SECTION 7: FREQUENCY-
DOMAIN ANALYSIS

- ESE 330 — Modeling & Analysis of Dynamic Systems



- Response to Sinusoidal Inputs
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Frequency-Domain Analysis — Introduction

We've looked at system impulse and step responses
o Also interested in the response to periodic inputs

Fourier theory tells us that any periodic signal can be
represented as a sum of harmonically-related sinusoids

The Fourier series:

f(t) = 70 Z a, cos(2nnft) + b, sin(2nnft)]

where a,, and b,, are given by the Fourier integrals

Sinusoids are basis signals from which all other periodic
signals can be constructed

O Sinusoidal system response is of particular interest
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Fourier Series
1

Fourier Series Approximation of a Square Wave
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System Response to a Sinusoidal Input

-
Consider an nt"*-order system

O n poles: py, Py, ... Pn
Real or complex

Assume all are distinct
o Transfer function is:

Num(s)
(s—p1)(s—p2)(s—Dn)

G(s) = (1)

Apply a sinusoidal input to the system

W
s24+w?

u() = Asin(wt) —— U(s) = A

Output is given by

Num(s) . W
(s—p1)(s=p2)(s—pn)  s?+w?

Y(s) =G(s)U(s) = (2)
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System Response to a Sinusoidal Input

-
Partial fraction expansion of (2) gives

)

Y(s) =+

IS n + ™+1S +7’n+2w (3)
b1 S—DP2 S

—Pn  S%?tw?  s?+w?

Inverse transform of (3) gives the time-domain output

y(t) = \7"1ep1t + ryeP2t 4 ... + rnepn: + (nﬂ cos(wt) + 742 sin(wt)’ (4)
| |
transient steady state

Two portions of the response:

o Transient
Decaying exponentials or sinusoids — goes to zero in steady state
Natural response to initial conditions

o Steady state
Due to the input — sinusoidal in steady state

K. Webb ESE 330



Steady-State Sinusoidal Response
R

We are interested in the steady-state response

Yss(t) = Tnyq cos(wt) + 145 sin(wt) (5)

A trig. identity provides insight into y..(t):

a cos(wt) + B sin(wt) = {/a? + B? sin(wt + ¢)

where
— -1(&
¢ = tan (/3)
Steady-state response to a sinusoidal input
u(t) = Asin(wt)

is a sinusoid of the same frequency, but, in general different amplitude and phase

Yss(t) = B sin(wt + ¢)
Where (6)

B = \/7‘,5+1 +r%, and ¢ =tan™? (T”—“)

n+2
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Steady-State Sinusoidal Response

-
u(t) = Asin(wt) - y.(t) = Bsin(wt + ¢)

Steady-state sinusoidal response is a scaled and
phase-shifted sinusoid of the same frequency

o Equal frequency is a property of linear systems

Note the w term in the numerator of (3)

o w will affect the residues

o Residues determine amplitude and phase of the output
o Output amplitude and phase are frequency-dependent

Yss(t) = B(w) sin(wt + ¢(w))
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Steady-State Sinusoidal Response
R

u(t) = Asin(wt + 6) Linear System yss(t) = B sin(wt + ¢)
— —

G(s)

Gain — the ratio of amplitudes of the output and input of the system

Gain = E
A
Phase — phase difference between system input and output
Phase = ¢ — 0

Systems will, in general, exhibit frequency-dependent gain and phase

We’d like to be able to determine these functions of frequency
o The system’s frequency response
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n Frequency Response

K. Webb

A system’s frequency response, or sinusoidal
transfer function, describes its gain and phase
shift for sinusoidal inputs as a function of
frequency.
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Frequency Response
e

System output in the Laplace domain is
Y(s) =U(s)-G(s)

Multiplication in the Laplace domain corresponds to convolution in the time

domain
t

V() = u(®) * g(¢) = f g@u(t — Dd
0

Consider an exponential input of the form
u(t) = est
where s is the complex Laplace variable: s =0 + jw

Now the output is

V() = u(®) * g(©) = j

0

t t

g(1)estNdr = j g(m)este Stdr
0

y(@©) =[] g(De~Tdr - e (1)
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Frequency Response

-~
y(t) — fotg(r)e‘”dr . eSt (1)

We're interested in the steady-state response, so let the upper limit
of integration go to infinity

y(t) = foog(r)e‘“dr . eSt
0

y() =G(s) e (2)

Time-domain response to an exponential input is the time-domain
input multiplied by the system transfer function

What is this input?
u(t) = est = p(atjw)t — ot jwt (3)

If weleto — 0, i.e.let s = jw, then we have

y(t) = G(jw) - e/@t (4)
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Fuler’s Formula
I

Recall Euler’s formula:
e/®t = cos(wt) + j sin(wt) (5)

From which it follows that

eJoty p—jwt
cos(wt) = > (6)

and

jwt_ ,—jwt
sin(wt) = i (7)
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Frequency Response
e

We're interested in the sinusoidal steady-state system
response, so let the input be
eja)t + e—jwt

u(t) = Acos(wt) = A >

A sum of complex exponentials in the form of (3)

o We've let s = jw in the firsttermand s - —jw in the
second

u(t) = gej“’t + ée‘j“’t (8)
According to (4) the output in response to (8) will be

y(£) =26(jw) - eI +2G(—jw) - eI (9)
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Frequency Response
e

y(£) =26(jw) - eI +2G(—jw) - eI (9)

G (jw) is a complex function of frequency
o Evaluates to a complex number at each value of w

o Has both magnitude and phase
o Can be expressed in polar form as
G(jw) = Mel? (10)
where
M=|G(w)| and ¢ = £G(jw)
It follows that

G(—jw) = Me™ 79 (11)
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Frequency Response
e

Using (11), the output given by (9) becomes

y(t) = gM[ef‘"tej"5 + e /@te=/9|
y(t) = g M[e(@t+9) 4 g=i(wt+$)) (12)

y(t) =M - Acos(wt + ¢) (13)
where, again

M = |G(jw)| and ¢ = 2G(jw) (14)
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Frequency response Function — G(jw)
e

G (jw) is the system’s frequency response function
o Transfer function, where s = jw

G(jw) = G(S)|S—>ja) (15)
o A complex-valued function of frequency

|G(jw)| at each w is the gain at that frequency
o Ratio of output amplitude to input amplitude

£G(jw) at each w is the phase at that frequency
o Phase shift between input and output sinusoids

Another representation of system behavior

o Along with state-space model, impulse/step responses, transfer
function, etc.

o Typically represented graphically
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Plotting the Frequency Response Function
1

G (jw) is a complex-valued function of frequency
o Has both magnitude and phase
o Plot gain and phase separately

Frequency response plots formatted as Bode plots

o Two sets of axes: gain on top, phase below
o Identical, logarithmic frequency axes

O Gain axis is logarithmic — either explicitly or as units of
decibels (dB)

o Phase axis is linear with units of degrees
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Bode Plots

Units Of Bode Plot
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Decibels - dB

Frequency response gain most often expressed and
plotted with units of decibels (dB)

o A logarithmic scale

o Provides detail of very large and very small values on the
same plot

o Commonly used for ratios of powers or amplitudes

Conversion from a linear scale to dB:
|IG(w)|gp = 20 -log1o(|G(w)])

Conversion from dB to a linear scale:

IG(w)lap
|GGw)| =10 20
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Decibels — dB

Multiplying two gain values corresponds to adding their
values in dB

o E.g., the overall gain of cascaded systems
1G1(jw) - Ga(jw)lap = |G1(Jw)|ap + |G2(fw)ap

Negative dB values corresponds to sub-unity gain
Positive dB values are gains greater than one

BT T
6 2

1000
40 100 -3 1/7/2 = 0.707
20 10 6 0.5

0 1 -20 0.1
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Interpreting Bode Plots
R

Bode plots tell you the gain and phase shift at all frequencies:
choose a frequency, read gain and phase values from the plot

Bode Plot
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sinusoidal input, the
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Interpreting Bode Plots

ESE 330
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Value of Logarithmic Axes - Gain

Gain axis is linear in dB
0o A logarithmic scale
o Allows for displaying detail at very large and very small levels on the same plot

Bode Magnitude Plot

=

Gain plotted in dB

o Two resonant peaks
clearly visible

i
=

-100

Magnitude  [dB]

-1a0

Frequency  [Hz]

Bode Magnitude Plot

Linear gain scale
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Value of Logarithmic Axes - Frequency

Frequency axis is logarithmic

o Allows for displaying detail at very low and very high frequencies on the
same plot

Bode Magnitude Plot

Log frequency axis

o Can resolve

frequency of both
resonant peaks

Magnitude  [dB]
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Gain Response — Terminology

Corner frequency, cut

Offfrequency, -3dB Gain Response
frequency: Lo T T
o Frequency at which ~5dB of peakingi
gain is 3dB below its 0
low-frequency value of ]
_ We 10+
Je = 27 3 W, = 1.45 —
15+ sec
O This is the bandwidth < | =% 023Hs
of the system = 21
251
Peaking “
O Any increase in gain
above the low 351
frequency gain 40 R IR RN
107 10" 10° “c 10

Frequency [rad/sec]
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Response of 15t- and 2"9-Order Factors

This section examines the frequency responses
of first- and second-order transfer function
factors.
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Transfer Function Factors
e

We've already seen that a transfer function denominator can be factored into first-
and second-order terms

Num(s)
(s —p)(s —p2) (5% + 20 wp5 + w%1)(52 + 20wpys + wrzzz)

G(s) =

The same is true of the numerator

_ (s—2z1)(s—2z) - (52 + 2{qwngs + wrzla)(sz + 2{,wpps + wrzlb)
(s —p)(s —p2) (5% + 20 wpy5 + w%1)(52 + 20wpys + wrzzz)

G(s)

Can think of the transfer function as a product of the individual factors
For example, consider the following system

(s —z1)
(s —p)(s? + 2§ w15 + wiq)

G(s) =

Can rewrite as

1 1
(s —p1) (52 + 20 wp1s + wh)

G(s)=(s—2z)
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Transfer Function Factors

[
1 1

(s —p1) (s? + 20 wpyS + why)

G(s) = (s—2z)-

Think of this as three cascaded transfer functions

1

Gl(S) = (S — Zl), GZ(S) — (S__pl)’ Gg(S) — e 1

24201 wn1S+w3;)

U(s) Y;(s) Y, (s) Y(s)
> G1(5) 3 Go(s) 23 G3(s) >
or
U(s) Yi(s) | 1 Yo(s) _ 1 Y(s) _
s =20 - (s —p1) - (2 4 201 wp1S + 02) -
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Transfer Function Factors
e

Overall transfer function — and therefore, frequency
response — is the product of individual first- and
second-order factors

Instructive, therefore, to understand the responses
of the individual factors

O First- and second-order poles and zeros

U(jw) Y (jw) _

6, Gw) Y, (jw) Ry Y(jw)

G3(jw) ——>

Gy (jw)
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First-Order Factors
e

First-order factors
o Single, real poles or zeros

In the Laplace domain:

G(s) =s, G(S)=§, G(s)=s+a, G(s)=—

s+a

In the frequency domain

o
o

Imaginary
o

e
@
T

. . . 1 . . . 1
= = — = w) =
Gljw) =jw, GJw) =+ Glo)=jota G(jw)= -
Pole/zero plots:
G(jo} = jo ‘ fﬁw) = 111'63‘ Glio) = 1ljo + a) G(jo) = (jo +a}
1 1 1
05 05 0.5
fal E‘ el
& X * 5 0 — S o -
E E E
- — .05 05
1 E 1
—1‘.5 -1 -0‘5 0 05 2 1.5 1 05 0 0.5 0 a 0
Real Real Real Real
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First-Order Factors — Zero at the Origin
-

A differentiator 40 e >
G(s)=s _® -
(s) . -
g ~
((w) =jw % T
Gain: 40 1 o R 2
10 10 10 10 10
G(jw)| = |jo]| = w
180
Phase: 1
£G(jw) = +90°, Vw g "
* 45
. .
107 10 10° 10 10

Frequency [rad/sec]
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First-Order Factors — Pole at the Origin
e

An integrator w0 . Slo) =1l
\\\

1 20 s
G(s) =— g ~

S ; 0 N

5 ~
1 20 N
'] — \\\

G (](1)) jw » . . . . L N\

107 10" 10° 10" 10°
Gain:
GGw)| = |—| = - 0
0 = |—| = — ]
j(l) w0 . 45
? -90
Phase: &
135}

. .1
LG(jw) =242 —j]—=-90° Vw -
(I ) ] w ! 107 10" 10° 10’ 10°
Frequency [rad/sec]
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First-Order Factors — Single, Real Zero

Single, real zeroat s = —a
G(jw) =jw+a
Gain: Phase:
1G(jw)| = w? + a? 2G(jw) = tan™1 (%)

forw <a forw < a

G(jw)| = a £G(jw) ~ 2a = 0°
forw > a forw > a

IG(w)| = w £G(jw) = Ljw = 90°
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First-Order Factors — Single, Real Zero
-

Corner frequency: “ Glio) = G + 2) e
v =a ) s
o |G(w)|=aV2=1414-a o2 /
Z /
o 1G(wc)lap = (@)qp + 3dB Bror i
0 7
a LG(I.O)C) = +45° 10” 10" 0 10’ 10°
For w > w,, gain increases at:
o 20dB/dec % W
o 6dB/oct . //
From ~0.1w, to ~10w,, phase 3" /
increases at a rate of: = 4
_~
o ~45°/dec 0 —
o Rough approximation T TS

Normalized Frequency [w/a]
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First-Order Factors — Single, Real Pole
-

Single, real pole at s = —a
G(iw) =
(o) jw +a
Gain: Phase:
1 . (W
‘)| = yae = —tan~ ! (—
6] = =y (jw) = —tan™ (=)
forw < a forw < a
1
1 N Y o
forw > a forw >> a
1 £G(jw) = ¢ ! 90°
. o W) L—=—
|G(ICU)| ~ o Jjw
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First-Order Factors — Single, Real Pole
-

Corner frequency: , Olo) = Vo )

\
\\\

we = a N
. 1 1 1or N
a |G(](1)C)| = WE = 0.707 ‘;

-20

IG(w)l-a [dB]

1

o |G(iwc)|dB = (_)dB — 3dB 30 \\

a

. _ o -40 - . . ; .
= LG(I(‘)C) = —45 107 10" 10° 10’ 10

For w > w,, gain decreases at: |
o —20dB/dec —_
o —6dB/oct \\\

A
o

Phase [deg]

From ~0.1w. to ~10w,, phase
decreases at a rate of: \g

o ~—45°/dec -90
0o Rough approximation 10” 10" 10° 10’ 10°

Normalized Frequency [o/a]
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Second-Order Factors
-

Complex-conjugate zeros Complex-conjugate poles
2 2 1
G(s) =s°+ 2{w,s + w; G(s) =
s2 4+ 2{w,s + w?
n n
Second-Order Zero Locations Second-Order Pole Locations
S1 = -0+jWwy S1 = -O+jwy
G +jwy X +jwq
B e 6...
z L sin@)=7 2 (@)=
S0 i 1 So -
g M g o
O T -Jwg X 1 jwd
S1 = -0-jyg S1 = -0-jwy
0 0
Real Real

g = (wy, (‘)dzwn\/]-_(z
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2"d-Order Factors — Complex-Conjugate Zeros

-0V
Complex-conjugate zerosat s = —0 * jwy,

G(w) = (w)? + 2{w,(w) + w2

Gain: Phase:
forw K wy, forw K w,
IG(w)| = w? £G(jw) = Lwi = 0°
forw = wy, forw = wy,
1G(w)| = 2{w?2 2G(jw) = £j2{w, = +90°
forw > wy, forw > w,
IG(w)| = w? 2G(jw) = £ — w? = +180°
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2"d-Order Factors — Complex-Conjugate Zeros

G(jo) = (jo) + 2o _(jo) + o>

Response may dip below
low-freq. value near w,,

O Peaking increases as ¢
decreases

Gain increases at +40dB/
dec or +12dB/oct for £

W >> wn 2 T Y R o

(0]
o

— (=02 /
|| —™C¢=05 /
—=07

— =09 /

[}
o

[dB]

2
n
S
()
AN
AN
N

G (o)l
N
o

(@]

-
o
-
o
-
o
-
o
-
o

Corner frequency depends
on damping ratio, ¢ 50l
O w, increases as ¢ decreases

At w = w,, £6(Jw) = 90°

Phase transition abruptness .5l
depends on ¢

AN

N\

1351

N0r

Phase [deg]

O\

107 10" 10° 10’ 10°
Normalized Frequency [co/con]
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2"d-Order Factors — Complex-Conjugate Poles
-

Complex-conjugate zeros at s = —0 + jwy,
6(jw) = -
YT ) + 20w, (j0) + w2
Gain: Phase:
for w < wy, forw < wy,
1 1
IG(w)| =~ — LG(jw) = £— =0°
wn wn
forw = w, forw = w,
IG(w)| = LG(jw) = £~ = —90°
2wy, j2§wy
for w > w, for w > w,
. 1 . 1 o
|G(]a))|zﬁ LG(]a))zA—Ez—mO
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2"d-Order Factors — Complex-Conjugate Poles
-

Response may peak above Gl = e+ 22 o 1)

low-freq. value near w,, 0 N\ |
o Peaking increases as { R I
decreases o e N\
e \
. T 0
Gain decreases at —40dB/ & .
dec or —12dB /oct for 0 N
(,()>> wn _80-2 ‘ B P ~ 0 ‘1 I‘ \2
10 10 10 10 10

Corner frequency depends
on damping ratio, ¢

0 [rm— ‘ A
O w, increases as ¢ decreases ol §§§:
Atw = w,, £G(jw) = —90° E 0 \§
Phase transition abruptness = ., X
depends on ( QSE:
_1830’2 | a0 10° ”1.6“ TS

Normalized Frequency [o)/o)n]
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Imaginary

Pole Location and Peaking

e
Peaking is dependent on { — pole locations
o No peaking at all for { = 1/\/7 = 0.707
o { = 0.707 — maximally-flat or Butterworth response

Pole Locations vs. Damping Ratio -- o = 1 Peaking vs. Damping Ratio

10

£=02 e £=02
1r £=05 X 5 / \ —(=05 ||
£ =0.70711 X // ¢ =0.707
£=09 X — =09
0
05 X . \\t‘\ \
5 SO\
& \\
o,
0 -10
£ \
; N
15+
0.5f X
-20
% X
P X -25
2 15 1 05 0 0.5 '3(1)0-1 | T | 10
Real

Normalized Frequency [m/con]
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Frequency Response Components - Example

-
Consider the following system

20(s + 20)
(s+1)(s+100)

G(s) =

The system’s frequency response function is

20(jw + 20)
(o + 1 (jw + 100)

G(jw) =

As we’ve seen we can consider this a product of individual frequency
response factors

1
(jw+1) (w+ 100)

G(jw) = 20 - (jw + 20) -

Overall response is the composite of the individual responses
o Product of individual gain responses —sum in dB
o Sum of individual phase responses
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Imaginary

-20

-40

-60

Frequency Response Components - Example
-~

Gain response

Pole/Zero Plot

60

40

20

A 74

-120
Real

K. Webb
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-60
10

60

40

G, (jo) = 20

1
G, (o) = (o + 20)
G,o) = (o + 1)
G, (o) = 1/(o + 100)

20

10'
® [rad/sec]
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Imaginary

Frequency Response Components - Example

h 100 —————rrrr——
Phase response [ 6,00 =20
P L — G, (o) = (o + 20) et ]
......... G,(0) = 1o + 1) el
Pole/Zero Plot 60t G (o) = 1/ + 100) &
60 ’
40
40
20 o7
D L7
[ o
E - .‘-
ok T e
o5 O
2 \\
Py “ 20
0 )( \J )( \
)
-40
20 R\ N\
60 R\ yd \\
‘\.\ ’,/ \
40 AN
-80 Tornaa R ~a
-60 -100
120 -100 -80 60 40 20 0 20 10" 10° 10’ 10° 10°
Real o [rad/sec]
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Bode Plot Construction

In this section, we’ll look at a method for
sketching, by hand, a straight-line, asymptotic
approximation for a Bode plot.
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Bode Plot Construction

We've just seen that a system’s transfer function
can be factored into first- and second-order terms

O Each factor contributes a component to the overall gain
and phase responses

Now, we’ll look at a technique for manually
sketching a system’s Bode plot

O In practice, you’ll almost always plot with a computer
o But, learning to do it by hand provides valuable insight

We'll look at how to approximate Bode plots for
each of the different factors
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Bode Form of the Transfer function

.
Consider the general transfer function form:

(s —2z)(s —2z3) - (s* + 2CqWngS + szla)

G =K
) = K DG = pp) (57 + 20ymys + 2y) -

We first want to put this into Bode form:

2
(S +1)(S +1)--- STy Hagyq)..
Weq Wcp Wnga Pna

G(s) =Ko S S sz 2C
#1) (gt 1) (St 2 1)
(wcl We2 <a)7211 Wn1 >

Putting G (s) into Bode form requires putting each of
the first- and second-order factors into Bode form
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First-Order Factors in Bode Form
-

First-order transfer function factors include:

G(s)=s", G(s)=s+o, G(s) 1

S+o

For the first factor, G(s) = s™, n is a positive or negative integer
o Already in Bode form

For the second two, divide through by o, giving

1
a(i+1)
o

Here, 0 = w,, the corner frequency associated with that zero or pole, so

G(s)=0(§+1) and G(s) =

1

wc(wic+1)

G(s)=a)c(wic+1) and G(s) =
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Second-Order Factors in Bode Form

-0V
Second-order transfer function factors include:

1

) 2 =
G(s) =s“+2{w,s +w;; and G(s) = (5)2420wpS+w?

Again, normalize the s° coefficient, giving

2
G(s)zw,zll%+z—zs+1] and G(s) = L/wf

wWn

Putting each factor into its Bode form involves factoring out any DC
gain component

Lump all of DC gains together into a single gain constant, K,

2 2
(LH)(LH)...( s +&S+1)...
Wca Wcp Wng wWna

(wSc1+1)(w5C2+1)...<%+%s+1)---

wn1

G(s) = K,
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Bode Plot Construction

-
Transfer function in Bode form

2
G(S) _K (wLw-F1)<“)ch+1)m<ws%a+%s+1)...
— 20

e (i)

Product of a constant DC gain factor,K,, and first-
and second-order factors

Plot the frequency response of each factor
individually, then combine graphically

o Overall response is the product of individual factors
Product of gain responses —sum on a dB scale
Sum of phase responses
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Bode Plot Construction
e

Bode plot construction procedure:
1. Put the transfer function into Bode form

2. Draw a straight-line asymptotic approximation for the gain
and phase response of each individual factor

3. Graphically add all individual response components and
sketch the result

Note that we are really plotting the frequency response
function, G (jw)
o We use the transfer function, G (s), to simplify notation

Next, we'll look at the straight-line asymptotic
approximations for the Bode plots for each of the
transfer function factors
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Bode Plot — Constant Gain Factor
I

Bode Plot Components -- Constant Gain Factor

G(S) — KO Koup
Constant gain <
|G(s)| = K, | |
107 10" 10° 10’ 10°
o [rad/sec]
Constant Phase
90
LG(S) — OO R
I
= -45
90— -
10 10 10 10 10
® [rad/sec]
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Bode Plot — Poles/Zeros at the Origin
-

G (S) —_ Sn 100 Bodel Gain Compolnent -‘- PoIes/Zer(I)sl alt‘tltllfe Origin
— ) = -2
n > 0: 50\\\ 0
. -~ — ) = ]
L. _ \‘~.. \ ’_—---
O n zeros at the origin g ——— __—
_% I ’——Kh-_~_.
n <o P L— ~
’ 50 ~
. . ~
o n poles at the origin N
-100 : : : ; ;
. 10° 10" 10° 10' 107
G ain: Normalized Frequency [co/coc]
= Stra |ght || ne . Bode Phase Compf)ne‘nt ‘-- Poles/Zeros a‘t the Origin
dB dB
o Slope=n:-20—=n-6— 45 -
dec oct n= f
$ of n=-
o O0dBatw =1 L 45 n-t
£ -0
Phase: 135
_ o -180 . . ‘
LG(S) =n-90 107 10" 10° 10' 107
Normalized Frequency [oa/oac]
ESE 330
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Bode Plot — First-Order Zero
-

Single real Zero at S = _a)C 40 B‘ode PIotClompont‘ants --I'=irst-0rde‘rZ]ero |
/
Gain: 30 ; //
& G(s) = (— + 1) /
o 0dB for w < w, =2 We /
S V4
dB 10
0 +20= = +6 L forw > w, p
dec oct . =
o Straight-line asymptotes BRI L
intersect at (w., 0dB) 10 10 10 10 10
Phase:
90 oA E——
o 0°forw < 0.1w, P
o 45° forw = w, g
® 45
o 90° for w = 10w, g 7
+4‘ 0 w“‘
o— for 0.1w, < w < 10w, . __/
10” | I10'1 | I1o° 10" 102

Normalized Frequency [03/030]
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Bode Plot — First-Order Pole
-

Bode Gain Component -- First-Order Pole

Single real pole at s = —w,.
0 *uug\_..,%
Gain: g \\
o 0dB for w < w, P 1 N
g-ZO G(S) = 5
—20—=—6—fora)>a)c . w, 1
dec oct .
o Straight-line asymptotes o : | N
intersect at (w,, 0dB) ° o 0 o o
P h a se : Bode Phase Component -- First-Order Pole
0 satumasness,
o 0°forw < 0.1w, ‘\%\
= RN
o —45° for w = w, g RN
o 45
o —90° for w = 10w, £ \
450 A
O for0.1w, < w < 10w, o >
dec , |
107 10" 10° 10’ 10°
Normalized Frequency [w/a]
ESE 330
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Bode Plot — Second-Order Zero
-

Comp lex-co njugate zeros: Bode Gain Component - Second-Order Zeros

80

' o’
: — (=02 s
S1, = —0 X jwy —— (=05 /
' 60r| —— =07
Gain: g (=709
ey = 40 > 2 y
o 0dB forw < wy, § 6() =5 +—>(s) +1 /
dB dB 20 U
+40— =+12— for w > w,
dec oct 0 2
o Straight-line asymptotes intersect

at (w,, 0dB) 10” 10 10° 10’ 10°

Normalized Frequency [m/mn]

o {-dependent peaking around w,, Bode Phase Component - Second-Order Zeros
180 [ ; ' BEEEN
— =02 —
Phase: ——c=05 /7/
0° for w < 0.1- w, N [t W
o 90° for w = w, g % /
£
180° forw = 10 - w, 45 /
2
+90° -
for 0.1w, < w < 10w, 0 —
dec > ' o 0 1 T
10 10 10 10 10

Normalized Frequency [oo/con]
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Bode Plot — Second-Order Pole
-

Complex-conjugate poles: Bode Gain Component - Second-Order Poles |
. | \ —C 02;_
—g=o.7
s .. — -20 =09
Gain: o \\
c 1
o 0dB forw < wy, g 6©) =757 ;
dB dB 2+—(S)+1
—40—=—-12— for w > w, 60 On AN
dec oct .,
o Straight-line asymptotes intersect 80 | ™\
at (w,, 0dB) 10” 10 10° 10’ 10%
O (-dependent peaking around Wn Bode Phase Component -- Second-Order Poles
0 ' ] : — ]
£=02
Phase: N\ — =05
45 \ —— =07}
0° for w < 0.1 w, g E—_
—90° for w = w, g
o
— o . -135 N
180 forw =10 w, Q§S
~—
O <w < 10w, -180 51 1 s s T T —
dec 107 10" 10° 10' 10°

Normalized Frequency [o)/mn]
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Bode Plot Construction — Example
R

Consider a system with the following transfer function

10(s + 20)
s(s + 400)

G(s) =

Put it into Bode form

1020 (55+1)  0.5(55+1)
G(s) = S - S
s-400(z55+1) s (g55+1)
Represent as a product of factors
G(s)=0.5-(23—0+1)-1~ .

> (q00+ 1)
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Bode Plot Construction — Example
-

Bode Gain Plot — Asymptotic Approximation

60 ™ T T
- —'G,I[S}: 0.5
- _Gz[s}=s.l'2{]+1
= =03G_(5)=1s
40 3¢
- _G4[5}- W{s/400 + 1) -
G(s) — Approx. -

Gis) - Actual .

[dB]

5ain

107! 10? 107 102 10° 10%
w [rad/sec]
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Bode Plot Construction — Example
-

Bode Phase Plot -- Asymptotic Approximation

1"}":' T T T T T T III T T T T T 7T II T T T T T II T T T T T II T T T T T T T T
L —G,I[S}:ﬂ.ﬁ .ﬂ'_ ———————————————
80 [-|= = =G,(s)=s/20 +1 . |
)
- —G3[5}= 1s Ja
B0 |-|= = =G, (s)= 1/(s/400 + 1) L 4
-
Gis) — Approx. -
G(s) - Actual P
40 # —
"
-~
’
-
— Z'D — L 7
B ~
E. rd
r
m D f— — — —— — — — — — — — — — — — — — — — — — — — uu: ——————————————————————
[55] -
b it
o -
20+ -~ ]
oy
40 -
60 -
-80 - -
100 L R R S R R S (A T S S
107! 10° 10! 102 102 104

w [rad/sec]
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Relationship between Pole/Zero Plots

and Bode Plots

It is also possible to calculate a system’s
frequency response directly from that system’s
pole/zero plot.
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Bode Construction from Pole/Zero Plots
I

Transfer function can be expressed as

_ [li(s—2z) s~jw , G(jw) = Hi(]:w - 7z;)
[1;(s — pi) [I;Gw—pi)

Numerator is a product of first-order zero terms

u]

o Denominator is a product of first-order pole terms
O jw is a point on the imaginary axis
u]
u]

G(s)

(jw — z;) represents a vector from z; to jw
(jw — p;) represents a vector from p; to jw

Gain is given by
II;(w — z)
|Hi(iw - pi)l

|G(w)| =
Phase can be calculated as
2G(jw) =24(w —z;) — 24w — p;)

Possible to evaluate the frequency response graphically from a pole/zero
diagram
o Not done in practice, but provides useful insight
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Bode Construction from Pole/Zero Plots
I

Pole/Zero Plot

Consider the following system: 3 . , , , , : . :
(w + 3)
(w+2+j1.75)(w + 2 —j1.75)

G(w) =

Evaluate at w = 2.5rad/sec

Gain:
|3+j2.5]
|2+j4.25]|2+j0.75]

1G(2.5)| =

3.9
4.7-2.1

1G(j2.5)| = 0.389 — —8.2dB

1G(2.5)| =

Imaginary
o

Phase:
2G(j2.5) =6, — 0, — 64 ;
6, = 2(3 +2.5) = 39.8°

0, = £(2 +j0.75) = 20.6° 2l |
0, = 2(2 + j4.25) = 64.8°
£G(j2.5) = —45.5°

1 1 | | | | 1 |
-4 -35 -3 25 -2 15 -1 -05 0 0.5 1
Real
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- Polar Frequency Response Plots
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Polar Frequency Response Plots

G (jw) is a complex function of frequency

o Typically plot as Bode plots
Magnitude and phase plotted separately
Aids visualization of system behavior

A real and an imaginary part at each value of w
o A point in the complex plane at each frequency

o Defines a curve in the complex plane

o A polar plot

O Parametrized by frequency — not as easy to distinguish frequency
as on a Bode plot

Polar plots are not terribly useful as a means of displaying a
frequency response

o Useful in control system design — Nyquist stability criterion
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[aB]

Gain

[deg]

Phase

Polar Frequency Response Plots

Identical frequency responses plotted two ways:

o Bode plot and polar plot

Note uneven frequency spacing along polar plot curve
o Dependent on frequency rates of change of gain and phase

Bode Frequency Response Plot Polar Frequency Response Plot
40 20 T T

20 < = = - -4 :
10+

or | )
® = 100 rad/sec
® = 0.2 rad/sec
20+ 3 : 3 - 3 8 - 0 P d
® = 50 rad/sec
40} ; , , , . . i o = 20 rad/sec
-10+

-60

10° 10° 10’ 10° 10° o = 30 rad/sec
g 20
50
-30
0—e
S0 o =40 rad/sec
-40
-100|-
150 |- ol
-200|-
250 i . . . . . i 60 1 1 I 1 1 1
10" 10° 10’ 10° 10° -40 -30 -20 -10 0 10 20 30 40

Frequency [rad/sec]
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- Frequency and Time Domains

A system’s frequency response and it’s various
time-domain responses are simply different
perspectives on the same dynamic behavior.
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Frequency and Time Domains

.,
We’ve seen many ways we can represent a system

o nt"-order differential equation
o Bond-graph model

Time-domain

o State-variable model — .
represe ntations

o Impulse response
O Step response

J\

o Transfer function Frequency-domain

o Frequency response/Bode plot representations

—

All are valid and complete models
o They all contain the same information in different forms
o Different ways of looking at the same thing
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Time/Frequency Domain Correlation

-
9.87
G1(S) =

$24+5.6555+9.87

Gain Response
0 = ~gg g ‘,\‘
\\\ \“"
G . 987 z 20 \
2 (S) - 2 = \ .’a;‘
$“+18.855+987 c 40 N\ .,
8 \\\N\ > ) ",
"Q
Pole/Zero Plot -60
| olelcero Mo System 1 \\ .,
30r XK system1 X T || e System 2 \ ‘x"’
X System2 -80 S .
107 10" 10° 10' 107
20+ Frequency [HZ]
£, =09 Step Response
101 4 = 3.1 rad/sec 1.5
>
i H
g 0 % b
£ 1 '-= :" g /_ﬂﬂlf
V
10k )
>
=03 05
-201 o, = 31.4 rad/sec
301 . X . 0
-20 -15 -10 -5 0 5 0 05 1 1.5 2
Real
K. Webb

25
Time [sec]
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Frequency-Domain Analysis in MATLAB

As was the case for time-domain simulation,
MATLAB has some useful functions for

simulating system behavior in the frequency
domain as well.
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System Objects
e

MATLAB has data types dedicated to linear system
models

Two primary system model objects:
o State-space model
o Transfer function model

Objects created by calling MATLAB functions
O ss.m— creates a state-space model
O t£.m— creates a transfer function model
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State-Space Model — ss (...)
-

sys=ss(A,B,C,D)

O A:system matrix-n Xn

O B:input matrix-n X m

O C:output matrix-p X n

o D: feed-through matrix-p X m
O sys: state-space model object

State-space model object will be used as an input to
other MATLAB functions
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Transfer Function Model — t £ (...)
-

sys = tf (Num, Den)

O Num: vector of numerator polynomial coefficients
O Den: vector of denominator polynomial coefficients
O sys: transfer function model object

Transfer function is assumed to be of the form

bys" + b,s™ 1+ -+ b.s+ by
a;s"+a,s" 1+t a,s+ agyq

G(s) =

Inputs to £ £ (...) are
o Num= [bl,b2,..,br+l1];
O Den=[al,a?2,..,antl];
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Frequency Response Simulation —bode (...)
e

mag, phase] =bode (sys, w)

O sys: system model — state-space, transfer function, or other
O w: optional frequency vector — in rad/sec

O mag: system gain response vector

O phase: system phase response vector — in degrees

If no outputs are specified, bode response is automatically
plotted — preferable to plot yourself

Frequency vector input is optional
o If not specified, MATLAB will generate automatically

May need to do: squeeze (mag) and squeeze (phase)
to eliminate singleton dimensions of output matrices
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Log-spaced Vectors — 1logspace (...)
e

f=logspace (x0,x1,N)

o x0: first point in £ is 10%*o

O x1:last pointin £ is 10*1

O N: number of pointsin £

o f: vector of logarithmically-spaced points

Generates N logarithmically-spaced points between
10*0 and 10*1

Useful for generating independent-variable vectors for
log plots (e.g., frequency vectors for bode plots)

o Linearly spaced on a logarithmic axis
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