S+ja))tdt
ZjJO 2_]

1 (e GJot) o 1 (e~GHON) o
D ‘0 2j —(s+jw) ‘o

L, 1 L, L ]_1 2

2] s—jw| 2j S+jw| 2js?+ w?
Lisin(wt)} = 10
{sin(wt)} = Sz+w2 (10)
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Sinusoidal functions

It can similarly be shown that

S

11
S%+w? )

L{cos(wt)} =

Note that for neither sin(wt) nor cos(wt) is the
function equal to zero for t < 0 as the Laplace

transform assumes
Really, what we’ve derived is

L{u(t) - sin(wt)} and  L{u(t) - cos(wt)}
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n More Properties and Theorems
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Multiplication by an Exponential, e =%

We've seen that L{e %} = ﬁ

What if another function is multiplied by the
decaying exponential term?

0.0) 0.0)

g(t)e e stdt =f g(t)e G+taltge
0

L{g(Deat} = f

0

This is just the Laplace transform of g(t) with s
replaced by (s + a)

L{g(t)e ™} = G(s + a) (12)
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Decaying Sinusoids
-
The Laplace transform of a sinusoid is

L{sin(wt)} = T

And, multiplication by an decaying exponential,
e~ results in a substitution of (s + a) for s, so

W
(s +a)? + w?

L{e % sin(wt)} =

and
S+ a

L{e % cos(wt)} = GTairo
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Time Shifting

 g(t)
Consider a time-domain
uncion, (0 AVAVAVAV

0

To Laplace transform g(t) ,

t
>

N g(t)-u(t)
we’ve assumed g(t) = 0 for ;
t < 0, or equivalently /\/\/\/
multiplied by u(t)

0

To shift g(t) by an amount,
a, in time, we must also

multiply by a shifted step W
function, u(t — a) | N

0

t
>

N

[ g(t-a)-u(t-a)
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Time Shifting — Laplace Transform

-
The transform of the shifted function is given by

L{g(t—a) -ult—a)}= joog(t —a)e Stdt

Performing a change of variables, let

T=(t—a) and dt =dt

The transform becomes

(00 (00

g(r)e stT+agr = j
0

(00)

g(@)e ¥e Stdr = e‘asj g(t)e stdt
0

L{g@ - u(@) = j

0

A shift by a in the time domain corresponds to multiplication by e~ in the
Laplace domain

L{g(t—a) -u(t—a)} =e “G(s) (13)
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Multiplication by time, t
.
The Laplace transform of a function multiplied by time:

d
L{t - f(t)}=— —F(s) (14)
Consider a unit ramp function:

d (1
L{t} = L{t - u(t)} = _$<_) N

S

Or a parabola:
ity =it t=-=(5)==

In general
|

L{tM} =

Sm+1
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Initial and Final Value Theorems
X
Initial Value Theorem

o Can determine the initial value of a time-domain signal or
function from its Laplace transform

g(0) = lim sG(s) (15)

Final Value Theorem

o Can determine the steady-state value of a time-domain
signal or function from its Laplace transform

g(o) = }ql_r)% sG(s) (16)
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Convolution
X

Convolution of two functions or signals is given by
t

9(0) * x(t) = j 9(@x(t — Dda

0

Result is a function of time

o x(7) is flipped in time and shifted by t

o Multiply the flipped/shifted signal and the other signal

O Integrate the result from7 =0...¢t

May seem like an odd, arbitrary function now, but we’ll later
see why it is very important

Convolution in the time domain corresponds to multiplication
in the Laplace domain

L{g(t) * x()} = G(s)X(s) (17)
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Impulse Function
R

Another common way to describe a dynamic system
is with its impulse response

o System output in response to an impulse function input
Impulse function defined by

6(t) =0, t+0 5(t) T
A

j_o:o(S(t)dt =1

o An infinitely tall, infinitely
narrow pulse

> t
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Impulse Function — Laplace Transform
-

To derive L{5(t)}, consider the following function g(t)
1 1
—, 0<t<t to
g(t) =1t 0
0, t<Oort>t,

Can think of g(t) as the sum of two step functions:

N

1 1
g(t) = t_u(t) — t_u(t — to)
0 0
The transform of the first term is
NE o) - 1
to 7 T tys

Using the time-shifting property, the second term transforms to

—toS
L{—tiu(t - to)} =7

0 toS

K. Webb

ESE 330



Impulse Function — Laplace Transform
e
In the limit, as t, = 0, g(t) — 6(t), so
L{6(®)} = Jim L{g(®)

1 _ e—tos

L4000} = Jin, =
0

Apply I'Hbpital’s rule

L{5(t)} = lim

t0—>0

The Laplace transform of an impulse function is one

LIS} =1 (18)
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Common Laplace Transforms

6(t) at sin(wt)

(s + a)2 + w?
u(t) 1 _at s+a
s Eaales ) (s + a)? + w?
1
t = g(t) sG(s) — g(0)
¢ ik i® $2G(s) - sg(0) — (0)
1 t
e — fo g(r)dr %G(s)
—at 1 —at
te Gt a)? e g(t) G(s+ a)
sin(wt) = -T—)wz gt—a) u(t—a) e~ %G (s)
S d
cos(wt) T2 t-g(t) —gG(S)
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Example — Piecewise Function Laplace Transform

Determine the Laplace transform of a piecewise function:

2.5

0.5
0 0.5 1 1.5 2 25 3 3.5 4

time [sec]

A summation of functions with known transforms:
o Ramp
o Pulse — sum of positive and negative steps

Transform is the sum of the individual, known transforms
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Example — Piecewise Function Laplace Transform
-

Treat the piecewise function as a sum of individual
functions

fO=rO+LO =

f 1 (t) Y ’ 15 2 25 3 25 4

o Time-shifted, gated ramp f T T

f2(t) a- l__l___l__l__;

o Time-shifted pulse
Sum of staggered positive of o mmme e
and negative steps 2| : :
B N T A .
0 {?.IE 1 1 .I5 2 2.I5 3 Ei 5 4
time [sec]
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Example — Piecewise Function Laplace Transform

f1(t): time-shifted, gated ramp : -

Ramp w/ slope of 2: 2f ) i)
r(t) =2-t |

Time-shifted ramp: 0
t)=2-(t—1) MRS S

Gating function

o Unity-amplitude pulse: 1T 1T 1 T | —
gt) =ult—1) —u(t—2) 21 -

Gate the shifted ramp: T /

fi(®) = r:(t) - g(¢) °

fl(t) =2 (t - 1) ) [u(t - 1) - u(t - 2)] o 05 1 15 2 25 3 35 4

time [sec]
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Example — Piecewise Function Laplace Transform

-
f>(t): time-shifted pulse

o Sum of staggered positive and
negative steps

2.u(t-2)
= = = -2.u(t-3)

Positive step delayed by 2 sec:
So(t) =2 -u(t—2)

R - T S R

Negative step delayed by 3 sec:
s3(t) = =2 -u(t —3)

Time-shifted pulse

(1) = s,(t) + s3(t) D
o) =2 -u(t—-2)—-2-u(t—-3) -

0 0.5 1 1.5 2 2.5 3 3.5 4
time [sec]
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Example — Piecewise Function Laplace Transform
-

Sum the two individual time-domain functions
f@) = f1(t) + f2(¢t)
fW)=2-t—1) - [u@t—1)—-—ut—-2)]+2-u(t—2)—2-u(t—3)
f@®)=2[t—-1) u(t—1)]
—2[t - u(t — 2)]
+4[u(t — 2)]
—2[u(t - 3)]

Transform the individual terms in f(t)
F(s)=L2[t -1 -ult - D]}
+L{=2[t - u(t — 2)]}
+L{+4[u(t — 2)]}
+L{—-2[u(t — 3)]}
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Example — Piecewise Function Laplace Transform
-
First term is a time-shifted ramp function

2e”7
LL2[E-1D -ult-D]} = 2

The next term is a time-shifted step function
multiplied by time

L—2ft-u(t—2)]) = 2.2 [e_zsl
ds| s
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Example — Piecewise Function Laplace Transform
-
The last two terms are time-shifted step functions

46_25 Ze—SS

L4 -ut—2)—2-u(t—-3)} = . ;

The piecewise function in the Laplace domain:

20”5 e—ZS 26_25 46_25 26_35
F(s) = — 2 [ ] +

_I_
s2 S

s2 S S

2e”S Qg7 2e73S
F(s)=—F——F——
S S S
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- Inverse Laplace Transform

K. Webb

We’ve just seen how time-domain functions can be
transformed to the Laplace domain. Next, we’ll look at
how we can solve differential equations in the Laplace
domain and transform back to the time domain.
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Laplace Transforms — Differential Equations

Consider the simple ) sV, X
spring/mass/damper system from "y
the previous section of notes

b m | — Finlt)
State equations are:

ANAAN NN

O
JTT77777777 777777777

p=——p—kx+ Fy(t) (1)

T m
.1
X=_D (2)
Taking the displacement of the mass as the output

Y= x 3)

Using (2) and (3) in (1) we get a single second-order differential
equation

. b. Kk 1
V+—y+—y=—Fpn(t) (4)
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Laplace Transforms — Differential Equations
e

We’ll now use Laplace transforms to determine
the step response of the system k

1N step force input

— V, X

b m | — Finlt)

ON, t<O0
IN, t >0 (5) //////////9//9/////

ANAAN NN

Fin(t) = 1N - u(t) = {

For the step response, we assume zero initial conditions
y(0) =0 and y(0) =0 (6)

Using the derivative property of the Laplace transform, (4)
becomes

b b k 1
s?Y(s) — sy(0) — y(0) + ESY(S) — a)’(o) + EY(S) = EFin(S)

s?Y(s) + %SY(S) + %Y(S) = %Fm(s) (7)
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Laplace Transforms — Differential Equations
e

The input is a step, so (7) becomes ) — V, X
4 Mv—
s2Y(s) + %SY(S) + %Y(s) = %IN% 8) 4 ——b m |— Fin(t)
Solving (8) for Y(S) ;////_//////9//9////
b k 11
Y(s) (sz +—s+ —) = ——
m m ms
1/m
Y(s) = 9
( ) S(SZ+%S+%) ©)

Equation (9) is the solution to the differential equation of (4),
given the step input and I.C's

O The system step response in the Laplace domain
o Next, we need to transform back to the time domain
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Laplace Transforms — Differential Equations
e

_ 1/m
Vis) = S(sz+£s+£) ) k -

b m | — Fin(t)

The form of (9) is typical of Laplace
transforms when dealing with linear SO I—
systems

ANAAN NN

o A rational polynomial in s
o Here, the numerator is Ot"-order

B(s)
A(s)

Roots of the numerator polynomial, B(s), are called the zeros of
the function

Roots of the denominator polynomial, A(s), are called the poles
of the function

Y(s) =
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Inverse Laplace Transforms
R
Y(S) _ 1/m

— V, X

s(sz+%s+%) ) _\/\/I\</\/\_

b m | — Fin(t)

To get (9) back into the time domain, we 4 ]

need to perform an inverse Laplace SO I—
transform

ANAAN NN

o Anintegral inverse transform exists, but we don’t use it
o Instead, we use partial fraction expansion

Partial fraction expansion

o Idea is to express the Laplace transform solution, (9), as a sum of
Laplace transform terms that appear in the table

o Procedure depends on the type of roots of the denominator polynomial
Real and distinct
Repeated
Complex
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Inverse Laplace Transforms — Example 1
e

Consider the following system parameters

— V, X
m:1kg - k
—
16N g b m | — Fin(t)
k=—— e T
m - -
N-s g O O
b=10 IT7777777777777777777
m

Laplace transform of the step response becomes

1

Y(S) - s(s2+10s+16) (10)
Factoring the denominator
1
Y(s) = (11)

s(s+2)(s+8)

In this case, the denominator polynomial has three real, distinct roots

S1 = O, Sy = _2, S3 = —8
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Inverse Laplace Transforms — Example 1
e

Partial fraction expansion of (11) has the form 5V, X
k
. 1 _n ) T3 ] AAAA

Y(s) = s(s+2)(s+8) s t s+2 t s+8 (12) J b m |— Fin(t)
-~ |
1 |

o The numerator coefficients, 1y, 1, and 13, are -1 O O

TT777777777 777777777

called residues

Can already see the form of the time-domain function
o Sum of a constant and two decaying exponentials

To determine the residues, multiply both sides of (12) by the denominator of
the left-hand side

1=7r(s+2)(s+8)+nr,s(s+8)+r3s(s+2)
1 =1r5% 4+ 10rys + 161, + 1,5% + 81,5 + r35% + 2135
Collecting terms, we have
1=s%(r; +1, +13) +s(107 + 81, + 21r3) + 1677 (13)
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Inverse Laplace Transforms — Example 1
e

Equating coefficients of powers of s on both

Vv, X
sides of (13) gives a system of three equations k —

in three unknowns F—NW—
2 4 b m | — Finlt)
st nnt+rp+r;=0 g —
L. 107, +8r, + 213 = 0 - OB
ST &1 T r3 TTT7TT77T7777 777777777
s%: 16, =1
Solving for the residues gives
r, = 0.0625
r, = —0.0833
r; = 0.0208

The Laplace transform of the step response is

0.0625 0.0833+0.0208
S s+2 s+8

Y(s) = (14)

Equation (14) can now be transformed back to the time domain using the
Laplace transform table
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Inverse Laplace Transforms — Example 1
e

The time-domain step response of the system is the sum of a constant
term and two decaying exponentials:

y(t) = 0.0625 — 0.0833e %t + 0.0208e 8¢ (15)

Step Response

Step response plotted in MATLAB !

Characteristic of a signal having

only real poles 5- etk
o No overshoot/ringing T4 k=16 N/im
= b =10 N-s/m

Steady-state displacement agrees
with intuition Al

o 1N force applied toa 16 N/m Al
spring

0 1 2 3 4 5
time [sec]

K. Webb ESE 330



Inverse Laplace Transforms — Example 1

-
Go back to (10) and apply the initial value

— V, X
theorem L,k
(0) = lim sY(s) = lim 1 — Ocm E_Wb_ m | — Fin(t)
YT 1% (2 + 105 + 16) T
g O O
Which is, in fact our assumed initial TTTT777777 7777777777

condition

Next, apply the final value theorem to the Laplace transform step
response, (10)

y(o0) = £1_r)r(1) sY(s) = l‘_{% (s? + 10s + 16)

y(e0) = — = 0.0625m = 6.25cm

This final value agrees with both intuition and our numerical analysis
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Inverse Laplace Transforms — Example 2
e

Reduce the damping and re-calculate the step

— V, X
response k
~
m = 1k TVVVY
g g b m | — Fin(t)
k_16N 4
 m g OO
77777777777 777777777
N-s
b=28
m

Laplace transform of the step response becomes
1

Y(S) - s(s%2+8s+16) (16)
Factoring the denominator
1
Y(s) = s(s+4)? (17)

In this case, the denominator polynomial has three real roots, two of which
are identical
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Inverse Laplace Transforms — Example 2
e

Partial fraction expansion of (17) has the —V, X
form

b m | — Finlt)

1 . 7"_1 &) r3
s(s+4)2 s T s+4 T (s+4)2 (18)

Y(s) =

ANAAN NN

O
JTT77777777 777777777

Again, find residues by multiplying both sides of (18) by the left-
hand side denominator

1=r(s+4)? +1,s(s+4) +r3s

1 =1;5%+8r;s + 1617 + 1,5% + 41,5 + 135
Collecting terms, we have

1=5%(ry +15) +s(8ry + 41, + 13) + 167y (19)
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Inverse Laplace Transforms — Example 2
e

Equating coefficients of powers of s on both

Vv, X
sides of (19) gives a system of three equations y k —
in three unknowns A—NW—
g m |— Fin(t)
2 — b
st n+rp,=0 J— |
st: 8ry+4r,+r;=0 s
s%: 16r, =1
Solving for the residues gives
r, = 0.0625
r, = —0.0625
r; = —0.2500

The Laplace transform of the step response is

0.0625 0.0625 0.25
Y(s) = — —
( ) s+4 (s+4)2

(20)

Equation (20) can now be transformed back to the time domain using the
Laplace transform table
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Inverse Laplace Transforms — Example 2
e

The time-domain step response of the system is the sum of a constant, a
decaying exponential, and a decaying exponential scaled by time:

y(t) = 0.0625 — 0.0625¢~*t — 0.25te™* (21)

Step Response

Step response plotted in MATLAB

Again, characteristic of a signal 5|
. m = 1 kg
having only real poles
g y p 'g'«i— k=16 N/m
o Similar to the last case Al b = 8 N-s/m

O A bit faster — slow pole at s = —2 Al
was eliminated

0 1 2 3 4 5
time [sec]
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Inverse Laplace Transforms — Example 3
e

Reduce the damping even further and go

. — V, X
through the process once again k
m = 1kg TN
-1 —— b m | — Fin(t)
L _ 16N — ]
om g OO,
TTTTTT7777 7777777777
N-s
b=4
m

Laplace transform of the step response becomes

1

Y(S) - s(s2+4s+16)

(22)
The second-order term in the denominator now has complex roots, so we

won’t factor any further

The denominator polynomial still has a root at zero and now has two roots
which are a complex-conjugate pair

s; =0, s,=-2+j3.464, s3=—2—j3.464
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Inverse Laplace Transforms — Example 3
e

Want to cast the partial fraction terms into

— V, X
forms that appear in the Laplace transform P k
table VWY E
-] — b m |[|— in(t)
Second-order terms should be of the form 5 1|

//////////9//9)/////
ri(s+0)+7ri41w

(s+0)%2+w?

(23)

This will transform into the sum of damped sine and cosine terms

L~y (s +9) + 7 v = r;e7% cos(wt) + 13,1 % sin(wt)
s+ 0)24+w? s+ o)2+w?| t+1

To get the second-order term in the denominator of (22) into the form of

(23), complete the square, to give the following partial fraction expansion

_ 1 _n r5(s+2)+13(3.464)
Y(S) " s(s2+4s+16) s t (s+2)%2+(3.464)2 (24)
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Inverse Laplace Transforms — Example 3
e

Note that the o and w terms in (23) and —V, X
(24) are the real and imaginary parts of
the complex-conjugate denominator roots

b m | — Fin(t)

ANAAN NN

Sp3=—0tjw=—-21%j3.464 //////////9//9/////

Multiplying both sides of (24) by the left-hand-side denominator,
equate coefficients and solve for residues as before:

r, = 0.0625
r, = —0.0625
r; = —0.0361

Laplace transform of the step response is

0.0625 0.0625(s+2) 0.0361(3.464)

Y(s) = s (s+2)2+(3.464)2  (s+2)2+(3.464)?

(25)
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Inverse Laplace Transforms — Example 3
e

The time-domain step response of the system is the sum of a constant and
two decaying sinusoids:

y(t) = 0.0625 — 0.0625e¢ "%t cos(3.464t) — 0.0361e %!sin(3.464t) | (26)

Step Response Components
T T T

Step response and o
individual components 5 . e
plotted in MATLAB e e e e o-uws
iy iiiiiiiiiijﬁﬁiEjﬂf;fﬁzﬁf:ffiﬁ

Characteristic of a signal T BT
having complex poles

Step Response

o Sinusoidal terms result in o
overshoot and (possibly) E,| m=1kg
ringing = o= 4N-sm
2_
00 GTS ‘Il 1I,5 é 2?5 1[5 3?5 llt 4I,5 5
time [sec]
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Laplace-Domain Signals with Complex Poles
e

The Laplace transform of the step response in the last example had

complex poles

O A complex-conjugate pair: s = —0 * jw Am

Results in sine and cosine terms in ) T Hiw
the time domain ’

Ae % cos(wt) + Be 7t sin(wt)

Imaginary part of the roots, w ¢

o Frequency of oscillation of sinusoidal -0
components of the signal

Real part of the roots, o,

O Rate of decay of the sinusoidal X + -jw
components

Much more on this later
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