SECTION 6: TIME-DOMAIN
ANALYSIS

- ESE 330 — Modeling & Analysis of Dynamic Systems



- Natural and Forced Responses

This first sub-section of notes continues where
the previous section left off, and will explore
the difference between the forced and natural
responses of a dynamic system.
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Natural and Forced Responses
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In the previous section we used Laplace transforms
to determine the response of a system to a step
input, given zero initial conditions

o The driven response

Now, consider the response of the same system to
non-zero initial conditions only

o The natural response
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Natural Response
e

Same spring/mass/damper system y — V) X
Set the input to zero 7 | m [ =R
: S
g?c‘:cﬂgdr;]%rsci-er ODE for displacement =&_____ OO
. b .  k
yt—y+_—y=0 (1)

Use the derivative property to Laplace transform (1)

o Allow for non-zero initial-conditions

s2Y(s) = sy(0) = y(0) + - sY(s) = ~y(0) +—¥(s) = 0 (2)
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Natural Response
e

Solving (2) for Y (s) gives the Laplace transform of the
output due solely to initial conditions

o Laplace transform of the natural response

5 ¥(0) + 3(0) + =y(0)

Y = 3
(S) (52+%s+%) )
Consider the under-damped system with the following
initial conditions
— Vv, X m=1kg
0)=0.15m .k
y(0) E—\/\/\/\/\b— | Futt k=16%
. -1 1]
y(0)=0.1? 1 — 90 p=422
77777777777 777777777 m
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Natural Response

Substituting component parameters and initial conditions
into (3)

0.15s +0.7
Y(s) =
( ) (s2+45+16)

(4)

Remember, it’s the roots of the denominator polynomial
that dictate the form of the response

o0 Real roots — decaying exponentials
o Complex roots — decaying sinusoids

For the under-damped case, roots are complex
o Complete the square
o Partial fraction expansion has the form

0.155 +0.7 _ 11(s+2)+1,(3.464)
(s2+4s+16) (s+2)%2+(3.464)2

Y(s) = (5)

K. Webb ESE 330



Natural Response
e

Y(s) = (52445116)  (5+2)2+(3.462)2 ()

Multiply both sides of (5) by the denominator of the
left-hand side

0.15s + 0.7 = rys + 2r; + 3.464r,
Equating coefficients and solving for r; and 7, gives
r; = 0.15, , = 0.115

The Laplace transform of the natural response:

0.15(s+2) 0.115(3.464) (6)
(s+2)2+(3.464)2 = (s+2)2+(3.464)2

Y(s) =
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Natural Response

Inverse Laplace transform is the natural response

y(t) = 0.15e7 2t cos(3.464 - t) + 0.115e 2 sin(3.464 - t) (7)
Components of the Natural Response
L] S B — ¥, = 0.15e%cos(3.4641) |’
Under-damped £ ol S . 1 =0 1156 7o ot |
response is the 2 [
o ML :::.,:--'==:: ::: -
sum of decaying 5! 4 . : s 5
Sine and COSine Natural Response
15
terms £ 10l y(0) = 0.15m
; 5r y'(0) =0.1 m/s
> 0 i
) 1 2 3 4 5
time [sec]
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Driven Response with Non-Zero I.C.'s
-

K — V, X
b k 1 1 MM—
y+—y+—y=—F,() 4 —b | m |—Fal)
m m m o
] O O
I/ 7 7777777 777777777

Now, Laplace transform, allowing for both non-zero input and
initial conditions

s2Y(s) = 5y(0) = y(0) + =Y (s) = =y(0) + =Y (s) = = Fy,(5)

Solving for Y (s), gives the Laplace transform of the response
to both the input and the initial conditions

5¥(0) +3(0) + =y (0)+-=Fin(s)
(raerE)
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Driven Response with Non-Zero I.C.'s
-

Laplace transform of the response has two components

. b 1
_ sy(0) +y(0) +-y(0) mFin(s)
Y(s) = S bk , bk
(s24+s+-) (s24+s+-)
m m m m
\ J \ J
| |
Natural response - initial conditions Driven response - input

Total response is a superposition of the initial condition
response and the driven response

Both have the same denominator polynomial

o Same roots, same type of response

Over-, under-, critically-damped
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Driven Response with Non-Zero I.C.'s
-

y(0) = 0.15m K Vi X m=1kg
g N

: M VW =16—
y(0) =015 7 m R k=16,
Fo,(t) = 1N - u(¢) 1 — = p=422
TTTTTTT77TT7 777777777 m

Laplace transform of the total response
1
0.15s +0.7+3  0.15s% +0.7s + 1
b k\ b k
2 - - 2 —_ —
(s +ms+m) s(s +ms+m>

Transform back to time domain via partial fraction expansion

Y(s) =

N (s + 2) r3(3.464)
V) = S+ G2+ Gaen? T G+ 27 + (3.460)2

Solving for the residues gives

r, = 0.0625, 1, = 0.0875, 75 = 0.0794
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Driven Response with Non-Zero I.C.'s

Total response:

y(t) = 0.0625 + 0.0875e 2t cos(3.464 - t) + 0.0794e %t sin(3.464 - t)

Superposition of
two components

o Natural response
due to initial
conditions

o Driven response
due to the input

K. Webb
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Driven Response with Non-Zero I.C.'s

= = = Step Response

}"{D) =0.15m = = = {atural Response
Combined Response
y'(0) = 0.1 m/s

u(t) = 1TN-u(t)

1 1.5 2 25 3 3.5 4 4.5 5

time [sec]
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- Solving the State-Space Model

Next, we’ll apply the Laplace transform to the
entire state-space model in matrix form, just as
we did for single differential equations.

K. Webb ESE 330



Solving the State-Space Model

We’ve seen how to use the Laplace transform to solve individual
differential equations

Now, we’ll apply the Laplace transform to the full state-space system
model

First, we’ll look at the same simple example
o Later, we'll take a more generalized approach

k |_>VI X
o State-space model is 4 A—
- b k_ E E b m _)Fin(t)
. e I 1 ;

lg] = 1m ) [i] + [0] Fin(t) Frrrr ey

L m |

(1)

y=1[0 1] [Z]

Note that, because this model was derived from a bond graph model, the state
variables are now momentum and displacement
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Laplace Transform of the State-Space Model

For now, focus on the state equation
o Output is a linear combination of states and inputs
o Determining the state trajectory is the important thing

Use the derivative property to Laplace transform the
state equation

P(s) p(O)] [ P(S)] [(1)] F. (s)

*1x(s) x(O) X(s)

Rearranging to put all transformed state vectors on the
left-hand side

P(s)

x| 2

P9 = PO+ [ o
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Laplace Transform of the State-Space Model
I

(s) ()] _ [p(0)
Sl)};(; - [i(i) - [Z(O)]-I_[(l)] Fin(5) (2)

b
m
1

m

—k
0

Can factor out the transformed state vector from the left-
hand side

O Must multiply s by a 2 X 2 identity matrix
_% —k |\ 1P(s) ©)
(o[ )
s o_|"m Koy poy,
[0 s] B B lX(S)] B lx(O)] + [0] Fin(s)

kl1P(s)1 _ [p(0)
s lX(i) - lZ(O)]-I_[(l)] Fin (s) (3)

b
S+ —

m

1

m
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Laplace Transform of the State-Space Model
I

s+ k| pgs) _[p@O)],

1 k)l T oo +[o] Fan) 3)

Note the form of (3)
O The LHS is (sI — A)X(s), where A is the system matrix
o Everything on the RHS reduces to a 2 X 1 vector

o A known matrix times a vector of unknowns equals a
known vector

If we can solve for P(s) and/or X(s), we can inverse
transform to get p(t) and/or x(t)

o Use Cramer’s Rule
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Cramer’s Rule
=
Given a matrix equation

Ax =y
We can solve for elements of x as follows

_ det(A) _ A
~ det(A) |A]

Xi

The matrix A; is formed by replacing the it" column
of A with the vectory
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Laplace Transform of the State-Space Model

e
According to Cramer’s Rule

S+% P(0)+Fin(s)

1
“m X0
s+£ k

m

1
-— s
m

X(s) =

X(s) = (s x(0)+%x(O))—g—%z’:(O)—%Fin(S)) (%)

S%24+—s+—
m m

According to the output equation from (1)
Y(s) = X(s)

Equation (4) is identical to (8) from the previous
subsection of notes, which we arrived at differently
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Laplace Transform of the State-Space Model
I

b —(=Lp0)=LF;
v(s) = (s Y@+ () g n© Fin(s)) 5)

S%24+—s+—
m m

Next, sub in parameter values, |.C.s and an input
Use PFE to inverse transform to y(t)
Again, consider the under-damped system:

(O) 015 k — V, X m:].kg
X = V. m A L hp A
E b m | — Fin(t) ke = 16%
-1 ]
p(O):OlNS 2 all 0 b=4E
T7777777777 777777777 m

Let the input be a 1N step: F;,,(t) = 1N - u(t)
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Laplace Transform of the State-Space Model

-
The Laplace transform of the output becomes

1
(0.15s +0.6)—(—0.1—§)
S2+4s+16

Y(s) =

0.155% +0.7s+1
r(s)= s(s?2+4s+16) (6)

Inverse transform via partial fraction expansion

_0.1552 4+0.7s+1 _ r1 | 1a(s+2)+713(3.464)
Y(s)= s(s2+4s+16) s (s+2)2+(3.464)2 (7)

Multiply both sides by left-hand-side denominator

0.155% + 0.7s + 1 = ry5% + 41rys + 161 + 1,5% + 21,5 + 3.46473s

Equating coefficients and solving yields

r, = 0.0625, 7, = 0.0875, r; = 0.0794
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y(®) [om]

Laplace Transform of the State-Space Model

.
The Laplace transform of the system response is

Y(S) . 0.0625 0.0875(s+2) 0.0794(3.464)
s (s+2)24(3.464)2  (5+2)2+(3.464)2

(8)

The time-domain response is

y(t) = 0.0625 + 0.0875e™2t cos(3.464t) + 0.0794e 2t sin(3.464t) (9)

Driven Response with Non-Zero I.C.'s

-
(o]

Transient portion

o Due to initial conditions
and input step

—
>
T

y(0)=0.15m

-
48]
|

p(0) = 0.1 N-s
o Decays to zero

—_
(=]
I

Steady-State portion
o Due to constant input

o Does not decay

| | | | 1 1 1 | |
0 0.5 1 15 2 25 3 3.5 4 45 5
time [sec]
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Laplace Transform of the State-Space Model
I

Now, we’ll apply the Laplace transform to the solution of the state-space
model in general form

X = Ax + Bu
y = Cx + Du

For now, focus on the state equation only
o Output is derived from states and inputs

Laplace transform of the state equation

sX(s) — x(0) = AX(s) + BU(s)
Rearranging

sX(s) — AX(s) = BU(s) + x(0)
Factoring out the transformed state from the left-hand side

(s — A)X(s) = BU(s) + x(0) (10)

K. Webb ESE 330



Laplace Transform of the State-Space Model
I

(sI — A)X(s) = BU(s) + x(0) (10)

Remember the dimensions of each term in (10)
o (sl-A): nxn o BU(s): nx1

o X(s): nx1 o x(0): nx1
o (sI—A)X(s): nx1

Apply Cramer’s rule to solve for the Laplace transform of
the it" state variable

|(sI-A);]

Xi(s) = SI_A]

(11)
The matrix (sI — A); is formed by replacing the it" column of

(s — A) with BU(s) + x(0)
o Ann X 1 vector of known values

K. Webb ESE 330



Laplace Transform of the State-Space Model

|(sI-A);
X,(s) = 2 (11)

Denominator of (11) is the determinant of (sI — A)

o (sI — A)isann X n matrix
Each diagonal term is a first-order polynomial in s

o One term in the determinant is the trace of the matrix, the product terms along
the diagonal

o |sI — Al is an nt*-order polynomial in s
The characteristic polynomial.

A(s) = |sI — A (12)
Roots of A(s) are values of s that satisfy the characteristic equation

A(s) =0 (13)
o Poles of (11)
o Eigenvalues of system matrix, A
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Laplace Transform of the State-Space Model
I

Denominator of every state variable’s Laplace transform contains
the characteristic polynomial
|(sI1-A);]

Xi(s) = AGS)

(14)

o A characteristic of the system

Remember, denominator roots (i.e. poles) determine the nature of
the response

o Real roots — decaying exponentials

o Complex roots — decaying sinusoids

Responses of all state variables have same components
o Numerators of transforms determine the differences

Output transform has the same denominator, A(s)
O Linear combination of states and input
O Response includes the same sinusoidal and/or exponential components
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Laplace Transform of the State-Space Model
-0V
Assume:
O zero initial conditions: x(0) = 0
o SISO system: single input — U(s) is a scalar transform

Can factor out the input from the numerator of (14)
|(s — A);| = U(s)[(sI — A);+]

where (sI — A);~ is the n X n matrix formed by

replacing the it" column of (sI — A) with then x 1
vector B

o U(s) appears in every term of one column of (sI — A);
o U(s) appears in every term of the determinant

K. Webb ESE 330



Laplace Transform of the State-Space Model

Can now write the Laplace transform of the state variable
response as

|sI—A|

Num;(s)

X(5) = U(s)! i

= U(s)

(15)

Num;(s) is, in general, different for each state variable
o At most, an (n — 1)5t order polynomial in s

Components of every state variable (and output) response
determined by

O The characteristic polynomial, A(s)
O The input, U(s)

Numerator, Num;(s), determines exact response
o Weighting of each sinusoidal and/or exponential component
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Laplace Transform of the State-Space Model

Num;
Xi(s) = U(s) Tt

(15)

Laplace transform of each state variable response, X;(s), is

the Laplace transform of the input scaled by Num;(s)

A(s)

U(s) Num;(s) Xi(s)
> >
A(s)

In the next sub-section, we’ll explore a related concept —
transfer functions
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- Transfer Functions
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Transfer Functions
X

Now, come back to the full state-space model, including the output
equation — (SISO case assumed here - u and y are scalars)

X = AX + Bu
y = Cx+ Du

Assume zero initial conditions and Laplace transform the whole model
sX(s) = AX(s) + BU(s) (1)
Y(s) = CX(s) + DU(s) (2)

Simplify the state equation as before
(sI — A)X(s) = BU(s)

Solving for the state vector

X(s) = (sI— A)"1BU(s) (3)
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Transfer Functions
X

Substituting (3) into (2) gives the Laplace transform of the output
Y(s) = C(s — A)"1BU(s) + DU(s)
Factoring out the input
Y(s) = [C(sI —A)"IB + DJU(s) (4)

Transform of the output is the input scaled by the stuff in the square
brackets

Dividing through by the input gives the transfer function

G()— —C(I—A) B+D (5)

O Ratio of system’s output to input in the Laplace domain, assuming zero
initial conditions

o An alternative to the state-space (time-domain) model for
mathematically representing a system
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Transfer Matrix — MIMO Systems

For MIMO systems
X = AX + Bu
y = Cx + Du
Oominputsiuism X1, BisnXm

O poutputs:yisp X1, Cisp Xn
Transfer function becomes a p X m matrix

G(s) =

Y(s)

_ -1
by = C6I=A)'B+D

Transfer function G;;(s) relates the i*" output to the jt"
input

Yi(s)
U](S)

Gl_]()_

We'll continue to assume SISO systems in this course
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Transfer Functions
X

System output in the Laplace domain is the input
multiplied by the transfer function

Y(s) =U(s) - G(s)

We saw earlier that state variables are given by

Num;(s)

X;(s) =U(s) AG)

where A(s) = |sI — A| is the characteristic polynomial

Output is linear combination of states and input, so
we’d expect the denominator of G(s) to be A(s) as well

o Is it? What is the denominator of G(s)?
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Transfer Functions

-
G(s) =C(sI—A)"'B+D (5)

The matrix inverse term in (5) is given by

adj(sI — A)

I—A)!=
(sT—=A) 5T — A

where the numerator is the adjoint of (sI — A)
Equation (5) can be rewritten as

Cadj(sI-A)B+D|sI-A| ’
|SI-A]| (6)

G(s) =

Transfer function denominator is the characteristic polynomial

Poles of the transfer function are roots of A(s)

o System poles or eigenvalues

o Eigenvalues of the system matrix, A

o Along with the input, system poles determine the nature of the time-domain
response

K. Webb ESE 330



- Eigenvalues

This sub-section of notes takes a bit of a
tangent to explain the use of the term
eigenvalues when referring to system poles.
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Eigenvalues
R

We’ve been using the term eigenvalue when referring to system poles — why?
Recall from linear algebra, the eigenvalue problem

Av = Av (1)

where: A is an n X n matrix
visann X 1 vector — an eigenvector
A is a scalar — an eigenvalue

Eigenvalue problem involves finding both the eigenvalues and the eigenvectors
that satisfy (1)

Eigenvalues and eigenvectors are specific to (characteristics of) the matrix A
An n X n matrix will have, at most, n eigenvalues and n corresponding eigenvectors

Equation (1) says:

o Ann X 1 eigenvector, v, left-multiplied by an n X n matrix, A, results in ann X 1 vector
o The resulting vector is the eigenvector scaled by the eigenvalue, A

o Resultis in the same direction as v —i.e., not rotated
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Eigenvalues and Eigenvectors
R

Geometrically, multiplication of a vector by a

~J

matrix results in two things 6f o
o Scaling and rotation d ’
. . i X, =[1.0,1.0]
Consider the matrix af A .
Ax, =[4.0,6.0]
1 3 il '
=l 3 dy
4 2 e
And the vectors .
%2 =[ 1]y =
X{ = [ X, = 4 o —
1 1 ’ 2 0 35} sz-
Compute the product 25 x, = [1.0,0.0]
y = AX 1_5: Ax, =[1.0,4.0]
J
In both cases, results have different B
magnitudes and different directions
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Eigenvalues and Eigenvectors

2

Multiplication of a matrix and one of its —
eigenvectors results in scaling only Bt el v, = [0.707,0.707]

o No rotation

\11=-2
05+
The 2 X 2 matrix 0 -

_ 1 3 -05+
A= [4 2]
1.5 ‘.
has two eigenvectors (normalized) .
_ [—0.707 _[—0.6 1 —
Vi= [ 0.707 ] and vz = [—0.8] S
and two corresponding eigenvalues hmHeAs
l1=5
}\1 == _2 and }\2 == 5 2
such that )
“ ™
AV1 = Alvl and AVZ = 2.2V2 | | | |
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Eigenvalues and Eigenvectors
R

A full-rank, n X n matrix will have n pairs of eigenvalues and
eigenvectors

To find all eigenvalues and eigenvectors that satisfy (1)

Av = Av (1)
rearrange
Av—Av=20

and factor out the eigenvector term
(AI—A)v=0 (2)

If (AI — A)~1 exists, then v = 0, which is the trivial solution and of
no interest

We’re interested in values of A and v that satisfy (2) when(AI — A) is
not invertible — when it is singular
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Eigenvalues and Eigenvectors

Want to find values of A for which (AI — A) is singular
o A matrix is singular if its determinant is zero

IAI—A|=0 (3)

Equation (3) is the characteristic equation for A
o |AI — Al is the characteristic polynomial, A(1)
o An nt"-order polynomial in A

Eigenvalues of matrix A are all n values of A that satisfy (3)
o Roots of the characteristic polynomial

o Find the corresponding eigenvectors by substituting A into (2) and
solving for v

Letting A = s, (3) becomes the denominator of the system
transfer function, G (s)
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Using the Transfer Function to Determine

System Response
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Using G (s) to determine System Response

System output in the Laplace domain can be expressed
in terms of the transfer function as

Y(s) =U(s)G(s) (1)
o Laplace-domain output is the product of the Laplace-

domain input and the transfer function

Response to two specific types of inputs often used to
characterize dynamic systems

o Impulse response
O Step response

We’ll use the approach of (1) to determine these
responses
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Impulse response
R

Impulse function
65(t)=0,t#0
[2 8®)dt =1

Laplace transform of the impulse function is
L{G(t)} =1

Impulse response in the Laplace domain is
Y(s)=1-G(s) =G(s)

The transfer function is the Laplace transform of the impulse response

Impulse response in the time domain is the inverse transform of the
transfer function

y() =g@) = L7HG(s)}
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Step Response
e

Step function: u(t) = {(1) i i 8

Laplace transform of the step function

Lu()} =<

Laplace-domain step response
1
Y(s) =--G(s)

Time-domain step response

y(t) =L {2 G(s)}

Recall the integral property of the Laplace transform

£ify g@dr}=1-G(s), and L71{:-6(s)} = [} g()dr

The step response is the integral of the impulse response
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First- and Second-Order Systems
e

All transfer functions can be decomposed into 1%t- and 2"%-order
terms by factoring A(s)

o Real poles — 1%t-order terms
o Complex-conjugate poles — 2"-order terms

These terms and, therefore, the poles determine the nature of the
time-domain response

o Real poles — decaying exponentials
o Complex-conjugate poles - decaying sinusoids

All time-domain responses will be a superposition of decaying
exponentials and decaying sinusoids

o These are the natural modes or eigenmodes of the system

Instructive to examine the responses of 1%t- and 2"%-order systems
o Gain insight into relationships between pole location and response
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Response of First-Order Systems
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First-Order System — Impulse Response

-
First-order transfer function:

A
G(S) — E
Single real pole at
1
S=—0=——
T

where T is the system time constant

Impulse response:
t

gt) = L7HG(s)} = Ae " = Ae™=

t

gt)=A4e =
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First-Order System — Impulse Response

Initial slope is
inversely
proportional to
time constant

Response
completes 63%
of transition
after one time
constant

Decays to zero
as long as the
pole is negative

K. Webb

a(t)y/A

First-Order Impulse Response

0.8r

06

04

0.2

.......................

T T T T

slopeatt=0is A/T

response has gone
through 63% of full

rangeatt=T

: initial slope intersects
final valueatt=T1

...................................................................................

Normalized Time [t/1]
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Imaginary

Impulse Response vs. Pole Location
e

Increasing o corresponds to decreasing T and a faster response

0.8

06

04

02

o

First-Order Pole Locations

o = 0.5 rad/sec

K. Webb

i o =1 rad/sec
o = 2 rad/sec
i c = 4 rad/sec
-4 -3 -2 -1
Real

g

First-Order Impulse Response vs. Pole Location

08

0.4

0.2

|
o =0.5rad/sec
o = 1rad/sec
o =2rad/sec

o = 4 rad/sec

T

05 1 15 2 25
Time [sec]
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First-Order System — Step Response
-

Step response in the Laplace domain

A
s(s+o)

Y (s) =§-a(s) =

Inverse transform back to time domain via partial fraction expansion

Y(S)=s(sia)=% v
A= +nr)s+on
s or,=A > 1 =2
o
stin+nr=0 - r2=—§

Time-domain step response

A A _t
y(t)=———e * =B —Be't
o o
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First-Order System — Step Response

Initial slope is
inversely
proportional to
time constant

Response
completes 63% of
transition after
one time constant

Almost completely
settled after 71

K. Webb
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=
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First-Order Step Response

08

06

0.4

0.2

T

1
------------------------

95% settled at t = 3T
99% settled at t = 5T

r\\ 99.9% settled at t = 7T

response has gone through
i 63% of full range att=T

é—-—-—-.._._S"""‘--— slopeatt=0is B/T

"
.
!

1 1 1

1

2 3 4
Normalized Time [t/1]
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Imaginary

Step Response vs. Pole Location

Increasing o corresponds to decreasing T and a faster response

First-Order Pole Locations
1 . . . .

o = 0.5 rad/sec
0.8 o =1 rad/sec
o = 2 rad/sec
06F c = 4 rad/sec
041
0.2
0—% H—K
0.2+
041
-06F
0.8+
-1 '
-5 -4 -3 -2 -1 0

K. Webb

y(t)

First-Order Step Response vs. Pole Location

T T T T T T
1
08}
06}
04}
02f
o= 0.5 rad/sec
------- a=1rad/sec
O e | e a=2radlsec [
o = 4 rad/sec
1 1 1 1 1 I
-0.5 0.5 1 1.5 2 25 3 35
Time [sec]
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Pole Location and Stability

First-order transfer function

G(s) =
S—Pp
where p is the system pole
Impulse response is

g(t) = AeP*

If p < 0, g(t) decays to zero
o Pole in the left half-plane
o System is stable

If p > 0, g(t) grows without
bound

o Pole in the right half-plane
o System is unstable

K. Webb

Imaginary

15+

0.5

o

0.5

-1.5F

Left-half-plane poles
indicate stability

Right-half-plane poles
indicate instability

Stable pole Unstable pole

Time [sec]
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Response of Second-Order Systems
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Second-Order Systems

-
Second-order transfer function

_ Num(s) __  Num(s)
G(s) = s2+a;s+ay  (s+0)2+w? (1)

where w, is the damped natural frequency

Can also express the 2"-order transfer function as

Num(s)
s2+2{wps+w? (2)

G(s) =

where w,, is the un-damped natural frequency, and  is the damping ratio

Wy = W1 — (3
=

n
Two poles at

S12 = —O'+\/O'2 — w2 =—{w, + w,\/{% —
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Categories of Second-Order Systems
R

The 2"9-order system poles are

S12 = —Cwp T wp/§% =1

Value of { determines the nature of the poles and, therefore, the response

¢ > 1: Over-damped

o Two distinct, real poles — sum of decaying exponentials — treat as two first-order terms
o Sq=—0q1, Sp = —0y

{ = 1: Critically-damped
o Two identical, real poles — time-scaled decaying exponentials
O S12=—0=—(Wy, = —Wy

0 < { < 1: Under-damped
o Complex-conjugate pair of poles — sum of decaying sinusoids

O S, =—0 T jwg = —(wy ijwn\/ 1-— 62

{ = 0: Un-damped
o Purely-imaginary, conjugate pair of poles — sum of non-decaying sinusoids
O S = Xjw,
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2"d-Order Pole Locations and Damping
I

Second-Order Pole Locations

Over-Damped - > 1 *
Critically-Damped - £ = 1

Under-Damped-0<{ <1

Un-Damped -£=0

Imaginary
%
X
b 4

Real
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Second-Order Poles-0 < (<1

-
Canrelate g, wg, w,, and ¢

Second-Order Pole Locations

Imaginary

o

to pole location geometry

170w | wy, is the magnitude of the
S T s poles
L i
{ is a measure of system
v damping
o :
5 { = — =sin(0)
Wn
¢=20
X | . o Two purely imaginary poles
1 = -0-jug =1
- 0 o Two identical real poles
ea

K. Webb
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Impulse Response — Critically-Damped
[
For { = 1, the transfer function reduces to
A A A

Gls) = s2 4+ 2w,s + w? - (s + w,)? - (s + 0)2
Critically-Damped Impulse Response
Impulse response T
gt) = L7HG(s)} "l
g(t) = Ate™°t T

0.4

ait)

02

Mormalized Time  [o™]
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Imaginary

Impulse Response — Critically-Damped
-

Speed of response is proportional to o

Critically-Damped Impulse Response vs. Pole Location
T T T T T T T

Critically-Damped Pole Locations G, , =05 rad/sec
1 - r T T T 1+ LA seeeeee 0, = 1 radfsec
X ©,,=05radlsec fox  =2rad!
i ' | : Y e S — a3 = Z rad/sec
03 x 6, .= 1radlsec H ; 12
1,2 ' Gyo= 4 rad/sec
o6t X o , = 2radisec 1 0.8 ] :
G, , =4 rad/sec
04l x 1,2 i
02+ . 206
g
0O—=% H—0K 5
02} . e 04
k=S
-04
06} 1 0.2
-0.8F )
_1 i 1 I 1 - G ------
-5 -4 -3 -2 -1 0 1 2
Real 1 1 | | 1 1 1
0 1 2 3 4 5 6 7
Time [sec]
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Impulse Response — Under-Damped
-

For 0 < { < 1, the transfer function is
A

s2 + 2{w,s + w3

G(s) =

Complete the square on the denominator

A A
(s + wp)? + (wn\/TZZ)Z - G Gon? + o]

Rewrite in the form of a damped sinusoid

G(s) =

A (,()d _ A (,l)d
wq (s + {wy)? + w3 ~ wg (s + 0)? + w3

G(s) =

Inverse Laplace transform for the time-domain impulse response

A
g(t) = —e %sin(wyt)
Wy
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Imaginary

Under-Damped Impulse Response vs. w,,

A
g(t) = w—e‘“t sin(wyt) = Be $®nt sin (w,/1 — {2t

Pole Locations vs. Natural Frequency --£=0.4

d

T

T

T

5 T T
x o, = 0.5 radisec
4L x o, = 1radisec
x o, =2 rad/sec
3H x o, =4 radisec
2 -
1 -
0
ALk
oL
al
4+
_5 L L
’5 4 3
K. Webb

g(t) (normalized)

o
n

Under-Damped Impulse Response vs. Natural Frequency

T T T T T T T T T T
—_—0,= 0.5 radfsec

[ea—— mn = 1 rad/sec
------- o, = 2 rad/sec
o, = 4 rad/sec

Time [sec]
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Imaginary

Under-Damped Impulse Response vs. ¢

A
g(t) = w—e‘“t sin(wyt) = Be $®nt sin (a)m/ 1-— (Zt)

d

Pole Locations vs. Damping Ratio -- o= 1

Under-Damped Impulse Response vs. Damping Ratio

£=02 1 r=02H
1t £=04 x x 1 LN e =04
¢=07 S 0 o e £=07
£=09 x £=09
05 B x
£
@
N
£
0 5
£
>
05} X
1 X X
2 15 1 05 0 05 0 2 4 6 8 10 12
Real Time [sec]
K. Webb
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Impulse Response — Un-Damped
R

For ¢ = 0, the transfer function reduces to

Inverse transform to get the time-domain impulse response

g(t) = L7HG(s)}

An un-damped sinusoid

A
9(8) = —sin(wnt)

n
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Un-Damped Impulse Response vs. w,,

in(w,t)

A
n

=—S5
w

g(t)

Undamped Impulse Response vs. Natural Frequency

Undamped Pole Locations vs. Natural Frequency
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Second-Order Step Response

.
The Laplace transform of the step response is

1
Y(s) = < G(s)

The time-domain step response for each damping case
can be derived as the the inverse transform of Y (s)

y(t) = L7H{Y(s)}

or as the integral of the corresponding impulse
response

t
y(t) = f g(2)dr
0
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Critically-Damped Step Response vs. o
e

y(@) =L {%G(s)} = % (1 — et — gte™%)

Critically-Damped Pole Locations Critically-Damped Step Response vs. Pole Location

Imaginary

1 T T T T T T T T T T T T
X o, ,= 0.5 rad/sec
0.8r ‘ r e e — ey
x orp=Tlradsec | T e
os6f| X C12=218080C |tdpnd L
o, , =4 rad/sec 08 .
0.4f X 2 .
02 B ?? 06
£
o—3¢ 3¢9 :
0.2+ g 04
041 s
0.2
06+ 5 040 0.5 rad/sec
R Gy5° 1 rad/sec
08} P .l S L Oyp= 2rad/sec ||
O40% 4 radfsec
-1 : - | 1 I I
5 4 -3 2 -1 2 3 5 6 7
Real Time [sec]
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Imaginary

Under-Damped Step Response vs. w,
e

1 A o
y(t) =Lt {—G(s)} =—|[1—-e 7" cos(wgt) ——e " sin(wyt)
S Wy Wq

Pole Locations vs, Natural Frequency — & = 0.4 Under-Damped Step Response vs. Natural Frequency
T - - T T T T T T T T T

o= 1 rad/sec - -
x >, = 2 rad/sec x ’
n

- x o = 4 radlsec .

x o, = 0.5 radisec
X

o
()

o
)

y(t) (normalized)

0.4

— )= 0.5 rad/sec |

I | 0.2 n
......... o= 1 rad/sec
x ....... o= 2 radfsec
0 o, =4radisec ||
I 1 I I 1 . T L
L L 1 : L 0 2 4 6 8 10 12 14 16

5 -4 -3 -2 -1 0 1 2 Time [sec]

Real
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Imaginary

Under-Damped Step Response vs. ¢
e

1 A o
y(t) =Lt {—G(s)} =— [1 — e % cos(wyt) ——e ?tsin(wgyt)
S Wy Wq

Pole Locations vs. Damping Ratio - o =1 Under-Damped Step Response vs. Damping Ratio
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Un-Damped Step Response vs. w,,
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Step Response Characteristics
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Step Response — Risetime

Risetime is the time it
takes a signal to L | Risetime
transition between o |
two set levels 141

o Typically 10% to 90% 12r

of full transition Al

O Sometimes 20% to | N
80% Sh

y(t

06} t,=1.32sec

A measure of the
speed of a response
02f

Very rough 0.1
approximation: °

04r

0 5 10 15 20
Time [sec
1.8 [sec]
Wn



Step Response — Overshoot

Overshoot is the
magnitude of a
signal’s excursion
beyond its final value
O Expressed as a

percentage of full-
scale swing

Overshoot increases
as ( decreases

0.45 20
0.5 16
0.6 10
0.7 5

K. Webb

1.6

141

Overshoot

37.2% Overshoot

%0S = e V12 . 100%

S 10 15 20
Time [sec]

¢ =

—In (%05/100)

\/nz + In2 (%05/100)
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Step Response =Settling Time

Settling time is the time

it takes a signal to - _ Settling Time
settle, finally, to within
some percentage of its
final value t;= 14.3 sec

11r
o Typically +1% or +5%

Inversely proportional /\
1.01
to the real part of the .y / \
poles, o
For +1% settling: | \ | |
09 0 5 10 15 20
- t N 4.6 _ 4.6 Time [sec]
s~ c (wn
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The Convolution Integral

In this sub-section, we’ll see that the time-

domain output of a system is given by the
convolution of its time-domain input and its

impulse response.
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Convolution Integral
R

Laplace transform of a system output is given by the
product of the transform of the input signal and the
transfer function

Y(s) =G(s)-U(s)

Recall that multiplication in the Laplace domain
corresponds to convolution in the time domain

y() = L7HG(S)U(s)} = g(t) *u(t)

Time-domain output given by the convolution of the
input signal and the impulse response

(&) = g(t) *u(®) = [, g(u(t — 1)de

K. Webb ESE 330



Convolution

Time-domain output is the
input convolved with the
impulse response

t

V() = g(O) *u(t) = f g@u(t — dr

0

o Input is flipped in time and
shifted by t

o Multiply impulse response and
flipped/shifted input

O Integrateovert =0 ...t

Each time point of y(t) given
by result of integral with
u(—1) shifted by t

K. Webb

nvolution of an Input Signal with the System Impulse Response

alt), u(®

The input and the
impulse response

The flipped input and

| the impulse response

t=2.0sec
a 1 N
= | ~
w1 1 .
1 ~
~

0 . ] ~, .

i} 4 2 0 2 4 ] 0

4

s
— y(t) = g{t)*u(t)
=27

| /

0 . . . .

i} 4 2 0 2 4 ] 10

time [sec]
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Convolution

Convolution of an Input Signal with the System Impulse Response 5 Convolution of an Input Signal with the System Impulse Response
t=4.0 sec t=8.0 sec
2| ] T2t
El El
= =
=1r 1 =1r
0 . " . - 0 . "
Rl 4 2 [ ] 10 Rl 4 2
4 T T T T T T T 4 T T T T T T T
af : af :
— y(t) = g{t)*u(t) — y(t) = g{t)*u(t)
=2r ] =2r ]
1+ 1 1+ 1
0 . . . L L . . 0 . . . . . .
Rl 4 2 0 2 4 [ ] 10 Rl 4 2 0 2 4 [ ] 10
time [sec] time [sec]
Convolution of an Input Signal with the System Impulse Response 5 Convolution of an Input Signal with the System Impulse Response
t=6.0 sec t=10.0 sec
2| T2t
El El
= =
=1r =1r
0 . " 0 . " .
Rl 4 2 Rl 4 2 0 2 4
4 T T T T T T T 4 T T T T T T T
af : af :
— y(t) = g{t)*u(t) — y(t) = g{t)*u(t)
=2r ] =2r ]
1+ 1 1+ 1
0 . . . L L . . 0 . . . . . .
Rl 4 2 0 2 4 [ ] 10 Rl 4 2 0 2 4 [ ] 10
time [sec] time [sec]
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Convolution
3
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Time-Domain Analysis in MATLAB

A few of MATLAB’s many built-in functions that
are useful for simulating linear systems are
listed in the following sub-section.
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System Objects
e

MATLAB has data types dedicated to linear system
models

Two primary system model objects:
o State-space model
o Transfer function model

Objects created by calling MATLAB functions
0 SS.M— creates a state-space model
o tF.m - creates a transfer function model

K. Webb ESE 330



State-Space Model —ss(...)
...

sys =ss(A,B,C,D)

o A: system matrix-n X n

o B: input matrix-n X m

o C: output matrix-p X n

o D: feed-through matrix-p X m
O SYS: state-space model object

State-space model object will be used as an input to
other MATLAB functions

K. Webb ESE 330



Transfer Function Model — t¥(...)

sys = tFf(Num,Den)

o Num: vector of numerator polynomial coefficients
o Den: vector of denominator polynomial coefficients
O SysS: transfer function model object

Transfer function is assumed to be of the form

bys" + bys" Tt 4 -+ bys + bryyq
a;s™ + ClZSn_l Tt aps + apiq
Inputs to tF(...) are

oNum=[bl,b2,.. ,br+l];
oDen=Jal,a2,. ,an+1];

G(s) =

K. Webb ESE 330



Step Response Simulation —step(...)
e

Ly.t] =step(sys,t)

O SYS: system model — state-space or transfer function
o t: optional time vector or final time value

O y: output step response

o €: output time vector

If no outputs are specified, step response is
automatically plotted

Time vector (or final value) input is optional
o If not specified, MATLAB will generate automatically
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Impulse Response Simulation — Impulse(..)
-~

[v,t] = 1mpulse(sys,t)

O SYS: system model — state-space or transfer function
o t: optional time vector or final time value

O y: output impulse response

o €: output time vector

If no outputs are specified, impulse response is
automatically plotted

Time vector (or final value) input is optional
o If not specified, MATLAB will generate automatically
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Natural Response — Initial (..)
-

[y,t,.x] =1nitial(sys,x0,t)

O SYS: state-space system model function

o XO: initial value of the state - n X 1 vector

o t: optional time vector or final time value

O Y: response to initial conditions - length(t) X 1 vector
o T output time vector

O X: trajectory of all states - length(t) X n matrix

If no outputs are specified, response to initial
conditions is automatically plotted

Time vector (or final value) input is optional
o If not specified, MATLAB will generate automatically
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Linear System Simulation— Isim(...)
e

[y, t,x]=Isim(sys,u,t,x0)

O SYS: system model — state-space or transfer function
O U: input signal vector

o t: time vector corresponding to the input signal

o X0: optional initial conditions — (for ss model only)

O y: output response

o T output time vector

O X: optional trajectory of all states — (for ss model only)

If no outputs are specified, response is automatically
plotted

Input can be any arbitrary signal

K. Webb ESE 330



More MATLAB Functions
e

A few more useful MATLAB functions

0 Pole/zero analysis:

pzmap(..)

pole(..)
zero(..)

erg(.)

O Input signal generation:
gensig(..)

Refer to MATLAB help documentation for more
information
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