
ESE 330 – Modeling & Analysis of Dynamic Systems

SECTION 6: TIME-DOMAIN 
ANALYSIS
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This first sub-section of notes continues where 
the previous section left off, and  will explore 
the difference between the forced and natural 
responses of a dynamic system.

Natural and Forced Responses2



K. Webb ESE 330

3

Natural and Forced Responses

 In the previous section we used Laplace transforms 
to determine the response of a system to a step 
input, given zero initial conditions
 The driven response

 Now, consider the response of the same system to 
non-zero initial conditions only
 The natural response
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Natural Response

�̈�𝑦 + 𝑏𝑏
𝑚𝑚
�̇�𝑦 + 𝑘𝑘

𝑚𝑚
𝑦𝑦 = 0 (1)

 Use the derivative property to Laplace transform (1) 
 Allow for non-zero initial-conditions

𝑠𝑠2𝑌𝑌 𝑠𝑠 − 𝑠𝑠𝑦𝑦 0 − �̇�𝑦 0 + 𝑏𝑏
𝑚𝑚
𝑠𝑠𝑌𝑌 𝑠𝑠 − 𝑏𝑏

𝑚𝑚
𝑦𝑦 0 + 𝑘𝑘

𝑚𝑚
𝑌𝑌 𝑠𝑠 = 0 (2)

 Same spring/mass/damper system
 Set the input to zero
 Second-order ODE for displacement 

of the mass:
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Natural Response

 Solving (2) for 𝑌𝑌 𝑠𝑠 gives the Laplace transform of the 
output due solely to initial conditions  

 Laplace transform of the natural response

𝑌𝑌 𝑠𝑠 =
𝑠𝑠 𝑦𝑦 0 + �̇�𝑦 0 + 𝑏𝑏

𝑚𝑚𝑦𝑦 0

𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

(3)

 Consider the under-damped system with the following 
initial conditions

 𝑚𝑚 = 1 𝑘𝑘𝑘𝑘

 𝑘𝑘 = 16 𝑁𝑁
𝑚𝑚

 𝑏𝑏 = 4 𝑁𝑁�𝑠𝑠
𝑚𝑚

 𝑦𝑦 0 = 0.15 𝑚𝑚

 �̇�𝑦 0 = 0.1𝑚𝑚
𝑠𝑠
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Natural Response

 Substituting component parameters and initial conditions 
into (3)

𝑌𝑌 𝑠𝑠 = 0.15𝑠𝑠 +0.7
𝑠𝑠2+4𝑠𝑠+16

(4)

 Remember, it’s the roots of the denominator polynomial 
that dictate the form of the response
 Real roots – decaying exponentials
 Complex roots – decaying sinusoids

 For the under-damped case, roots are complex
 Complete the square
 Partial fraction expansion has the form

𝑌𝑌 𝑠𝑠 = 0.15𝑠𝑠 +0.7
𝑠𝑠2+4𝑠𝑠+16

= 𝑟𝑟1 𝑠𝑠+2 +𝑟𝑟2 3.464
𝑠𝑠+2 2+ 3.464 2 (5)
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Natural Response

𝑌𝑌 𝑠𝑠 = 0.15𝑠𝑠 +0.7
𝑠𝑠2+4𝑠𝑠+16

= 𝑟𝑟1 𝑠𝑠+2 +𝑟𝑟2 3.464
𝑠𝑠+2 2+ 3.464 2 (5)

 Multiply both sides of (5) by the denominator of the 
left-hand side

0.15𝑠𝑠 + 0.7 = 𝑟𝑟1𝑠𝑠 + 2𝑟𝑟1 + 3.464𝑟𝑟2

 Equating coefficients and solving for 𝑟𝑟1 and 𝑟𝑟2 gives

𝑟𝑟1 = 0.15,  𝑟𝑟2 = 0.115

 The Laplace transform of the natural response:

𝑌𝑌 𝑠𝑠 = 0.15 𝑠𝑠+2
𝑠𝑠+2 2+ 3.464 2 + 0.115 3.464

𝑠𝑠+2 2+ 3.464 2 (6)
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Natural Response

 Inverse Laplace transform is the natural response
𝑦𝑦 𝑡𝑡 = 0.15𝑒𝑒−2𝑡𝑡 cos 3.464 � 𝑡𝑡 + 0.115𝑒𝑒−2𝑡𝑡 sin 3.464 � 𝑡𝑡 (7)

 Under-damped 
response is the 
sum of decaying 
sine and cosine 
terms
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Driven Response with Non-Zero I.C.’s

 Now, Laplace transform, allowing for both non-zero input and 
initial conditions

𝑠𝑠2𝑌𝑌 𝑠𝑠 − 𝑠𝑠𝑦𝑦 0 − �̇�𝑦 0 + 𝑏𝑏
𝑚𝑚
𝑌𝑌 𝑠𝑠 − 𝑏𝑏

𝑚𝑚
𝑦𝑦 0 + 𝑘𝑘

𝑚𝑚
𝑌𝑌 𝑠𝑠 = 1

𝑚𝑚
𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

 Solving for 𝑌𝑌 𝑠𝑠 , gives the Laplace transform of the response 
to both the input and the initial conditions

𝑌𝑌 𝑠𝑠 =
𝑠𝑠 𝑦𝑦 0 + �̇�𝑦 0 + 𝑏𝑏

𝑚𝑚𝑦𝑦 0 +1
𝑚𝑚𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

(8)

�̈�𝑦 +
𝑏𝑏
𝑚𝑚
�̇�𝑦 +

𝑘𝑘
𝑚𝑚
𝑦𝑦 =

1
𝑚𝑚
𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡
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Driven Response with Non-Zero I.C.’s

 Laplace transform of the response has two components

𝑌𝑌 𝑠𝑠 =
𝑠𝑠 𝑦𝑦 0 + �̇�𝑦 0 + 𝑏𝑏

𝑚𝑚𝑦𝑦 0

𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

+
1
𝑚𝑚𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

 Total response is a superposition of the initial condition 
response and the driven response

 Both have the same denominator polynomial
 Same roots, same type of response

 Over-, under-, critically-damped

Natural response - initial conditions Driven response - input
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Driven Response with Non-Zero I.C.’s

 Laplace transform of the total response

𝑌𝑌 𝑠𝑠 =
0.15𝑠𝑠 + 0.7 + 1

𝑠𝑠
𝑠𝑠2 + 𝑏𝑏

𝑚𝑚 𝑠𝑠 + 𝑘𝑘
𝑚𝑚

=
0.15𝑠𝑠2 + 0.7𝑠𝑠 + 1

𝑠𝑠 𝑠𝑠2 + 𝑏𝑏
𝑚𝑚 𝑠𝑠 + 𝑘𝑘

𝑚𝑚

 Transform back to time domain via partial fraction expansion

𝑌𝑌 𝑠𝑠 =
𝑟𝑟1
𝑠𝑠 +

𝑟𝑟2 𝑠𝑠 + 2
𝑠𝑠 + 2 2 + 3.464 2 +

𝑟𝑟3 3.464
𝑠𝑠 + 2 2 + 3.464 2

 Solving for the residues gives

𝑟𝑟1 = 0.0625,   𝑟𝑟2 = 0.0875,   𝑟𝑟3 = 0.0794

 𝑚𝑚 = 1 𝑘𝑘𝑘𝑘

 𝑘𝑘 = 16 𝑁𝑁
𝑚𝑚

 𝑏𝑏 = 4 𝑁𝑁�𝑠𝑠
𝑚𝑚

 𝑦𝑦 0 = 0.15 𝑚𝑚

 �̇�𝑦 0 = 0.1 𝑚𝑚
𝑠𝑠

 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 = 1𝑁𝑁 � 𝑢𝑢 𝑡𝑡
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Driven Response with Non-Zero I.C.’s

 Total response:
𝑦𝑦 𝑡𝑡 = 0.0625 + 0.0875𝑒𝑒−2𝑡𝑡 cos 3.464 � 𝑡𝑡 + 0.0794𝑒𝑒−2𝑡𝑡 sin 3.464 � 𝑡𝑡

 Superposition of 
two components
 Natural response

due to initial 
conditions

 Driven response 
due to the input
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Next, we’ll apply the Laplace transform to the 
entire state-space model in matrix form, just as 
we did for single differential equations.

Solving the State-Space Model13
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Solving the State-Space Model

 We’ve seen how to use the Laplace transform to solve individual 
differential equations

 Now, we’ll apply the Laplace transform to the full state-space system 
model

 First, we’ll look at the same simple example
 Later, we’ll take a more generalized approach

 State-space model is

�̇�𝑝
�̇�𝑥 =

−
𝑏𝑏
𝑚𝑚 −𝑘𝑘

1
𝑚𝑚 0

𝑝𝑝
𝑥𝑥 + 1

0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡

(1)
𝑦𝑦 = 0 1

𝑝𝑝
𝑥𝑥

 Note that, because this model was derived from a bond graph model, the state 
variables are now momentum and displacement
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Laplace Transform of the State-Space Model

 For now, focus on the state equation
 Output is a linear combination of states and inputs
 Determining the state trajectory is the important thing

 Use the derivative property to Laplace transform the 
state equation

𝑠𝑠 𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 − 𝑝𝑝 0

𝑥𝑥 0 =
− 𝑏𝑏

𝑚𝑚
−𝑘𝑘

1
𝑚𝑚

0
𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 + 1

0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

 Rearranging to put all transformed state vectors on the 
left-hand side

𝑠𝑠 𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 −

− 𝑏𝑏
𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0
𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 = 𝑝𝑝 0

𝑥𝑥 0 + 1
0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠 (2)
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Laplace Transform of the State-Space Model

𝑠𝑠 𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 −

− 𝑏𝑏
𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0
𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 = 𝑝𝑝 0

𝑥𝑥 0 + 1
0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠 (2)

 Can factor out the transformed state vector from the left-
hand side
 Must multiply 𝑠𝑠 by a 2 × 2 identity matrix

𝑠𝑠𝐼𝐼 −
− 𝑏𝑏

𝑚𝑚
−𝑘𝑘

1
𝑚𝑚

0
𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 = 𝑝𝑝 0

𝑥𝑥 0 + 1
0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

𝑠𝑠 0
0 𝑠𝑠 −

− 𝑏𝑏
𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0
𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 = 𝑝𝑝 0

𝑥𝑥 0 + 1
0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

𝑠𝑠 + 𝑏𝑏
𝑚𝑚

𝑘𝑘

− 1
𝑚𝑚

𝑠𝑠
𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 = 𝑝𝑝 0

𝑥𝑥 0 + 1
0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠 (3)



K. Webb ESE 330

17

Laplace Transform of the State-Space Model

𝑠𝑠 + 𝑏𝑏
𝑚𝑚

𝑘𝑘

− 1
𝑚𝑚

𝑠𝑠
𝑃𝑃 𝑠𝑠
𝑋𝑋 𝑠𝑠 = 𝑝𝑝 0

𝑥𝑥 0 + 1
0 𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠 (3)

 Note the form of (3)
 The LHS is 𝑠𝑠𝐼𝐼 − 𝐴𝐴 𝐗𝐗 𝑠𝑠 , where 𝐴𝐴 is the system matrix
 Everything on the RHS reduces to a 2 × 1 vector
 A known matrix times a vector of unknowns equals a 

known vector
 If we can solve for 𝑃𝑃 𝑠𝑠 and/or 𝑋𝑋 𝑠𝑠 , we can inverse 

transform to get 𝑝𝑝 𝑡𝑡 and/or 𝑥𝑥 𝑡𝑡
 Use Cramer’s Rule
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Cramer’s Rule

 Given a matrix equation

𝐀𝐀𝐀𝐀 = 𝐲𝐲

 We can solve for elements of 𝐀𝐀 as follows

𝑥𝑥𝑖𝑖 =
det 𝐀𝐀𝑖𝑖
det 𝐀𝐀

=
𝐀𝐀𝑖𝑖
𝐀𝐀

 The matrix 𝐀𝐀𝑖𝑖 is formed by replacing the 𝑖𝑖𝑡𝑡𝑡 column 
of 𝐀𝐀 with the vector 𝐲𝐲
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Laplace Transform of the State-Space Model

 According to Cramer’s Rule

𝑋𝑋 𝑠𝑠 =

𝑠𝑠+𝑏𝑏
𝑚𝑚 𝑝𝑝 0 +𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

− 1
𝑚𝑚 𝑥𝑥 0

𝑠𝑠+𝑏𝑏
𝑚𝑚 𝑘𝑘

−1
𝑚𝑚 𝑠𝑠

𝑋𝑋 𝑠𝑠 =
𝑠𝑠 𝑥𝑥 0 +𝑏𝑏

𝑚𝑚 𝑥𝑥 0 − −1
𝑚𝑚𝑝𝑝 0 − 1

𝑚𝑚𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

(4)

 According to the output equation from (1)
𝑌𝑌 𝑠𝑠 = 𝑋𝑋 𝑠𝑠

 Equation (4) is identical to (8) from the previous 
subsection of notes, which we arrived at differently
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Laplace Transform of the State-Space Model

𝑌𝑌 𝑠𝑠 =
𝑠𝑠 𝑦𝑦 0 +𝑏𝑏

𝑚𝑚 𝑦𝑦 0 − −1
𝑚𝑚𝑝𝑝 0 − 1

𝑚𝑚𝐹𝐹𝑖𝑖𝑖𝑖 𝑠𝑠

𝑠𝑠2+𝑏𝑏
𝑚𝑚𝑠𝑠+

𝑘𝑘
𝑚𝑚

(5)

 Next, sub in parameter values, I.C.’s and an input
 Use PFE to inverse transform to 𝑦𝑦(𝑡𝑡)
 Again, consider the under-damped system:

 Let the input be a 1𝑁𝑁 step: 𝐹𝐹𝑖𝑖𝑖𝑖 𝑡𝑡 = 1𝑁𝑁 � 𝑢𝑢 𝑡𝑡

 𝑚𝑚 = 1 𝑘𝑘𝑘𝑘

 𝑘𝑘 = 16 𝑁𝑁
𝑚𝑚

 𝑏𝑏 = 4 𝑁𝑁�𝑠𝑠
𝑚𝑚

 𝑥𝑥 0 = 0.15 𝑚𝑚

 𝑝𝑝 0 = 0.1 𝑁𝑁 � 𝑠𝑠



K. Webb ESE 330

21

Laplace Transform of the State-Space Model

 The Laplace transform of the output becomes

𝑌𝑌 𝑠𝑠 =
0.15𝑠𝑠 +0.6 − −0.1−1𝑠𝑠

𝑠𝑠2+4𝑠𝑠+16

𝑌𝑌 𝑠𝑠 = 0.15𝑠𝑠2 +0.7𝑠𝑠+1
𝑠𝑠 𝑠𝑠2+4𝑠𝑠+16

(6)

 Inverse transform via partial fraction expansion

𝑌𝑌 𝑠𝑠 = 0.15𝑠𝑠2 +0.7𝑠𝑠+1
𝑠𝑠 𝑠𝑠2+4𝑠𝑠+16

= 𝑟𝑟1
𝑠𝑠

+ 𝑟𝑟2 𝑠𝑠+2 +𝑟𝑟3 3.464
𝑠𝑠+2 2+ 3.464 2 (7)

 Multiply both sides by left-hand-side denominator
0.15𝑠𝑠2 + 0.7𝑠𝑠 + 1 = 𝑟𝑟1𝑠𝑠2 + 4𝑟𝑟1𝑠𝑠 + 16𝑟𝑟1 + 𝑟𝑟2𝑠𝑠2 + 2𝑟𝑟2𝑠𝑠 + 3.464𝑟𝑟3𝑠𝑠

 Equating coefficients and solving yields
𝑟𝑟1 = 0.0625,   𝑟𝑟2 = 0.0875,  𝑟𝑟3 = 0.0794
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Laplace Transform of the State-Space Model

 The Laplace transform of the system response is

𝑌𝑌 𝑠𝑠 = 0.0625
𝑠𝑠

+ 0.0875 𝑠𝑠+2
𝑠𝑠+2 2+ 3.464 2 + 0.0794 3.464

𝑠𝑠+2 2+ 3.464 2 (8)

 The time-domain response is
𝑦𝑦 𝑡𝑡 = 0.0625 + 0.0875𝑒𝑒−2𝑡𝑡 cos 3.464𝑡𝑡 + 0.0794𝑒𝑒−2𝑡𝑡 sin 3.464𝑡𝑡 (9)

 Transient portion
 Due to initial conditions 

and input step
 Decays to zero 

 Steady-State portion
 Due to constant input
 Does not decay
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Laplace Transform of the State-Space Model

 Now, we’ll apply the Laplace transform to the solution of the state-space 
model in general form

�̇�𝐀 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐀𝐀 + 𝐃𝐃𝐁𝐁

 For now, focus on the state equation only
 Output is derived from states and inputs

 Laplace transform of the state equation

𝑠𝑠𝐗𝐗 𝑠𝑠 − 𝐀𝐀 0 = 𝐀𝐀𝐗𝐗 𝑠𝑠 + 𝐁𝐁𝐁𝐁 𝑠𝑠

 Rearranging

𝑠𝑠𝐗𝐗 𝑠𝑠 − 𝐀𝐀𝐗𝐗 𝑠𝑠 = 𝐁𝐁𝐁𝐁 𝑠𝑠 + 𝐀𝐀 0

 Factoring out the transformed state from the left-hand side

𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝐗𝐗 𝑠𝑠 = 𝐁𝐁𝐁𝐁 𝑠𝑠 + 𝐀𝐀 0 (10)
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Laplace Transform of the State-Space Model

𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝐗𝐗 𝑠𝑠 = 𝐁𝐁𝐁𝐁 𝑠𝑠 + 𝐀𝐀 0 (10)

 Remember the dimensions of each term in (10)
 𝑠𝑠𝐈𝐈 − 𝐀𝐀 : 𝑛𝑛 × 𝑛𝑛
 𝐗𝐗 𝑠𝑠 : 𝑛𝑛 × 1
 𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝐗𝐗 𝑠𝑠 : 𝑛𝑛 × 1

 𝐁𝐁𝐁𝐁 𝑠𝑠 : 𝑛𝑛 × 1
 𝐀𝐀 0 : 𝑛𝑛 × 1

 Apply Cramer’s rule to solve for the Laplace transform of 
the 𝑖𝑖𝑡𝑡𝑡 state variable

𝑋𝑋𝑖𝑖 𝑠𝑠 = 𝑠𝑠𝐈𝐈−𝐀𝐀 𝑖𝑖
𝑠𝑠𝐈𝐈−𝐀𝐀

(11)

 The matrix 𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖 is formed by replacing the 𝑖𝑖𝑡𝑡𝑡 column of 
𝑠𝑠𝐈𝐈 − 𝐀𝐀 with 𝐁𝐁𝐁𝐁 𝑠𝑠 + 𝐀𝐀 0
 An 𝑛𝑛 × 1 vector of known values
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Laplace Transform of the State-Space Model

𝑋𝑋𝑖𝑖 𝑠𝑠 = 𝑠𝑠𝐈𝐈−𝐀𝐀 𝑖𝑖
𝑠𝑠𝐈𝐈−𝐀𝐀

(11)

 Denominator of (11) is the determinant of 𝑠𝑠𝐈𝐈 − 𝐀𝐀
 𝑠𝑠𝐈𝐈 − 𝐀𝐀 is an 𝑛𝑛 × 𝑛𝑛 matrix

 Each diagonal term is a first-order polynomial in 𝑠𝑠
 One term in the determinant is the trace of the matrix, the product terms along 

the diagonal
 𝑠𝑠𝐈𝐈 − 𝐀𝐀 is an 𝒏𝒏𝒕𝒕𝒕𝒕-order polynomial in 𝒔𝒔

 The characteristic polynomial:

Δ 𝑠𝑠 = 𝑠𝑠𝐈𝐈 − 𝐀𝐀 (12)

 Roots of Δ 𝑠𝑠 are values of 𝑠𝑠 that satisfy the characteristic equation

Δ 𝑠𝑠 = 0 (13)
 Poles of (11)
 Eigenvalues of system matrix, 𝐀𝐀
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Laplace Transform of the State-Space Model

 Denominator of every state variable’s Laplace transform contains 
the characteristic polynomial

𝑋𝑋𝑖𝑖 𝑠𝑠 = 𝑠𝑠𝐈𝐈−𝐀𝐀 𝑖𝑖
Δ 𝑠𝑠

(14)

 A characteristic of the system
 Remember, denominator roots (i.e. poles) determine the nature of 

the response
 Real roots – decaying exponentials
 Complex roots – decaying sinusoids

 Responses of all state variables have same components
 Numerators of transforms determine the differences

 Output transform has the same denominator, Δ 𝑠𝑠
 Linear combination of states and input
 Response includes the same sinusoidal and/or exponential components
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Laplace Transform of the State-Space Model

 Assume:
 zero initial conditions: 𝐀𝐀 0 = 𝟎𝟎
 SISO system: single input – 𝑈𝑈 𝑠𝑠 is a scalar transform

 Can factor out the input from the numerator of (14)

𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖 = 𝑈𝑈 𝑠𝑠 𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖∗

where 𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖∗ is the 𝑛𝑛 × 𝑛𝑛 matrix formed by 
replacing the 𝑖𝑖𝑡𝑡𝑡 column of 𝑠𝑠𝐈𝐈 − 𝐀𝐀 with the 𝑛𝑛 × 1
vector 𝐁𝐁
 𝑈𝑈 𝑠𝑠 appears in every term of one column of 𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖
 𝑈𝑈 𝑠𝑠 appears in every term of the determinant
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Laplace Transform of the State-Space Model

 Can now write the Laplace transform of the state variable 
response as

𝑋𝑋𝑖𝑖 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 𝑠𝑠𝐈𝐈−𝐀𝐀 𝑖𝑖∗

𝑠𝑠𝑠𝑠−𝐴𝐴
= 𝑈𝑈 𝑠𝑠 𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖 𝑠𝑠

Δ 𝑠𝑠
(15)

 𝑁𝑁𝑢𝑢𝑚𝑚𝑖𝑖 𝑠𝑠 is, in general, different for each state variable
 At most, an 𝑛𝑛 − 1 𝑠𝑠𝑡𝑡 order polynomial in 𝑠𝑠

 Components of every state variable (and output) response 
determined by 
 The characteristic polynomial, Δ 𝑠𝑠
 The input, 𝑈𝑈 𝑠𝑠

 Numerator, 𝑁𝑁𝑢𝑢𝑚𝑚𝑖𝑖 𝑠𝑠 , determines exact response
 Weighting of each sinusoidal and/or exponential component
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Laplace Transform of the State-Space Model

𝑋𝑋𝑖𝑖 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖 𝑠𝑠
Δ 𝑠𝑠

(15)

 Laplace transform of each state variable response, 𝑋𝑋𝑖𝑖 𝑠𝑠 , is 
the Laplace transform of the input scaled by

𝑁𝑁𝑢𝑢𝑚𝑚𝑖𝑖 𝑠𝑠
Δ 𝑠𝑠

𝑈𝑈 𝑠𝑠 𝑋𝑋𝑖𝑖 𝑠𝑠

 In the next sub-section, we’ll explore a related concept –
transfer functions

𝑁𝑁𝑢𝑢𝑚𝑚𝑖𝑖 𝑠𝑠
Δ 𝑠𝑠
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Transfer Functions

 Now, come back to the full state-space model, including the output 
equation – (SISO case assumed here - 𝑢𝑢 and 𝑦𝑦 are scalars)

�̇�𝐀 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝑢𝑢
𝑦𝑦 = 𝐂𝐂𝐀𝐀 + D𝑢𝑢

 Assume zero initial conditions and Laplace transform the whole model

𝑠𝑠𝐗𝐗 𝑠𝑠 = 𝐀𝐀𝐗𝐗 𝑠𝑠 + 𝐁𝐁𝑈𝑈 𝑠𝑠 (1)

𝑌𝑌 𝑠𝑠 = 𝐂𝐂𝐗𝐗 𝑠𝑠 + D𝑈𝑈 𝑠𝑠 (2)

 Simplify the state equation as before

𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝐗𝐗 𝑠𝑠 = 𝐁𝐁𝑈𝑈 𝑠𝑠

 Solving for the state vector

𝐗𝐗 𝑠𝑠 = 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁𝑈𝑈(𝑠𝑠) (3)
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Transfer Functions

 Substituting (3) into (2) gives the Laplace transform of the output

𝑌𝑌 𝑠𝑠 = 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁𝑈𝑈(𝑠𝑠) + D𝑈𝑈 𝑠𝑠

 Factoring out the input
𝑌𝑌 𝑠𝑠 = 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + D 𝑈𝑈 𝑠𝑠 (4)

 Transform of the output is the input scaled by the stuff in the square 
brackets

 Dividing through by the input gives the transfer function

𝐺𝐺 𝑠𝑠 = 𝑌𝑌 𝑠𝑠
𝑈𝑈 𝑠𝑠

= 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + D (5)

 Ratio of system’s output to input in the Laplace domain, assuming zero 
initial conditions

 An alternative to the state-space (time-domain) model for 
mathematically representing a system
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Transfer Matrix – MIMO Systems

 For MIMO systems
�̇�𝐀 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁
𝐲𝐲 = 𝐂𝐂𝐀𝐀 + 𝐃𝐃𝐁𝐁

 𝑚𝑚 inputs: 𝐁𝐁 is 𝑚𝑚 × 1, 𝐁𝐁 is 𝑛𝑛 × 𝑚𝑚
 𝑝𝑝 outputs: 𝐲𝐲 is 𝑝𝑝 × 1, 𝐂𝐂 is 𝑝𝑝 × 𝑛𝑛

 Transfer function becomes a 𝒑𝒑 × 𝒎𝒎 matrix

𝐆𝐆 𝑠𝑠 = 𝐘𝐘 𝑠𝑠
𝐁𝐁 𝑠𝑠

= 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + 𝐃𝐃

 Transfer function 𝐺𝐺𝑖𝑖𝑖𝑖 𝑠𝑠 relates the 𝑖𝑖𝑡𝑡𝑡 output to the 𝑗𝑗𝑡𝑡𝑡
input

𝐺𝐺𝑖𝑖𝑖𝑖 𝑠𝑠 = 𝑌𝑌𝑖𝑖 𝑠𝑠
𝑈𝑈𝑗𝑗 𝑠𝑠

 We’ll continue to assume SISO systems in this course
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Transfer Functions

 System output in the Laplace domain is the input 
multiplied by the transfer function

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 � 𝐺𝐺 𝑠𝑠

 We saw earlier that state variables are given by

𝑋𝑋𝑖𝑖 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖 𝑠𝑠
Δ 𝑠𝑠

where Δ 𝑠𝑠 = 𝑠𝑠𝐈𝐈 − 𝐀𝐀 is the characteristic polynomial

 Output is linear combination of states and input, so 
we’d expect the denominator of 𝐺𝐺 𝑠𝑠 to be Δ 𝑠𝑠 as well
 Is it? What is the denominator of 𝐺𝐺 𝑠𝑠 ?
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Transfer Functions

𝐺𝐺 𝑠𝑠 = 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + D (5)

 The matrix inverse term in (5) is given by

𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1 =
𝑎𝑎𝑎𝑎𝑗𝑗 𝑠𝑠𝐈𝐈 − 𝐀𝐀
𝑠𝑠𝐈𝐈 − 𝐀𝐀

where the numerator is the adjoint of 𝑠𝑠𝐈𝐈 − 𝐀𝐀
 Equation (5) can be rewritten as

𝐺𝐺 𝑠𝑠 = 𝐂𝐂 𝑎𝑎𝑎𝑎𝑖𝑖 𝑠𝑠𝐈𝐈−𝐀𝐀 𝐁𝐁+D 𝑠𝑠𝐈𝐈−𝐀𝐀
𝑠𝑠𝐈𝐈−𝐀𝐀

(6)

 Transfer function denominator is the characteristic polynomial
 Poles of the transfer function are roots of Δ 𝑠𝑠

 System poles or eigenvalues
 Eigenvalues of the system matrix, 𝐀𝐀
 Along with the input, system poles determine the nature of the time-domain 

response
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This sub-section of notes takes a bit of a 
tangent to explain the use of the term 
eigenvalues when referring to system poles.

Eigenvalues36
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Eigenvalues
 We’ve been using the term eigenvalue when referring to system poles – why?
 Recall from linear algebra, the eigenvalue problem

𝐀𝐀𝐀𝐀 = 𝜆𝜆𝐀𝐀 (1)

where: 𝐀𝐀 is an 𝑛𝑛 × 𝑛𝑛 matrix
𝐀𝐀 is an 𝑛𝑛 × 1 vector – an eigenvector
𝜆𝜆 is a scalar – an eigenvalue

 Eigenvalue problem involves finding both the eigenvalues and the eigenvectors
that satisfy (1) 

 Eigenvalues and eigenvectors are specific to (characteristics of) the matrix 𝐀𝐀
 An 𝑛𝑛 × 𝑛𝑛 matrix will have, at most, 𝑛𝑛 eigenvalues and 𝑛𝑛 corresponding eigenvectors

 Equation (1) says:
 An 𝑛𝑛 × 1 eigenvector, 𝐀𝐀, left-multiplied by an 𝑛𝑛 × 𝑛𝑛 matrix, 𝐀𝐀, results in an 𝑛𝑛 × 1 vector
 The resulting vector is the eigenvector scaled by the eigenvalue, 𝜆𝜆
 Result is in the same direction as 𝐀𝐀 – i.e., not rotated
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Eigenvalues and Eigenvectors

 Geometrically, multiplication of a vector by a 
matrix results in two things
 Scaling and rotation

 Consider the matrix

𝐀𝐀 = 1 3
4 2

 And the vectors

𝐀𝐀1 = 1
1 ,  𝐀𝐀2 = 1

0
 Compute the product

𝐲𝐲 = 𝐀𝐀𝐀𝐀

 In both cases, results have different 
magnitudes and different directions
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Eigenvalues and Eigenvectors

 Multiplication of a matrix and one of its 
eigenvectors results in scaling only
 No rotation

 The 2 × 2 matrix

𝐀𝐀 = 1 3
4 2

has two eigenvectors (normalized)

𝐀𝐀1 = −0.707
0.707 and  𝐀𝐀2 = −0.6

−0.8
and two corresponding eigenvalues

λ1 = −2 and  λ2 = 5

such that

𝐀𝐀𝐀𝐀𝟏𝟏 = 𝜆𝜆𝟏𝟏𝐀𝐀𝟏𝟏 and 𝐀𝐀𝐀𝐀𝟐𝟐 = 𝜆𝜆𝟐𝟐𝐀𝐀𝟐𝟐
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Eigenvalues and Eigenvectors

 A full-rank, 𝑛𝑛 × 𝑛𝑛 matrix will have 𝑛𝑛 pairs of eigenvalues and 
eigenvectors

 To find all eigenvalues and eigenvectors that satisfy (1)

𝐀𝐀𝐀𝐀 = 𝜆𝜆𝐀𝐀 (1)
rearrange

𝜆𝜆𝐀𝐀 − 𝐀𝐀𝐀𝐀 = 𝟎𝟎

and factor out the eigenvector term

𝜆𝜆𝐈𝐈 − 𝐀𝐀 𝐀𝐀 = 0 (2)

 If 𝜆𝜆𝐈𝐈 − 𝐀𝐀 −1 exists, then 𝐀𝐀 = 𝟎𝟎, which is the trivial solution and of 
no interest

 We’re interested in values of 𝜆𝜆 and 𝐀𝐀 that satisfy (2) when 𝜆𝜆𝐈𝐈 − 𝐀𝐀 is 
not invertible – when it is singular
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Eigenvalues and Eigenvectors

 Want to find values of 𝜆𝜆 for which (𝜆𝜆𝐈𝐈 − 𝐀𝐀) is singular
 A matrix is singular if its determinant is zero

𝜆𝜆𝐈𝐈 − 𝐀𝐀 = 0 (3)

 Equation (3) is the characteristic equation for 𝐀𝐀
 𝜆𝜆𝐈𝐈 − 𝐀𝐀 is the characteristic polynomial, Δ 𝜆𝜆
 An 𝑛𝑛𝑡𝑡𝑡-order polynomial in 𝜆𝜆

 Eigenvalues of matrix 𝐀𝐀 are all 𝑛𝑛 values of 𝜆𝜆 that satisfy (3)
 Roots of the characteristic polynomial
 Find the corresponding eigenvectors by substituting 𝜆𝜆 into (2) and 

solving for 𝐀𝐀

 Letting 𝜆𝜆 = 𝑠𝑠, (3) becomes the denominator of the system 
transfer function, 𝐺𝐺 𝑠𝑠
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System Response42
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Using 𝐺𝐺 𝑠𝑠 to determine System Response 

 System output in the Laplace domain can be expressed 
in terms of the transfer function as

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 𝐺𝐺 𝑠𝑠 (1)

 Laplace-domain output is the product of the Laplace-
domain input and the transfer function

 Response to two specific types of inputs often used to 
characterize dynamic systems
 Impulse response
 Step response

 We’ll use the approach of (1) to determine these 
responses
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Impulse response

 Impulse function

𝛿𝛿 𝑡𝑡 = 0, 𝑡𝑡 ≠ 0

∫−∞
∞ 𝛿𝛿 𝑡𝑡 𝑎𝑎𝑡𝑡 = 1

 Laplace transform of the impulse function is

ℒ 𝛿𝛿 𝑡𝑡 = 1

 Impulse response in the Laplace domain is

𝑌𝑌 𝑠𝑠 = 1 � 𝐺𝐺 𝑠𝑠 = 𝐺𝐺 𝑠𝑠

 The transfer function is the Laplace transform of the impulse response
 Impulse response in the time domain is the inverse transform of the 

transfer function

𝑦𝑦 𝑡𝑡 = 𝑘𝑘 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠
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Step Response

 Step function: 𝑢𝑢 𝑡𝑡 = �0 𝑡𝑡 < 0
1 𝑡𝑡 ≥ 0

 Laplace transform of the step function

ℒ 𝑢𝑢 𝑡𝑡 = 1
𝑠𝑠

 Laplace-domain step response

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠
� 𝐺𝐺 𝑠𝑠

 Time-domain step response 

𝑦𝑦 𝑡𝑡 = ℒ−1 1
𝑠𝑠
� 𝐺𝐺 𝑠𝑠

 Recall the integral property of the Laplace transform

ℒ ∫0
𝑡𝑡 𝑘𝑘 𝜏𝜏 𝑎𝑎𝜏𝜏 = 1

𝑠𝑠
� 𝐺𝐺 𝑠𝑠 ,     and    ℒ−1 1

𝑠𝑠
� 𝐺𝐺 𝑠𝑠 = ∫0

𝑡𝑡 𝑘𝑘 𝜏𝜏 𝑎𝑎𝜏𝜏

 The step response is the integral of the impulse response
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First- and Second-Order Systems

 All transfer functions can be decomposed into 1st- and 2nd-order 
terms by factoring Δ 𝑠𝑠
 Real poles – 1st-order terms
 Complex-conjugate poles – 2nd-order terms

 These terms and, therefore, the poles determine the nature of the 
time-domain response
 Real poles – decaying exponentials
 Complex-conjugate poles - decaying sinusoids

 All time-domain responses will be a superposition of decaying 
exponentials and decaying sinusoids
 These are the natural modes or eigenmodes of the system

 Instructive to examine the responses of 1st- and 2nd-order systems
 Gain insight into relationships between pole location and response
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First-Order System – Impulse Response

 First-order transfer function:

𝐺𝐺 𝑠𝑠 = 𝐴𝐴
𝑠𝑠+𝜎𝜎

 Single real pole at 

𝑠𝑠 = −𝜎𝜎 = −
1
𝜏𝜏

where 𝜏𝜏 is the system time constant
 Impulse response:

𝑘𝑘 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠 = 𝐴𝐴𝑒𝑒−𝜎𝜎𝑡𝑡 = 𝐴𝐴𝑒𝑒−
𝑡𝑡
𝜏𝜏

𝑘𝑘 𝑡𝑡 = 𝐴𝐴𝑒𝑒−
𝑡𝑡
𝜏𝜏
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First-Order System – Impulse Response

 Initial slope is 
inversely 
proportional to 
time constant

 Response 
completes 63% 
of transition 
after one time 
constant

 Decays to zero 
as long as the 
pole is negative
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Impulse Response vs. Pole Location

 Increasing 𝜎𝜎 corresponds to decreasing 𝜏𝜏 and a faster response
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First-Order System – Step Response
 Step response in the Laplace domain

𝑌𝑌 𝑠𝑠 = 1
𝑠𝑠
� 𝐺𝐺 𝑠𝑠 = 𝐴𝐴

𝑠𝑠 𝑠𝑠+𝜎𝜎

 Inverse transform back to time domain via partial fraction expansion

𝑌𝑌 𝑠𝑠 = 𝐴𝐴
𝑠𝑠 𝑠𝑠+𝜎𝜎

= 𝑟𝑟1
𝑠𝑠

+ 𝑟𝑟2
𝑠𝑠+𝜎𝜎

𝐴𝐴 = 𝑟𝑟1 + 𝑟𝑟2 𝑠𝑠 + 𝜎𝜎𝑟𝑟1

𝑠𝑠0: 𝜎𝜎𝑟𝑟1 = 𝐴𝐴 → 𝑟𝑟1 = 𝐴𝐴
𝜎𝜎

𝑠𝑠1: 𝑟𝑟1 + 𝑟𝑟2 = 0 → 𝑟𝑟2 = −𝐴𝐴
𝜎𝜎

𝑌𝑌 𝑠𝑠 = 𝐴𝐴/𝜎𝜎
𝑠𝑠
− 𝐴𝐴/𝜎𝜎

𝑠𝑠+𝜎𝜎

 Time-domain step response

𝑦𝑦 𝑡𝑡 =
𝐴𝐴
𝜎𝜎
−
𝐴𝐴
𝜎𝜎
𝑒𝑒−𝜎𝜎𝑡𝑡 = 𝐵𝐵 − 𝐵𝐵𝑒𝑒−

𝑡𝑡
𝜏𝜏
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First-Order System – Step Response

 Initial slope is 
inversely 
proportional to 
time constant

 Response 
completes 63% of 
transition after 
one time constant

 Almost completely 
settled after 7𝜏𝜏



K. Webb ESE 330

53

Step Response vs. Pole Location

 Increasing 𝜎𝜎 corresponds to decreasing 𝜏𝜏 and a faster response
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Pole Location and Stability 

 First-order transfer function

𝐺𝐺 𝑠𝑠 =
𝐴𝐴

𝑠𝑠 − 𝑝𝑝

where 𝑝𝑝 is the system pole
 Impulse response is

𝑘𝑘 𝑡𝑡 = 𝐴𝐴𝑒𝑒𝑝𝑝𝑡𝑡

 If 𝑝𝑝 < 0, 𝑘𝑘 𝑡𝑡 decays to zero
 Pole in the left half-plane
 System is stable

 If 𝑝𝑝 > 0, 𝑘𝑘 𝑡𝑡 grows without 
bound
 Pole in the right half-plane
 System is unstable
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Response of Second-Order Systems55
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Second-Order Systems

 Second-order transfer function

𝐺𝐺 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑚𝑚 𝑠𝑠
𝑠𝑠2+𝑎𝑎1𝑠𝑠+𝑎𝑎0

= 𝑁𝑁𝑁𝑁𝑚𝑚 𝑠𝑠
𝑠𝑠+𝜎𝜎 2+𝜔𝜔𝑑𝑑

2 (1)

where 𝜔𝜔𝑎𝑎 is the damped natural frequency

 Can also express the 2nd-order transfer function as

𝐺𝐺 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑚𝑚 𝑠𝑠
𝑠𝑠2+2𝜁𝜁𝜔𝜔𝑖𝑖𝑠𝑠+𝜔𝜔𝑖𝑖

2 (2)

where 𝜔𝜔𝑖𝑖 is the un-damped natural frequency, and 𝜁𝜁 is the damping ratio

𝜔𝜔𝑎𝑎 = 𝜔𝜔𝑖𝑖 1 − 𝜁𝜁2

𝜁𝜁 = 𝜎𝜎
𝜔𝜔𝑖𝑖

 Two poles at 
𝑠𝑠1,2 = −𝜎𝜎 ± 𝜎𝜎2 − 𝜔𝜔𝑖𝑖2 = −𝜁𝜁𝜔𝜔𝑖𝑖 ± 𝜔𝜔𝑖𝑖 𝜁𝜁2 − 1
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Categories of Second-Order Systems
 The 2nd-order system poles are

𝑠𝑠1,2 = −𝜁𝜁𝜔𝜔𝑖𝑖 ± 𝜔𝜔𝑖𝑖 𝜁𝜁2 − 1

 Value of 𝜁𝜁 determines the nature of the poles and, therefore, the response

 𝜻𝜻 > 𝟏𝟏: Over-damped
 Two distinct, real poles – sum of decaying exponentials – treat as two first-order terms
 𝑠𝑠1 = −𝜎𝜎1,  𝑠𝑠2 = −𝜎𝜎2

 𝜻𝜻 = 𝟏𝟏: Critically-damped
 Two identical, real poles – time-scaled decaying exponentials
 𝑠𝑠1,2 = −𝜎𝜎 = −𝜁𝜁𝜔𝜔𝑖𝑖 = −𝜔𝜔𝑖𝑖

 𝟎𝟎 < 𝜻𝜻 < 𝟏𝟏: Under-damped
 Complex-conjugate pair of poles – sum of decaying sinusoids
 𝑠𝑠1,2 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑎𝑎 = −𝜁𝜁𝜔𝜔𝑖𝑖 ± 𝑗𝑗𝜔𝜔𝑖𝑖 1 − 𝜁𝜁2

 𝜻𝜻 = 𝟎𝟎: Un-damped
 Purely-imaginary, conjugate pair of poles – sum of non-decaying sinusoids
 𝑠𝑠1,2 = ±𝑗𝑗𝜔𝜔𝑖𝑖
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2nd-Order Pole Locations and Damping
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Second-Order Poles - 0 ≤ 𝜁𝜁 ≤ 1

 Can relate 𝜎𝜎, 𝜔𝜔𝑎𝑎, 𝜔𝜔𝑖𝑖, and 𝜁𝜁
to pole location geometry

 𝜔𝜔𝑖𝑖 is the magnitude of the 
poles

 𝜁𝜁 is a measure of system 
damping

𝜁𝜁 = 𝜎𝜎
𝜔𝜔𝑖𝑖

= sin 𝜃𝜃

 𝜁𝜁 = 0
 Two purely imaginary poles

 𝜁𝜁 = 1
 Two identical real poles
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Impulse Response – Critically-Damped

 For 𝜁𝜁 = 1, the transfer function reduces to 

𝐺𝐺 𝑠𝑠 =
𝐴𝐴

𝑠𝑠2 + 2𝜔𝜔𝑖𝑖𝑠𝑠 + 𝜔𝜔𝑖𝑖2
=

𝐴𝐴
𝑠𝑠 + 𝜔𝜔𝑖𝑖 2 =

𝐴𝐴
𝑠𝑠 + 𝜎𝜎 2

 Impulse response
𝑘𝑘 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠

𝑘𝑘 𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑒𝑒−𝜎𝜎𝑡𝑡
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Impulse Response – Critically-Damped

 Speed of response is proportional to 𝜎𝜎
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Impulse Response – Under-Damped
 For 0 < 𝜁𝜁 < 1, the transfer function is

𝐺𝐺 𝑠𝑠 =
𝐴𝐴

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑖𝑖𝑠𝑠 + 𝜔𝜔𝑖𝑖2

 Complete the square on the denominator

𝐺𝐺 𝑠𝑠 =
𝐴𝐴

𝑠𝑠 + 𝜁𝜁𝜔𝜔𝑖𝑖 2 + 𝜔𝜔𝑖𝑖 1 − 𝜁𝜁2
2 =

𝐴𝐴
𝑠𝑠 + 𝜁𝜁𝜔𝜔𝑖𝑖 2 + 𝜔𝜔𝑎𝑎

2

 Rewrite in the form of a damped sinusoid

𝐺𝐺 𝑠𝑠 =
𝐴𝐴
𝜔𝜔𝑎𝑎

𝜔𝜔𝑎𝑎

𝑠𝑠 + 𝜁𝜁𝜔𝜔𝑖𝑖 2 + 𝜔𝜔𝑎𝑎
2 =

𝐴𝐴
𝜔𝜔𝑎𝑎

𝜔𝜔𝑎𝑎

𝑠𝑠 + 𝜎𝜎 2 + 𝜔𝜔𝑎𝑎
2

 Inverse Laplace transform for the time-domain impulse response

𝑘𝑘 𝑡𝑡 =
𝐴𝐴
𝜔𝜔𝑎𝑎

𝑒𝑒−𝜎𝜎𝑡𝑡sin(𝜔𝜔𝑎𝑎𝑡𝑡)
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Under-Damped Impulse Response vs. 𝜔𝜔𝑖𝑖

𝑘𝑘 𝑡𝑡 =
𝐴𝐴
𝜔𝜔𝑎𝑎

𝑒𝑒−𝜎𝜎𝑡𝑡 sin 𝜔𝜔𝑎𝑎𝑡𝑡 = 𝐵𝐵𝑒𝑒−𝜁𝜁𝜔𝜔𝑖𝑖𝑡𝑡 sin 𝜔𝜔𝑖𝑖 1 − 𝜁𝜁2𝑡𝑡
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Under-Damped Impulse Response vs. 𝜁𝜁

𝑘𝑘 𝑡𝑡 =
𝐴𝐴
𝜔𝜔𝑎𝑎

𝑒𝑒−𝜎𝜎𝑡𝑡 sin 𝜔𝜔𝑎𝑎𝑡𝑡 = 𝐵𝐵𝑒𝑒−𝜁𝜁𝜔𝜔𝑖𝑖𝑡𝑡 sin 𝜔𝜔𝑖𝑖 1 − 𝜁𝜁2𝑡𝑡
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Impulse Response – Un-Damped

 For 𝜁𝜁 = 0, the transfer function reduces to 

𝐺𝐺 𝑠𝑠 =
𝐴𝐴

𝑠𝑠2 + 𝜔𝜔𝑖𝑖2

 Putting into the form of a sinusoid

𝐺𝐺 𝑠𝑠 =
𝐴𝐴
𝜔𝜔𝑖𝑖

𝜔𝜔𝑖𝑖
𝑠𝑠2 + 𝜔𝜔𝑖𝑖2

 Inverse transform to get the time-domain impulse response

𝑘𝑘 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠

 An un-damped sinusoid

𝑘𝑘 𝑡𝑡 =
𝐴𝐴
𝜔𝜔𝑖𝑖

sin 𝜔𝜔𝑖𝑖𝑡𝑡
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Un-Damped Impulse Response vs. 𝜔𝜔𝑖𝑖

𝑘𝑘 𝑡𝑡 =
𝐴𝐴
𝜔𝜔𝑖𝑖

sin 𝜔𝜔𝑖𝑖𝑡𝑡
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Second-Order Step Response

 The Laplace transform of the step response is

𝑌𝑌 𝑠𝑠 =
1
𝑠𝑠
𝐺𝐺 𝑠𝑠

 The time-domain step response for each damping case 
can be derived as the the inverse transform of 𝑌𝑌 𝑠𝑠

𝑦𝑦 𝑡𝑡 = ℒ−1 𝑌𝑌 𝑠𝑠

or as the integral of the corresponding impulse 
response

𝑦𝑦 𝑡𝑡 = �
0

𝑡𝑡
𝑘𝑘 𝜏𝜏 𝑎𝑎𝜏𝜏
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Critically-Damped Step Response vs. 𝜎𝜎

𝑦𝑦 𝑡𝑡 = ℒ−1
1
𝑠𝑠
𝐺𝐺 𝑠𝑠 =

𝐴𝐴
𝜎𝜎2

1 − 𝑒𝑒−𝜎𝜎𝑡𝑡 − 𝜎𝜎𝑡𝑡𝑒𝑒−𝜎𝜎𝑡𝑡
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Under-Damped Step Response vs. 𝜔𝜔𝑖𝑖

𝑦𝑦 𝑡𝑡 = ℒ−1
1
𝑠𝑠
𝐺𝐺 𝑠𝑠 =

𝐴𝐴
𝜔𝜔𝑖𝑖2

1 − 𝑒𝑒−𝜎𝜎𝑡𝑡 cos 𝜔𝜔𝑎𝑎𝑡𝑡 −
𝜎𝜎
𝜔𝜔𝑎𝑎

𝑒𝑒−𝜎𝜎𝑡𝑡 sin 𝜔𝜔𝑎𝑎𝑡𝑡
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Under-Damped Step Response vs. 𝜁𝜁

𝑦𝑦 𝑡𝑡 = ℒ−1
1
𝑠𝑠
𝐺𝐺 𝑠𝑠 =

𝐴𝐴
𝜔𝜔𝑖𝑖2

1 − 𝑒𝑒−𝜎𝜎𝑡𝑡 cos 𝜔𝜔𝑎𝑎𝑡𝑡 −
𝜎𝜎
𝜔𝜔𝑎𝑎

𝑒𝑒−𝜎𝜎𝑡𝑡 sin 𝜔𝜔𝑎𝑎𝑡𝑡
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Un-Damped Step Response vs. 𝜔𝜔𝑖𝑖

𝑦𝑦 𝑡𝑡 = ℒ−1
1
𝑠𝑠
𝐺𝐺 𝑠𝑠 =

𝐴𝐴
𝜔𝜔𝑖𝑖2

1 − cos 𝜔𝜔𝑖𝑖𝑡𝑡
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Step Response Characteristics72
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Step Response – Risetime

 Risetime is the time it 
takes a signal to 
transition between 
two set levels
 Typically 10% to 90% 

of full transition
 Sometimes 20% to 

80%

 A measure of the 
speed of a response

 Very rough 
approximation:

 𝑡𝑡𝑟𝑟 ≈
1.8
𝜔𝜔𝑖𝑖
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Step Response – Overshoot

 Overshoot is the 
magnitude of a 
signal’s excursion 
beyond its final value
 Expressed as a 

percentage of full-
scale swing

 Overshoot increases 
as 𝜁𝜁 decreases

𝜻𝜻 %OS

0.45 20

0.5 16

0.6 10

0.7 5

%𝑂𝑂𝑂𝑂 = 𝑒𝑒
− 𝜁𝜁𝜁𝜁

1−𝜁𝜁2 ⋅ 100%

𝜁𝜁 =
− ln �%𝑂𝑂𝑂𝑂

100

𝜋𝜋2 + ln2 �%𝑂𝑂𝑂𝑂
100
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Step Response –Settling Time

 Settling time is the time 
it takes a signal to 
settle, finally, to within 
some percentage of its 
final value
 Typically ±1% or ±5%

 Inversely proportional 
to the real part of the 
poles, 𝜎𝜎

 For ±1% settling:

 𝑡𝑡𝑠𝑠 ≈
4.6
𝜎𝜎

= 4.6
𝜁𝜁𝜔𝜔𝑖𝑖
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In this sub-section, we’ll see that the time-
domain output of a system is given by the 
convolution of its time-domain input and its 
impulse response.

The Convolution Integral76
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Convolution Integral

 Laplace transform of a system output is given by the 
product of the transform of the input signal and the 
transfer function

𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 � 𝑈𝑈 𝑠𝑠

 Recall that multiplication in the Laplace domain 
corresponds to convolution in the time domain

𝑦𝑦 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠 𝑈𝑈 𝑠𝑠 = 𝑘𝑘 𝑡𝑡 ∗ 𝑢𝑢 𝑡𝑡

 Time-domain output given by the convolution of the 
input signal and the impulse response

𝑦𝑦 𝑡𝑡 = 𝑘𝑘 𝑡𝑡 ∗ 𝑢𝑢 𝑡𝑡 = ∫0
𝑡𝑡 𝑘𝑘 𝜏𝜏 𝑢𝑢 𝑡𝑡 − 𝜏𝜏 𝑎𝑎𝜏𝜏
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Convolution

 Time-domain output is the 
input convolved with the 
impulse response

𝑦𝑦 𝑡𝑡 = 𝑘𝑘 𝑡𝑡 ∗ 𝑢𝑢 𝑡𝑡 = �
0

𝑡𝑡
𝑘𝑘 𝜏𝜏 𝑢𝑢 𝑡𝑡 − 𝜏𝜏 𝑎𝑎𝜏𝜏

 Input is flipped in time and 
shifted by 𝑡𝑡

 Multiply impulse response and 
flipped/shifted input

 Integrate over 𝜏𝜏 = 0 … 𝑡𝑡

 Each time point of 𝑦𝑦 𝑡𝑡 given 
by result of integral with 
𝑢𝑢 −𝜏𝜏 shifted by 𝑡𝑡
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Convolution
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Convolution
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A few of MATLAB’s many built-in functions that 
are useful for simulating linear systems are 
listed in the following sub-section.

Time-Domain Analysis in MATLAB81
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System Objects

 MATLAB has data types dedicated to linear system 
models

 Two primary system model objects:
 State-space model
 Transfer function model

 Objects created by calling MATLAB functions
 ss.m – creates a state-space model 
 tf.m – creates a transfer function model
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State-Space Model – ss(…)

sys = ss(A,B,C,D)

 A: system matrix - 𝑛𝑛 × 𝑛𝑛
 B: input matrix - 𝑛𝑛 × 𝑚𝑚
 C: output matrix - 𝑝𝑝 × 𝑛𝑛
 D: feed-through matrix - 𝑝𝑝 × 𝑚𝑚
 sys: state-space model object

 State-space model object will be used as an input to 
other MATLAB functions
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Transfer Function Model – tf(…)

sys = tf(Num,Den)

 Num: vector of numerator polynomial coefficients
 Den: vector of denominator polynomial coefficients
 sys: transfer function model object

 Transfer function is assumed to be of the form

𝐺𝐺 𝑠𝑠 =
𝑏𝑏1𝑠𝑠𝑟𝑟 + 𝑏𝑏2𝑠𝑠𝑟𝑟−1 + ⋯+ 𝑏𝑏𝑟𝑟𝑠𝑠 + 𝑏𝑏𝑟𝑟+1
𝑎𝑎1𝑠𝑠𝑖𝑖 + 𝑎𝑎2𝑠𝑠𝑖𝑖−1 + ⋯+ 𝑎𝑎𝑖𝑖𝑠𝑠 + 𝑎𝑎𝑖𝑖+1

 Inputs to tf(…) are
 Num = [b1,b2,…,br+1];
 Den = [a1,a2,…,an+1];
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Step Response Simulation – step(…)

[y,t] = step(sys,t)

 sys: system model – state-space or transfer function
 t: optional time vector or final time value
 y: output step response
 t: output time vector

 If no outputs are specified, step response is 
automatically plotted

 Time vector (or final value) input is optional
 If not specified, MATLAB will generate automatically
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Impulse Response Simulation – impulse(…)

[y,t] = impulse(sys,t)

 sys: system model – state-space or transfer function
 t: optional time vector or final time value
 y: output impulse response
 t: output time vector

 If no outputs are specified, impulse response is 
automatically plotted

 Time vector (or final value) input is optional
 If not specified, MATLAB will generate automatically
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Natural Response – initial(…)

[y,t,x] = initial(sys,x0,t)

 sys: state-space system model function
 x0: initial value of the state - 𝑛𝑛 × 1 vector
 t: optional time vector or final time value
 y: response to initial conditions - length(t)× 1 vector
 t: output time vector
 x: trajectory of all states - length(t)× 𝑛𝑛 matrix

 If no outputs are specified, response to initial 
conditions is automatically plotted

 Time vector (or final value) input is optional
 If not specified, MATLAB will generate automatically
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Linear System Simulation – lsim(…)

[y,t,x] = lsim(sys,u,t,x0)

 sys: system model – state-space or transfer function
 u: input signal vector
 t: time vector corresponding to the input signal
 x0: optional initial conditions – (for ss model only)
 y: output response
 t: output time vector
 x: optional trajectory of all states – (for ss model only)

 If no outputs are specified, response is automatically 
plotted

 Input can be any arbitrary signal
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More MATLAB Functions

 A few more useful MATLAB functions

 Pole/zero analysis:
 pzmap(…)
 pole(…)
 zero(…)
 eig(…)

 Input signal generation:
 gensig(…)

 Refer to MATLAB help documentation for more 
information
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