SECTION 7: FREQUENCY-DOMAIN ANALYSIS

ESE 330 – Modeling & Analysis of Dynamic Systems

Frequency-Domain Analysis – Introduction

- 3
- We've looked at system impulse and step responses
 Also interested in the response to *periodic inputs*
- Fourier theory tells us that any periodic signal can be represented as a sum of harmonically-related sinusoids
- The Fourier series:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(2\pi n f t) + b_n \sin(2\pi n f t)]$$

where a_n and b_n are given by the Fourier integrals

- Sinusoids are basis signals from which all other periodic signals can be constructed
 - Sinusoidal system response is of particular interest

Fourier Series

System Response to a Sinusoidal Input

Consider an nth-order system

- **n** poles: $p_1, p_2, \dots p_n$
 - Real or complex
 - Assume all are distinct
- Transfer function is:

$$G(s) = \frac{Num(s)}{(s-p_1)(s-p_2)\cdots(s-p_n)}$$
(1)

Apply a sinusoidal input to the system

$$u(t) = A\sin(\omega t) \xrightarrow{\mathcal{L}} U(s) = A \frac{\omega}{s^2 + \omega^2}$$

Output is given by

$$Y(s) = G(s)U(s) = \frac{Num(s)}{(s-p_1)(s-p_2)\cdots(s-p_n)} \cdot A\frac{\omega}{s^2+\omega^2}$$
(2)

System Response to a Sinusoidal Input

5

Partial fraction expansion of (2) gives

$$Y(s) = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + \frac{r_{n+1}s}{s^2 + \omega^2} + \frac{r_{n+2}\omega}{s^2 + \omega^2}$$
(3)

Inverse transform of (3) gives the time-domain output

- Two portions of the response:
 - Transient
 - Decaying exponentials or sinusoids goes to zero in steady state
 - Natural response to initial conditions
 - Steady state
 - Due to the input sinusoidal in steady state

Steady-State Sinusoidal Response

7

We are interested in the *steady-state response*

$$y_{ss}(t) = r_{n+1}\cos(\omega t) + r_{n+2}\sin(\omega t)$$

□ A trig. identity provides insight into $y_{ss}(t)$:

$$\alpha \cos(\omega t) + \beta \sin(\omega t) = \sqrt{\alpha^2 + \beta^2} \sin(\omega t + \phi)$$

where

$$\phi = \tan^{-1}\left(\frac{\alpha}{\beta}\right)$$

Steady-state response to a sinusoidal input

$$u(t) = A\sin(\omega t)$$

is a sinusoid of the same frequency, but, in general different amplitude and phase

$$y_{ss}(t) = B\sin(\omega t + \phi)$$
(6)

Where

$$B = \sqrt{r_{n+1}^2 + r_{n+2}^2}$$
 and $\phi = \tan^{-1}\left(\frac{r_{n+1}}{r_{n+2}}\right)$

K. Webb

(5)

 $u(t) = A \sin(\omega t) \rightarrow y_{ss}(t) = B \sin(\omega t + \phi)$

- Steady-state sinusoidal response is a *scaled* and *phase-shifted* sinusoid of the same frequency
 Equal frequency is a property of linear systems
- \Box Note the ω term in the numerator of (3)
 - $\square \omega$ will affect the residues
 - Residues determine amplitude and phase of the output
 - Output amplitude and phase are frequency-dependent

$$y_{ss}(t) = B(\omega) \sin(\omega t + \phi(\omega))$$

Steady-State Sinusoidal Response

$$u(t) = A \sin(\omega t + \theta)$$

$$\underbrace{\text{Linear System}}_{G(s)}$$

$$y_{ss}(t) = B \sin(\omega t + \phi)$$

Gain – the ratio of amplitudes of the output and input of the system

$$Gain = \frac{B}{A}$$

<u>Phase</u> – phase difference between system input and output

Phase =
$$\phi - \theta$$

Systems will, in general, exhibit *frequency-dependent* gain and phase

We'd like to be able to determine these functions of frequency
 The system's *frequency response*

¹⁰ Frequency Response

A system's frequency response, or sinusoidal transfer function, describes its gain and phase shift for sinusoidal inputs as a function of frequency.

System output in the Laplace domain is

$$Y(s) = U(s) \cdot G(s)$$

Multiplication in the Laplace domain corresponds to *convolution* in the time domain

$$y(t) = u(t) * g(t) = \int_0^t g(\tau)u(t-\tau)d\tau$$

Consider an exponential input of the form

$$u(t) = e^{st}$$

where *s* is the complex Laplace variable: $s = \sigma + j\omega$

□ Now the output is

$$y(t) = u(t) * g(t) = \int_0^t g(\tau) e^{s(t-\tau)} d\tau = \int_0^t g(\tau) e^{st} e^{-s\tau} d\tau$$
$$y(t) = \int_0^t g(\tau) e^{-s\tau} d\tau \cdot e^{st}$$
(1)

$$y(t) = \int_0^t g(\tau) e^{-s\tau} d\tau \cdot e^{st}$$
(1)

 We're interested in the steady-state response, so let the upper limit of integration go to infinity

$$y(t) = \int_0^\infty g(\tau) e^{-s\tau} d\tau \cdot e^{st}$$
$$y(t) = G(s) \cdot e^{st}$$
(2)

- Time-domain response to an exponential input is the time-domain input multiplied by the system transfer function
- □ What is this input?

$$u(t) = e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t} e^{j\omega t}$$
(3)

□ If we let $\sigma \to 0$, i.e. let $s \to j\omega$, then we have

$$y(t) = G(j\omega) \cdot e^{j\omega t}$$
(4)

Euler's Formula

□ Recall *Euler's formula*:

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$
(5)

From which it follows that

$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2} \tag{6}$$

and

$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j} \tag{7}$$

We're interested in the sinusoidal steady-state system response, so let the input be

$$u(t) = A\cos(\omega t) = A \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$

A sum of complex exponentials in the form of (3)
 ■ We've let s → jω in the first term and s → −jω in the second

$$u(t) = \frac{A}{2}e^{j\omega t} + \frac{A}{2}e^{-j\omega t}$$
(8)

According to (4) the output in response to (8) will be

$$y(t) = \frac{A}{2}G(j\omega) \cdot e^{j\omega t} + \frac{A}{2}G(-j\omega) \cdot e^{-j\omega t}$$
(9)

$$y(t) = \frac{A}{2}G(j\omega) \cdot e^{j\omega t} + \frac{A}{2}G(-j\omega) \cdot e^{-j\omega t}$$
(9)

- G(jω) is a complex function of frequency
 Evaluates to a complex number at each value of ω
 Has both *magnitude* and *phase*
 - Can be expressed in *polar form* as

$$G(j\omega) = M e^{j\phi} \tag{10}$$

where

$$M = |G(j\omega)|$$
 and $\phi = \angle G(j\omega)$

□ It follows that

$$G(-j\omega) = Me^{-j\phi} \tag{11}$$

□ Using (11), the output given by (9) becomes

$$y(t) = \frac{A}{2}M\left[e^{j\omega t}e^{j\phi} + e^{-j\omega t}e^{-j\phi}\right]$$

$$y(t) = \frac{A}{2} M \left[e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)} \right]$$
(12)

$$y(t) = M \cdot A\cos(\omega t + \phi) \tag{13}$$

where, again

$$M = |G(j\omega)|$$
 and $\phi = \angle G(j\omega)$ (14)

Frequency response Function – $G(j\omega)$

□ $G(j\omega)$ is the system's *frequency response function* □ Transfer function, where $s \rightarrow j\omega$

$$G(j\omega) = G(s)|_{s \to j\omega}$$

A complex-valued function of frequency

- □ $|G(j\omega)|$ at each ω is the **gain** at that frequency ■ Ratio of output amplitude to input amplitude
- □ $\angle G(j\omega)$ at each ω is the **phase** at that frequency ■ Phase shift between input and output sinusoids
- Another representation of system behavior
 - Along with state-space model, impulse/step responses, transfer function, etc.
 - Typically represented graphically

(15)

Plotting the Frequency Response Function

- $\Box G(j\omega)$ is a complex-valued function of frequency
 - Has both magnitude and phase
 - Plot gain and phase separately
- Frequency response plots formatted as <u>Bode plots</u>
 - Two sets of axes: gain on top, phase below
 - Identical, logarithmic frequency axes
 - Gain axis is logarithmic either explicitly or as units of decibels (dB)
 - Phase axis is linear with units of degrees

Bode Plots

Decibels - dB

- Frequency response gain most often expressed and plotted with units of decibels (dB)
 - A logarithmic scale
 - Provides detail of very large and very small values on the same plot
 - Commonly used for ratios of powers or amplitudes
- Conversion from a linear scale to dB:

 $|G(j\omega)|_{dB} = 20 \cdot \log_{10}(|G(j\omega)|)$

Conversion from dB to a linear scale:

$$|G(j\omega)| = 10^{\frac{|G(j\omega)|_{dB}}{20}}$$

Decibels – dB

21

Multiplying two gain values corresponds to adding their values in dB

D E.g., the overall gain of cascaded systems

 $|G_1(j\omega) \cdot G_2(j\omega)|_{dB} = |G_1(j\omega)|_{dB} + |G_2(j\omega)|_{dB}$

Negative dB values corresponds to sub-unity gain
 Positive dB values are gains greater than one

dB	Linear	dB	Linear
60	1000	6	2
40	100	-3	$1/\sqrt{2} = 0.707$
20	10	-6	0.5
0	1	-20	0.1

Interpreting Bode Plots

Bode plots tell you the gain and phase shift at all frequencies: choose a frequency, read gain and phase values from the plot

For a 10KHz sinusoidal input, the gain is 0dB (1) and the phase shift is 0°.

Interpreting Bode Plots

23

Value of Logarithmic Axes - Gain

24

- Gain axis is linear in dB
 - A logarithmic scale
 - Allows for displaying detail at very large and very small levels on the same plot

Value of Logarithmic Axes - Frequency

- 25
- Frequency axis is logarithmic
 - Allows for displaying detail at very low and very high frequencies on the same plot

2

3

5

Frequency

6

[Hz]

-100

-150

'n

Lower resonant frequency is unclear

10

x 10⁵

8

9

Gain Response – Terminology

26

- Corner frequency, cut off frequency, -3dB frequency:
 - Frequency at which gain is 3dB below its low-frequency value

$$f_c = \frac{\omega_c}{2\pi}$$

This is the *bandwidth* of the system

Peaking

 Any increase in gain above the low frequency gain

²⁷ Response of 1st- and 2nd-Order Factors

This section examines the frequency responses of first- and second-order transfer function factors.

Transfer Function Factors

- 28
- We've already seen that a transfer function denominator can be factored into firstand second-order terms

$$G(s) = \frac{Num(s)}{(s - p_1)(s - p_2)\cdots(s^2 + 2\zeta_1\omega_{n1}s + \omega_{n1}^2)(s^2 + 2\zeta_2\omega_{n2}s + \omega_{n2}^2)\cdots}$$

The same is true of the numerator

$$G(s) = \frac{(s-z_1)(s-z_2)\cdots(s^2+2\zeta_a\omega_{na}s+\omega_{na}^2)(s^2+2\zeta_2\omega_{nb}s+\omega_{nb}^2)\cdots}{(s-p_1)(s-p_2)\cdots(s^2+2\zeta_1\omega_{n1}s+\omega_{n1}^2)(s^2+2\zeta_2\omega_{n2}s+\omega_{n2}^2)\cdots}$$

Can think of the transfer function as a product of the individual factors
 For example, consider the following system

$$G(s) = \frac{(s - z_1)}{(s - p_1)(s^2 + 2\zeta_1\omega_{n1}s + \omega_{n1}^2)}$$

Can rewrite as

$$G(s) = (s - z_1) \cdot \frac{1}{(s - p_1)} \cdot \frac{1}{(s^2 + 2\zeta_1 \omega_{n1} s + \omega_{n1}^2)}$$

Transfer Function Factors

29

$$G(s) = (s - z_1) \cdot \frac{1}{(s - p_1)} \cdot \frac{1}{(s^2 + 2\zeta_1 \omega_{n1} s + \omega_{n1}^2)}$$

Think of this as three cascaded transfer functions

$$G_1(s) = (s - z_1), \quad G_2(s) = \frac{1}{(s - p_1)}, \quad G_3(s) = \frac{1}{(s^2 + 2\zeta_1 \omega_{n1} s + \omega_{n1}^2)}$$

$$\frac{U(s)}{G_1(s)} \xrightarrow{Y_1(s)} G_2(s) \xrightarrow{Y_2(s)} G_3(s) \xrightarrow{Y(s)}$$

or

$$\frac{U(s)}{(s-z_1)} \xrightarrow{Y_1(s)} \boxed{\frac{1}{(s-p_1)}} \xrightarrow{Y_2(s)} \boxed{\frac{1}{(s^2+2\zeta_1\omega_{n1}s+\omega_{n1}^2)}} \xrightarrow{Y(s)}$$

Transfer Function Factors

- 30
- Overall transfer function and therefore, frequency response – is the product of individual first- and second-order factors
- Instructive, therefore, to understand the responses of the individual factors
 - **□** First- and second-order poles and zeros

$$\frac{U(j\omega)}{G_1(j\omega)} \xrightarrow{Y_1(j\omega)} G_2(j\omega) \xrightarrow{Y_2(j\omega)} G_3(j\omega) \xrightarrow{Y(j\omega)}$$

First-Order Factors

- □ First-order factors
 - Single, real poles or zeros
- □ In the Laplace domain:

$$G(s) = s$$
, $G(s) = \frac{1}{s}$, $G(s) = s + a$, $G(s) = \frac{1}{s+a}$

□ In the frequency domain

$$G(j\omega) = j\omega, \quad G(j\omega) = \frac{1}{j\omega}, \quad G(j\omega) = j\omega + a, \quad G(j\omega) = \frac{1}{j\omega + a}$$

□ Pole/zero plots:

First-Order Factors – Zero at the Origin

 $G(j\omega) = j\omega$ □ A *differentiator* 40 20 G(s) = s[dB] |G(j₀)| 0 $G(j\omega) = j\omega$ -20 Gain: -40 10⁻² 10⁻¹ 10⁰ 10¹ 10² $|G(j\omega)| = |j\omega| = \omega$ 180 Phase: 135 [deg] 90 Phase $\angle G(j\omega) = +90^{\circ}, \forall \omega$ 45 0 10⁻² 10^{-1} 10⁰ 10¹ 10² Frequency [rad/sec]

First-Order Factors – Pole at the Origin

 $G(j_{0}) = 1/j_{0}$ An *integrator* 40 20 $G(s) = \frac{1}{s}$ G(j_0) [dB] 0 -20 $G(j\omega) = \frac{1}{j\omega}$ -40 10⁻² 10⁻¹ 10⁰ 10¹ 10^{2} Gain: 0 $|G(j\omega)| = \left|\frac{1}{j\omega}\right| = \frac{1}{\omega}$ -45 [deg] -90 Phase Phase: -135 $\angle G(j\omega) = \angle -j\frac{1}{\omega} = -90^{\circ}, \quad \forall \omega$ -180 10⁻² 10⁻¹ 10⁰ 10¹ 10² Frequency [rad/sec]

First-Order Factors – Single, Real Zero

Single, real zero at
$$s = -a$$

$$G(j\omega) = j\omega + a$$

Gain:

$$|G(j\omega)| = \sqrt{\omega^2 + a^2}$$

for $\omega \ll a$ $|G(j\omega)| \approx a$

for $\omega \gg a$ $|G(j\omega)| \approx \omega$

<u>Phase</u>:

$$\angle G(j\omega) = \tan^{-1}\left(\frac{\omega}{a}\right)$$

for $\omega \ll a$ $\angle G(j\omega) \approx \angle a = 0^{\circ}$ for $\omega \gg a$ $\angle G(j\omega) \approx \angle j\omega = 90^{\circ}$

First-Order Factors – Single, Real Zero

Corner frequency:

 $\omega_c = a$

- $|G(j\omega_c)| = a\sqrt{2} = 1.414 \cdot a$
- $\square ||G(j\omega_c)||_{dB} = (a)_{dB} + 3dB$
- $\Box \ \angle G(j\omega_c) = +45^{\circ}$
- For ω ≫ ω_c, gain increases at:
 20dB/dec
 6dB/oct
- □ From $\sim 0.1\omega_c$ to $\sim 10\omega_c$, phase increases at a rate of:
 - $\sim 45^{\circ}/dec$
 - Rough approximation

First-Order Factors – Single, Real Pole

36

Single, real pole at
$$s = -a$$

$$G(j\omega) = \frac{1}{j\omega + a}$$

Gain: $|G(j\omega)| = \frac{1}{\sqrt{\omega^2 + \sigma^2}}$ for $\omega \ll a$ $|G(j\omega)| \approx \frac{1}{a}$ for $\omega \gg a$ $|G(j\omega)| \approx \frac{1}{\omega}$

Phase:

$$\angle G(j\omega) = -\tan^{-1}\left(\frac{\omega}{a}\right)$$

for $\omega \ll a$

$$\angle G(j\omega) \approx \angle \frac{1}{a} = 0^{\circ}$$

for $\omega \gg a$

$$\angle G(j\omega) \approx \angle \frac{1}{j\omega} = -90^{\circ}$$
K. Webb

First-Order Factors – Single, Real Pole

37

Corner frequency:

$$\omega_c = a$$

a
$$|G(j\omega_c)| = \frac{1}{a\sqrt{2}} = 0.707 \cdot \frac{1}{a}$$

- $|G(j\omega_c)|_{dB} = \left(\frac{1}{a}\right)_{dB} 3dB$
- $\Box \ \angle G(j\omega_c) = -45^{\circ}$
- For $\omega \gg \omega_c$, gain decreases at: ■ -20dB/dec■ -6dB/oct
- □ From $\sim 0.1\omega_c$ to $\sim 10\omega_c$, phase decreases at a rate of:
 - $\sim -45^{\circ}/dec$
 - Rough approximation

Second-Order Factors

38

- □ Complex-conjugate zeros $G(s) = s^2 + 2\zeta \omega_n s + \omega_n^2$
- Second-Order Zero Locations Second-Order Pole Locations $s_1 = -\sigma + j\omega_d$ $s_1 = -\sigma + j\omega_d$ +iω_d +jω_d ωn ωn θ θ Imaginary $sin(\theta) = \zeta$ maginary $sin(\theta) = \zeta$ -σ -σ -jω_d -jω_d $s_1 = -\sigma - j\omega_d$ $s_1 = -\sigma - i\omega_d$ 0 0 Real Real $\sigma = \zeta \omega_n, \ \omega_d = \omega_n \sqrt{1 - \zeta^2}$

Complex-conjugate poles

 $G(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

2nd-Order Factors – Complex-Conjugate Zeros

Complex-conjugate zeros at $s = -\sigma \pm j\omega_d$ $G(j\omega) = (j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2$

□ <u>Gain</u>:

for $\omega \ll \omega_n$ $|G(j\omega)| \approx \omega_n^2$ for $\omega = \omega_n$ $|G(j\omega)| = 2\zeta \omega_n^2$ for $\omega \gg \omega_n$ $|G(j\omega)| \approx \omega^2$

Phase:

for $\omega \ll \omega_n$ $\angle G(j\omega) \approx \angle \omega_n^2 = 0^\circ$ for $\omega = \omega_n$ $\angle G(j\omega) = \angle j2\zeta\omega_n = +90^\circ$ for $\omega \gg \omega_n$ $\angle G(j\omega) \approx \angle -\omega^2 = +180^\circ$

2nd-Order Factors – Complex-Conjugate Zeros

- Response may dip below low-freq. value near ω_n
 - Peaking increases as ζ decreases
- □ Gain increases at +40dB/dec or +12dB/oct for $\omega \gg \omega_n$
- Corner frequency depends on damping ratio, ζ
 ω_c increases as ζ decreases

□ At
$$\omega = \omega_c$$
, ∠ $G(j\omega) = 90^\circ$

Phase transition abruptness depends on ζ

2nd-Order Factors – Complex-Conjugate Poles

41

• Complex-conjugate zeros at
$$s = -\sigma \pm j\omega_d$$

$$G(j\omega) = \frac{1}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2}$$

□ <u>Gain</u>:

for
$$\omega \ll \omega_n$$

 $|G(j\omega)| \approx \frac{1}{\omega_n^2}$
for $\omega = \omega_n$
 $|G(j\omega)| = \frac{1}{2\zeta \omega_n^2}$
for $\omega \gg \omega_n$
 $|G(j\omega)| \approx \frac{1}{\omega^2}$

for
$$\omega \ll \omega_n$$

 $\angle G(j\omega) \approx \angle \frac{1}{\omega_n^2} = 0^\circ$
for $\omega = \omega_n$
 $\angle G(j\omega) = \angle \frac{1}{j2\zeta\omega_n} = -90^\circ$
for $\omega \gg \omega_n$
 $\angle G(j\omega) \approx \angle -\frac{1}{\omega^2} = -180^\circ$

2nd-Order Factors – Complex-Conjugate Poles

- Response may peak above low-freq. value near ω_n
 - Peaking increases as ζ decreases
- □ Gain decreases at -40dB/dec or -12dB/oct for $\omega \gg \omega_n$
- Corner frequency depends on damping ratio, ζ
 ω_c increases as ζ decreases

□ At
$$\omega = \omega_c$$
, $\angle G(j\omega) = -90^\circ$

Phase transition abruptness depends on ζ

Pole Location and Peaking

43

Peaking is dependent on \$\zeta\$ - pole locations
 No peaking at all for \$\zeta\$ \geta\$ 1/\sqrt{2}\$ = 0.707

a $\zeta = 0.707 - maximally-flat$ or **Butterworth** response

Frequency Response Components - Example

44

Consider the following system

$$G(s) = \frac{20(s+20)}{(s+1)(s+100)}$$

□ The system's frequency response function is

$$G(j\omega) = \frac{20(j\omega + 20)}{(j\omega + 1)(j\omega + 100)}$$

 As we've seen we can consider this a product of individual frequency response factors

$$G(j\omega) = 20 \cdot (j\omega + 20) \cdot \frac{1}{(j\omega + 1)} \cdot \frac{1}{(j\omega + 100)}$$

- Overall response is the composite of the individual responses
 - Product of individual gain responses sum in dB
 - **u** Sum of individual phase responses

Frequency Response Components - Example

Frequency Response Components - Example

47 Bode Plot Construction

In this section, we'll look at a method for sketching, by hand, a straight-line, asymptotic approximation for a Bode plot.

Bode Plot Construction

- 48
- We've just seen that a system's transfer function can be factored into first- and second-order terms
 - Each factor contributes a component to the overall gain and phase responses
- Now, we'll look at a technique for manually sketching a system's Bode plot
 - In practice, you'll almost always plot with a computer
 But, learning to do it by hand provides valuable insight
- We'll look at how to approximate Bode plots for each of the different factors

Bode Form of the Transfer function

49

Consider the general transfer function form:

$$G(s) = K \frac{(s - z_1)(s - z_2) \cdots (s^2 + 2\zeta_a \omega_{na} s + \omega_{na}^2) \cdots}{(s - p_1)(s - p_2) \cdots (s^2 + 2\zeta_1 \omega_{n1} s + \omega_{n1}^2) \cdots}$$

We first want to put this into **Bode form**:

$$G(s) = K_0 \frac{\left(\frac{s}{\omega_{ca}} + 1\right) \left(\frac{s}{\omega_{cb}} + 1\right) \cdots \left(\frac{s^2}{\omega_{na}^2} + \frac{2\zeta_a}{\omega_{na}}s + 1\right) \cdots}{\left(\frac{s}{\omega_{c1}} + 1\right) \left(\frac{s}{\omega_{c2}} + 1\right) \cdots \left(\frac{s^2}{\omega_{n1}^2} + \frac{2\zeta_1}{\omega_{n1}}s + 1\right) \cdots}$$

Putting G(s) into Bode form requires putting each of the *first- and second-order factors into Bode form*

First-Order Factors in Bode Form

50

First-order transfer function factors include:

$$G(s) = s^n$$
, $G(s) = s + \sigma$, $G(s) = \frac{1}{s+\sigma}$

- □ For the first factor, G(s) = sⁿ, n is a positive or negative integer
 □ Already in Bode form
- \Box For the second two, divide through by σ , giving

$$G(s) = \sigma\left(\frac{s}{\sigma} + 1\right)$$
 and $G(s) = \frac{1}{\sigma\left(\frac{s}{\sigma} + 1\right)}$

 \Box Here, $\sigma = \omega_c$, the *corner frequency* associated with that zero or pole, so

$$G(s) = \omega_c \left(\frac{s}{\omega_c} + 1\right)$$
 and $G(s) = \frac{1}{\omega_c \left(\frac{s}{\omega_c} + 1\right)}$

Second-Order Factors in Bode Form

51

Second-order transfer function factors include:

$$G(s) = s^2 + 2\zeta \omega_n s + \omega_n^2 \quad \text{and} \quad G(s) = \frac{1}{(s)^2 + 2\zeta \omega_n s + \omega_n^2}$$

 \Box Again, normalize the s^0 coefficient, giving

$$G(s) = \omega_n^2 \left[\frac{s^2}{\omega_n^2} + \frac{2\zeta}{\omega_n} s + 1 \right] \text{ and } G(s) = \frac{1/\omega_n^2}{\frac{s^2}{\omega_n^2} + \frac{2\zeta}{\omega_n} s + 1}$$

- Putting each factor into its Bode form involves factoring out any DC gain component
- \Box Lump all of **DC gains** together into a single gain constant, K_0

$$G(s) = K_0 \frac{\left(\frac{s}{\omega_{ca}} + 1\right)\left(\frac{s}{\omega_{cb}} + 1\right)\cdots\left(\frac{s^2}{\omega_{na}^2} + \frac{2\zeta_a}{\omega_{na}}s + 1\right)\cdots}{\left(\frac{s}{\omega_{c1}} + 1\right)\left(\frac{s}{\omega_{c2}} + 1\right)\cdots\left(\frac{s^2}{\omega_{n1}^2} + \frac{2\zeta_1}{\omega_{n1}}s + 1\right)\cdots}$$

Bode Plot Construction

Transfer function in Bode form

$$G(s) = K_0 \frac{\left(\frac{s}{\omega_{ca}} + 1\right)\left(\frac{s}{\omega_{cb}} + 1\right)\cdots\left(\frac{s^2}{\omega_{na}^2} + \frac{2\zeta_a}{\omega_{na}}s + 1\right)\cdots}{\left(\frac{s}{\omega_{c1}} + 1\right)\left(\frac{s}{\omega_{c2}} + 1\right)\cdots\left(\frac{s^2}{\omega_{n1}^2} + \frac{2\zeta_1}{\omega_{n1}}s + 1\right)\cdots}$$

- Product of a constant DC gain factor, K₀, and firstand second-order factors
- Plot the frequency response of each factor individually, then combine graphically
 - Overall response is the product of individual factors
 - Product of gain responses sum on a dB scale
 - Sum of phase responses

Bode Plot Construction

Bode plot construction procedure:

- 1. Put the transfer function into **Bode form**
- 2. Draw a *straight-line asymptotic approximation* for the gain and phase response of each individual factor
- *3. Graphically add* all individual response components and sketch the result
- □ Note that we are really plotting the frequency response function, $G(j\omega)$

• We use the transfer function, G(s), to simplify notation

 Next, we'll look at the straight-line asymptotic approximations for the Bode plots for each of the transfer function factors

Bode Plot – Constant Gain Factor

- $G(s) = K_0$
- Constant gain
 - $|G(s)| = K_0$
- Constant Phase

$$\angle G(s) = 0^{\circ}$$

Bode Plot – Poles/Zeros at the Origin

 $G(s) = s^n$

- n > 0:
 n zeros at the origin
- n < 0:
 n poles at the origin

□ <u>Gain</u>:

Straight line
Slope = n · 20 dB/dec = n · 6 dB/oct
0dB at ω = 1

Bode Plot – First-Order Zero

56

Single real zero at $s = -\omega_c$

□ <u>Gain</u>:

- 0dB for $\omega < \omega_c$
- $\square + 20 \frac{dB}{dec} = +6 \frac{dB}{oct} \text{ for } \omega > \omega_c$
- Straight-line asymptotes intersect at $(\omega_c, 0dB)$

- 0° for $\omega \leq 0.1 \omega_c$
- 45° for $\omega = \omega_c$
- 90° for $\omega \ge 10\omega_c$
- $\Box \frac{+45^{\circ}}{dec} \text{ for } 0.1\omega_c \le \omega \le 10\omega_c$

Bode Plot – First-Order Pole

57

Single real pole at $s = -\omega_c$

□ <u>Gain</u>:

- 0dB for $\omega < \omega_c$ • $-20\frac{dB}{dec} = -6\frac{dB}{oct}$ for $\omega > \omega_c$
- Straight-line asymptotes intersect at $(\omega_c, 0dB)$

- 0° for $\omega \le 0.1\omega_c$ • -45° for $\omega = \omega_c$
- \Box -90° for $\omega \ge 10\omega_c$
- $\Box \ \frac{-45^{\circ}}{dec} \text{ for } 0.1 \omega_c \le \omega \le 10 \omega_c$

Bode Plot – Second-Order Zero

Complex-conjugate zeros:

$$s_{1,2} = -\sigma \pm j\omega_d$$

□ <u>Gain</u>:

- 0dB for $\omega \le \omega_n$ • $+40\frac{dB}{dec} = +12\frac{dB}{oct}$ for $\omega > \omega_n$
- Straight-line asymptotes intersect at $(\omega_n, 0dB)$
- ζ -dependent peaking around ω_n

- 0° for $\omega \leq 0.1 \cdot \omega_n$
- **D** 90° for $\omega = \omega_n$

■ 180° for
$$\omega \ge 10 \cdot \omega_n$$

■ $\frac{+90^\circ}{dec}$ for $0.1\omega_c \le \omega \le 10\omega_c$

Bode Plot – Second-Order Pole

Complex-conjugate poles:

$$s_{1,2} = -\sigma \pm j\omega_d$$

□ <u>Gain</u>:

- 0dB for $\omega \le \omega_n$ • $-40\frac{dB}{dec} = -12\frac{dB}{oct}$ for $\omega > \omega_n$
- Straight-line asymptotes intersect at $(\omega_n, 0dB)$
- ζ -dependent peaking around ω_n

<u>Phase</u>:

• 0° for $\omega \le 0.1 \cdot \omega_n$ • -90° for $\omega = \omega_n$ • -180° for $\omega \ge 10 \cdot \omega_n$ • $\frac{-90^\circ}{dec}$ for $0.1\omega_c \le \omega \le 10\omega_c$

Bode Plot Construction – Example

60

Consider a system with the following *transfer function*

$$G(s) = \frac{10(s+20)}{s(s+400)}$$

Put it into Bode form

$$G(s) = \frac{10 \cdot 20\left(\frac{s}{20} + 1\right)}{s \cdot 400\left(\frac{s}{400} + 1\right)} = \frac{0.5\left(\frac{s}{20} + 1\right)}{s \cdot \left(\frac{s}{400} + 1\right)}$$

Represent as a *product of factors*

$$G(s) = 0.5 \cdot \left(\frac{s}{20} + 1\right) \cdot \frac{1}{s} \cdot \frac{1}{\left(\frac{s}{400} + 1\right)}$$

Bode Plot Construction – Example

Bode Plot Construction – Example

Relationship between Pole/Zero Plots and Bode Plots

It is also possible to calculate a system's frequency response directly from that system's pole/zero plot.

63

Bode Construction from Pole/Zero Plots

64

Transfer function can be expressed as

$$G(s) = \frac{\prod_i (s - z_i)}{\prod_i (s - p_i)} \xrightarrow{s \to j\omega} G(j\omega) = \frac{\prod_i (j\omega - z_i)}{\prod_i (j\omega - p_i)}$$

- Numerator is a product of first-order zero terms
- Denominator is a product of first-order pole terms
- **\Box** *j* ω is a point on the imaginary axis
- **a** $(j\omega z_i)$ represents a **vector** from z_i to $j\omega$
- **a** $(j\omega p_i)$ represents a **vector** from p_i to $j\omega$
- Gain is given by

$$|G(j\omega)| = \frac{|\prod_i (j\omega - z_i)|}{|\prod_i (j\omega - p_i)|}$$

Phase can be calculated as

$$\angle G(j\omega) = \Sigma \angle (j\omega - z_i) - \Sigma \angle (j\omega - p_i)$$

- Possible to evaluate the frequency response graphically from a pole/zero diagram
 - Not done in practice, but provides useful insight

Bode Construction from Pole/Zero Plots

65

Consider the following system:

$$G(j\omega) = \frac{(j\omega + 3)}{(j\omega + 2 + j1.75)(j\omega + 2 - j1.75)}$$

 \Box Evaluate at $\omega = 2.5 rad/sec$

□ <u>Gain</u>:

$$|G(j2.5)| = \frac{|3+j2.5|}{|2+j4.25||2+j0.75|}$$
$$|G(j2.5)| = \frac{3.9}{4.7 \cdot 2.1}$$
$$|G(j2.5)| = 0.389 \rightarrow -8.2dB$$
Phase:
$$(G(j2.5)) = \theta_1 = \theta_2 = \theta_1$$

$$\begin{aligned} \theta_1 &= \angle (3 + j2.5) = 39.8^{\circ} \\ \theta_2 &= \angle (2 + j0.75) = 20.6^{\circ} \\ \theta_3 &= \angle (2 + j4.25) = 64.8^{\circ} \\ \angle G(j2.5) &= -45.5^{\circ} \end{aligned}$$

⁶⁶ Polar Frequency Response Plots

Polar Frequency Response Plots

- \Box $G(j\omega)$ is a complex function of frequency
 - Typically plot as Bode plots
 - Magnitude and phase plotted separately
 - Aids visualization of system behavior
- $\hfill\square$ A *real* and an *imaginary part* at each value of ω
 - A point in the complex plane at each frequency
 - Defines a curve in the complex plane
 - A polar plot
 - Parametrized by frequency not as easy to distinguish frequency as on a Bode plot
- Polar plots are not terribly useful as a means of displaying a frequency response
 Useful in control system design
 - Useful in control system design Nyquist stability criterion

Polar Frequency Response Plots

- 68
- Identical frequency responses plotted two ways:
 Bode plot and polar plot
- Note uneven frequency spacing along polar plot curve
 Dependent on frequency rates of change of gain and phase

69

Frequency and Time Domains

A system's frequency response and it's various time-domain responses are simply different perspectives on the same dynamic behavior.

Frequency and Time Domains

- We've seen many ways we can represent a system
 nth-order differential equation
 Bond-graph model
 State-variable model
 Impulse response
 Step response
 Step response
 Transfer function
 Frequency response/Bode plot
- All are valid and complete models
 - They all contain the same information in different forms
 - Different ways of looking at the same thing

Time/Frequency Domain Correlation

72

Frequency-Domain Analysis in MATLAB

As was the case for time-domain simulation, MATLAB has some useful functions for simulating system behavior in the frequency domain as well.
System Objects

- MATLAB has data types dedicated to linear system models
- □ Two primary system model objects:
 - State-space model
 - Transfer function model
- Objects created by calling MATLAB functions
 ss.m creates a state-space model
 tf.m creates a transfer function model

State-Space Model - ss (...)

$$sys = ss(A, B, C, D)$$

- **D** A: system matrix $n \times n$
- **D** B: input matrix $n \times m$
- **D** C: output matrix $p \times n$
- **D**: feed-through matrix $p \times m$
- sys: state-space model object

 State-space model object will be used as an input to other MATLAB functions

Transfer Function Model – tf (...)

Num: vector of numerator polynomial coefficients
 Den: vector of denominator polynomial coefficients
 sys: transfer function model object

Transfer function is assumed to be of the form

$$G(s) = \frac{b_1 s^r + b_2 s^{r-1} + \dots + b_r s + b_{r+1}}{a_1 s^n + a_2 s^{n-1} + \dots + a_n s + a_{n+1}}$$

□ Inputs to tf (...) are

Frequency Response Simulation - bode (...)

- sys: system model state-space, transfer function, or other
- w: *optional* frequency vector in rad/sec
- mag: system gain response vector
- phase: system phase response vector in degrees
- If no outputs are specified, bode response is automatically plotted – preferable to plot yourself
- Frequency vector input is optional
 If not specified, MATLAB will generate automatically
- May need to do: squeeze (mag) and squeeze (phase) to eliminate singleton dimensions of output matrices

Log-spaced Vectors - logspace (...)

f = logspace(x0, x1, N)

- x0: first point in f is 10^{x_0}
- x1: last point in f is 10^{x_1}
- **\square** N: number of points in f
- **f**: vector of logarithmically-spaced points
- □ Generates N logarithmically-spaced points between 10^{x_0} and 10^{x_1}
- Useful for generating independent-variable vectors for log plots (e.g., frequency vectors for bode plots)
 Linearly spaced on a logarithmic axis