SECTION 6: TIME-DOMAIN ANALYSIS

ESE 330 - Modeling \& Analysis of Dynamic Systems

Natural and Forced Responses

This first sub-section of notes continues where the previous section left off, and will explore the difference between the forced and natural responses of a dynamic system.

Natural and Forced Responses

\square In the previous section we used Laplace transforms to determine the response of a system to a step input, given zero initial conditions

- The driven response
\square Now, consider the response of the same system to non-zero initial conditions only
- The natural response

Natural Response

\square Same spring/mass/damper system
\square Set the input to zero
\square Second-order ODE for displacement
 of the mass:

$$
\begin{equation*}
\ddot{y}+\frac{b}{m} \dot{y}+\frac{k}{m} y=0 \tag{1}
\end{equation*}
$$

\square Use the derivative property to Laplace transform (1)

- Allow for non-zero initial-conditions

$$
\begin{equation*}
s^{2} Y(s)-s y(0)-\dot{y}(0)+\frac{b}{m} s Y(s)-\frac{b}{m} y(0)+\frac{k}{m} Y(s)=0 \tag{2}
\end{equation*}
$$

Natural Response

- Solving (2) for $Y(s)$ gives the Laplace transform of the output due solely to initial conditions
- Laplace transform of the natural response

$$
\begin{equation*}
Y(s)=\frac{s y(0)+\dot{y}(0)+\frac{b}{m} y(0)}{\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)} \tag{3}
\end{equation*}
$$

\square Consider the under-damped system with the following initial conditions
$\square y(0)=0.15 m$
$\square \dot{y}(0)=0.1 \frac{\mathrm{~m}}{\mathrm{~s}}$

$\square m=1 \mathrm{~kg}$
$-k=16 \frac{\mathrm{~N}}{\mathrm{~m}}$
$-b=4 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}$

Natural Response

\square Substituting component parameters and initial conditions into (3)

$$
\begin{equation*}
Y(s)=\frac{0.15 s+0.7}{\left(s^{2}+4 s+16\right)} \tag{4}
\end{equation*}
$$

\square Remember, it's the roots of the denominator polynomial that dictate the form of the response

- Real roots - decaying exponentials
- Complex roots - decaying sinusoids
\square For the under-damped case, roots are complex
- Complete the square
- Partial fraction expansion has the form

$$
\begin{equation*}
Y(s)=\frac{0.15 s+0.7}{\left(s^{2}+4 s+16\right)}=\frac{r_{1}(s+2)+r_{2}(3.464)}{(s+2)^{2}+(3.464)^{2}} \tag{5}
\end{equation*}
$$

Natural Response

$$
\begin{equation*}
Y(s)=\frac{0.15 s+0.7}{\left(s^{2}+4 s+16\right)}=\frac{r_{1}(s+2)+r_{2}(3.464)}{(s+2)^{2}+(3.464)^{2}} \tag{5}
\end{equation*}
$$

\square Multiply both sides of (5) by the denominator of the left-hand side

$$
0.15 s+0.7=r_{1} s+2 r_{1}+3.464 r_{2}
$$

\square Equating coefficients and solving for r_{1} and r_{2} gives

$$
r_{1}=0.15, r_{2}=0.115
$$

\square The Laplace transform of the natural response:

$$
\begin{equation*}
Y(s)=\frac{0.15(s+2)}{(s+2)^{2}+(3.464)^{2}}+\frac{0.115(3.464)}{(s+2)^{2}+(3.464)^{2}} \tag{6}
\end{equation*}
$$

Natural Response

\square Inverse Laplace transform is the natural response

$$
\begin{equation*}
y(t)=0.15 e^{-2 t} \cos (3.464 \cdot t)+0.115 e^{-2 t} \sin (3.464 \cdot t) \tag{7}
\end{equation*}
$$

\square Under-damped response is the sum of decaying sine and cosine terms

Driven Response with Non-Zero I.C.'s

$$
\ddot{y}+\frac{b}{m} \dot{y}+\frac{k}{m} y=\frac{1}{m} F_{\text {in }}(t)
$$

\square Now, Laplace transform, allowing for both non-zero input and initial conditions

$$
s^{2} Y(s)-s y(0)-\dot{y}(0)+\frac{b}{m} Y(s)-\frac{b}{m} y(0)+\frac{k}{m} Y(s)=\frac{1}{m} F_{i n}(s)
$$

\square Solving for $Y(s)$, gives the Laplace transform of the response to both the input and the initial conditions

$$
\begin{equation*}
Y(s)=\frac{s y(0)+\dot{y}(0)+\frac{b}{m} y(0)+\frac{1}{m} F_{i n}(s)}{\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)} \tag{8}
\end{equation*}
$$

Driven Response with Non-Zero I.C.'s

\square Laplace transform of the response has two components

$$
Y(s)=\underbrace{\frac{s y(0)+\dot{y}(0)+\frac{b}{m} y(0)}{\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)}+\underbrace{\frac{\frac{1}{m} F_{i n}(s)}{\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)}}, \underbrace{\frac{1}{2}}, \underbrace{(2)}}
$$

Natural response - initial conditions
Driven response - input
\square Total response is a superposition of the initial condition response and the driven response
\square Both have the same denominator polynomial

- Same roots, same type of response
- Over-, under-, critically-damped

Driven Response with Non-Zero I.C.'s

$\square y(0)=0.15 m$
$\square \dot{y}(0)=0.1 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\square F_{\text {in }}(t)=1 N \cdot u(t)$

$\square m=1 \mathrm{~kg}$
$\square k=16 \frac{\mathrm{~N}}{\mathrm{~m}}$
$\square b=4 \frac{N \cdot s}{m}$
\square Laplace transform of the total response

$$
Y(s)=\frac{0.15 s+0.7+\frac{1}{s}}{\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)}=\frac{0.15 s^{2}+0.7 s+1}{s\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right)}
$$

\square Transform back to time domain via partial fraction expansion

$$
Y(s)=\frac{r_{1}}{s}+\frac{r_{2}(s+2)}{(s+2)^{2}+(3.464)^{2}}+\frac{r_{3}(3.464)}{(s+2)^{2}+(3.464)^{2}}
$$

$\square \quad$ Solving for the residues gives

$$
r_{1}=0.0625, \quad r_{2}=0.0875, \quad r_{3}=0.0794
$$

Driven Response with Non-Zero I.C.'s

\square Total response:

$$
y(t)=0.0625+0.0875 e^{-2 t} \cos (3.464 \cdot t)+0.0794 e^{-2 t} \sin (3.464 \cdot t)
$$

\square Superposition of two components

- Natural response due to initial conditions
\square Driven response due to the input

Driven Response with Non-Zero I.C.'s

13

Solving the State-Space Model

Next, we'll apply the Laplace transform to the entire state-space model in matrix form, just as we did for single differential equations.

Solving the State-Space Model

\square We've seen how to use the Laplace transform to solve individual differential equations
\square Now, we'll apply the Laplace transform to the full state-space system model
\square First, we'll look at the same simple example

- Later, we'll take a more generalized approach
- State-space model is

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{p} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(t)} \\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right] \tag{1}
\end{align*}
$$

\square Note that, because this model was derived from a bond graph model, the state variables are now momentum and displacement

Laplace Transform of the State-Space Model

\square For now, focus on the state equation

- Output is a linear combination of states and inputs
- Determining the state trajectory is the important thing
\square Use the derivative property to Laplace transform the state equation

$$
s\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]-\left[\begin{array}{l}
p(0) \\
x(0)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(s)
$$

\square Rearranging to put all transformed state vectors on the left-hand side

$$
s\left[\begin{array}{l}
P(s) \tag{2}\\
X(s)
\end{array}\right]-\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]=\left[\begin{array}{l}
p(0) \\
x(0)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(s)
$$

Laplace Transform of the State-Space Model

$$
s\left[\begin{array}{l}
P(s) \tag{2}\\
X(s)
\end{array}\right]-\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]=\left[\begin{array}{l}
p(0) \\
x(0)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(s)
$$

\square Can factor out the transformed state vector from the lefthand side
\square Must multiply s by a 2×2 identity matrix

$$
\begin{align*}
& \left(s I-\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\right)\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]=\left[\begin{array}{l}
p(0) \\
x(0)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(s) \\
& \left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
-\frac{b}{m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\right)\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]=\left[\begin{array}{l}
p(0) \\
x(0)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(s) \\
& {\left[\begin{array}{cc}
s+\frac{b}{m} & k \\
-\frac{1}{m} & s
\end{array}\right]\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]=\left[\begin{array}{l}
p(0) \\
x(0)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(s)} \tag{3}
\end{align*}
$$

Laplace Transform of the State-Space Model

$$
\left[\begin{array}{cc}
s+\frac{b}{m} & k \tag{3}\\
-\frac{1}{m} & s
\end{array}\right]\left[\begin{array}{l}
P(s) \\
X(s)
\end{array}\right]=\left[\begin{array}{l}
p(0) \\
x(0)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] F_{\text {in }}(s)
$$

\square Note the form of (3)
\square The LHS is $(s I-A) \mathbf{X}(s)$, where A is the system matrix
\square Everything on the RHS reduces to a 2×1 vector
\square A known matrix times a vector of unknowns equals a known vector
\square If we can solve for $P(s)$ and/or $X(s)$, we can inverse transform to get $p(t)$ and/or $x(t)$

- Use Cramer's Rule

Cramer's Rule

\square Given a matrix equation

$$
A x=y
$$

\square We can solve for elements of \mathbf{x} as follows

$$
x_{i}=\frac{\operatorname{det}\left(\mathbf{A}_{i}\right)}{\operatorname{det}(\mathbf{A})}=\frac{\left|\mathbf{A}_{i}\right|}{|\mathbf{A}|}
$$

\square The matrix \mathbf{A}_{i} is formed by replacing the $i^{\text {th }}$ column of \mathbf{A} with the vector \mathbf{y}

Laplace Transform of the State-Space Model

\square According to Cramer's Rule

$$
\begin{align*}
& X(s)=\frac{\left|\begin{array}{cc}
s+\frac{b}{m} & p(0)+F_{\text {in }}(s) \\
-\frac{1}{m} & x(0)
\end{array}\right|}{\left|\begin{array}{cc}
s+\frac{b}{m} & k \\
-\frac{1}{m} & s
\end{array}\right|} \\
& X(s)=\frac{\left(s x(0)+\frac{b}{m} x(0)\right)-\left(-\frac{1}{m} p(0)-\frac{1}{m} F_{i n}(s)\right)}{s^{2}+\frac{b}{m} s+\frac{k}{m}} \tag{4}
\end{align*}
$$

\square According to the output equation from (1)

$$
Y(s)=X(s)
$$

\square Equation (4) is identical to (8) from the previous subsection of notes, which we arrived at differently

Laplace Transform of the State-Space Model

$$
\begin{equation*}
Y(s)=\frac{\left(s y(0)+\frac{b}{m} y(0)\right)-\left(-\frac{1}{m} p(0)-\frac{1}{m} F_{\text {in }}(s)\right)}{s^{2}+\frac{b}{m} s+\frac{k}{m}} \tag{5}
\end{equation*}
$$

\square Next, sub in parameter values, I.C.'s and an input
\square Use PFE to inverse transform to $y(t)$
\square Again, consider the under-damped system:
$\square x(0)=0.15 m$
$\square p(0)=0.1 N \cdot s$

$\square m=1 \mathrm{~kg}$
$\square k=16 \frac{\mathrm{~N}}{\mathrm{~m}}$
$\square=4 \frac{N \cdot s}{m}$
\square Let the input be a $1 N$ step: $F_{i n}(t)=1 N \cdot u(t)$

Laplace Transform of the State-Space Model

\square The Laplace transform of the output becomes

$$
\begin{align*}
& Y(s)=\frac{(0.15 s+0.6)-\left(-0.1-\frac{1}{s}\right)}{s^{2}+4 s+16} \\
& Y(s)=\frac{0.15 s^{2}+0.7 s+1}{s\left(s^{2}+4 s+16\right)} \tag{6}
\end{align*}
$$

\square Inverse transform via partial fraction expansion

$$
\begin{equation*}
Y(s)=\frac{0.15 s^{2}+0.7 s+1}{s\left(s^{2}+4 s+16\right)}=\frac{r_{1}}{s}+\frac{r_{2}(s+2)+r_{3}(3.464)}{(s+2)^{2}+(3.464)^{2}} \tag{7}
\end{equation*}
$$

\square Multiply both sides by left-hand-side denominator

$$
0.15 s^{2}+0.7 s+1=r_{1} s^{2}+4 r_{1} s+16 r_{1}+r_{2} s^{2}+2 r_{2} s+3.464 r_{3} s
$$

\square Equating coefficients and solving yields

$$
r_{1}=0.0625, r_{2}=0.0875, r_{3}=0.0794
$$

Laplace Transform of the State-Space Model

\square The Laplace transform of the system response is

$$
\begin{equation*}
Y(s)=\frac{0.0625}{s}+\frac{0.0875(s+2)}{(s+2)^{2}+(3.464)^{2}}+\frac{0.0794(3.464)}{(s+2)^{2}+(3.464)^{2}} \tag{8}
\end{equation*}
$$

\square The time-domain response is

$$
\begin{equation*}
y(t)=0.0625+0.0875 e^{-2 t} \cos (3.464 t)+0.0794 e^{-2 t} \sin (3.464 t) \tag{9}
\end{equation*}
$$

Driven Response with Non-Zero I.C.'s

Transient portion

- Due to initial conditions and input step
- Decays to zero
\square Steady-State portion
- Due to constant input
- Does not decay

Laplace Transform of the State-Space Model

\square Now, we'll apply the Laplace transform to the solution of the state-space model in general form

$$
\begin{aligned}
& \dot{\mathbf{x}}=A \mathbf{x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+D \mathbf{u}
\end{aligned}
$$

\square For now, focus on the state equation only

- Output is derived from states and inputs
\square Laplace transform of the state equation

$$
s \mathbf{X}(s)-\mathbf{x}(0)=\mathbf{A X}(s)+\mathbf{B} \mathbf{U}(s)
$$

\square Rearranging

$$
s \mathbf{X}(s)-\mathbf{A X}(s)=\mathbf{B} \mathbf{U}(s)+\mathbf{x}(0)
$$

\square Factoring out the transformed state from the left-hand side

$$
\begin{equation*}
(s \mathbf{I}-\mathbf{A}) \mathbf{X}(s)=\mathbf{B} \mathbf{U}(s)+\mathbf{x}(0) \tag{10}
\end{equation*}
$$

Laplace Transform of the State-Space Model

$$
\begin{equation*}
(s \mathbf{I}-\mathbf{A}) \mathbf{X}(s)=\mathbf{B} \mathbf{U}(s)+\mathbf{x}(0) \tag{10}
\end{equation*}
$$

\square Remember the dimensions of each term in (10)

- ($s \mathbf{I}-\mathbf{A}$) : $n \times n$
- $\mathbf{B U}(s): n \times 1$
- $\mathbf{X}(s): n \times 1$
- $\mathbf{x}(0): n \times 1$
- $(s \mathbf{I}-\mathbf{A}) \mathbf{X}(s): n \times 1$
\square Apply Cramer's rule to solve for the Laplace transform of the $i^{\text {th }}$ state variable

$$
\begin{equation*}
X_{i}(s)=\frac{\left|(s \mathbf{I}-\mathbf{A})_{i}\right|}{|s \mathbf{I}-\mathbf{A}|} \tag{11}
\end{equation*}
$$

\square The matrix $(s \mathbf{I}-\mathbf{A})_{i}$ is formed by replacing the $i^{\text {th }}$ column of $(s \mathbf{I}-\mathbf{A})$ with $\mathbf{B U}(s)+\mathbf{x}(0)$

- An $n \times 1$ vector of known values

Laplace Transform of the State-Space Model

$$
\begin{equation*}
X_{i}(s)=\frac{\left|(s \mathbf{I}-\mathbf{A})_{i}\right|}{|s \mathbf{I}-\mathbf{A}|} \tag{11}
\end{equation*}
$$

\square Denominator of (11) is the determinant of $(s \mathbf{I}-\mathbf{A})$

- ($s \mathbf{I}-\mathbf{A}$) is an $n \times n$ matrix
- Each diagonal term is a first-order polynomial in s
- One term in the determinant is the trace of the matrix, the product terms along the diagonal
- $|S \mathbf{I}-\mathbf{A}|$ is an $\boldsymbol{n}^{\text {th }}$-order polynomial in \boldsymbol{s}
\square The characteristic polynomial:

$$
\begin{equation*}
\Delta(s)=|s \mathbf{I}-\mathbf{A}| \tag{12}
\end{equation*}
$$

\square Roots of $\Delta(s)$ are values of s that satisfy the characteristic equation

$$
\begin{equation*}
\Delta(s)=0 \tag{13}
\end{equation*}
$$

- Poles of (11)
- Eigenvalues of system matrix, A

Laplace Transform of the State-Space Model

\square Denominator of every state variable's Laplace transform contains the characteristic polynomial

$$
\begin{equation*}
X_{i}(s)=\frac{\left|(s \mathbf{I}-\mathbf{A})_{i}\right|}{\Delta(s)} \tag{14}
\end{equation*}
$$

- A characteristic of the system
\square Remember, denominator roots (i.e. poles) determine the nature of the response
- Real roots - decaying exponentials
- Complex roots - decaying sinusoids
\square Responses of all state variables have same components
- Numerators of transforms determine the differences
\square Output transform has the same denominator, $\Delta(s)$
- Linear combination of states and input
- Response includes the same sinusoidal and/or exponential components

Laplace Transform of the State-Space Model

\square Assume:
\square zero initial conditions: $\mathbf{x}(0)=\mathbf{0}$
\square SISO system: single input $-U(s)$ is a scalar transform
\square Can factor out the input from the numerator of (14)

$$
\left|(s \mathbf{I}-\mathbf{A})_{i}\right|=U(s)\left|(s \mathbf{I}-\mathbf{A})_{i^{*}}\right|
$$

where $(s \mathbf{I}-\mathbf{A})_{i^{*}}$ is the $n \times n$ matrix formed by replacing the $i^{\text {th }}$ column of ($s \mathbf{I}-\mathbf{A}$) with the $n \times 1$ vector B

- $U(s)$ appears in every term of one column of $(s \mathbf{I}-\mathbf{A})_{i}$
$\square U(s)$ appears in every term of the determinant

Laplace Transform of the State-Space Model

\square Can now write the Laplace transform of the state variable response as

$$
\begin{equation*}
X_{i}(s)=U(s) \frac{\left|(s \mathbf{I}-\mathbf{A})_{i^{*}}\right|}{|s I-A|}=U(s) \frac{\operatorname{Num}_{i}(s)}{\Delta(s)} \tag{15}
\end{equation*}
$$

$\square \operatorname{Num}_{i}(s)$ is, in general, different for each state variable

- At most, an $(n-1)^{s t}$ order polynomial in s
\square Components of every state variable (and output) response determined by
- The characteristic polynomial, $\Delta(s)$
- The input, $U(s)$
\square Numerator, $\operatorname{Num}_{i}(s)$, determines exact response
- Weighting of each sinusoidal and/or exponential component

Laplace Transform of the State-Space Model

$$
\begin{equation*}
X_{i}(s)=U(s) \frac{N u m_{i}(s)}{\Delta(s)} \tag{15}
\end{equation*}
$$

\square Laplace transform of each state variable response, $X_{i}(s)$, is the Laplace transform of the input scaled by $\frac{N u m_{i}(s)}{\Delta(s)}$

\square In the next sub-section, we'll explore a related concept transfer functions

Transfer Functions

Transfer Functions

\square Now, come back to the full state-space model, including the output equation - (SISO case assumed here $-u$ and y are scalars)

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B} u \\
& y=\mathbf{C} \mathbf{x}+\mathrm{D} u
\end{aligned}
$$

\square Assume zero initial conditions and Laplace transform the whole model

$$
\begin{align*}
& s \mathbf{X}(s)=\mathbf{A X}(s)+\mathbf{B} U(s) \tag{1}\\
& Y(s)=\mathbf{C X}(s)+\mathrm{D} U(s) \tag{2}
\end{align*}
$$

\square Simplify the state equation as before

$$
(s \mathbf{I}-\mathbf{A}) \mathbf{X}(s)=\mathbf{B} U(s)
$$

\square Solving for the state vector

$$
\begin{equation*}
\mathbf{X}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} U(s) \tag{3}
\end{equation*}
$$

Transfer Functions

\square Substituting (3) into (2) gives the Laplace transform of the output

$$
Y(s)=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} U(s)+\mathrm{D} U(s)
$$

\square Factoring out the input

$$
\begin{equation*}
Y(s)=\left[\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathrm{D}\right] U(s) \tag{4}
\end{equation*}
$$

\square Transform of the output is the input scaled by the stuff in the square brackets
\square Dividing through by the input gives the transfer function

$$
\begin{equation*}
G(s)=\frac{Y(s)}{U(s)}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathrm{D} \tag{5}
\end{equation*}
$$

- Ratio of system's output to input in the Laplace domain, assuming zero initial conditions
- An alternative to the state-space (time-domain) model for mathematically representing a system

Transfer Matrix - MIMO Systems

\square For MIMO systems

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

- m inputs: \mathbf{u} is $m \times 1, \mathbf{B}$ is $n \times m$
- p outputs: \mathbf{y} is $p \times 1, \mathbf{C}$ is $p \times n$
\square Transfer function becomes a $\boldsymbol{p} \times \boldsymbol{m}$ matrix

$$
\mathbf{G}(s)=\frac{\mathbf{Y}(s)}{\mathbf{U}(s)}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

\square Transfer function $G_{i j}(s)$ relates the $i^{\text {th }}$ output to the $j^{t h}$ input

$$
G_{i j}(s)=\frac{Y_{i}(s)}{U_{j}(s)}
$$

\square We'll continue to assume SISO systems in this course

Transfer Functions

\square System output in the Laplace domain is the input multiplied by the transfer function

$$
Y(s)=U(s) \cdot G(s)
$$

\square We saw earlier that state variables are given by

$$
X_{i}(s)=U(s) \frac{N u m_{i}(s)}{\Delta(s)}
$$

where $\Delta(s)=|s \mathbf{I}-\mathbf{A}|$ is the characteristic polynomial
\square Output is linear combination of states and input, so we'd expect the denominator of $G(s)$ to be $\Delta(s)$ as well \square Is it? What is the denominator of $G(s)$?

Transfer Functions

$$
\begin{equation*}
G(s)=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathrm{D} \tag{5}
\end{equation*}
$$

$\square \quad$ The matrix inverse term in (5) is given by

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\frac{\operatorname{adj}(s \mathbf{I}-\mathbf{A})}{|s \mathbf{I}-\mathbf{A}|}
$$

where the numerator is the adjoint of $(s \mathbf{I}-\mathbf{A})$
\square Equation (5) can be rewritten as

$$
\begin{equation*}
G(s)=\frac{\mathbf{C} \operatorname{adj}(s \mathbf{I}-\mathbf{A}) \mathbf{B}+\mathrm{D}|s \mathbf{I}-\mathbf{A}|}{|s \mathbf{I}-\mathbf{A}|} \tag{6}
\end{equation*}
$$

\square Transfer function denominator is the characteristic polynomial
\square Poles of the transfer function are roots of $\Delta(s)$

- System poles or eigenvalues
- Eigenvalues of the system matrix, A
- Along with the input, system poles determine the nature of the time-domain response

36
 Eigenvalues

This sub-section of notes takes a bit of a tangent to explain the use of the term eigenvalues when referring to system poles.

Eigenvalues

\square We've been using the term eigenvalue when referring to system poles - why?
\square Recall from linear algebra, the eigenvalue problem

$$
\begin{equation*}
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \tag{1}
\end{equation*}
$$

```
where: }\quad\mathbf{A}\mathrm{ is an }n\timesn\mathrm{ matrix
    v}\mathrm{ is an }n\times1\mathrm{ vector - an eigenvector
    \lambda}\mathrm{ is a scalar - an eigenvalue
```

\square Eigenvalue problem involves finding both the eigenvalues and the eigenvectors that satisfy (1)
$\square \quad$ Eigenvalues and eigenvectors are specific to (characteristics of) the matrix \mathbf{A}
\square An $n \times n$ matrix will have, at most, n eigenvalues and n corresponding eigenvectors
\square Equation (1) says:

- An $n \times 1$ eigenvector, \mathbf{v}, left-multiplied by an $n \times n$ matrix, \mathbf{A}, results in an $n \times 1$ vector
- The resulting vector is the eigenvector scaled by the eigenvalue, λ
- Result is in the same direction as \mathbf{v}-i.e., not rotated

Eigenvalues and Eigenvectors

\square Geometrically, multiplication of a vector by a matrix results in two things

- Scaling and rotation
\square Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]
$$

\square And the vectors

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

\square Compute the product

$$
\mathbf{y}=\mathbf{A x}
$$

\square In both cases, results have different magnitudes and different directions

Eigenvalues and Eigenvectors

\square Multiplication of a matrix and one of its eigenvectors results in scaling only

- No rotation
\square The 2×2 matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]
$$

has two eigenvectors (normalized)

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-0.707 \\
0.707
\end{array}\right] \text { and } \mathbf{v}_{2}=\left[\begin{array}{c}
-0.6 \\
-0.8
\end{array}\right]
$$

and two corresponding eigenvalues

$$
\lambda_{1}=-2 \text { and } \lambda_{2}=5
$$

such that

$$
\mathbf{A} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1} \quad \text { and } \mathbf{A} \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2}
$$

Eigenvalues and Eigenvectors

\square A full-rank, $n \times n$ matrix will have n pairs of eigenvalues and eigenvectors
\square To find all eigenvalues and eigenvectors that satisfy (1)

$$
\begin{equation*}
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \tag{1}
\end{equation*}
$$

rearrange

$$
\lambda \mathbf{v}-\mathbf{A v}=\mathbf{0}
$$

and factor out the eigenvector term

$$
\begin{equation*}
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=0 \tag{2}
\end{equation*}
$$

\square If $(\boldsymbol{\lambda} \mathbf{I}-\mathbf{A})^{-1}$ exists, then $\mathbf{v}=\mathbf{0}$, which is the trivial solution and of no interest
\square We're interested in values of λ and \mathbf{v} that satisfy (2) when $(\lambda \mathbf{I}-\mathbf{A})$ is not invertible - when it is singular

Eigenvalues and Eigenvectors

\square Want to find values of λ for which $(\lambda \mathbf{I}-\mathbf{A})$ is singular

- A matrix is singular if its determinant is zero

$$
\begin{equation*}
|\lambda \mathbf{I}-\mathbf{A}|=0 \tag{3}
\end{equation*}
$$

\square Equation (3) is the characteristic equation for \mathbf{A}

- $|\lambda \mathbf{I}-\mathbf{A}|$ is the characteristic polynomial, $\Delta(\lambda)$
- An $n^{\text {th }}$-order polynomial in λ
\square Eigenvalues of matrix \mathbf{A} are all n values of λ that satisfy (3)
- Roots of the characteristic polynomial
\square Find the corresponding eigenvectors by substituting λ into (2) and solving for \mathbf{v}
\square Letting $\lambda=s$, (3) becomes the denominator of the system transfer function, $G(s)$

Using the Transfer Function to Determine System Response

Using $G(s)$ to determine System Response

\square System output in the Laplace domain can be expressed in terms of the transfer function as

$$
\begin{equation*}
Y(s)=U(s) G(s) \tag{1}
\end{equation*}
$$

- Laplace-domain output is the product of the Laplacedomain input and the transfer function
\square Response to two specific types of inputs often used to characterize dynamic systems
- Impulse response
- Step response
\square We'll use the approach of (1) to determine these responses

Impulse response

\square Impulse function

$$
\begin{aligned}
& \delta(t)=0, \quad t \neq 0 \\
& \int_{-\infty}^{\infty} \delta(t) d t=1
\end{aligned}
$$

\square Laplace transform of the impulse function is

$$
\mathcal{L}\{\delta(t)\}=1
$$

$\square \quad$ Impulse response in the Laplace domain is

$$
Y(s)=1 \cdot G(s)=G(s)
$$

\square The transfer function is the Laplace transform of the impulse response
\square Impulse response in the time domain is the inverse transform of the transfer function

$$
y(t)=g(t)=\mathcal{L}^{-1}\{G(s)\}
$$

Step Response

\square Step function: $u(t)= \begin{cases}0 & t<0 \\ 1 & t \geq 0\end{cases}$
$\square \quad$ Laplace transform of the step function

$$
\mathcal{L}\{u(t)\}=\frac{1}{s}
$$

\square Laplace-domain step response

$$
Y(s)=\frac{1}{s} \cdot G(s)
$$

\square Time-domain step response

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s} \cdot G(s)\right\}
$$

$\square \quad$ Recall the integral property of the Laplace transform

$$
\mathcal{L}\left\{\int_{0}^{t} g(\tau) d \tau\right\}=\frac{1}{s} \cdot G(s), \quad \text { and } \quad \mathcal{L}^{-1}\left\{\frac{1}{s} \cdot G(s)\right\}=\int_{0}^{t} g(\tau) d \tau
$$

$\square \quad$ The step response is the integral of the impulse response

First- and Second-Order Systems

\square All transfer functions can be decomposed into $1^{\text {st }}-$ and $2^{\text {nd }}-$ order terms by factoring $\Delta(s)$

- Real poles - $1^{\text {st}}$-order terms
- Complex-conjugate poles - $\mathbf{2}^{\text {nd }}$-order terms
\square These terms and, therefore, the poles determine the nature of the time-domain response
- Real poles - decaying exponentials
- Complex-conjugate poles - decaying sinusoids
\square All time-domain responses will be a superposition of decaying exponentials and decaying sinusoids
- These are the natural modes or eigenmodes of the system
\square Instructive to examine the responses of $1^{\text {st. }}$ and $2^{\text {nd }}-$ order systems
- Gain insight into relationships between pole location and response

Response of First-Order Systems

First-Order System - Impulse Response

First-order transfer function:

$$
G(s)=\frac{A}{s+\sigma}
$$

\square Single real pole at

$$
s=-\sigma=-\frac{1}{\tau}
$$

where τ is the system time constant
\square Impulse response:

$$
\begin{aligned}
& g(t)=\mathcal{L}^{-1}\{G(s)\}=A e^{-\sigma t}=A e^{-\frac{t}{\tau}} \\
& g(t)=A e^{-\frac{t}{\tau}}
\end{aligned}
$$

First-Order System - Impulse Response

\square Initial slope is inversely proportional to time constant
\square Response completes 63\% of transition after one time constant
\square Decays to zero as long as the pole is negative

First-Order Impulse Response

Impulse Response vs. Pole Location

\square Increasing σ corresponds to decreasing τ and a faster response

First-Order System - Step Response

$\square \quad$ Step response in the Laplace domain

$$
Y(s)=\frac{1}{s} \cdot G(s)=\frac{A}{s(s+\sigma)}
$$

\square Inverse transform back to time domain via partial fraction expansion

$$
\begin{aligned}
& Y(s)= \frac{A}{s(s+\sigma)}=\frac{r_{1}}{s}+\frac{r_{2}}{s+\sigma} \\
& A=\left(r_{1}+r_{2}\right) s+\sigma r_{1} \\
& s^{0}: \sigma r_{1}=A \rightarrow r_{1}=\frac{A}{\sigma} \\
& s^{1}: r_{1}+r_{2}=0 \rightarrow r_{2}=-\frac{A}{\sigma} \\
& Y(s)= \frac{A / \sigma}{s}-\frac{A / \sigma}{s+\sigma}
\end{aligned}
$$

$\square \quad$ Time-domain step response

$$
y(t)=\frac{A}{\sigma}-\frac{A}{\sigma} e^{-\sigma t}=B-B e^{-\frac{t}{\tau}}
$$

First-Order System - Step Response

\square Initial slope is inversely proportional to time constant
\square Response completes 63\% of transition after one time constant
\square Almost completely settled after 7τ

First-Order Step Response

Step Response vs. Pole Location

\square Increasing σ corresponds to decreasing τ and a faster response

Pole Location and Stability

\square First-order transfer function

$$
G(s)=\frac{A}{s-p}
$$

where p is the system pole
\square Impulse response is

$$
g(t)=A e^{p t}
$$

\square If $p<0, g(t)$ decays to zero

- Pole in the left half-plane
- System is stable
\square If $p>0, g(t)$ grows without bound
- Pole in the right half-plane
- System is unstable

55

Response of Second-Order Systems

Second-Order Systems

\square Second-order transfer function

$$
\begin{equation*}
G(s)=\frac{N u m(s)}{s^{2}+a_{1} s+a_{0}}=\frac{N u m(s)}{(s+\sigma)^{2}+\omega_{d}^{2}} \tag{1}
\end{equation*}
$$

where ω_{d} is the damped natural frequency
\square Can also express the $2^{\text {nd }}-$ order transfer function as

$$
\begin{equation*}
G(s)=\frac{N u m(s)}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \tag{2}
\end{equation*}
$$

where ω_{n} is the un-damped natural frequency, and ζ is the damping ratio

$$
\begin{aligned}
& \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} \\
& \zeta=\frac{\sigma}{\omega_{n}}
\end{aligned}
$$

\square Two poles at

$$
s_{1,2}=-\sigma \pm \sqrt{\sigma^{2}-\omega_{n}^{2}}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

Categories of Second-Order Systems

\square The $2^{\text {nd }}$-order system poles are

$$
s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

\square Value of ζ determines the nature of the poles and, therefore, the response
$\square \quad \zeta>1$: Over-damped

- Two distinct, real poles - sum of decaying exponentials - treat as two first-order terms
- $s_{1}=-\sigma_{1}, s_{2}=-\sigma_{2}$
$\square \quad \zeta=1$: Critically-damped
- Two identical, real poles - time-scaled decaying exponentials
- $s_{1,2}=-\sigma=-\zeta \omega_{n}=-\omega_{n}$
$\square \mathbf{0}<\zeta<1$: Under-damped
- Complex-conjugate pair of poles - sum of decaying sinusoids

ㅁ $s_{1,2}=-\sigma \pm j \omega_{d}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}$
$\square \quad \zeta=0$: Un-damped

- Purely-imaginary, conjugate pair of poles - sum of non-decaying sinusoids
- $s_{1,2}= \pm j \omega_{n}$

$2^{\text {nd }}$-Order Pole Locations and Damping

Second-Order Poles - $0 \leq \zeta \leq 1$

Second-Order Pole Locations

\square Can relate $\sigma, \omega_{d}, \omega_{n}$, and ζ to pole location geometry
$\square \omega_{n}$ is the magnitude of the poles
$\square \zeta$ is a measure of system damping

$$
\zeta=\frac{\sigma}{\omega_{n}}=\sin (\theta)
$$

$\square \zeta=0$

- Two purely imaginary poles
$\square \zeta=1$
- Two identical real poles

Impulse Response - Critically-Damped

\square For $\zeta=1$, the transfer function reduces to

$$
G(s)=\frac{A}{s^{2}+2 \omega_{n} s+\omega_{n}^{2}}=\frac{A}{\left(s+\omega_{n}\right)^{2}}=\frac{A}{(s+\sigma)^{2}}
$$

\square Impulse response

$$
\begin{aligned}
& g(t)=\mathcal{L}^{-1}\{G(s)\} \\
& g(t)=\text { Ate } e^{-\sigma t}
\end{aligned}
$$

Impulse Response - Critically-Damped

\square Speed of response is proportional to σ

Critically-Damped Impulse Response vs. Pole Location

Impulse Response - Under-Damped

For $0<\zeta<1$, the transfer function is

$$
G(s)=\frac{A}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

\square Complete the square on the denominator

$$
G(s)=\frac{A}{\left(s+\zeta \omega_{n}\right)^{2}+\left(\omega_{n} \sqrt{1-\zeta^{2}}\right)^{2}}=\frac{A}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{d}^{2}}
$$

\square Rewrite in the form of a damped sinusoid

$$
G(s)=\frac{A}{\omega_{d}} \frac{\omega_{d}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{d}^{2}}=\frac{A}{\omega_{d}} \frac{\omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

\square Inverse Laplace transform for the time-domain impulse response

$$
g(t)=\frac{A}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right)
$$

Under-Damped Impulse Response vs. ω_{n}

$$
g(t)=\frac{A}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right)=B e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)
$$

Under-Damped Impulse Response vs. ζ

$$
g(t)=\frac{A}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right)=B e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)
$$

Pole Locations vs. Damping Ratio $-\omega_{n}=1$

Under-Damped Impulse Response vs. Damping Ratio

Impulse Response - Un-Damped

$\square \operatorname{For} \zeta=0$, the transfer function reduces to

$$
G(s)=\frac{A}{s^{2}+\omega_{n}^{2}}
$$

\square Putting into the form of a sinusoid

$$
G(s)=\frac{A}{\omega_{n}} \frac{\omega_{n}}{s^{2}+\omega_{n}^{2}}
$$

\square Inverse transform to get the time-domain impulse response

$$
g(t)=\mathcal{L}^{-1}\{G(s)\}
$$

\square An un-damped sinusoid

$$
g(t)=\frac{A}{\omega_{n}} \sin \left(\omega_{n} t\right)
$$

Un-Damped Impulse Response vs. ω_{n}

$$
g(t)=\frac{A}{\omega_{n}} \sin \left(\omega_{n} t\right)
$$

Second-Order Step Response

\square The Laplace transform of the step response is

$$
Y(s)=\frac{1}{s} G(s)
$$

\square The time-domain step response for each damping case can be derived as the the inverse transform of $Y(s)$

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}
$$

or as the integral of the corresponding impulse response

$$
y(t)=\int_{0}^{t} g(\tau) d \tau
$$

Critically-Damped Step Response vs. σ

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s} G(s)\right\}=\frac{A}{\sigma^{2}}\left(1-e^{-\sigma t}-\sigma t e^{-\sigma t}\right)
$$

Under-Damped Step Response vs. ω_{n}

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s} G(s)\right\}=\frac{A}{\omega_{n}^{2}}\left[1-e^{-\sigma t} \cos \left(\omega_{d} t\right)-\frac{\sigma}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right)\right]
$$

Under-Damped Step Response vs. ζ

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s} G(s)\right\}=\frac{A}{\omega_{n}^{2}}\left[1-e^{-\sigma t} \cos \left(\omega_{d} t\right)-\frac{\sigma}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right)\right]
$$

Un-Damped Step Response vs. ω_{n}

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s} G(s)\right\}=\frac{A}{\omega_{n}^{2}}\left[1-\cos \left(\omega_{n} t\right)\right]
$$

Step Response Characteristics

Step Response - Risetime

\square Risetime is the time it takes a signal to transition between two set levels

- Typically 10\% to 90\% of full transition
- Sometimes 20\% to 80\%
\square A measure of the speed of a response
\square Very rough approximation:
$\square t_{r} \approx \frac{1.8}{\omega_{n}}$

Step Response - Overshoot

\square Overshoot is the magnitude of a signal's excursion beyond its final value

- Expressed as a percentage of fullscale swing
\square Overshoot increases as ζ decreases

ζ	\%OS
0.45	20
0.5	16
0.6	10
0.7	5

$$
\zeta=\frac{-\ln (\% O S / 100)}{\sqrt{\pi^{2}+\ln ^{2}(\% O S / 100)}}
$$

Step Response -Settling Time

\square Settling time is the time it takes a signal to settle, finally, to within some percentage of its final value

- Typically $\pm 1 \%$ or $\pm 5 \%$
\square Inversely proportional to the real part of the poles, σ
\square For $\pm 1 \%$ settling:

- $t_{s} \approx \frac{4.6}{\sigma}=\frac{4.6}{\zeta \omega_{n}}$

76
 The Convolution Integral

In this sub-section, we'll see that the timedomain output of a system is given by the convolution of its time-domain input and its impulse response.

Convolution Integral

\square Laplace transform of a system output is given by the product of the transform of the input signal and the transfer function

$$
Y(s)=G(s) \cdot U(s)
$$

\square Recall that multiplication in the Laplace domain corresponds to convolution in the time domain

$$
y(t)=\mathcal{L}^{-1}\{G(s) U(s)\}=g(t) * u(t)
$$

\square Time-domain output given by the convolution of the input signal and the impulse response

$$
y(t)=g(t) * u(t)=\int_{0}^{t} g(\tau) u(t-\tau) d \tau
$$

Convolution

\square Time-domain output is the input convolved with the impulse response

$y(t)=g(t) * u(t)=\int_{0}^{t} g(\tau) u(t-\tau) d \tau$

- Input is flipped in time and shifted by t
- Multiply impulse response and flipped/shifted input
- Integrate over $\tau=0$...t
\square Each time point of $y(t)$ given by result of integral with $u(-\tau)$ shifted by t

Convolution

Convolution
©

81

Time-Domain Analysis in MATLAB

A few of MATLAB's many built-in functions that are useful for simulating linear systems are listed in the following sub-section.

System Objects

\square MATLAB has data types dedicated to linear system models
\square Two primary system model objects:
\square State-space model
\square Transfer function model
\square Objects created by calling MATLAB functions

- SS.m-creates a state-space model
- tf.m-creates a transfer function model

State-Space Model - ss (...)

sys = ss(A, B, C, D)

- A: system matrix $-n \times n$
- B: input matrix $-n \times m$
- C: output matrix $-p \times n$
- D: feed-through matrix $-p \times m$
\square sys: state-space model object
\square State-space model object will be used as an input to other MATLAB functions

Transfer Function Model - tf(...)

sys = tf(Num, Den)

- Num: vector of numerator polynomial coefficients
- Den: vector of denominator polynomial coefficients
- Sys: transfer function model object
\square Transfer function is assumed to be of the form

$$
G(s)=\frac{b_{1} s^{r}+b_{2} s^{r-1}+\cdots+b_{r} s+b_{r+1}}{a_{1} s^{n}+a_{2} s^{n-1}+\cdots+a_{n} s+a_{n+1}}
$$

\square Inputs to $\mathrm{tf}(\ldots)$ are

- Num = [b1, b2, ..., br+1];
- Den = [a1, a2, ..., an+1];

Step Response Simulation - step (...)

$$
[y, t]=\operatorname{step}(s y s, t)
$$

- sys: system model - state-space or transfer function
- t : optional time vector or final time value
- y : output step response
- t : output time vector
\square If no outputs are specified, step response is automatically plotted
\square Time vector (or final value) input is optional
- If not specified, MATLAB will generate automatically

Impulse Response Simulation - impulse(...)

$$
[y, t]=\text { impulse(sys,t) }
$$

- sys: system model - state-space or transfer function
- t : optional time vector or final time value
$\square \mathrm{y}$: output impulse response
- t : output time vector
\square If no outputs are specified, impulse response is automatically plotted
\square Time vector (or final value) input is optional
- If not specified, MATLAB will generate automatically

Natural Response - initial(...)

$$
[y, t, x]=i n i t i a l(s y s, x 0, t)
$$

- Sys: state-space system model function
- X0: initial value of the state $-n \times 1$ vector
- t : optional time vector or final time value
$\square y$: response to initial conditions - length (t$) \times 1$ vector
- t : output time vector
- X : trajectory of all states - leng $\mathrm{h}(\mathrm{t}) \times n$ matrix
\square If no outputs are specified, response to initial conditions is automatically plotted
\square Time vector (or final value) input is optional
- If not specified, MATLAB will generate automatically

Linear System Simulation - lsim(...)

$$
[y, t, x]=\operatorname{lsim}(s y s, u, t, x 0)
$$

- sys: system model - state-space or transfer function
- u: input signal vector
- t : time vector corresponding to the input signal
- X0: optional initial conditions - (for ss model only)
- y: output response
- t : output time vector
- X: optional trajectory of all states - (for ss model only)
\square If no outputs are specified, response is automatically plotted
\square Input can be any arbitrary signal

More MATLAB Functions

\square A few more useful MATLAB functions
\square Pole/zero analysis:

- pzmap(...)
- pole(...)
- zero(...)
- eig(...)
- Input signal generation:
- gensig(...)
\square Refer to MATLAB help documentation for more information

