
ESE 330 – Modeling & Analysis of Dynamic Systems

SECTION 7: FREQUENCY-
DOMAIN ANALYSIS
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Response to Sinusoidal Inputs2
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Frequency-Domain Analysis – Introduction

 We’ve looked at system impulse and step responses
 Also interested in the response to periodic inputs

 Fourier theory tells us that any periodic signal can be 
represented as a sum of harmonically-related sinusoids

 The Fourier series:

𝑓𝑓 𝑡𝑡 =
𝑎𝑎0
2 + �

𝑛𝑛=1

∞

𝑎𝑎𝑛𝑛 cos 2𝜋𝜋𝜋𝜋𝑓𝑓𝑡𝑡 + 𝑏𝑏𝑛𝑛 sin 2𝜋𝜋𝜋𝜋𝑓𝑓𝑡𝑡

where 𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛 are given by the Fourier integrals

 Sinusoids are basis signals from which all other periodic 
signals can be constructed
 Sinusoidal system response is of particular interest
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Fourier Series
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System Response to a Sinusoidal Input

 Consider an 𝜋𝜋𝑡𝑡𝑡-order system
 𝜋𝜋 poles: 𝑝𝑝1,𝑝𝑝2, …𝑝𝑝𝑛𝑛
 Real or complex
 Assume all are distinct

 Transfer function is:

𝐺𝐺 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠
𝑠𝑠−𝑝𝑝1 𝑠𝑠−𝑝𝑝2 ⋯ 𝑠𝑠−𝑝𝑝𝑛𝑛

(1)

 Apply a sinusoidal input to the system

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝑡𝑡
ℒ

𝑈𝑈 𝑠𝑠 = 𝐴𝐴 𝜔𝜔
𝑠𝑠2+𝜔𝜔2

 Output is given by

𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 𝑈𝑈 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠
𝑠𝑠−𝑝𝑝1 𝑠𝑠−𝑝𝑝2 ⋯ 𝑠𝑠−𝑝𝑝𝑛𝑛

� 𝐴𝐴 𝜔𝜔
𝑠𝑠2+𝜔𝜔2 (2)
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System Response to a Sinusoidal Input

 Partial fraction expansion of (2) gives

𝑌𝑌 𝑠𝑠 = 𝑟𝑟1
𝑠𝑠−𝑝𝑝1

+ 𝑟𝑟2
𝑠𝑠−𝑝𝑝2

+ ⋯+ 𝑟𝑟𝑛𝑛
𝑠𝑠−𝑝𝑝𝑛𝑛

+ 𝑟𝑟𝑛𝑛+1𝑠𝑠
𝑠𝑠2+𝜔𝜔2 + 𝑟𝑟𝑛𝑛+2𝜔𝜔

𝑠𝑠2+𝜔𝜔2 (3)

 Inverse transform of (3) gives the time-domain output

𝑦𝑦 𝑡𝑡 = 𝑟𝑟1𝑒𝑒𝑝𝑝1𝑡𝑡 + 𝑟𝑟2𝑒𝑒𝑝𝑝2𝑡𝑡 + ⋯+ 𝑟𝑟𝑛𝑛𝑒𝑒𝑝𝑝𝑛𝑛𝑡𝑡 + 𝑟𝑟𝑛𝑛+1 cos 𝜔𝜔𝑡𝑡 + 𝑟𝑟𝑛𝑛+2 sin 𝜔𝜔𝑡𝑡 (4)

transient steady state

 Two portions of the response:
 Transient
 Decaying exponentials or sinusoids – goes to zero in steady state
 Natural response to initial conditions

 Steady state
 Due to the input – sinusoidal in steady state
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Steady-State Sinusoidal Response
 We are interested in the steady-state response

𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝑟𝑟𝑛𝑛+1 cos 𝜔𝜔𝑡𝑡 + 𝑟𝑟𝑛𝑛+2 sin 𝜔𝜔𝑡𝑡 (5)

 A trig. identity provides insight into 𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 :

𝛼𝛼 cos 𝜔𝜔𝑡𝑡 + 𝛽𝛽 sin 𝜔𝜔𝑡𝑡 = 𝛼𝛼2 + 𝛽𝛽2 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙
where

𝜙𝜙 = tan−1 𝛼𝛼
𝛽𝛽

 Steady-state response to a sinusoidal input

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝑡𝑡

is a sinusoid of the same frequency, but, in general different amplitude and phase

𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙
Where (6)

𝐵𝐵 = 𝑟𝑟𝑛𝑛+12 + 𝑟𝑟𝑛𝑛+22 and     𝜙𝜙 = tan−1 𝑟𝑟𝑛𝑛+1
𝑟𝑟𝑛𝑛+2
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Steady-State Sinusoidal Response

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝑡𝑡 → 𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙

 Steady-state sinusoidal response is a scaled and
phase-shifted sinusoid of the same frequency
 Equal frequency is a property of linear systems

 Note the 𝜔𝜔 term in the numerator of (3)
𝜔𝜔 will affect the residues
 Residues determine amplitude and phase of the output
 Output amplitude and phase are frequency-dependent

𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 𝜔𝜔 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙 𝜔𝜔
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Steady-State Sinusoidal Response

 Gain – the ratio of amplitudes of the output and input of the system

𝐺𝐺𝑎𝑎𝐺𝐺𝜋𝜋 =
𝐵𝐵
𝐴𝐴

 Phase – phase difference between system input and output

𝑃𝑃𝑃𝑎𝑎𝑠𝑠𝑒𝑒 = 𝜙𝜙 − 𝜃𝜃

 Systems will, in general, exhibit frequency-dependent gain and phase

 We’d like to be able to determine these functions of frequency
 The system’s frequency response

Linear System

𝐺𝐺 𝑠𝑠
𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝑡𝑡 + 𝜃𝜃 𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙
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A system’s frequency response, or sinusoidal 
transfer function, describes its gain and phase 
shift for sinusoidal inputs as a function of 
frequency.

Frequency Response10
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Frequency Response
 System output in the Laplace domain is

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺 𝑠𝑠

 Multiplication in the Laplace domain corresponds to convolution in the time 
domain

𝑦𝑦 𝑡𝑡 = 𝑢𝑢 𝑡𝑡 ∗ 𝑔𝑔 𝑡𝑡 = �
0

𝑡𝑡
𝑔𝑔 𝜏𝜏 𝑢𝑢 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝜏𝜏

 Consider an exponential input of the form

𝑢𝑢 𝑡𝑡 = 𝑒𝑒𝑠𝑠𝑡𝑡

where 𝑠𝑠 is the complex Laplace variable:   𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝜔𝜔

 Now the output is

𝑦𝑦 𝑡𝑡 = 𝑢𝑢 𝑡𝑡 ∗ 𝑔𝑔 𝑡𝑡 = �
0

𝑡𝑡
𝑔𝑔 𝜏𝜏 𝑒𝑒𝑠𝑠 𝑡𝑡−𝜏𝜏 𝑑𝑑𝜏𝜏 = �

0

𝑡𝑡
𝑔𝑔 𝜏𝜏 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒−𝑠𝑠𝜏𝜏𝑑𝑑𝜏𝜏

𝑦𝑦 𝑡𝑡 = ∫0
𝑡𝑡 𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠𝜏𝜏𝑑𝑑𝜏𝜏 ⋅ 𝑒𝑒𝑠𝑠𝑡𝑡 (1)
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Frequency Response

𝑦𝑦 𝑡𝑡 = ∫0
𝑡𝑡 𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠𝜏𝜏𝑑𝑑𝜏𝜏 ⋅ 𝑒𝑒𝑠𝑠𝑡𝑡 (1)

 We’re interested in the steady-state response, so let the upper limit 
of integration go to infinity

𝑦𝑦 𝑡𝑡 = �
0

∞
𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠𝜏𝜏𝑑𝑑𝜏𝜏 ⋅ 𝑒𝑒𝑠𝑠𝑡𝑡

𝑦𝑦 𝑡𝑡 = 𝐺𝐺 𝑠𝑠 ⋅ 𝑒𝑒𝑠𝑠𝑡𝑡 (2)

 Time-domain response to an exponential input is the time-domain 
input multiplied by the system transfer function

 What is this input?
𝑢𝑢 𝑡𝑡 = 𝑒𝑒𝑠𝑠𝑡𝑡 = 𝑒𝑒 𝜎𝜎+𝑗𝑗𝜔𝜔 𝑡𝑡 = 𝑒𝑒𝜎𝜎𝑡𝑡𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 (3)

 If we let 𝜎𝜎 → 0, i.e. let 𝑠𝑠 → 𝑗𝑗𝜔𝜔, then we have

𝑦𝑦 𝑡𝑡 = 𝐺𝐺 𝑗𝑗𝜔𝜔 ⋅ 𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 (4)
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Euler’s Formula

 Recall Euler’s formula:

𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 = cos 𝜔𝜔𝑡𝑡 + 𝑗𝑗 sin 𝜔𝜔𝑡𝑡 (5)

 From which it follows that

cos 𝜔𝜔𝑡𝑡 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗+𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

2
(6)

and

sin 𝜔𝜔𝑡𝑡 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗−𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

2𝑗𝑗
(7)
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Frequency Response

 We’re interested in the sinusoidal steady-state system 
response, so let the input be

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 cos 𝜔𝜔𝑡𝑡 = 𝐴𝐴
𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 + 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡

2

 A sum of complex exponentials in the form of (3)
 We’ve let 𝑠𝑠 → 𝑗𝑗𝜔𝜔 in the first term and 𝑠𝑠 → −𝑗𝑗𝜔𝜔 in the 

second
𝑢𝑢 𝑡𝑡 = 𝐴𝐴

2
𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 + 𝐴𝐴

2
𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 (8)

 According to (4) the output in response to (8) will be 

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝐺𝐺 𝑗𝑗𝜔𝜔 ⋅ 𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 + 𝐴𝐴

2
𝐺𝐺 −𝑗𝑗𝜔𝜔 ⋅ 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 (9)
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Frequency Response

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝐺𝐺 𝑗𝑗𝜔𝜔 ⋅ 𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 + 𝐴𝐴

2
𝐺𝐺 −𝑗𝑗𝜔𝜔 ⋅ 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 (9)

 𝐺𝐺 𝑗𝑗𝜔𝜔 is a complex function of frequency
 Evaluates to a complex number at each value of 𝜔𝜔
 Has both magnitude and phase
 Can be expressed in polar form as

𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝑀𝑀𝑒𝑒𝑗𝑗𝑗𝑗 (10)

where
𝑀𝑀 = 𝐺𝐺 𝑗𝑗𝜔𝜔 and  𝜙𝜙 = ∠𝐺𝐺 𝑗𝑗𝜔𝜔

 It follows that

𝐺𝐺 −𝑗𝑗𝜔𝜔 = 𝑀𝑀𝑒𝑒−𝑗𝑗𝑗𝑗 (11)
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Frequency Response

 Using (11), the output given by (9) becomes

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝑀𝑀 𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡𝑒𝑒𝑗𝑗𝑗𝑗 + 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝑒𝑒−𝑗𝑗𝑗𝑗

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝑀𝑀 𝑒𝑒𝑗𝑗 𝜔𝜔𝑡𝑡+𝑗𝑗 + 𝑒𝑒−𝑗𝑗 𝜔𝜔𝑡𝑡+𝑗𝑗 (12)

𝑦𝑦 𝑡𝑡 = 𝑀𝑀 ⋅ 𝐴𝐴 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 (13)

where, again

𝑀𝑀 = 𝐺𝐺 𝑗𝑗𝜔𝜔 and  𝜙𝜙 = ∠𝐺𝐺 𝑗𝑗𝜔𝜔 (14)
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Frequency response Function – 𝐺𝐺 𝑗𝑗𝜔𝜔
 𝐺𝐺 𝑗𝑗𝜔𝜔 is the system’s frequency response function

 Transfer function, where 𝑠𝑠 → 𝑗𝑗𝜔𝜔

𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝐺𝐺 𝑠𝑠 |𝑠𝑠→𝑗𝑗𝜔𝜔 (15)

 A complex-valued function of frequency

 𝐺𝐺 𝑗𝑗𝜔𝜔 at each 𝜔𝜔 is the gain at that frequency
 Ratio of output amplitude to input amplitude

 ∠𝐺𝐺 𝑗𝑗𝜔𝜔 at each 𝜔𝜔 is the phase at that frequency
 Phase shift between input and output sinusoids

 Another representation of system behavior
 Along with state-space model, impulse/step responses, transfer 

function, etc.
 Typically represented graphically
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Plotting the Frequency Response Function

 𝐺𝐺 𝑗𝑗𝜔𝜔 is a complex-valued function of frequency
 Has both magnitude and phase
 Plot gain and phase separately

 Frequency response plots formatted as Bode plots
 Two sets of axes: gain on top, phase below
 Identical, logarithmic frequency axes
 Gain axis is logarithmic – either explicitly or as units of 

decibels (dB)
 Phase axis is linear with units of degrees
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Bode Plots

Logarithmic frequency axes

Units of 
magnitude 
are dB Magnitude 

plot on top

Phase plot 
below

Units of 
phase are 
degrees
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Decibels - dB

 Frequency response gain most often expressed and 
plotted with units of decibels (dB)
 A logarithmic scale
 Provides detail of very large and very small values on the 

same plot
 Commonly used for ratios of powers or amplitudes

 Conversion from a linear scale to dB:

𝐺𝐺 𝑗𝑗𝜔𝜔 𝑑𝑑𝑑𝑑 = 20 ⋅ log10 𝐺𝐺 𝑗𝑗𝜔𝜔

 Conversion from dB to a linear scale:

𝐺𝐺 𝑗𝑗𝜔𝜔 = 10
𝐺𝐺 𝑗𝑗𝜔𝜔 𝑑𝑑𝑑𝑑

20
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Decibels – dB 

 Multiplying two gain values corresponds to adding their 
values in dB
 E.g., the overall gain of cascaded systems

𝐺𝐺1 𝑗𝑗𝜔𝜔 ⋅ 𝐺𝐺2 𝑗𝑗𝜔𝜔 𝑑𝑑𝑑𝑑 = 𝐺𝐺1 𝑗𝑗𝜔𝜔 𝑑𝑑𝑑𝑑 + 𝐺𝐺2 𝑗𝑗𝜔𝜔 𝑑𝑑𝑑𝑑

 Negative dB values corresponds to sub-unity gain
 Positive dB values are gains greater than one

dB Linear

60 1000

40 100

20 10

0 1

dB Linear

6 2

-3 1/√2 = 0.707
-6 0.5

-20 0.1
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Interpreting Bode Plots

Bode plots tell you the gain and phase shift at all frequencies: 
choose a frequency, read gain and phase values from the plot

For a 10KHz 
sinusoidal 
input, the 
gain is 0dB (1) 
and the phase 
shift is 0°.

For a 10MHz 
sinusoidal 
input, the 
gain is -32dB 
(0.025), and 
the phase 
shift is -176°.
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Interpreting Bode Plots
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Value of Logarithmic Axes - Gain

 Gain axis is linear in dB
 A logarithmic scale
 Allows for displaying detail at very large and very small levels on the same plot

 Gain plotted in dB
 Two resonant peaks 

clearly visible

 Linear gain scale
 Smaller peak has 

disappeared
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Value of Logarithmic Axes - Frequency

 Frequency axis is logarithmic
 Allows for displaying detail at very low and very high frequencies on the 

same plot

 Log frequency axis
 Can resolve 

frequency of both 
resonant peaks

 Linear frequency 
axis
 Lower resonant 

frequency is unclear
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Gain Response – Terminology 

 Corner frequency, cut 
off frequency, -3dB 
frequency:
 Frequency at which 

gain is 3dB below its 
low-frequency value

𝑓𝑓𝑐𝑐 =
𝜔𝜔𝑐𝑐
2𝜋𝜋

 This is the bandwidth
of the system

 Peaking
 Any increase in gain 

above the low 
frequency gain

𝜔𝜔𝑐𝑐 = 1.45
𝑟𝑟𝑎𝑎𝑑𝑑
𝑠𝑠𝑒𝑒𝑠𝑠

𝑓𝑓𝑐𝑐 =
𝜔𝜔𝑐𝑐
2𝜋𝜋 = 0.23𝐻𝐻𝐻𝐻

~5𝑑𝑑𝐵𝐵 of peaking
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This section examines the frequency responses 
of first- and second-order transfer function 
factors.

Response of 1st- and 2nd-Order Factors27
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Transfer Function Factors
 We’ve already seen that a transfer function denominator can be factored into first-

and second-order terms

𝐺𝐺 𝑠𝑠 =
𝑁𝑁𝑢𝑢𝑁𝑁 𝑠𝑠

𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯ 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12 𝑠𝑠2 + 2𝜁𝜁2𝜔𝜔𝑛𝑛2𝑠𝑠 + 𝜔𝜔𝑛𝑛2
2 ⋯

 The same is true of the numerator

𝐺𝐺 𝑠𝑠 =
𝑠𝑠 − 𝐻𝐻1 𝑠𝑠 − 𝐻𝐻2 ⋯ 𝑠𝑠2 + 2𝜁𝜁𝑎𝑎𝜔𝜔𝑛𝑛𝑎𝑎𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑎𝑎2 𝑠𝑠2 + 2𝜁𝜁2𝜔𝜔𝑛𝑛𝑏𝑏𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑏𝑏

2 ⋯
𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯ 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12 𝑠𝑠2 + 2𝜁𝜁2𝜔𝜔𝑛𝑛2𝑠𝑠 + 𝜔𝜔𝑛𝑛2

2 ⋯

 Can think of the transfer function as a product of the individual factors
 For example, consider the following system

𝐺𝐺 𝑠𝑠 =
𝑠𝑠 − 𝐻𝐻1

𝑠𝑠 − 𝑝𝑝1 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12

 Can rewrite as

𝐺𝐺 𝑠𝑠 = 𝑠𝑠 − 𝐻𝐻1 ⋅
1

𝑠𝑠 − 𝑝𝑝1
⋅

1
𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12
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Transfer Function Factors

𝐺𝐺 𝑠𝑠 = 𝑠𝑠 − 𝐻𝐻1 ⋅
1

𝑠𝑠 − 𝑝𝑝1
⋅

1
𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12

 Think of this as three cascaded transfer functions
𝐺𝐺1 𝑠𝑠 = 𝑠𝑠 − 𝐻𝐻1 ,     𝐺𝐺2 𝑠𝑠 = 1

𝑠𝑠−𝑝𝑝1
,     𝐺𝐺3 𝑠𝑠 = 1

𝑠𝑠2+2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠+𝜔𝜔𝑛𝑛1
2

𝐺𝐺1 𝑠𝑠 𝐺𝐺2 𝑠𝑠 𝐺𝐺3 𝑠𝑠
𝑈𝑈 𝑠𝑠 𝑌𝑌1 𝑠𝑠 𝑌𝑌2 𝑠𝑠 𝑌𝑌 𝑠𝑠

𝑠𝑠 − 𝐻𝐻1
1

𝑠𝑠 − 𝑝𝑝1

1
𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12

𝑈𝑈 𝑠𝑠 𝑌𝑌1 𝑠𝑠 𝑌𝑌2 𝑠𝑠 𝑌𝑌 𝑠𝑠

or
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Transfer Function Factors

 Overall transfer function – and therefore, frequency 
response – is the product of individual first- and 
second-order factors

 Instructive, therefore, to understand the responses 
of the individual factors 
 First- and second-order poles and zeros

𝐺𝐺1 𝑗𝑗𝜔𝜔 𝐺𝐺2 𝑗𝑗𝜔𝜔 𝐺𝐺3 𝑗𝑗𝜔𝜔
𝑈𝑈 𝑗𝑗𝜔𝜔 𝑌𝑌1 𝑗𝑗𝜔𝜔 𝑌𝑌2 𝑗𝑗𝜔𝜔 𝑌𝑌 𝑗𝑗𝜔𝜔
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First-Order Factors

 First-order factors
 Single, real poles or zeros

 In the Laplace domain:

𝐺𝐺 𝑠𝑠 = 𝑠𝑠,    𝐺𝐺 𝑠𝑠 = 1
𝑠𝑠
,    𝐺𝐺 𝑠𝑠 = 𝑠𝑠 + 𝑎𝑎,    𝐺𝐺 𝑠𝑠 = 1

𝑠𝑠+𝑎𝑎

 In the frequency domain

𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝑗𝑗𝜔𝜔,    𝐺𝐺 𝑗𝑗𝜔𝜔 = 1
𝑗𝑗𝜔𝜔

,    𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝑗𝑗𝜔𝜔 + 𝑎𝑎,    𝐺𝐺 𝑗𝑗𝜔𝜔 = 1
𝑗𝑗𝜔𝜔+𝑎𝑎

 Pole/zero plots:
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First-Order Factors – Zero at the Origin

 A differentiator
𝐺𝐺 𝑠𝑠 = 𝑠𝑠

𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝑗𝑗𝜔𝜔

 Gain:
𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝑗𝑗𝜔𝜔 = 𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝜔𝜔 = +90°,   ∀𝜔𝜔
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First-Order Factors – Pole at the Origin

 An integrator

𝐺𝐺 𝑠𝑠 =
1
𝑠𝑠

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1
𝑗𝑗𝜔𝜔

 Gain:

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1
𝑗𝑗𝜔𝜔

=
1
𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝜔𝜔 = ∠ − 𝑗𝑗 1
𝜔𝜔

= −90°,   ∀𝜔𝜔
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First-Order Factors – Single, Real Zero

 Single, real zero at 𝑠𝑠 = −𝑎𝑎
𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝑗𝑗𝜔𝜔 + 𝑎𝑎

 Gain:

𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝜔𝜔2 + 𝑎𝑎2

for 𝜔𝜔 ≪ 𝑎𝑎
𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ 𝑎𝑎

for 𝜔𝜔 ≫ 𝑎𝑎
𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ 𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝜔𝜔 = tan−1
𝜔𝜔
𝑎𝑎

for 𝜔𝜔 ≪ 𝑎𝑎
∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠𝑎𝑎 = 0°

for 𝜔𝜔 ≫ 𝑎𝑎
∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠𝑗𝑗𝜔𝜔 = 90°
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First-Order Factors – Single, Real Zero

 Corner frequency:
𝜔𝜔𝑐𝑐 = 𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = 𝑎𝑎 2 = 1.414 ⋅ 𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 𝑑𝑑𝑑𝑑 = 𝑎𝑎 𝑑𝑑𝑑𝑑 + 3𝑑𝑑𝐵𝐵

 ∠𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = +45°

 For 𝜔𝜔 ≫ 𝜔𝜔𝑐𝑐, gain increases at:
 20𝑑𝑑𝐵𝐵/𝑑𝑑𝑒𝑒𝑠𝑠
 6𝑑𝑑𝐵𝐵/𝑜𝑜𝑠𝑠𝑡𝑡

 From ~0.1𝜔𝜔𝑐𝑐 to ~10𝜔𝜔𝑐𝑐, phase 
increases at a rate of: 
 ~45°/𝑑𝑑𝑒𝑒𝑠𝑠
 Rough approximation
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First-Order Factors – Single, Real Pole

 Single, real pole at 𝑠𝑠 = −𝑎𝑎

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1

𝑗𝑗𝜔𝜔 + 𝑎𝑎

 Gain:

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1

𝜔𝜔2 + 𝑎𝑎2

for 𝜔𝜔 ≪ 𝑎𝑎

𝐺𝐺 𝑗𝑗𝜔𝜔 ≈
1
𝑎𝑎

for 𝜔𝜔 ≫ 𝑎𝑎

𝐺𝐺 𝑗𝑗𝜔𝜔 ≈
1
𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝜔𝜔 = − tan−1
𝜔𝜔
𝑎𝑎

for 𝜔𝜔 ≪ 𝑎𝑎

∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠
1
𝑎𝑎

= 0°

for 𝜔𝜔 ≫ 𝑎𝑎

∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠
1
𝑗𝑗𝜔𝜔

= −90°
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First-Order Factors – Single, Real Pole

 Corner frequency:
𝜔𝜔𝑐𝑐 = 𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = 1
𝑎𝑎 2

= 0.707 ⋅ 1
𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 𝑑𝑑𝑑𝑑 = 1
𝑎𝑎 𝑑𝑑𝑑𝑑

− 3𝑑𝑑𝐵𝐵

 ∠𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = −45°

 For 𝜔𝜔 ≫ 𝜔𝜔𝑐𝑐, gain decreases at:
 −20𝑑𝑑𝐵𝐵/𝑑𝑑𝑒𝑒𝑠𝑠
 −6𝑑𝑑𝐵𝐵/𝑜𝑜𝑠𝑠𝑡𝑡

 From ~0.1𝜔𝜔𝑐𝑐 to ~10𝜔𝜔𝑐𝑐, phase 
decreases at a rate of: 
 ~ − 45°/𝑑𝑑𝑒𝑒𝑠𝑠
 Rough approximation
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Second-Order Factors

 Complex-conjugate zeros

𝐺𝐺 𝑠𝑠 = 𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
 Complex-conjugate poles

𝐺𝐺 𝑠𝑠 =
1

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

𝜎𝜎 = 𝜁𝜁𝜔𝜔𝑛𝑛,  𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛 1 − 𝜁𝜁2
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2nd-Order Factors – Complex-Conjugate Zeros

 Complex-conjugate zeros at 𝑠𝑠 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

𝐺𝐺 𝑗𝑗𝜔𝜔 = 𝑗𝑗𝜔𝜔 2 + 2𝜁𝜁𝜔𝜔𝑛𝑛 𝑗𝑗𝜔𝜔 + 𝜔𝜔𝑛𝑛2

 Gain:

for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛
𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ 𝜔𝜔𝑛𝑛2

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛
𝐺𝐺 𝑗𝑗𝜔𝜔 = 2𝜁𝜁𝜔𝜔𝑛𝑛2

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛
𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ 𝜔𝜔2

 Phase:

for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛
∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠𝜔𝜔𝑛𝑛2 = 0°

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛
∠𝐺𝐺 𝑗𝑗𝜔𝜔 = ∠𝑗𝑗2𝜁𝜁𝜔𝜔𝑛𝑛 = +90°

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛
∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠ − 𝜔𝜔2 = +180°
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2nd-Order Factors – Complex-Conjugate Zeros

 Response may dip below 
low-freq. value near 𝜔𝜔𝑛𝑛
 Peaking increases as 𝜁𝜁

decreases

 Gain increases at +40𝑑𝑑𝐵𝐵/
𝑑𝑑𝑒𝑒𝑠𝑠 or +12𝑑𝑑𝐵𝐵/𝑜𝑜𝑠𝑠𝑡𝑡 for   
𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

 Corner frequency depends 
on damping ratio, 𝜁𝜁
 𝜔𝜔𝑐𝑐 increases as 𝜁𝜁 decreases

 At 𝜔𝜔 = 𝜔𝜔𝑐𝑐, ∠𝐺𝐺 𝑗𝑗𝜔𝜔 = 90°
 Phase transition abruptness 

depends on 𝜁𝜁
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2nd-Order Factors – Complex-Conjugate Poles

 Complex-conjugate zeros at 𝑠𝑠 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1

𝑗𝑗𝜔𝜔 2 + 2𝜁𝜁𝜔𝜔𝑛𝑛 𝑗𝑗𝜔𝜔 + 𝜔𝜔𝑛𝑛2

 Gain:
for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛

𝐺𝐺 𝑗𝑗𝜔𝜔 ≈
1
𝜔𝜔𝑛𝑛2

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛

𝐺𝐺 𝑗𝑗𝜔𝜔 =
1

2𝜁𝜁𝜔𝜔𝑛𝑛2

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

𝐺𝐺 𝑗𝑗𝜔𝜔 ≈
1
𝜔𝜔2

 Phase:
for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛

∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠
1
𝜔𝜔𝑛𝑛2

= 0°

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛

∠𝐺𝐺 𝑗𝑗𝜔𝜔 = ∠
1

𝑗𝑗2𝜁𝜁𝜔𝜔𝑛𝑛
= −90°

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

∠𝐺𝐺 𝑗𝑗𝜔𝜔 ≈ ∠ −
1
𝜔𝜔2 = −180°
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2nd-Order Factors – Complex-Conjugate Poles

 Response may peak above 
low-freq. value near 𝜔𝜔𝑛𝑛
 Peaking increases as 𝜁𝜁

decreases

 Gain decreases at −40𝑑𝑑𝐵𝐵/
𝑑𝑑𝑒𝑒𝑠𝑠 or −12𝑑𝑑𝐵𝐵/𝑜𝑜𝑠𝑠𝑡𝑡 for    
𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

 Corner frequency depends 
on damping ratio, 𝜁𝜁
 𝜔𝜔𝑐𝑐 increases as 𝜁𝜁 decreases

 At 𝜔𝜔 = 𝜔𝜔𝑐𝑐, ∠𝐺𝐺 𝑗𝑗𝜔𝜔 = −90°
 Phase transition abruptness 

depends on 𝜁𝜁
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Pole Location and Peaking

 Peaking is dependent on 𝜁𝜁 – pole locations
 No peaking at all for 𝜁𝜁 ≥ 1/ 2 = 0.707
 𝜁𝜁 = 0.707 – maximally-flat or Butterworth response
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Frequency Response Components - Example

 Consider the following system

𝐺𝐺 𝑠𝑠 =
20 𝑠𝑠 + 20

𝑠𝑠 + 1 𝑠𝑠 + 100

 The system’s frequency response function is 

𝐺𝐺 𝑗𝑗𝜔𝜔 =
20 𝑗𝑗𝜔𝜔 + 20

𝑗𝑗𝜔𝜔 + 1 𝑗𝑗𝜔𝜔 + 100

 As we’ve seen we can consider this a product of individual frequency 
response factors

𝐺𝐺 𝑗𝑗𝜔𝜔 = 20 ⋅ 𝑗𝑗𝜔𝜔 + 20 ⋅
1

𝑗𝑗𝜔𝜔 + 1
⋅

1
𝑗𝑗𝜔𝜔 + 100

 Overall response is the composite of the individual responses
 Product of individual gain responses – sum in dB
 Sum of individual phase responses
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Frequency Response Components - Example

 Gain response
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Frequency Response Components - Example

 Phase response
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In this section, we’ll look at a method for 
sketching, by hand, a straight-line, asymptotic 
approximation for a Bode plot.

Bode Plot Construction47
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Bode Plot Construction

 We’ve just seen that a system’s transfer function 
can be factored into first- and second-order terms
 Each factor contributes a component to the overall gain 

and phase responses

 Now, we’ll look at a technique for manually 
sketching a system’s Bode plot
 In practice, you’ll almost always plot with a computer
 But, learning to do it by hand provides valuable insight

 We’ll look at how to approximate Bode plots for 
each of the different factors
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Bode Form of the Transfer function

 Consider the general transfer function form:

𝐺𝐺 𝑠𝑠 = 𝐾𝐾
𝑠𝑠 − 𝐻𝐻1 𝑠𝑠 − 𝐻𝐻2 ⋯ 𝑠𝑠2 + 2𝜁𝜁𝑎𝑎𝜔𝜔𝑛𝑛𝑎𝑎𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑎𝑎2 ⋯
𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯ 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12 ⋯

 We first want to put this into Bode form:

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0

𝑠𝑠
𝜔𝜔𝑐𝑐𝑎𝑎

+ 1 𝑠𝑠
𝜔𝜔𝑐𝑐𝑏𝑏

+ 1 ⋯ 𝑠𝑠2
𝜔𝜔𝑛𝑛𝑎𝑎2

+ 2𝜁𝜁𝑎𝑎
𝜔𝜔𝑛𝑛𝑎𝑎

𝑠𝑠 + 1 ⋯

𝑠𝑠
𝜔𝜔𝑐𝑐1

+ 1 𝑠𝑠
𝜔𝜔𝑐𝑐2

+ 1 ⋯ 𝑠𝑠2
𝜔𝜔𝑛𝑛12

+ 2𝜁𝜁1
𝜔𝜔𝑛𝑛1

𝑠𝑠 + 1 ⋯

 Putting 𝐺𝐺 𝑠𝑠 into Bode form requires putting each of 
the first- and second-order factors into Bode form



K. Webb ESE 330

50

First-Order Factors in Bode Form

 First-order transfer function factors include:

𝐺𝐺 𝑠𝑠 = 𝑠𝑠𝑛𝑛,   𝐺𝐺 𝑠𝑠 = 𝑠𝑠 + 𝜎𝜎,   𝐺𝐺 𝑠𝑠 = 1
𝑠𝑠+𝜎𝜎

 For the first factor, 𝐺𝐺 𝑠𝑠 = 𝑠𝑠𝑛𝑛, 𝜋𝜋 is a positive or negative integer
 Already in Bode form

 For the second two, divide through by 𝜎𝜎, giving

𝐺𝐺 𝑠𝑠 = 𝜎𝜎 𝑠𝑠
𝜎𝜎

+ 1 and    𝐺𝐺 𝑠𝑠 = 1
𝜎𝜎 𝑠𝑠

𝜎𝜎+1

 Here, 𝜎𝜎 = 𝜔𝜔𝑐𝑐, the corner frequency associated with that zero or pole, so 

𝐺𝐺 𝑠𝑠 = 𝜔𝜔𝑐𝑐
𝑠𝑠
𝜔𝜔𝑐𝑐

+ 1 and    𝐺𝐺 𝑠𝑠 = 1
𝜔𝜔𝑐𝑐

𝑠𝑠
𝑗𝑗𝑐𝑐
+1
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Second-Order Factors in Bode Form

 Second-order transfer function factors include:

𝐺𝐺 𝑠𝑠 = 𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2 and    𝐺𝐺 𝑠𝑠 = 1
𝑠𝑠 2+2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠+𝜔𝜔𝑛𝑛

2

 Again, normalize the 𝑠𝑠0 coefficient, giving

𝐺𝐺 𝑠𝑠 = 𝜔𝜔𝑛𝑛2
𝑠𝑠2

𝜔𝜔𝑛𝑛
2 + 2𝜁𝜁

𝜔𝜔𝑛𝑛
𝑠𝑠 + 1 and    𝐺𝐺 𝑠𝑠 = 1/𝜔𝜔𝑛𝑛

2

𝑠𝑠2

𝑗𝑗𝑛𝑛
2+

2𝜁𝜁
𝑗𝑗𝑛𝑛

𝑠𝑠+1

 Putting each factor into its Bode form involves factoring out any DC 
gain component

 Lump all of DC gains together into a single gain constant, 𝐾𝐾0

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0
𝑠𝑠

𝑗𝑗𝑐𝑐𝑐𝑐
+1 𝑠𝑠

𝑗𝑗𝑐𝑐𝑐𝑐
+1 ⋯ 𝑠𝑠2

𝑗𝑗𝑛𝑛𝑐𝑐2
+ 2𝜁𝜁𝑐𝑐
𝑗𝑗𝑛𝑛𝑐𝑐

𝑠𝑠+1 ⋯

𝑠𝑠
𝑗𝑗𝑐𝑐1

+1 𝑠𝑠
𝑗𝑗𝑐𝑐2

+1 ⋯ 𝑠𝑠2

𝑗𝑗𝑛𝑛1
2 + 2𝜁𝜁1

𝑗𝑗𝑛𝑛1
𝑠𝑠+1 ⋯
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Bode Plot Construction

 Transfer function in Bode form 

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0
𝑠𝑠

𝑗𝑗𝑐𝑐𝑐𝑐
+1 𝑠𝑠

𝑗𝑗𝑐𝑐𝑐𝑐
+1 ⋯ 𝑠𝑠2

𝑗𝑗𝑛𝑛𝑐𝑐2
+ 2𝜁𝜁𝑐𝑐
𝑗𝑗𝑛𝑛𝑐𝑐

𝑠𝑠+1 ⋯

𝑠𝑠
𝑗𝑗𝑐𝑐1

+1 𝑠𝑠
𝑗𝑗𝑐𝑐2

+1 ⋯ 𝑠𝑠2

𝑗𝑗𝑛𝑛1
2 + 2𝜁𝜁1

𝑗𝑗𝑛𝑛1
𝑠𝑠+1 ⋯

 Product of a constant DC gain factor,𝐾𝐾0, and first-
and second-order factors

 Plot the frequency response of each factor 
individually, then combine graphically
 Overall response is the product of individual factors
 Product of gain responses – sum on a dB scale 
 Sum of phase responses
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Bode Plot Construction

 Bode plot construction procedure:
1. Put the transfer function into Bode form
2. Draw a straight-line asymptotic approximation for the gain 

and phase response of each individual factor
3. Graphically add all individual response components and 

sketch the result 

 Note that we are really plotting the frequency response 
function, 𝐺𝐺(𝑗𝑗𝜔𝜔)
 We use the transfer function, 𝐺𝐺 𝑠𝑠 , to simplify notation

 Next, we’ll look at the straight-line asymptotic 
approximations for the Bode plots for each of the 
transfer function factors
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Bode Plot – Constant Gain Factor

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0

 Constant gain

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0

 Constant Phase

∠𝐺𝐺 𝑠𝑠 = 0°
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Bode Plot – Poles/Zeros at the Origin

𝐺𝐺 𝑠𝑠 = 𝑠𝑠𝑛𝑛

 𝜋𝜋 > 0:
 𝜋𝜋 zeros at the origin

 𝜋𝜋 < 0:
 𝜋𝜋 poles at the origin

 Gain:
 Straight line
 Slope = 𝜋𝜋 ⋅ 20 𝑑𝑑𝑑𝑑

𝑑𝑑𝑒𝑒𝑐𝑐
= 𝜋𝜋 ⋅ 6 𝑑𝑑𝑑𝑑

𝑜𝑜𝑐𝑐𝑡𝑡

 0𝑑𝑑𝐵𝐵 at 𝜔𝜔 = 1

 Phase: 
∠𝐺𝐺 𝑠𝑠 = 𝜋𝜋 ⋅ 90°
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Bode Plot – First-Order Zero

 Single real zero at 𝑠𝑠 = −𝜔𝜔𝑐𝑐
 Gain:
 0𝑑𝑑𝐵𝐵 for 𝜔𝜔 < 𝜔𝜔𝑐𝑐
 +20 𝑑𝑑𝑑𝑑

𝑑𝑑𝑒𝑒𝑐𝑐
= +6 𝑑𝑑𝑑𝑑

𝑜𝑜𝑐𝑐𝑡𝑡
for 𝜔𝜔 > 𝜔𝜔𝑐𝑐

 Straight-line asymptotes 
intersect at 𝜔𝜔𝑐𝑐 , 0𝑑𝑑𝐵𝐵

 Phase: 
 0° for 𝜔𝜔 ≤ 0.1𝜔𝜔𝑐𝑐
 45° for 𝜔𝜔 = 𝜔𝜔𝑐𝑐
 90° for 𝜔𝜔 ≥ 10𝜔𝜔𝑐𝑐


+45°
𝑑𝑑𝑒𝑒𝑐𝑐

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
𝑠𝑠
𝜔𝜔𝑐𝑐

+ 1
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Bode Plot – First-Order Pole

 Single real pole at 𝑠𝑠 = −𝜔𝜔𝑐𝑐
 Gain:
 0𝑑𝑑𝐵𝐵 for 𝜔𝜔 < 𝜔𝜔𝑐𝑐
 −20 𝑑𝑑𝑑𝑑

𝑑𝑑𝑒𝑒𝑐𝑐
= −6 𝑑𝑑𝑑𝑑

𝑜𝑜𝑐𝑐𝑡𝑡
for 𝜔𝜔 > 𝜔𝜔𝑐𝑐

 Straight-line asymptotes 
intersect at 𝜔𝜔𝑐𝑐 , 0𝑑𝑑𝐵𝐵

 Phase: 
 0° for 𝜔𝜔 ≤ 0.1𝜔𝜔𝑐𝑐
 −45° for 𝜔𝜔 = 𝜔𝜔𝑐𝑐
 −90° for 𝜔𝜔 ≥ 10𝜔𝜔𝑐𝑐


−45°
𝑑𝑑𝑒𝑒𝑐𝑐

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
1

𝑠𝑠
𝜔𝜔𝑐𝑐

+ 1
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Bode Plot – Second-Order Zero

 Complex-conjugate zeros:  
𝑠𝑠1,2 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

 Gain:
 0𝑑𝑑𝐵𝐵 for 𝜔𝜔 ≤ 𝜔𝜔𝑛𝑛
 +40 𝑑𝑑𝑑𝑑

𝑑𝑑𝑒𝑒𝑐𝑐
= +12 𝑑𝑑𝑑𝑑

𝑜𝑜𝑐𝑐𝑡𝑡
for  𝜔𝜔 > 𝜔𝜔𝑛𝑛

 Straight-line asymptotes intersect 
at 𝜔𝜔𝑛𝑛, 0𝑑𝑑𝐵𝐵

 𝜁𝜁-dependent peaking around 𝜔𝜔𝑛𝑛

 Phase: 
 0° for  𝜔𝜔 ≤ 0.1 ⋅ 𝜔𝜔𝑛𝑛
 90° for  𝜔𝜔 = 𝜔𝜔𝑛𝑛
 180° for 𝜔𝜔 ≥ 10 ⋅ 𝜔𝜔𝑛𝑛


+90°
𝑑𝑑𝑒𝑒𝑐𝑐

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
𝑠𝑠2

𝜔𝜔𝑛𝑛2
+
2𝜁𝜁
𝜔𝜔𝑛𝑛

𝑠𝑠 + 1
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Bode Plot – Second-Order Pole

 Complex-conjugate poles:  
𝑠𝑠1,2 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

 Gain:
 0𝑑𝑑𝐵𝐵 for 𝜔𝜔 ≤ 𝜔𝜔𝑛𝑛
 −40 𝑑𝑑𝑑𝑑

𝑑𝑑𝑒𝑒𝑐𝑐
= −12 𝑑𝑑𝑑𝑑

𝑜𝑜𝑐𝑐𝑡𝑡
for  𝜔𝜔 > 𝜔𝜔𝑛𝑛

 Straight-line asymptotes intersect 
at 𝜔𝜔𝑛𝑛, 0𝑑𝑑𝐵𝐵

 𝜁𝜁-dependent peaking around 𝜔𝜔𝑛𝑛

 Phase: 
 0° for  𝜔𝜔 ≤ 0.1 ⋅ 𝜔𝜔𝑛𝑛
 −90° for  𝜔𝜔 = 𝜔𝜔𝑛𝑛
 −180° for 𝜔𝜔 ≥ 10 ⋅ 𝜔𝜔𝑛𝑛


−90°
𝑑𝑑𝑒𝑒𝑐𝑐

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+ 2𝜁𝜁
𝜔𝜔𝑛𝑛

𝑠𝑠 + 1
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Bode Plot Construction – Example

 Consider a system with the following transfer function

𝐺𝐺 𝑠𝑠 =
10 𝑠𝑠 + 20
𝑠𝑠 𝑠𝑠 + 400

 Put it into Bode form

𝐺𝐺 𝑠𝑠 =
10 ⋅ 20 𝑠𝑠

20 + 1

𝑠𝑠 ⋅ 400 𝑠𝑠
400 + 1

=
0.5 𝑠𝑠

20 + 1

𝑠𝑠 ⋅ 𝑠𝑠
400 + 1

 Represent as a product of factors

𝐺𝐺 𝑠𝑠 = 0.5 ⋅
𝑠𝑠

20 + 1 ⋅
1
𝑠𝑠 ⋅

1
𝑠𝑠

400 + 1
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Bode Plot Construction – Example
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Bode Plot Construction – Example
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It is also possible to calculate a system’s 
frequency response directly from that system’s 
pole/zero plot.

Relationship between Pole/Zero Plots 
and Bode Plots

63
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Bode Construction from Pole/Zero Plots

 Transfer function can be expressed as

𝐺𝐺 𝑠𝑠 =
∏𝑖𝑖 𝑠𝑠 − 𝐻𝐻𝑖𝑖
∏𝑖𝑖 𝑠𝑠 − 𝑝𝑝𝑖𝑖

𝑠𝑠→𝑗𝑗𝜔𝜔
𝐺𝐺 𝑗𝑗𝜔𝜔 =

∏𝑖𝑖 𝑗𝑗𝜔𝜔 − 𝐻𝐻𝑖𝑖
∏𝑖𝑖 𝑗𝑗𝜔𝜔 − 𝑝𝑝𝑖𝑖

 Numerator is a product of first-order zero terms
 Denominator is a product of first-order pole terms
 𝑗𝑗𝜔𝜔 is a point on the imaginary axis
 𝑗𝑗𝜔𝜔 − 𝐻𝐻𝑖𝑖 represents a vector from 𝐻𝐻𝑖𝑖 to 𝑗𝑗𝜔𝜔
 𝑗𝑗𝜔𝜔 − 𝑝𝑝𝑖𝑖 represents a vector from 𝑝𝑝𝑖𝑖 to 𝑗𝑗𝜔𝜔

 Gain is given by

𝐺𝐺 𝑗𝑗𝜔𝜔 =
∏𝑖𝑖 𝑗𝑗𝜔𝜔 − 𝐻𝐻𝑖𝑖
∏𝑖𝑖 𝑗𝑗𝜔𝜔 − 𝑝𝑝𝑖𝑖

 Phase can be calculated as
∠𝐺𝐺 𝑗𝑗𝜔𝜔 = Σ∠ 𝑗𝑗𝜔𝜔 − 𝐻𝐻𝑖𝑖 − Σ∠ 𝑗𝑗𝜔𝜔 − 𝑝𝑝𝑖𝑖

 Possible to evaluate the frequency response graphically from a pole/zero 
diagram
 Not done in practice, but provides useful insight
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Bode Construction from Pole/Zero Plots

 Consider the following system:

𝐺𝐺 𝑗𝑗𝜔𝜔 =
𝑗𝑗𝜔𝜔 + 3

𝑗𝑗𝜔𝜔 + 2 + 𝑗𝑗1.75 𝑗𝑗𝜔𝜔 + 2 − 𝑗𝑗1.75

 Evaluate at 𝜔𝜔 = 2.5𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠𝑒𝑒𝑠𝑠
 Gain:

𝐺𝐺 𝑗𝑗2.5 = 3+𝑗𝑗2.5
2+𝑗𝑗4.25 2+𝑗𝑗0.75

𝐺𝐺 𝑗𝑗2.5 = 3.9
4.7⋅2.1

𝐺𝐺 𝑗𝑗2.5 = 0.389 → −8.2𝑑𝑑𝐵𝐵
 Phase:

∠𝐺𝐺 𝑗𝑗2.5 = 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3
𝜃𝜃1 = ∠ 3 + 𝑗𝑗2.5 = 39.8°

𝜃𝜃2 = ∠ 2 + 𝑗𝑗0.75 = 20.6°

𝜃𝜃3 = ∠ 2 + 𝑗𝑗4.25 = 64.8°

∠𝐺𝐺 𝑗𝑗2.5 = −45.5°
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Polar Frequency Response Plots66



K. Webb ESE 330

67

Polar Frequency Response Plots

 𝐺𝐺 𝑗𝑗𝜔𝜔 is a complex function of frequency 
 Typically plot as Bode plots 
 Magnitude and phase plotted separately
 Aids visualization of system behavior

 A real and an imaginary part at each value of 𝜔𝜔
 A point in the complex plane at each frequency
 Defines a curve in the complex plane
 A polar plot
 Parametrized by frequency – not as easy to distinguish frequency 

as on a Bode plot

 Polar plots are not terribly useful as a means of displaying a 
frequency response
 Useful in control system design – Nyquist stability criterion
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Polar Frequency Response Plots

 Identical frequency responses plotted two ways: 
 Bode plot and polar plot

 Note uneven frequency spacing along polar plot curve
 Dependent on frequency rates of change of gain and phase
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A system’s frequency response and it’s various 
time-domain responses are simply different 
perspectives on the same dynamic behavior.

Frequency and Time Domains69
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Frequency and Time Domains

 We’ve seen many ways we can represent a system
 𝜋𝜋𝑡𝑡𝑡-order differential equation
 Bond-graph model
 State-variable model
 Impulse response
 Step response
 Transfer function
 Frequency response/Bode plot

 All are valid and complete models
 They all contain the same information in different forms
 Different ways of looking at the same thing

Time-domain
representations

Frequency-domain
representations
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Time/Frequency Domain Correlation

 𝐺𝐺1 𝑠𝑠 = 9.87
𝑠𝑠2+5.655𝑠𝑠+9.87

 𝐺𝐺2 𝑠𝑠 = 987
𝑠𝑠2+18.85𝑠𝑠+987
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As was the case for time-domain simulation, 
MATLAB has some useful functions for 
simulating system behavior in the frequency 
domain as well.

Frequency-Domain Analysis in MATLAB72
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System Objects

 MATLAB has data types dedicated to linear system 
models

 Two primary system model objects:
 State-space model
 Transfer function model

 Objects created by calling MATLAB functions
 ss.m – creates a state-space model 
 tf.m – creates a transfer function model
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State-Space Model – ss(…)

sys = ss(A,B,C,D)

 A: system matrix - 𝜋𝜋 × 𝜋𝜋
 B: input matrix - 𝜋𝜋 × 𝑁𝑁
 C: output matrix - 𝑝𝑝 × 𝜋𝜋
 D: feed-through matrix - 𝑝𝑝 × 𝑁𝑁
 sys: state-space model object

 State-space model object will be used as an input to 
other MATLAB functions
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Transfer Function Model – tf(…)

sys = tf(Num,Den)

 Num: vector of numerator polynomial coefficients
 Den: vector of denominator polynomial coefficients
 sys: transfer function model object

 Transfer function is assumed to be of the form

𝐺𝐺 𝑠𝑠 =
𝑏𝑏1𝑠𝑠𝑟𝑟 + 𝑏𝑏2𝑠𝑠𝑟𝑟−1 + ⋯+ 𝑏𝑏𝑟𝑟𝑠𝑠 + 𝑏𝑏𝑟𝑟+1
𝑎𝑎1𝑠𝑠𝑛𝑛 + 𝑎𝑎2𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑠𝑠 + 𝑎𝑎𝑛𝑛+1

 Inputs to tf(…) are
 Num = [b1,b2,…,br+1];
 Den = [a1,a2,…,an+1];
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Frequency Response Simulation – bode(…)

[mag,phase] = bode(sys,w)

 sys: system model – state-space, transfer function, or other
 w: optional frequency vector – in rad/sec 
 mag: system gain response vector
 phase: system phase response vector – in degrees

 If no outputs are specified, bode response is automatically 
plotted – preferable to plot yourself

 Frequency vector input is optional
 If not specified, MATLAB will generate automatically

 May need to do: squeeze(mag) and squeeze(phase)
to eliminate singleton dimensions of output matrices
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Log-spaced Vectors – logspace(…)

f= logspace(x0,x1,N)

 x0: first point in f is 10𝑥𝑥0
 x1: last point in f is 10𝑥𝑥1
 N: number of points in f
 f: vector of logarithmically-spaced points

 Generates 𝑁𝑁 logarithmically-spaced points between 
10𝑥𝑥0 and 10𝑥𝑥1

 Useful for generating independent-variable vectors for 
log plots (e.g., frequency vectors for bode plots)
 Linearly spaced on a logarithmic axis
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