
ESE 330 – Modeling & Analysis of Dynamic Systems

SECTION 7: FREQUENCY-
DOMAIN ANALYSIS
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Response to Sinusoidal Inputs2



K. Webb ESE 330

3

Frequency-Domain Analysis – Introduction

 We’ve looked at system impulse and step responses
 Also interested in the response to periodic inputs

 Fourier theory tells us that any periodic signal can be 
represented as a sum of harmonically-related sinusoids

 The Fourier series:

𝑓𝑓 𝑡𝑡 =
𝑎𝑎0
2 + �

𝑛𝑛=1

∞

𝑎𝑎𝑛𝑛 cos 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 + 𝑏𝑏𝑛𝑛 sin 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

where 𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛 are given by the Fourier integrals

 Sinusoids are basis signals from which all other periodic 
signals can be constructed
 Sinusoidal system response is of particular interest
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Fourier Series
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System Response to a Sinusoidal Input

 Consider an 𝑛𝑛𝑡𝑡𝑡-order system
 𝑛𝑛 poles: 𝑝𝑝1,𝑝𝑝2, …𝑝𝑝𝑛𝑛
 Real or complex
 Assume all are distinct

 Transfer function is:

𝐺𝐺 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠
𝑠𝑠−𝑝𝑝1 𝑠𝑠−𝑝𝑝2 ⋯ 𝑠𝑠−𝑝𝑝𝑛𝑛

(1)

 Apply a sinusoidal input to the system

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝜔𝜔
ℒ

𝑈𝑈 𝑠𝑠 = 𝐴𝐴 𝜔𝜔
𝑠𝑠2+𝜔𝜔2

 Output is given by

𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 𝑈𝑈 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠
𝑠𝑠−𝑝𝑝1 𝑠𝑠−𝑝𝑝2 ⋯ 𝑠𝑠−𝑝𝑝𝑛𝑛

� 𝐴𝐴 𝜔𝜔
𝑠𝑠2+𝜔𝜔2 (2)
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System Response to a Sinusoidal Input

 Partial fraction expansion of (2) gives

𝑌𝑌 𝑠𝑠 = 𝑟𝑟1
𝑠𝑠−𝑝𝑝1

+ 𝑟𝑟2
𝑠𝑠−𝑝𝑝2

+ ⋯+ 𝑟𝑟𝑛𝑛
𝑠𝑠−𝑝𝑝𝑛𝑛

+ 𝑟𝑟𝑛𝑛+1𝑠𝑠
𝑠𝑠2+𝜔𝜔2 + 𝑟𝑟𝑛𝑛+2𝜔𝜔

𝑠𝑠2+𝜔𝜔2 (3)

 Inverse transform of (3) gives the time-domain output

𝑦𝑦 𝑡𝑡 = 𝑟𝑟1𝑒𝑒𝑝𝑝1𝑡𝑡 + 𝑟𝑟2𝑒𝑒𝑝𝑝2𝑡𝑡 + ⋯+ 𝑟𝑟𝑛𝑛𝑒𝑒𝑝𝑝𝑛𝑛𝑡𝑡 + 𝑟𝑟𝑛𝑛+1 cos 𝜔𝜔𝜔𝜔 + 𝑟𝑟𝑛𝑛+2 sin 𝜔𝜔𝜔𝜔 (4)

transient steady state

 Two portions of the response:
 Transient
 Decaying exponentials or sinusoids – goes to zero in steady state
 Natural response to initial conditions

 Steady state
 Due to the input – sinusoidal in steady state
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Steady-State Sinusoidal Response
 We are interested in the steady-state response

𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝑟𝑟𝑛𝑛+1 cos 𝜔𝜔𝜔𝜔 + 𝑟𝑟𝑛𝑛+2 sin 𝜔𝜔𝜔𝜔 (5)

 A trig. identity provides insight into 𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 :

𝛼𝛼 cos 𝜔𝜔𝜔𝜔 + 𝛽𝛽 sin 𝜔𝜔𝜔𝜔 = 𝛼𝛼2 + 𝛽𝛽2 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙
where

𝜙𝜙 = tan−1 𝛼𝛼
𝛽𝛽

 Steady-state response to a sinusoidal input

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝜔𝜔

is a sinusoid of the same frequency, but, in general different amplitude and phase

𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙
Where (6)

𝐵𝐵 = 𝑟𝑟𝑛𝑛+12 + 𝑟𝑟𝑛𝑛+22 and     𝜙𝜙 = tan−1 𝑟𝑟𝑛𝑛+1
𝑟𝑟𝑛𝑛+2
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Steady-State Sinusoidal Response

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝜔𝜔 → 𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙

 Steady-state sinusoidal response is a scaled and
phase-shifted sinusoid of the same frequency
 Equal frequency is a property of linear systems

 Note the 𝜔𝜔 term in the numerator of (3)
𝜔𝜔 will affect the residues
 Residues determine amplitude and phase of the output
 Output amplitude and phase are frequency-dependent

𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 𝜔𝜔 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙 𝜔𝜔
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Steady-State Sinusoidal Response

 Gain – the ratio of amplitudes of the output and input of the system

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝐵𝐵
𝐴𝐴

 Phase – phase difference between system input and output

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜙𝜙 − 𝜃𝜃

 Systems will, in general, exhibit frequency-dependent gain and phase

 We’d like to be able to determine these functions of frequency
 The system’s frequency response

Linear System

𝐺𝐺 𝑠𝑠
𝑢𝑢 𝑡𝑡 = 𝐴𝐴 sin 𝜔𝜔𝜔𝜔 + 𝜃𝜃 𝑦𝑦𝑠𝑠𝑠𝑠 𝑡𝑡 = 𝐵𝐵 sin 𝜔𝜔𝜔𝜔 + 𝜙𝜙
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A system’s frequency response, or sinusoidal 
transfer function, describes its gain and phase 
shift for sinusoidal inputs as a function of 
frequency.

Frequency Response10
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Frequency Response
 System output in the Laplace domain is

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺 𝑠𝑠

 Multiplication in the Laplace domain corresponds to convolution in the time 
domain

𝑦𝑦 𝑡𝑡 = 𝑢𝑢 𝑡𝑡 ∗ 𝑔𝑔 𝑡𝑡 = �
0

𝑡𝑡
𝑔𝑔 𝜏𝜏 𝑢𝑢 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑑𝑑

 Consider an exponential input of the form

𝑢𝑢 𝑡𝑡 = 𝑒𝑒𝑠𝑠𝑠𝑠

where 𝑠𝑠 is the complex Laplace variable:   𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗

 Now the output is

𝑦𝑦 𝑡𝑡 = 𝑢𝑢 𝑡𝑡 ∗ 𝑔𝑔 𝑡𝑡 = �
0

𝑡𝑡
𝑔𝑔 𝜏𝜏 𝑒𝑒𝑠𝑠 𝑡𝑡−𝜏𝜏 𝑑𝑑𝑑𝑑 = �

0

𝑡𝑡
𝑔𝑔 𝜏𝜏 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑

𝑦𝑦 𝑡𝑡 = ∫0
𝑡𝑡 𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 ⋅ 𝑒𝑒𝑠𝑠𝑠𝑠 (1)



K. Webb ESE 330

12

Frequency Response

𝑦𝑦 𝑡𝑡 = ∫0
𝑡𝑡 𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 ⋅ 𝑒𝑒𝑠𝑠𝑠𝑠 (1)

 We’re interested in the steady-state response, so let the upper limit 
of integration go to infinity

𝑦𝑦 𝑡𝑡 = �
0

∞
𝑔𝑔 𝜏𝜏 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 ⋅ 𝑒𝑒𝑠𝑠𝑠𝑠

𝑦𝑦 𝑡𝑡 = 𝐺𝐺 𝑠𝑠 ⋅ 𝑒𝑒𝑠𝑠𝑠𝑠 (2)

 Time-domain response to an exponential input is the time-domain 
input multiplied by the system transfer function

 What is this input?
𝑢𝑢 𝑡𝑡 = 𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑒𝑒 𝜎𝜎+𝑗𝑗𝑗𝑗 𝑡𝑡 = 𝑒𝑒𝜎𝜎𝜎𝜎𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 (3)

 If we let 𝜎𝜎 → 0, i.e. let 𝑠𝑠 → 𝑗𝑗𝑗𝑗, then we have

𝑦𝑦 𝑡𝑡 = 𝐺𝐺 𝑗𝑗𝑗𝑗 ⋅ 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 (4)
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Euler’s Formula

 Recall Euler’s formula:

𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 = cos 𝜔𝜔𝜔𝜔 + 𝑗𝑗 sin 𝜔𝜔𝜔𝜔 (5)

 From which it follows that

cos 𝜔𝜔𝜔𝜔 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗+𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

2
(6)

and

sin 𝜔𝜔𝜔𝜔 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗−𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

2𝑗𝑗
(7)
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Frequency Response

 We’re interested in the sinusoidal steady-state system 
response, so let the input be

𝑢𝑢 𝑡𝑡 = 𝐴𝐴 cos 𝜔𝜔𝜔𝜔 = 𝐴𝐴
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

2

 A sum of complex exponentials in the form of (3)
 We’ve let 𝑠𝑠 → 𝑗𝑗𝑗𝑗 in the first term and 𝑠𝑠 → −𝑗𝑗𝑗𝑗 in the 

second
𝑢𝑢 𝑡𝑡 = 𝐴𝐴

2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 + 𝐴𝐴

2
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 (8)

 According to (4) the output in response to (8) will be 

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝐺𝐺 𝑗𝑗𝑗𝑗 ⋅ 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 + 𝐴𝐴

2
𝐺𝐺 −𝑗𝑗𝑗𝑗 ⋅ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 (9)
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Frequency Response

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝐺𝐺 𝑗𝑗𝑗𝑗 ⋅ 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 + 𝐴𝐴

2
𝐺𝐺 −𝑗𝑗𝑗𝑗 ⋅ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 (9)

 𝐺𝐺 𝑗𝑗𝑗𝑗 is a complex function of frequency
 Evaluates to a complex number at each value of 𝜔𝜔
 Has both magnitude and phase
 Can be expressed in polar form as

𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑒𝑒𝑗𝑗𝑗𝑗 (10)

where
𝑀𝑀 = 𝐺𝐺 𝑗𝑗𝑗𝑗 and  𝜙𝜙 = ∠𝐺𝐺 𝑗𝑗𝑗𝑗

 It follows that

𝐺𝐺 −𝑗𝑗𝑗𝑗 = 𝑀𝑀𝑒𝑒−𝑗𝑗𝑗𝑗 (11)
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Frequency Response

 Using (11), the output given by (9) becomes

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝑀𝑀 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗 + 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒−𝑗𝑗𝑗𝑗

𝑦𝑦 𝑡𝑡 = 𝐴𝐴
2
𝑀𝑀 𝑒𝑒𝑗𝑗 𝜔𝜔𝜔𝜔+𝜙𝜙 + 𝑒𝑒−𝑗𝑗 𝜔𝜔𝜔𝜔+𝜙𝜙 (12)

𝑦𝑦 𝑡𝑡 = 𝑀𝑀 ⋅ 𝐴𝐴 cos 𝜔𝜔𝜔𝜔 + 𝜙𝜙 (13)

where, again

𝑀𝑀 = 𝐺𝐺 𝑗𝑗𝑗𝑗 and  𝜙𝜙 = ∠𝐺𝐺 𝑗𝑗𝑗𝑗 (14)
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Frequency response Function – 𝐺𝐺 𝑗𝑗𝑗𝑗
 𝐺𝐺 𝑗𝑗𝑗𝑗 is the system’s frequency response function

 Transfer function, where 𝑠𝑠 → 𝑗𝑗𝑗𝑗

𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝐺𝐺 𝑠𝑠 |𝑠𝑠→𝑗𝑗𝑗𝑗 (15)

 A complex-valued function of frequency

 𝐺𝐺 𝑗𝑗𝑗𝑗 at each 𝜔𝜔 is the gain at that frequency
 Ratio of output amplitude to input amplitude

 ∠𝐺𝐺 𝑗𝑗𝑗𝑗 at each 𝜔𝜔 is the phase at that frequency
 Phase shift between input and output sinusoids

 Another representation of system behavior
 Along with state-space model, impulse/step responses, transfer 

function, etc.
 Typically represented graphically
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Plotting the Frequency Response Function

 𝐺𝐺 𝑗𝑗𝑗𝑗 is a complex-valued function of frequency
 Has both magnitude and phase
 Plot gain and phase separately

 Frequency response plots formatted as Bode plots
 Two sets of axes: gain on top, phase below
 Identical, logarithmic frequency axes
 Gain axis is logarithmic – either explicitly or as units of 

decibels (dB)
 Phase axis is linear with units of degrees



K. Webb ESE 330

19

Bode Plots

Logarithmic frequency axes

Units of 
magnitude 
are dB Magnitude 

plot on top

Phase plot 
below

Units of 
phase are 
degrees
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Decibels - dB

 Frequency response gain most often expressed and 
plotted with units of decibels (dB)
 A logarithmic scale
 Provides detail of very large and very small values on the 

same plot
 Commonly used for ratios of powers or amplitudes

 Conversion from a linear scale to dB:

𝐺𝐺 𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑 = 20 ⋅ log10 𝐺𝐺 𝑗𝑗𝑗𝑗

 Conversion from dB to a linear scale:

𝐺𝐺 𝑗𝑗𝑗𝑗 = 10
𝐺𝐺 𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑

20
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Decibels – dB 

 Multiplying two gain values corresponds to adding their 
values in dB
 E.g., the overall gain of cascaded systems

𝐺𝐺1 𝑗𝑗𝑗𝑗 ⋅ 𝐺𝐺2 𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑 = 𝐺𝐺1 𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑 + 𝐺𝐺2 𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑

 Negative dB values corresponds to sub-unity gain
 Positive dB values are gains greater than one

dB Linear

60 1000

40 100

20 10

0 1

dB Linear

6 2

-3 1/√2 = 0.707
-6 0.5

-20 0.1
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Interpreting Bode Plots

Bode plots tell you the gain and phase shift at all frequencies: 
choose a frequency, read gain and phase values from the plot

For a 10KHz 
sinusoidal 
input, the 
gain is 0dB (1) 
and the phase 
shift is 0°.

For a 10MHz 
sinusoidal 
input, the 
gain is -32dB 
(0.025), and 
the phase 
shift is -176°.
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Interpreting Bode Plots
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Value of Logarithmic Axes - Gain

 Gain axis is linear in dB
 A logarithmic scale
 Allows for displaying detail at very large and very small levels on the same plot

 Gain plotted in dB
 Two resonant peaks 

clearly visible

 Linear gain scale
 Smaller peak has 

disappeared
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Value of Logarithmic Axes - Frequency

 Frequency axis is logarithmic
 Allows for displaying detail at very low and very high frequencies on the 

same plot

 Log frequency axis
 Can resolve 

frequency of both 
resonant peaks

 Linear frequency 
axis
 Lower resonant 

frequency is unclear



K. Webb ESE 330

26

Gain Response – Terminology 

 Corner frequency, cut 
off frequency, -3dB 
frequency:
 Frequency at which 

gain is 3dB below its 
low-frequency value

𝑓𝑓𝑐𝑐 =
𝜔𝜔𝑐𝑐
2𝜋𝜋

 This is the bandwidth
of the system

 Peaking
 Any increase in gain 

above the low 
frequency gain

𝜔𝜔𝑐𝑐 = 1.45
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

𝑓𝑓𝑐𝑐 =
𝜔𝜔𝑐𝑐
2𝜋𝜋 = 0.23𝐻𝐻𝐻𝐻

~5𝑑𝑑𝑑𝑑 of peaking
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This section examines the frequency responses 
of first- and second-order transfer function 
factors.

Response of 1st- and 2nd-Order Factors27
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Transfer Function Factors
 We’ve already seen that a transfer function denominator can be factored into first-

and second-order terms

𝐺𝐺 𝑠𝑠 =
𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠

𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯ 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛2 𝑠𝑠2 + 2𝜁𝜁2𝜔𝜔𝑛𝑛2𝑠𝑠 + 𝜔𝜔𝑛𝑛2
2 ⋯

 The same is true of the numerator

𝐺𝐺 𝑠𝑠 =
𝑠𝑠 − 𝑧𝑧1 𝑠𝑠 − 𝑧𝑧2 ⋯ 𝑠𝑠2 + 2𝜁𝜁𝑎𝑎𝜔𝜔𝑛𝑛𝑎𝑎𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑎𝑎2 𝑠𝑠2 + 2𝜁𝜁2𝜔𝜔𝑛𝑛𝑏𝑏𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑏𝑏

2 ⋯
𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯ 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛2 𝑠𝑠2 + 2𝜁𝜁2𝜔𝜔𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛

2 ⋯

 Can think of the transfer function as a product of the individual factors
 For example, consider the following system

𝐺𝐺 𝑠𝑠 =
𝑠𝑠 − 𝑧𝑧1

𝑠𝑠 − 𝑝𝑝1 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛2

 Can rewrite as

𝐺𝐺 𝑠𝑠 = 𝑠𝑠 − 𝑧𝑧1 ⋅
1

𝑠𝑠 − 𝑝𝑝1
⋅

1
𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛2
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Transfer Function Factors

𝐺𝐺 𝑠𝑠 = 𝑠𝑠 − 𝑧𝑧1 ⋅
1

𝑠𝑠 − 𝑝𝑝1
⋅

1
𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛2

 Think of this as three cascaded transfer functions
𝐺𝐺1 𝑠𝑠 = 𝑠𝑠 − 𝑧𝑧1 ,     𝐺𝐺2 𝑠𝑠 = 1

𝑠𝑠−𝑝𝑝1
,     𝐺𝐺3 𝑠𝑠 = 1

𝑠𝑠2+2𝜁𝜁1𝜔𝜔𝑛𝑛𝑛𝑠𝑠+𝜔𝜔𝑛𝑛𝑛
2

𝐺𝐺1 𝑠𝑠 𝐺𝐺2 𝑠𝑠 𝐺𝐺3 𝑠𝑠
𝑈𝑈 𝑠𝑠 𝑌𝑌1 𝑠𝑠 𝑌𝑌2 𝑠𝑠 𝑌𝑌 𝑠𝑠

𝑠𝑠 − 𝑧𝑧1
1

𝑠𝑠 − 𝑝𝑝1

1
𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛2

𝑈𝑈 𝑠𝑠 𝑌𝑌1 𝑠𝑠 𝑌𝑌2 𝑠𝑠 𝑌𝑌 𝑠𝑠

or
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Transfer Function Factors

 Overall transfer function – and therefore, frequency 
response – is the product of individual first- and 
second-order factors

 Instructive, therefore, to understand the responses 
of the individual factors 
 First- and second-order poles and zeros

𝐺𝐺1 𝑗𝑗𝑗𝑗 𝐺𝐺2 𝑗𝑗𝑗𝑗 𝐺𝐺3 𝑗𝑗𝑗𝑗
𝑈𝑈 𝑗𝑗𝑗𝑗 𝑌𝑌1 𝑗𝑗𝑗𝑗 𝑌𝑌2 𝑗𝑗𝑗𝑗 𝑌𝑌 𝑗𝑗𝑗𝑗
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First-Order Factors

 First-order factors
 Single, real poles or zeros

 In the Laplace domain:

𝐺𝐺 𝑠𝑠 = 𝑠𝑠,    𝐺𝐺 𝑠𝑠 = 1
𝑠𝑠
,    𝐺𝐺 𝑠𝑠 = 𝑠𝑠 + 𝑎𝑎,    𝐺𝐺 𝑠𝑠 = 1

𝑠𝑠+𝑎𝑎

 In the frequency domain

𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗,    𝐺𝐺 𝑗𝑗𝑗𝑗 = 1
𝑗𝑗𝑗𝑗

,    𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗 + 𝑎𝑎,    𝐺𝐺 𝑗𝑗𝑗𝑗 = 1
𝑗𝑗𝑗𝑗+𝑎𝑎

 Pole/zero plots:
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First-Order Factors – Zero at the Origin

 A differentiator
𝐺𝐺 𝑠𝑠 = 𝑠𝑠

𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗

 Gain:
𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗 = 𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝑗𝑗 = +90°,   ∀𝜔𝜔
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First-Order Factors – Pole at the Origin

 An integrator

𝐺𝐺 𝑠𝑠 =
1
𝑠𝑠

𝐺𝐺 𝑗𝑗𝑗𝑗 =
1
𝑗𝑗𝑗𝑗

 Gain:

𝐺𝐺 𝑗𝑗𝑗𝑗 =
1
𝑗𝑗𝑗𝑗

=
1
𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝑗𝑗 = ∠ − 𝑗𝑗 1
𝜔𝜔

= −90°,   ∀𝜔𝜔
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First-Order Factors – Single, Real Zero

 Single, real zero at 𝑠𝑠 = −𝑎𝑎
𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗 + 𝑎𝑎

 Gain:

𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝜔𝜔2 + 𝑎𝑎2

for 𝜔𝜔 ≪ 𝑎𝑎
𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝑎𝑎

for 𝜔𝜔 ≫ 𝑎𝑎
𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝑗𝑗 = tan−1
𝜔𝜔
𝑎𝑎

for 𝜔𝜔 ≪ 𝑎𝑎
∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠𝑎𝑎 = 0°

for 𝜔𝜔 ≫ 𝑎𝑎
∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠𝑗𝑗𝑗𝑗 = 90°
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First-Order Factors – Single, Real Zero

 Corner frequency:
𝜔𝜔𝑐𝑐 = 𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = 𝑎𝑎 2 = 1.414 ⋅ 𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 𝑑𝑑𝑑𝑑 = 𝑎𝑎 𝑑𝑑𝑑𝑑 + 3𝑑𝑑𝑑𝑑

 ∠𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = +45°

 For 𝜔𝜔 ≫ 𝜔𝜔𝑐𝑐, gain increases at:
 20𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑
 6𝑑𝑑𝑑𝑑/𝑜𝑜𝑜𝑜𝑜𝑜

 From ~0.1𝜔𝜔𝑐𝑐 to ~10𝜔𝜔𝑐𝑐, phase 
increases at a rate of: 
 ~45°/𝑑𝑑𝑑𝑑𝑑𝑑
 Rough approximation
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First-Order Factors – Single, Real Pole

 Single, real pole at 𝑠𝑠 = −𝑎𝑎

𝐺𝐺 𝑗𝑗𝑗𝑗 =
1

𝑗𝑗𝑗𝑗 + 𝑎𝑎

 Gain:

𝐺𝐺 𝑗𝑗𝑗𝑗 =
1

𝜔𝜔2 + 𝑎𝑎2

for 𝜔𝜔 ≪ 𝑎𝑎

𝐺𝐺 𝑗𝑗𝑗𝑗 ≈
1
𝑎𝑎

for 𝜔𝜔 ≫ 𝑎𝑎

𝐺𝐺 𝑗𝑗𝑗𝑗 ≈
1
𝜔𝜔

 Phase:

∠𝐺𝐺 𝑗𝑗𝑗𝑗 = − tan−1
𝜔𝜔
𝑎𝑎

for 𝜔𝜔 ≪ 𝑎𝑎

∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠
1
𝑎𝑎

= 0°

for 𝜔𝜔 ≫ 𝑎𝑎

∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠
1
𝑗𝑗𝑗𝑗

= −90°
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First-Order Factors – Single, Real Pole

 Corner frequency:
𝜔𝜔𝑐𝑐 = 𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = 1
𝑎𝑎 2

= 0.707 ⋅ 1
𝑎𝑎

 𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 𝑑𝑑𝑑𝑑 = 1
𝑎𝑎 𝑑𝑑𝑑𝑑

− 3𝑑𝑑𝑑𝑑

 ∠𝐺𝐺 𝑗𝑗𝜔𝜔𝑐𝑐 = −45°

 For 𝜔𝜔 ≫ 𝜔𝜔𝑐𝑐, gain decreases at:
 −20𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑
 −6𝑑𝑑𝑑𝑑/𝑜𝑜𝑜𝑜𝑜𝑜

 From ~0.1𝜔𝜔𝑐𝑐 to ~10𝜔𝜔𝑐𝑐, phase 
decreases at a rate of: 
 ~ − 45°/𝑑𝑑𝑑𝑑𝑑𝑑
 Rough approximation
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Second-Order Factors

 Complex-conjugate zeros

𝐺𝐺 𝑠𝑠 = 𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
 Complex-conjugate poles

𝐺𝐺 𝑠𝑠 =
1

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

𝜎𝜎 = 𝜁𝜁𝜔𝜔𝑛𝑛,  𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛 1 − 𝜁𝜁2
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2nd-Order Factors – Complex-Conjugate Zeros

 Complex-conjugate zeros at 𝑠𝑠 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

𝐺𝐺 𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗 2 + 2𝜁𝜁𝜔𝜔𝑛𝑛 𝑗𝑗𝑗𝑗 + 𝜔𝜔𝑛𝑛2

 Gain:

for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛
𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝜔𝜔𝑛𝑛2

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛
𝐺𝐺 𝑗𝑗𝑗𝑗 = 2𝜁𝜁𝜔𝜔𝑛𝑛2

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛
𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝜔𝜔2

 Phase:

for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛
∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠𝜔𝜔𝑛𝑛2 = 0°

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛
∠𝐺𝐺 𝑗𝑗𝑗𝑗 = ∠𝑗𝑗𝑗𝑗𝑗𝜔𝜔𝑛𝑛 = +90°

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛
∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠ − 𝜔𝜔2 = +180°
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2nd-Order Factors – Complex-Conjugate Zeros

 Response may dip below 
low-freq. value near 𝜔𝜔𝑛𝑛
 Peaking increases as 𝜁𝜁

decreases

 Gain increases at +40𝑑𝑑𝑑𝑑/
𝑑𝑑𝑑𝑑𝑑𝑑 or +12𝑑𝑑𝑑𝑑/𝑜𝑜𝑜𝑜𝑜𝑜 for   
𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

 Corner frequency depends 
on damping ratio, 𝜁𝜁
 𝜔𝜔𝑐𝑐 increases as 𝜁𝜁 decreases

 At 𝜔𝜔 = 𝜔𝜔𝑐𝑐, ∠𝐺𝐺 𝑗𝑗𝑗𝑗 = 90°
 Phase transition abruptness 

depends on 𝜁𝜁
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2nd-Order Factors – Complex-Conjugate Poles

 Complex-conjugate zeros at 𝑠𝑠 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

𝐺𝐺 𝑗𝑗𝑗𝑗 =
1

𝑗𝑗𝑗𝑗 2 + 2𝜁𝜁𝜔𝜔𝑛𝑛 𝑗𝑗𝑗𝑗 + 𝜔𝜔𝑛𝑛2

 Gain:
for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛

𝐺𝐺 𝑗𝑗𝑗𝑗 ≈
1
𝜔𝜔𝑛𝑛2

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛

𝐺𝐺 𝑗𝑗𝑗𝑗 =
1

2𝜁𝜁𝜔𝜔𝑛𝑛2

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

𝐺𝐺 𝑗𝑗𝑗𝑗 ≈
1
𝜔𝜔2

 Phase:
for 𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛

∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠
1
𝜔𝜔𝑛𝑛2

= 0°

for 𝜔𝜔 = 𝜔𝜔𝑛𝑛

∠𝐺𝐺 𝑗𝑗𝑗𝑗 = ∠
1

𝑗𝑗𝑗𝑗𝑗𝜔𝜔𝑛𝑛
= −90°

for 𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

∠𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ ∠ −
1
𝜔𝜔2 = −180°
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2nd-Order Factors – Complex-Conjugate Poles

 Response may peak above 
low-freq. value near 𝜔𝜔𝑛𝑛
 Peaking increases as 𝜁𝜁

decreases

 Gain decreases at −40𝑑𝑑𝑑𝑑/
𝑑𝑑𝑑𝑑𝑑𝑑 or −12𝑑𝑑𝑑𝑑/𝑜𝑜𝑜𝑜𝑜𝑜 for    
𝜔𝜔 ≫ 𝜔𝜔𝑛𝑛

 Corner frequency depends 
on damping ratio, 𝜁𝜁
 𝜔𝜔𝑐𝑐 increases as 𝜁𝜁 decreases

 At 𝜔𝜔 = 𝜔𝜔𝑐𝑐, ∠𝐺𝐺 𝑗𝑗𝑗𝑗 = −90°
 Phase transition abruptness 

depends on 𝜁𝜁
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Pole Location and Peaking

 Peaking is dependent on 𝜁𝜁 – pole locations
 No peaking at all for 𝜁𝜁 ≥ 1/ 2 = 0.707
 𝜁𝜁 = 0.707 – maximally-flat or Butterworth response
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Frequency Response Components - Example

 Consider the following system

𝐺𝐺 𝑠𝑠 =
20 𝑠𝑠 + 20

𝑠𝑠 + 1 𝑠𝑠 + 100

 The system’s frequency response function is 

𝐺𝐺 𝑗𝑗𝑗𝑗 =
20 𝑗𝑗𝑗𝑗 + 20

𝑗𝑗𝑗𝑗 + 1 𝑗𝑗𝑗𝑗 + 100

 As we’ve seen we can consider this a product of individual frequency 
response factors

𝐺𝐺 𝑗𝑗𝑗𝑗 = 20 ⋅ 𝑗𝑗𝑗𝑗 + 20 ⋅
1

𝑗𝑗𝑗𝑗 + 1
⋅

1
𝑗𝑗𝑗𝑗 + 100

 Overall response is the composite of the individual responses
 Product of individual gain responses – sum in dB
 Sum of individual phase responses
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Frequency Response Components - Example

 Gain response
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Frequency Response Components - Example

 Phase response
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In this section, we’ll look at a method for 
sketching, by hand, a straight-line, asymptotic 
approximation for a Bode plot.

Bode Plot Construction47
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Bode Plot Construction

 We’ve just seen that a system’s transfer function 
can be factored into first- and second-order terms
 Each factor contributes a component to the overall gain 

and phase responses

 Now, we’ll look at a technique for manually 
sketching a system’s Bode plot
 In practice, you’ll almost always plot with a computer
 But, learning to do it by hand provides valuable insight

 We’ll look at how to approximate Bode plots for 
each of the different factors
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Bode Form of the Transfer function

 Consider the general transfer function form:

𝐺𝐺 𝑠𝑠 = 𝐾𝐾
𝑠𝑠 − 𝑧𝑧1 𝑠𝑠 − 𝑧𝑧2 ⋯ 𝑠𝑠2 + 2𝜁𝜁𝑎𝑎𝜔𝜔𝑛𝑛𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛𝑛𝑛2 ⋯
𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯ 𝑠𝑠2 + 2𝜁𝜁1𝜔𝜔𝑛𝑛1𝑠𝑠 + 𝜔𝜔𝑛𝑛12 ⋯

 We first want to put this into Bode form:

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0

𝑠𝑠
𝜔𝜔𝑐𝑐𝑐𝑐

+ 1 𝑠𝑠
𝜔𝜔𝑐𝑐𝑏𝑏

+ 1 ⋯ 𝑠𝑠2
𝜔𝜔𝑛𝑛𝑛𝑛2

+ 2𝜁𝜁𝑎𝑎
𝜔𝜔𝑛𝑛𝑛𝑛

𝑠𝑠 + 1 ⋯

𝑠𝑠
𝜔𝜔𝑐𝑐1

+ 1 𝑠𝑠
𝜔𝜔𝑐𝑐2

+ 1 ⋯ 𝑠𝑠2
𝜔𝜔𝑛𝑛12

+ 2𝜁𝜁1
𝜔𝜔𝑛𝑛1

𝑠𝑠 + 1 ⋯

 Putting 𝐺𝐺 𝑠𝑠 into Bode form requires putting each of 
the first- and second-order factors into Bode form
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First-Order Factors in Bode Form

 First-order transfer function factors include:

𝐺𝐺 𝑠𝑠 = 𝑠𝑠𝑛𝑛,   𝐺𝐺 𝑠𝑠 = 𝑠𝑠 + 𝜎𝜎,   𝐺𝐺 𝑠𝑠 = 1
𝑠𝑠+𝜎𝜎

 For the first factor, 𝐺𝐺 𝑠𝑠 = 𝑠𝑠𝑛𝑛, 𝑛𝑛 is a positive or negative integer
 Already in Bode form

 For the second two, divide through by 𝜎𝜎, giving

𝐺𝐺 𝑠𝑠 = 𝜎𝜎 𝑠𝑠
𝜎𝜎

+ 1 and    𝐺𝐺 𝑠𝑠 = 1
𝜎𝜎 𝑠𝑠

𝜎𝜎+1

 Here, 𝜎𝜎 = 𝜔𝜔𝑐𝑐, the corner frequency associated with that zero or pole, so 

𝐺𝐺 𝑠𝑠 = 𝜔𝜔𝑐𝑐
𝑠𝑠
𝜔𝜔𝑐𝑐

+ 1 and    𝐺𝐺 𝑠𝑠 = 1
𝜔𝜔𝑐𝑐

𝑠𝑠
𝜔𝜔𝑐𝑐
+1
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Second-Order Factors in Bode Form

 Second-order transfer function factors include:

𝐺𝐺 𝑠𝑠 = 𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2 and    𝐺𝐺 𝑠𝑠 = 1
𝑠𝑠 2+2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠+𝜔𝜔𝑛𝑛

2

 Again, normalize the 𝑠𝑠0 coefficient, giving

𝐺𝐺 𝑠𝑠 = 𝜔𝜔𝑛𝑛2
𝑠𝑠2

𝜔𝜔𝑛𝑛
2 + 2𝜁𝜁

𝜔𝜔𝑛𝑛
𝑠𝑠 + 1 and    𝐺𝐺 𝑠𝑠 = 1/𝜔𝜔𝑛𝑛

2

𝑠𝑠2

𝜔𝜔𝑛𝑛
2+

2𝜁𝜁
𝜔𝜔𝑛𝑛

𝑠𝑠+1

 Putting each factor into its Bode form involves factoring out any DC 
gain component

 Lump all of DC gains together into a single gain constant, 𝐾𝐾0

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0
𝑠𝑠

𝜔𝜔𝑐𝑐𝑐𝑐
+1 𝑠𝑠

𝜔𝜔𝑐𝑐𝑐𝑐
+1 ⋯ 𝑠𝑠2

𝜔𝜔𝑛𝑛𝑛𝑛2
+ 2𝜁𝜁𝑎𝑎
𝜔𝜔𝑛𝑛𝑛𝑛

𝑠𝑠+1 ⋯

𝑠𝑠
𝜔𝜔𝑐𝑐𝑐

+1 𝑠𝑠
𝜔𝜔𝑐𝑐𝑐

+1 ⋯ 𝑠𝑠2

𝜔𝜔𝑛𝑛1
2 + 2𝜁𝜁1

𝜔𝜔𝑛𝑛𝑛
𝑠𝑠+1 ⋯



K. Webb ESE 330

52

Bode Plot Construction

 Transfer function in Bode form 

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0
𝑠𝑠

𝜔𝜔𝑐𝑐𝑐𝑐
+1 𝑠𝑠

𝜔𝜔𝑐𝑐𝑐𝑐
+1 ⋯ 𝑠𝑠2

𝜔𝜔𝑛𝑛𝑎𝑎2
+ 2𝜁𝜁𝑎𝑎
𝜔𝜔𝑛𝑛𝑛𝑛

𝑠𝑠+1 ⋯

𝑠𝑠
𝜔𝜔𝑐𝑐𝑐

+1 𝑠𝑠
𝜔𝜔𝑐𝑐𝑐

+1 ⋯ 𝑠𝑠2

𝜔𝜔𝑛𝑛𝑛
2 + 2𝜁𝜁1

𝜔𝜔𝑛𝑛𝑛
𝑠𝑠+1 ⋯

 Product of a constant DC gain factor,𝐾𝐾0, and first-
and second-order factors

 Plot the frequency response of each factor 
individually, then combine graphically
 Overall response is the product of individual factors
 Product of gain responses – sum on a dB scale 
 Sum of phase responses
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Bode Plot Construction

 Bode plot construction procedure:
1. Put the transfer function into Bode form
2. Draw a straight-line asymptotic approximation for the gain 

and phase response of each individual factor
3. Graphically add all individual response components and 

sketch the result 

 Note that we are really plotting the frequency response 
function, 𝐺𝐺(𝑗𝑗𝑗𝑗)
 We use the transfer function, 𝐺𝐺 𝑠𝑠 , to simplify notation

 Next, we’ll look at the straight-line asymptotic 
approximations for the Bode plots for each of the 
transfer function factors
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Bode Plot – Constant Gain Factor

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0

 Constant gain

𝐺𝐺 𝑠𝑠 = 𝐾𝐾0

 Constant Phase

∠𝐺𝐺 𝑠𝑠 = 0°
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Bode Plot – Poles/Zeros at the Origin

𝐺𝐺 𝑠𝑠 = 𝑠𝑠𝑛𝑛

 𝑛𝑛 > 0:
 𝑛𝑛 zeros at the origin

 𝑛𝑛 < 0:
 𝑛𝑛 poles at the origin

 Gain:
 Straight line
 Slope = 𝑛𝑛 ⋅ 20 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑
= 𝑛𝑛 ⋅ 6 𝑑𝑑𝑑𝑑

𝑜𝑜𝑜𝑜𝑜𝑜

 0𝑑𝑑𝑑𝑑 at 𝜔𝜔 = 1

 Phase: 
∠𝐺𝐺 𝑠𝑠 = 𝑛𝑛 ⋅ 90°
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Bode Plot – First-Order Zero

 Single real zero at 𝑠𝑠 = −𝜔𝜔𝑐𝑐
 Gain:
 0𝑑𝑑𝑑𝑑 for 𝜔𝜔 < 𝜔𝜔𝑐𝑐
 +20 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑
= +6 𝑑𝑑𝑑𝑑

𝑜𝑜𝑜𝑜𝑜𝑜
for 𝜔𝜔 > 𝜔𝜔𝑐𝑐

 Straight-line asymptotes 
intersect at 𝜔𝜔𝑐𝑐 , 0𝑑𝑑𝑑𝑑

 Phase: 
 0° for 𝜔𝜔 ≤ 0.1𝜔𝜔𝑐𝑐
 45° for 𝜔𝜔 = 𝜔𝜔𝑐𝑐
 90° for 𝜔𝜔 ≥ 10𝜔𝜔𝑐𝑐


+45°
𝑑𝑑𝑑𝑑𝑑𝑑

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
𝑠𝑠
𝜔𝜔𝑐𝑐

+ 1
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Bode Plot – First-Order Pole

 Single real pole at 𝑠𝑠 = −𝜔𝜔𝑐𝑐
 Gain:
 0𝑑𝑑𝑑𝑑 for 𝜔𝜔 < 𝜔𝜔𝑐𝑐
 −20 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑
= −6 𝑑𝑑𝑑𝑑

𝑜𝑜𝑜𝑜𝑜𝑜
for 𝜔𝜔 > 𝜔𝜔𝑐𝑐

 Straight-line asymptotes 
intersect at 𝜔𝜔𝑐𝑐 , 0𝑑𝑑𝑑𝑑

 Phase: 
 0° for 𝜔𝜔 ≤ 0.1𝜔𝜔𝑐𝑐
 −45° for 𝜔𝜔 = 𝜔𝜔𝑐𝑐
 −90° for 𝜔𝜔 ≥ 10𝜔𝜔𝑐𝑐


−45°
𝑑𝑑𝑑𝑑𝑑𝑑

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
1

𝑠𝑠
𝜔𝜔𝑐𝑐

+ 1
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Bode Plot – Second-Order Zero

 Complex-conjugate zeros:  
𝑠𝑠1,2 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

 Gain:
 0𝑑𝑑𝑑𝑑 for 𝜔𝜔 ≤ 𝜔𝜔𝑛𝑛
 +40 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑
= +12 𝑑𝑑𝑑𝑑

𝑜𝑜𝑜𝑜𝑜𝑜
for  𝜔𝜔 > 𝜔𝜔𝑛𝑛

 Straight-line asymptotes intersect 
at 𝜔𝜔𝑛𝑛, 0𝑑𝑑𝑑𝑑

 𝜁𝜁-dependent peaking around 𝜔𝜔𝑛𝑛

 Phase: 
 0° for  𝜔𝜔 ≤ 0.1 ⋅ 𝜔𝜔𝑛𝑛
 90° for  𝜔𝜔 = 𝜔𝜔𝑛𝑛
 180° for 𝜔𝜔 ≥ 10 ⋅ 𝜔𝜔𝑛𝑛


+90°
𝑑𝑑𝑑𝑑𝑑𝑑

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
𝑠𝑠2

𝜔𝜔𝑛𝑛2
+
2𝜁𝜁
𝜔𝜔𝑛𝑛

𝑠𝑠 + 1
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Bode Plot – Second-Order Pole

 Complex-conjugate poles:  
𝑠𝑠1,2 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑

 Gain:
 0𝑑𝑑𝑑𝑑 for 𝜔𝜔 ≤ 𝜔𝜔𝑛𝑛
 −40 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑
= −12 𝑑𝑑𝑑𝑑

𝑜𝑜𝑜𝑜𝑜𝑜
for  𝜔𝜔 > 𝜔𝜔𝑛𝑛

 Straight-line asymptotes intersect 
at 𝜔𝜔𝑛𝑛, 0𝑑𝑑𝑑𝑑

 𝜁𝜁-dependent peaking around 𝜔𝜔𝑛𝑛

 Phase: 
 0° for  𝜔𝜔 ≤ 0.1 ⋅ 𝜔𝜔𝑛𝑛
 −90° for  𝜔𝜔 = 𝜔𝜔𝑛𝑛
 −180° for 𝜔𝜔 ≥ 10 ⋅ 𝜔𝜔𝑛𝑛


−90°
𝑑𝑑𝑑𝑑𝑑𝑑

for 0.1𝜔𝜔𝑐𝑐 ≤ 𝜔𝜔 ≤ 10𝜔𝜔𝑐𝑐

𝐺𝐺 𝑠𝑠 =
1

𝑠𝑠2
𝜔𝜔𝑛𝑛2

+ 2𝜁𝜁
𝜔𝜔𝑛𝑛

𝑠𝑠 + 1
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Bode Plot Construction – Example

 Consider a system with the following transfer function

𝐺𝐺 𝑠𝑠 =
10 𝑠𝑠 + 20
𝑠𝑠 𝑠𝑠 + 400

 Put it into Bode form

𝐺𝐺 𝑠𝑠 =
10 ⋅ 20 𝑠𝑠

20 + 1

𝑠𝑠 ⋅ 400 𝑠𝑠
400 + 1

=
0.5 𝑠𝑠

20 + 1

𝑠𝑠 ⋅ 𝑠𝑠
400 + 1

 Represent as a product of factors

𝐺𝐺 𝑠𝑠 = 0.5 ⋅
𝑠𝑠

20 + 1 ⋅
1
𝑠𝑠 ⋅

1
𝑠𝑠

400 + 1
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Bode Plot Construction – Example
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Bode Plot Construction – Example
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It is also possible to calculate a system’s 
frequency response directly from that system’s 
pole/zero plot.

Relationship between Pole/Zero Plots 
and Bode Plots

63



K. Webb ESE 330

64

Bode Construction from Pole/Zero Plots

 Transfer function can be expressed as

𝐺𝐺 𝑠𝑠 =
∏𝑖𝑖 𝑠𝑠 − 𝑧𝑧𝑖𝑖
∏𝑖𝑖 𝑠𝑠 − 𝑝𝑝𝑖𝑖

𝑠𝑠→𝑗𝑗𝑗𝑗
𝐺𝐺 𝑗𝑗𝑗𝑗 =

∏𝑖𝑖 𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖𝑖
∏𝑖𝑖 𝑗𝑗𝑗𝑗 − 𝑝𝑝𝑖𝑖

 Numerator is a product of first-order zero terms
 Denominator is a product of first-order pole terms
 𝑗𝑗𝑗𝑗 is a point on the imaginary axis
 𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖𝑖 represents a vector from 𝑧𝑧𝑖𝑖 to 𝑗𝑗𝑗𝑗
 𝑗𝑗𝑗𝑗 − 𝑝𝑝𝑖𝑖 represents a vector from 𝑝𝑝𝑖𝑖 to 𝑗𝑗𝑗𝑗

 Gain is given by

𝐺𝐺 𝑗𝑗𝑗𝑗 =
∏𝑖𝑖 𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖𝑖
∏𝑖𝑖 𝑗𝑗𝑗𝑗 − 𝑝𝑝𝑖𝑖

 Phase can be calculated as
∠𝐺𝐺 𝑗𝑗𝑗𝑗 = Σ∠ 𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑖𝑖 − Σ∠ 𝑗𝑗𝑗𝑗 − 𝑝𝑝𝑖𝑖

 Possible to evaluate the frequency response graphically from a pole/zero 
diagram
 Not done in practice, but provides useful insight
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Bode Construction from Pole/Zero Plots

 Consider the following system:

𝐺𝐺 𝑗𝑗𝑗𝑗 =
𝑗𝑗𝑗𝑗 + 3

𝑗𝑗𝑗𝑗 + 2 + 𝑗𝑗𝑗.75 𝑗𝑗𝑗𝑗 + 2 − 𝑗𝑗𝑗.75

 Evaluate at 𝜔𝜔 = 2.5𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠
 Gain:

𝐺𝐺 𝑗𝑗𝑗.5 = 3+𝑗𝑗𝑗.5
2+𝑗𝑗𝑗.25 2+𝑗𝑗𝑗.75

𝐺𝐺 𝑗𝑗𝑗.5 = 3.9
4.7⋅2.1

𝐺𝐺 𝑗𝑗𝑗.5 = 0.389 → −8.2𝑑𝑑𝑑𝑑
 Phase:

∠𝐺𝐺 𝑗𝑗𝑗.5 = 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3
𝜃𝜃1 = ∠ 3 + 𝑗𝑗𝑗.5 = 39.8°

𝜃𝜃2 = ∠ 2 + 𝑗𝑗𝑗.75 = 20.6°

𝜃𝜃3 = ∠ 2 + 𝑗𝑗𝑗.25 = 64.8°

∠𝐺𝐺 𝑗𝑗𝑗.5 = −45.5°
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Polar Frequency Response Plots66
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Polar Frequency Response Plots

 𝐺𝐺 𝑗𝑗𝑗𝑗 is a complex function of frequency 
 Typically plot as Bode plots 
 Magnitude and phase plotted separately
 Aids visualization of system behavior

 A real and an imaginary part at each value of 𝜔𝜔
 A point in the complex plane at each frequency
 Defines a curve in the complex plane
 A polar plot
 Parametrized by frequency – not as easy to distinguish frequency 

as on a Bode plot

 Polar plots are not terribly useful as a means of displaying a 
frequency response
 Useful in control system design – Nyquist stability criterion



K. Webb ESE 330

68

Polar Frequency Response Plots

 Identical frequency responses plotted two ways: 
 Bode plot and polar plot

 Note uneven frequency spacing along polar plot curve
 Dependent on frequency rates of change of gain and phase
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A system’s frequency response and it’s various 
time-domain responses are simply different 
perspectives on the same dynamic behavior.

Frequency and Time Domains69
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Frequency and Time Domains

 We’ve seen many ways we can represent a system
 𝑛𝑛𝑡𝑡𝑡-order differential equation
 Bond-graph model
 State-variable model
 Impulse response
 Step response
 Transfer function
 Frequency response/Bode plot

 All are valid and complete models
 They all contain the same information in different forms
 Different ways of looking at the same thing

Time-domain
representations

Frequency-domain
representations
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Time/Frequency Domain Correlation

 𝐺𝐺1 𝑠𝑠 = 9.87
𝑠𝑠2+5.655𝑠𝑠+9.87

 𝐺𝐺2 𝑠𝑠 = 987
𝑠𝑠2+18.85𝑠𝑠+987
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As was the case for time-domain simulation, 
MATLAB has some useful functions for 
simulating system behavior in the frequency 
domain as well.

Frequency-Domain Analysis in MATLAB72
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System Objects

 MATLAB has data types dedicated to linear system 
models

 Two primary system model objects:
 State-space model
 Transfer function model

 Objects created by calling MATLAB functions
 ss.m – creates a state-space model 
 tf.m – creates a transfer function model
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State-Space Model – ss(…)

sys = ss(A,B,C,D)

 A: system matrix - 𝑛𝑛 × 𝑛𝑛
 B: input matrix - 𝑛𝑛 × 𝑚𝑚
 C: output matrix - 𝑝𝑝 × 𝑛𝑛
 D: feed-through matrix - 𝑝𝑝 × 𝑚𝑚
 sys: state-space model object

 State-space model object will be used as an input to 
other MATLAB functions
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Transfer Function Model – tf(…)

sys = tf(Num,Den)

 Num: vector of numerator polynomial coefficients
 Den: vector of denominator polynomial coefficients
 sys: transfer function model object

 Transfer function is assumed to be of the form

𝐺𝐺 𝑠𝑠 =
𝑏𝑏1𝑠𝑠𝑟𝑟 + 𝑏𝑏2𝑠𝑠𝑟𝑟−1 + ⋯+ 𝑏𝑏𝑟𝑟𝑠𝑠 + 𝑏𝑏𝑟𝑟+1
𝑎𝑎1𝑠𝑠𝑛𝑛 + 𝑎𝑎2𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑠𝑠 + 𝑎𝑎𝑛𝑛+1

 Inputs to tf(…) are
 Num = [b1,b2,…,br+1];
 Den = [a1,a2,…,an+1];



K. Webb ESE 330

76

Frequency Response Simulation – bode(…)

[mag,phase] = bode(sys,w)

 sys: system model – state-space, transfer function, or other
 w: optional frequency vector – in rad/sec 
 mag: system gain response vector
 phase: system phase response vector – in degrees

 If no outputs are specified, bode response is automatically 
plotted – preferable to plot yourself

 Frequency vector input is optional
 If not specified, MATLAB will generate automatically

 May need to do: squeeze(mag) and squeeze(phase)
to eliminate singleton dimensions of output matrices
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Log-spaced Vectors – logspace(…)

f= logspace(x0,x1,N)

 x0: first point in f is 10𝑥𝑥0
 x1: last point in f is 10𝑥𝑥1
 N: number of points in f
 f: vector of logarithmically-spaced points

 Generates 𝑁𝑁 logarithmically-spaced points between 
10𝑥𝑥0 and 10𝑥𝑥1

 Useful for generating independent-variable vectors for 
log plots (e.g., frequency vectors for bode plots)
 Linearly spaced on a logarithmic axis
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