SECTION 7: FREQUENCYDOMAIN ANALYSIS

ESE 330 - Modeling \& Analysis of Dynamic Systems

Response to Sinusoidal Inputs

Frequency-Domain Analysis - Introduction

\square We've looked at system impulse and step responses
\square Also interested in the response to periodic inputs
\square Fourier theory tells us that any periodic signal can be represented as a sum of harmonically-related sinusoids
\square The Fourier series:

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (2 \pi n f t)+b_{n} \sin (2 \pi n f t)\right]
$$

where a_{n} and b_{n} are given by the Fourier integrals
\square Sinusoids are basis signals from which all other periodic signals can be constructed
\square Sinusoidal system response is of particular interest

Fourier Series

Fourier Series Approximation of a Square Wave

System Response to a Sinusoidal Input

\square Consider an $n^{\text {th }}$-order system

- n poles: $p_{1}, p_{2}, \ldots p_{n}$
- Real or complex
- Assume all are distinct
- Transfer function is:

$$
\begin{equation*}
G(s)=\frac{N u m(s)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)} \tag{1}
\end{equation*}
$$

\square Apply a sinusoidal input to the system

$$
u(t)=A \sin (\omega t) \quad \xrightarrow{\mathcal{L}} \quad U(s)=A \frac{\omega}{s^{2}+\omega^{2}}
$$

\square Output is given by

$$
\begin{equation*}
Y(s)=G(s) U(s)=\frac{N u m(s)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)} \cdot A \frac{\omega}{s^{2}+\omega^{2}} \tag{2}
\end{equation*}
$$

System Response to a Sinusoidal Input

\square Partial fraction expansion of (2) gives

$$
\begin{equation*}
Y(s)=\frac{r_{1}}{s-p_{1}}+\frac{r_{2}}{s-p_{2}}+\cdots+\frac{r_{n}}{s-p_{n}}+\frac{r_{n+1} s}{s^{2}+\omega^{2}}+\frac{r_{n+2} \omega}{s^{2}+\omega^{2}} \tag{3}
\end{equation*}
$$

\square Inverse transform of (3) gives the time-domain output

$$
y(t)=\underbrace{r_{1} e^{p_{1} t}+r_{2} e^{p_{2} t}+\cdots+r_{n} e^{p_{n} t}}_{\text {transient }}+\underbrace{r_{n+1} \cos (\omega t)+r_{n+2} \sin (\omega t)}_{\text {steady state }}
$$

\square Two portions of the response:

- Transient
- Decaying exponentials or sinusoids - goes to zero in steady state
- Natural response to initial conditions
- Steady state
- Due to the input - sinusoidal in steady state

Steady-State Sinusoidal Response

\square We are interested in the steady-state response

$$
\begin{equation*}
y_{s s}(t)=r_{n+1} \cos (\omega t)+r_{n+2} \sin (\omega t) \tag{5}
\end{equation*}
$$

\square A trig. identity provides insight into $y_{s s}(t)$:

$$
\alpha \cos (\omega t)+\beta \sin (\omega t)=\sqrt{\alpha^{2}+\beta^{2}} \sin (\omega t+\phi)
$$

where

$$
\phi=\tan ^{-1}\left(\frac{\alpha}{\beta}\right)
$$

\square Steady-state response to a sinusoidal input

$$
u(t)=A \sin (\omega t)
$$

is a sinusoid of the same frequency, but, in general different amplitude and phase

$$
y_{s s}(t)=B \sin (\omega t+\phi)
$$

Where

$$
\begin{equation*}
B=\sqrt{r_{n+1}^{2}+r_{n+2}^{2}} \quad \text { and } \quad \phi=\tan ^{-1}\left(\frac{r_{n+1}}{r_{n+2}}\right) \tag{6}
\end{equation*}
$$

Steady-State Sinusoidal Response

$$
u(t)=A \sin (\omega t) \quad \rightarrow \quad y_{s s}(t)=B \sin (\omega t+\phi)
$$

\square Steady-state sinusoidal response is a scaled and phase-shifted sinusoid of the same frequency
\square Equal frequency is a property of linear systems
\square Note the ω term in the numerator of (3)
$\square \omega$ will affect the residues

- Residues determine amplitude and phase of the output
\square Output amplitude and phase are frequency-dependent

$$
y_{s s}(t)=B(\omega) \sin (\omega t+\phi(\omega))
$$

Steady-State Sinusoidal Response

$$
u(t)=A \sin (\omega t+\theta) \xrightarrow{G(s)} \xrightarrow{\text { Linear System }} \quad y_{s s}(t)=B \sin (\omega t+\phi)
$$

\square Gain - the ratio of amplitudes of the output and input of the system

$$
\text { Gain }=\frac{B}{A}
$$

\square Phase - phase difference between system input and output

$$
\text { Phase }=\phi-\theta
$$

\square Systems will, in general, exhibit frequency-dependent gain and phase
\square We'd like to be able to determine these functions of frequency

- The system's frequency response

10
 Frequency Response

A system's frequency response, or sinusoidal transfer function, describes its gain and phase shift for sinusoidal inputs as a function of frequency.

Frequency Response

\square System output in the Laplace domain is

$$
Y(s)=U(s) \cdot G(s)
$$

\square Multiplication in the Laplace domain corresponds to convolution in the time domain

$$
y(t)=u(t) * g(t)=\int_{0}^{t} g(\tau) u(t-\tau) d \tau
$$

\square Consider an exponential input of the form

$$
u(t)=e^{s t}
$$

where s is the complex Laplace variable: $s=\sigma+j \omega$
\square Now the output is

$$
\begin{align*}
& y(t)=u(t) * g(t)=\int_{0}^{t} g(\tau) e^{s(t-\tau)} d \tau=\int_{0}^{t} g(\tau) e^{s t} e^{-s \tau} d \tau \\
& y(t)=\int_{0}^{t} g(\tau) e^{-s \tau} d \tau \cdot e^{s t} \tag{1}
\end{align*}
$$

Frequency Response

$$
\begin{equation*}
y(t)=\int_{0}^{t} g(\tau) e^{-s \tau} d \tau \cdot e^{s t} \tag{1}
\end{equation*}
$$

\square We're interested in the steady-state response, so let the upper limit of integration go to infinity

$$
\begin{align*}
& y(t)=\int_{0}^{\infty} g(\tau) e^{-s \tau} d \tau \cdot e^{s t} \\
& y(t)=G(s) \cdot e^{s t} \tag{2}
\end{align*}
$$

\square Time-domain response to an exponential input is the time-domain input multiplied by the system transfer function
\square What is this input?

$$
\begin{equation*}
u(t)=e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t} \tag{3}
\end{equation*}
$$

\square If we let $\sigma \rightarrow 0$, i.e. let $s \rightarrow j \omega$, then we have

$$
\begin{equation*}
y(t)=G(j \omega) \cdot e^{j \omega t} \tag{4}
\end{equation*}
$$

Euler's Formula

\square Recall Euler's formula:

$$
\begin{equation*}
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t) \tag{5}
\end{equation*}
$$

\square From which it follows that

$$
\begin{equation*}
\cos (\omega t)=\frac{e^{j \omega t}+e^{-j \omega t}}{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin (\omega t)=\frac{e^{j \omega t}-e^{-j \omega t}}{2 j} \tag{7}
\end{equation*}
$$

Frequency Response

\square We're interested in the sinusoidal steady-state system response, so let the input be

$$
u(t)=A \cos (\omega t)=A \frac{e^{j \omega t}+e^{-j \omega t}}{2}
$$

\square A sum of complex exponentials in the form of (3)
\square We've let $s \rightarrow j \omega$ in the first term and $s \rightarrow-j \omega$ in the second

$$
\begin{equation*}
u(t)=\frac{A}{2} e^{j \omega t}+\frac{A}{2} e^{-j \omega t} \tag{8}
\end{equation*}
$$

\square According to (4) the output in response to (8) will be

$$
\begin{equation*}
y(t)=\frac{A}{2} G(j \omega) \cdot e^{j \omega t}+\frac{A}{2} G(-j \omega) \cdot e^{-j \omega t} \tag{9}
\end{equation*}
$$

Frequency Response

$$
\begin{equation*}
y(t)=\frac{A}{2} G(j \omega) \cdot e^{j \omega t}+\frac{A}{2} G(-j \omega) \cdot e^{-j \omega t} \tag{9}
\end{equation*}
$$

$\square G(j \omega)$ is a complex function of frequency

- Evaluates to a complex number at each value of ω
- Has both magnitude and phase
- Can be expressed in polar form as

$$
\begin{equation*}
G(j \omega)=M e^{j \phi} \tag{10}
\end{equation*}
$$

where

$$
M=|G(j \omega)| \text { and } \phi=\angle G(j \omega)
$$

\square It follows that

$$
\begin{equation*}
G(-j \omega)=M e^{-j \phi} \tag{11}
\end{equation*}
$$

Frequency Response

\square Using (11), the output given by (9) becomes

$$
\begin{align*}
& y(t)=\frac{A}{2} M\left[e^{j \omega t} e^{j \phi}+e^{-j \omega t} e^{-j \phi}\right] \\
& y(t)=\frac{A}{2} M\left[e^{j(\omega t+\phi)}+e^{-j(\omega t+\phi)}\right] \tag{12}\\
& y(t)=M \cdot A \cos (\omega t+\phi) \tag{13}
\end{align*}
$$

where, again

$$
\begin{equation*}
M=|G(j \omega)| \text { and } \phi=\angle G(j \omega) \tag{14}
\end{equation*}
$$

Frequency response Function $-G(j \omega)$

$\square G(j \omega)$ is the system's frequency response function

- Transfer function, where $s \rightarrow j \omega$

$$
\begin{equation*}
G(j \omega)=\left.G(s)\right|_{s \rightarrow j \omega} \tag{15}
\end{equation*}
$$

- A complex-valued function of frequency
$\square|G(j \omega)|$ at each ω is the gain at that frequency
- Ratio of output amplitude to input amplitude
$\square \angle G(j \omega)$ at each ω is the phase at that frequency
- Phase shift between input and output sinusoids
\square Another representation of system behavior
- Along with state-space model, impulse/step responses, transfer function, etc.
- Typically represented graphically

Plotting the Frequency Response Function

$\square G(j \omega)$ is a complex-valued function of frequency

- Has both magnitude and phase
\square Plot gain and phase separately
\square Frequency response plots formatted as Bode plots
\square Two sets of axes: gain on top, phase below
- Identical, logarithmic frequency axes
- Gain axis is logarithmic - either explicitly or as units of decibels (dB)
\square Phase axis is linear with units of degrees

Bode Plots

Decibels - dB

\square Frequency response gain most often expressed and plotted with units of decibels (dB)

- A logarithmic scale
- Provides detail of very large and very small values on the same plot
- Commonly used for ratios of powers or amplitudes
\square Conversion from a linear scale to dB:

$$
|G(j \omega)|_{d B}=20 \cdot \log _{10}(|G(j \omega)|)
$$

\square Conversion from dB to a linear scale:

$$
|G(j \omega)|=10^{\frac{|G(j \omega)| d B}{20}}
$$

Decibels - dB

\square Multiplying two gain values corresponds to adding their values in dB
\square E.g., the overall gain of cascaded systems

$$
\left|G_{1}(j \omega) \cdot G_{2}(j \omega)\right|_{d B}=\left|G_{1}(j \omega)\right|_{d B}+\left|G_{2}(j \omega)\right|_{d B}
$$

\square Negative dB values corresponds to sub-unity gain
\square Positive dB values are gains greater than one

$d B$	Linear
60	1000
40	100
20	10
0	1

dB	Linear
6	2
-3	$1 / \sqrt{2}=0.707$
-6	0.5
-20	0.1

Interpreting Bode Plots

Bode plots tell you the gain and phase shift at all frequencies:

choose a frequency, read gain and phase values from the plot

For a 10 KHz sinusoidal input, the gain is 0 dB (1) and the phase shift is 0°.

For a 10 MHz sinusoidal input, the gain is -32dB (0.025), and the phase shift is -176°.

Interpreting Bode Plots

Value of Logarithmic Axes - Gain

\square Gain axis is linear in dB

- A logarithmic scale
- Allows for displaying detail at very large and very small levels on the same plot
\square Gain plotted in dB
- Two resonant peaks clearly visible

Bode Magnitude Plot

\square Linear gain scale

- Smaller peak has disappeared

Value of Logarithmic Axes - Frequency

\square Frequency axis is logarithmic

- Allows for displaying detail at very low and very high frequencies on the same plot

Bode Magnitude Plot
\square Log frequency axis

- Can resolve frequency of both resonant peaks

Bode Magnitude Plot
\square Linear frequency axis

- Lower resonant frequency is unclear

Gain Response - Terminology

- Corner frequency, cut off frequency, -3dB frequency:
- Frequency at which gain is 3 dB below its low-frequency value

$$
f_{c}=\frac{\omega_{c}}{2 \pi}
$$

- This is the bandwidth of the system
\square Peaking
- Any increase in gain above the low frequency gain

27 Response of $1^{\text {st }}$ - and $2^{\text {nd }}$-Order Factors
This section examines the frequency responses of first- and second-order transfer function factors.

Transfer Function Factors

\square We've already seen that a transfer function denominator can be factored into firstand second-order terms

$$
G(s)=\frac{\operatorname{Num}(s)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s^{2}+2 \zeta_{1} \omega_{n 1} s+\omega_{n 1}^{2}\right)\left(s^{2}+2 \zeta_{2} \omega_{n 2} s+\omega_{n 2}^{2}\right) \cdots}
$$

$\square \quad$ The same is true of the numerator

$$
G(s)=\frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s^{2}+2 \zeta_{a} \omega_{n a} s+\omega_{n a}^{2}\right)\left(s^{2}+2 \zeta_{2} \omega_{n b} s+\omega_{n b}^{2}\right) \cdots}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s^{2}+2 \zeta_{1} \omega_{n 1} s+\omega_{n 1}^{2}\right)\left(s^{2}+2 \zeta_{2} \omega_{n 2} s+\omega_{n 2}^{2}\right) \cdots}
$$

\square Can think of the transfer function as a product of the individual factors
\square For example, consider the following system

$$
G(s)=\frac{\left(s-z_{1}\right)}{\left(s-p_{1}\right)\left(s^{2}+2 \zeta_{1} \omega_{n 1} s+\omega_{n 1}^{2}\right)}
$$

$\square \quad$ Can rewrite as

$$
G(s)=\left(s-z_{1}\right) \cdot \frac{1}{\left(s-p_{1}\right)} \cdot \frac{1}{\left(s^{2}+2 \zeta_{1} \omega_{n 1} s+\omega_{n 1}^{2}\right)}
$$

Transfer Function Factors

$$
G(s)=\left(s-z_{1}\right) \cdot \frac{1}{\left(s-p_{1}\right)} \cdot \frac{1}{\left(s^{2}+2 \zeta_{1} \omega_{n 1} s+\omega_{n 1}^{2}\right)}
$$

\square Think of this as three cascaded transfer functions

$$
G_{1}(s)=\left(s-z_{1}\right), \quad G_{2}(s)=\frac{1}{\left(s-p_{1}\right)^{\prime}}, \quad G_{3}(s)=\frac{1}{\left(s^{2}+2 \zeta_{1} \omega_{n 1} s+\omega_{n 1}^{2}\right)}
$$

$$
\xrightarrow{U(s)} G_{1}(s) \xrightarrow{Y_{1}(s)} G_{2}(s) \xrightarrow{Y_{2}(s)} G_{3}(s) \xrightarrow{Y(s)}
$$

or

Transfer Function Factors

\square Overall transfer function - and therefore, frequency response - is the product of individual first- and second-order factors
\square Instructive, therefore, to understand the responses of the individual factors
\square First- and second-order poles and zeros

First-Order Factors

\square First-order factors

- Single, real poles or zeros
\square In the Laplace domain:

$$
G(s)=s, \quad G(s)=\frac{1}{s^{\prime}} \quad G(s)=s+a, \quad G(s)=\frac{1}{s+a}
$$

\square In the frequency domain

$$
G(j \omega)=j \omega, \quad G(j \omega)=\frac{1}{j \omega^{\prime}}, \quad G(j \omega)=j \omega+a, \quad G(j \omega)=\frac{1}{j \omega+a}
$$

\square Pole/zero plots:

First-Order Factors - Zero at the Origin

A differentiator

$$
G(s)=s
$$

$$
G(j \omega)=j \omega
$$

Gain:
$|G(j \omega)|=|j \omega|=\omega$
\square Phase:
$\angle G(j \omega)=+90^{\circ}, \quad \forall \omega$

First-Order Factors - Pole at the Origin

An integrator

$$
\begin{aligned}
& G(s)=\frac{1}{s} \\
& G(j \omega)=\frac{1}{j \omega}
\end{aligned}
$$

Gain:
$|G(j \omega)|=\left|\frac{1}{j \omega}\right|=\frac{1}{\omega}$
\square Phase:
$\angle G(j \omega)=\angle-j \frac{1}{\omega}=-90^{\circ}, \quad \forall \omega$

First-Order Factors - Single, Real Zero

\square Single, real zero at $s=-a$

$$
G(j \omega)=j \omega+a
$$

Gain:

$$
|G(j \omega)|=\sqrt{\omega^{2}+a^{2}}
$$

for $\omega \ll a$

$$
|G(j \omega)| \approx a
$$

for $\omega \gg a$

$$
|G(j \omega)| \approx \omega
$$

Phase:

$$
\angle G(j \omega)=\tan ^{-1}\left(\frac{\omega}{a}\right)
$$

for $\omega \ll a$

$$
\angle G(j \omega) \approx \angle a=0^{\circ}
$$

for $\omega \gg a$

$$
\angle G(j \omega) \approx \angle j \omega=90^{\circ}
$$

First-Order Factors - Single, Real Zero

\square Corner frequency:

$$
\omega_{c}=a
$$

- $\left|G\left(j \omega_{c}\right)\right|=a \sqrt{2}=1.414 \cdot a$
- $\quad\left|G\left(j \omega_{c}\right)\right|_{d B}=(a)_{d B}+3 d B$
- $\angle G\left(j \omega_{c}\right)=+45^{\circ}$
\square For $\omega \gg \omega_{c}$, gain increases at:
- 20dB/dec
- $6 d B / o c t$
\square From $\sim 0.1 \omega_{c}$ to $\sim 10 \omega_{c}$, phase increases at a rate of:
- $\sim 45^{\circ} / \mathrm{dec}$
- Rough approximation

First-Order Factors - Single, Real Pole

\square Single, real pole at $s=-a$

$$
G(j \omega)=\frac{1}{j \omega+a}
$$

\square Gain:

$$
|G(j \omega)|=\frac{1}{\sqrt{\omega^{2}+a^{2}}}
$$

for $\omega \ll a$

$$
|G(j \omega)| \approx \frac{1}{a}
$$

for $\omega \gg a$

$$
|G(j \omega)| \approx \frac{1}{\omega}
$$

Phase:

$$
\angle G(j \omega)=-\tan ^{-1}\left(\frac{\omega}{a}\right)
$$

for $\omega \ll a$

$$
\angle G(j \omega) \approx \angle \frac{1}{a}=0^{\circ}
$$

for $\omega \gg a$

$$
\angle G(j \omega) \approx \angle \frac{1}{j \omega}=-90^{\circ}
$$

First-Order Factors - Single, Real Pole

\square Corner frequency:

$$
\omega_{c}=a
$$

- $\left|G\left(j \omega_{c}\right)\right|=\frac{1}{a \sqrt{2}}=0.707 \cdot \frac{1}{a}$
- $\left|G\left(j \omega_{c}\right)\right|_{d B}=\left(\frac{1}{a}\right)_{d B}-3 d B$

ㅁ $\angle G\left(j \omega_{c}\right)=-45^{\circ}$
\square For $\omega \gg \omega_{c}$, gain decreases at:

- $-20 d B / d e c$
- $-6 d B / o c t$
\square From $\sim 0.1 \omega_{c}$ to $\sim 10 \omega_{c}$, phase decreases at a rate of:
ㅁ $\sim-45^{\circ} /$ dec
- Rough approximation

Second-Order Factors

\square Complex-conjugate zeros

$$
G(s)=s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}
$$

Real

Complex-conjugate poles

$$
G(s)=\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

$$
\sigma=\zeta \omega_{n}, \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

$2^{\text {nd }}$-Order Factors - Complex-Conjugate Zeros

\square Complex-conjugate zeros at $s=-\sigma \pm j \omega_{d}$

$$
G(j \omega)=(j \omega)^{2}+2 \zeta \omega_{n}(j \omega)+\omega_{n}^{2}
$$

Gain:

for $\omega \ll \omega_{n}$

$$
|G(j \omega)| \approx \omega_{n}^{2}
$$

for $\omega=\omega_{n}$

$$
|G(j \omega)|=2 \zeta \omega_{n}^{2}
$$

for $\omega \gg \omega_{n}$

$$
|G(j \omega)| \approx \omega^{2}
$$

Phase:

for $\omega \ll \omega_{n}$

$$
\angle G(j \omega) \approx \angle \omega_{n}^{2}=0^{\circ}
$$

for $\omega=\omega_{n}$

$$
\angle G(j \omega)=\angle j 2 \zeta \omega_{n}=+90^{\circ}
$$

for $\omega \gg \omega_{n}$

$$
\angle G(j \omega) \approx \angle-\omega^{2}=+180^{\circ}
$$

$2^{\text {nd }}$-Order Factors - Complex-Conjugate Zeros

\square Response may dip below low-freq. value near ω_{n}

- Peaking increases as ζ decreases
\square Gain increases at +40 dB / dec or $+12 d B /$ oct for $\omega \gg \omega_{n}$
\square Corner frequency depends on damping ratio, ζ
- ω_{c} increases as ζ decreases
\square At $\omega=\omega_{c}, \angle G(j \omega)=90^{\circ}$
\square Phase transition abruptness depends on ζ

$2^{\text {nd }}$-Order Factors - Complex-Conjugate Poles

\square Complex-conjugate zeros at $s=-\sigma \pm j \omega_{d}$

$$
G(j \omega)=\frac{1}{(j \omega)^{2}+2 \zeta \omega_{n}(j \omega)+\omega_{n}^{2}}
$$

Gain:
for $\omega \ll \omega_{n}$

$$
|G(j \omega)| \approx \frac{1}{\omega_{n}^{2}}
$$

for $\omega=\omega_{n}$

$$
|G(j \omega)|=\frac{1}{2 \zeta \omega_{n}^{2}}
$$

for $\omega \gg \omega_{n}$

$$
|G(j \omega)| \approx \frac{1}{\omega^{2}}
$$

Phase:

for $\omega \ll \omega_{n}$

$$
\angle G(j \omega) \approx \angle \frac{1}{\omega_{n}^{2}}=0^{\circ}
$$

for $\omega=\omega_{n}$

$$
\angle G(j \omega)=\angle \frac{1}{j 2 \zeta \omega_{n}}=-90^{\circ}
$$

$$
\text { for } \omega \gg \omega_{n}
$$

$$
\angle G(j \omega) \approx \angle-\frac{1}{\omega^{2}}=-180^{\circ}
$$

$2^{\text {nd }}$-Order Factors - Complex-Conjugate Poles

\square Response may peak above low-freq. value near ω_{n}

- Peaking increases as ζ decreases
\square Gain decreases at -40 dB / dec or $-12 d B /$ oct for $\omega \gg \omega_{n}$

\square Corner frequency depends on damping ratio, ζ
- ω_{c} increases as ζ decreases
\square At $\omega=\omega_{c}, \angle G(j \omega)=-90^{\circ}$
\square Phase transition abruptness depends on ζ

Pole Location and Peaking

\square Peaking is dependent on ζ - pole locations

- No peaking at all for $\zeta \geq 1 / \sqrt{2}=0.707$
$\square \zeta=0.707$ - maximally-flat or Butterworth response

K. Webb

ESE 330

Frequency Response Components - Example

\square Consider the following system

$$
G(s)=\frac{20(s+20)}{(s+1)(s+100)}
$$

\square The system's frequency response function is

$$
G(j \omega)=\frac{20(j \omega+20)}{(j \omega+1)(j \omega+100)}
$$

\square As we've seen we can consider this a product of individual frequency response factors

$$
G(j \omega)=20 \cdot(j \omega+20) \cdot \frac{1}{(j \omega+1)} \cdot \frac{1}{(j \omega+100)}
$$

\square Overall response is the composite of the individual responses

- Product of individual gain responses - sum in dB
- Sum of individual phase responses

Frequency Response Components - Example

\square Gain response

ESE 330

Frequency Response Components - Example

\square Phase response

ESE 330

Bode Plot Construction

In this section, we'll look at a method for sketching, by hand, a straight-line, asymptotic approximation for a Bode plot.

Bode Plot Construction

\square We've just seen that a system's transfer function can be factored into first- and second-order terms
\square Each factor contributes a component to the overall gain and phase responses
\square Now, we'll look at a technique for manually sketching a system's Bode plot

- In practice, you'll almost always plot with a computer
\square But, learning to do it by hand provides valuable insight
\square We'll look at how to approximate Bode plots for each of the different factors

Bode Form of the Transfer function

\square Consider the general transfer function form:

$$
G(s)=K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s^{2}+2 \zeta_{a} \omega_{n a} s+\omega_{n a}^{2}\right) \cdots}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s^{2}+2 \zeta_{1} \omega_{n 1} s+\omega_{n 1}^{2}\right) \cdots}
$$

\square We first want to put this into Bode form:

$$
G(s)=K_{0} \frac{\left(\frac{s}{\omega_{c a}}+1\right)\left(\frac{s}{\omega_{c b}}+1\right) \cdots\left(\frac{s^{2}}{\omega_{n a}^{2}}+\frac{2 \zeta_{a}}{\omega_{n a}} s+1\right) \cdots}{\left(\frac{s}{\omega_{c 1}}+1\right)\left(\frac{s}{\omega_{c 2}}+1\right) \cdots\left(\frac{s^{2}}{\omega_{n 1}^{2}}+\frac{2 \zeta_{1}}{\omega_{n 1}} s+1\right) \cdots}
$$

\square Putting $G(s)$ into Bode form requires putting each of the first- and second-order factors into Bode form

First-Order Factors in Bode Form

First-order transfer function factors include:

$$
G(s)=s^{n}, \quad G(s)=s+\sigma, \quad G(s)=\frac{1}{s+\sigma}
$$

\square For the first factor, $G(s)=s^{n}, n$ is a positive or negative integer

- Already in Bode form
\square For the second two, divide through by σ, giving

$$
G(s)=\sigma\left(\frac{s}{\sigma}+1\right) \quad \text { and } \quad G(s)=\frac{1}{\sigma\left(\frac{s}{\sigma}+1\right)}
$$

\square Here, $\sigma=\omega_{c}$, the corner frequency associated with that zero or pole, so

$$
G(s)=\omega_{c}\left(\frac{s}{\omega_{c}}+1\right) \quad \text { and } \quad G(s)=\frac{1}{\omega_{c}\left(\frac{s}{\omega_{c}}+1\right)}
$$

Second-Order Factors in Bode Form

\square Second-order transfer function factors include:

$$
G(s)=s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2} \quad \text { and } \quad G(s)=\frac{1}{(s)^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

\square Again, normalize the s^{0} coefficient, giving

$$
G(s)=\omega_{n}^{2}\left[\frac{s^{2}}{\omega_{n}^{2}}+\frac{2 \zeta}{\omega_{n}} s+1\right] \quad \text { and } \quad G(s)=\frac{1 / \omega_{n}^{2}}{\frac{s^{2}}{\omega_{n}^{2}}+\frac{2 \zeta}{\omega_{n}} s+1}
$$

\square Putting each factor into its Bode form involves factoring out any DC gain component
\square Lump all of DC gains together into a single gain constant, K_{0}

$$
G(s)=K_{0} \frac{\left(\frac{s}{\omega_{c a}}+1\right)\left(\frac{s}{\omega_{c b}}+1\right) \cdots\left(\frac{s^{2}}{\omega_{n a}^{2}}+\frac{2 \zeta a}{\omega_{n a}} s+1\right) \cdots}{\left(\frac{s}{\omega_{c 1}}+1\right)\left(\frac{s}{\omega_{c 2}}+1\right) \cdots\left(\frac{s^{2}}{\omega_{n 1}^{2}}+\frac{2 \zeta_{1}}{\omega_{n 1}} s+1\right) \cdots}
$$

Bode Plot Construction

\square Transfer function in Bode form

$$
G(s)=K_{0} \frac{\left(\frac{s}{\omega_{c a}}+1\right)\left(\frac{s}{\omega_{c b}}+1\right) \cdots\left(\frac{s^{2}}{\omega_{n a}^{2}}+\frac{2 \zeta a}{\omega_{n a}} s+1\right) \cdots}{\left(\frac{s}{\omega_{c 1}}+1\right)\left(\frac{s}{\omega_{c 2}}+1\right) \cdots\left(\frac{s^{2}}{\omega_{n 1}^{2}}+\frac{2 \zeta_{1}}{\omega_{n 1}} s+1\right) \cdots}
$$

\square Product of a constant DC gain factor, K_{0}, and firstand second-order factors
\square Plot the frequency response of each factor individually, then combine graphically

- Overall response is the product of individual factors
- Product of gain responses - sum on a dB scale
- Sum of phase responses

Bode Plot Construction

\square Bode plot construction procedure:

1. Put the transfer function into Bode form
2. Draw a straight-line asymptotic approximation for the gain and phase response of each individual factor
3. Graphically add all individual response components and sketch the result
\square Note that we are really plotting the frequency response function, $G(j \omega)$
\square We use the transfer function, $G(s)$, to simplify notation
\square Next, we'll look at the straight-line asymptotic approximations for the Bode plots for each of the transfer function factors

Bode Plot - Constant Gain Factor

$$
G(s)=K_{0}
$$

\square Constant gain

$$
|G(s)|=K_{0}
$$

\square Constant Phase

$$
\angle G(s)=0^{\circ}
$$

Bode Plot - Poles/Zeros at the Origin

$$
G(s)=s^{n}
$$

$\square n>0$:

- n zeros at the origin
$\square n<0$:
- n poles at the origin
\square Gain:
- Straight line
- Slope $=n \cdot 20 \frac{d B}{d e c}=n \cdot 6 \frac{d B}{o c t}$
- $0 d B$ at $\omega=1$
\square Phase:

$$
\angle G(s)=n \cdot 90^{\circ}
$$

Bode Phase Component -- Poles/Zeros at the Origin

ESE 330

Bode Plot - First-Order Zero

Single real zero at $s=-\omega_{c}$

\square Gain:

- $0 d B$ for $\omega<\omega_{c}$
$\square+20 \frac{d B}{d e c}=+6 \frac{d B}{o c t}$ for $\omega>\omega_{c}$
- Straight-line asymptotes intersect at $\left(\omega_{c}, 0 d B\right)$
Phase:
$\square 0^{\circ}$ for $\omega \leq 0.1 \omega_{c}$
ㅁ 45° for $\omega=\omega_{c}$
- 90° for $\omega \geq 10 \omega_{c}$
$\square \frac{+45^{\circ}}{d e c}$ for $0.1 \omega_{c} \leq \omega \leq 10 \omega_{c}$

Bode Plot Components -- First-Order Zero

Bode Plot - First-Order Pole

\square Single real pole at $s=-\omega_{c}$
\square Gain:

- $0 d B$ for $\omega<\omega_{c}$
$\square-20 \frac{d B}{d e c}=-6 \frac{d B}{o c t}$ for $\omega>\omega_{c}$
- Straight-line asymptotes intersect at $\left(\omega_{c}, 0 d B\right)$

Phase:

- 0° for $\omega \leq 0.1 \omega_{c}$
$\square-45^{\circ}$ for $\omega=\omega_{c}$
- -90° for $\omega \geq 10 \omega_{c}$
$\square \frac{-45^{\circ}}{\text { dec }}$ for $0.1 \omega_{c} \leq \omega \leq 10 \omega_{c}$

Bode Plot - Second-Order Zero

\square Complex-conjugate zeros:

$$
s_{1,2}=-\sigma \pm j \omega_{d}
$$

Gain:

- $0 d B$ for $\omega \leq \omega_{n}$
- $+40 \frac{d B}{d e c}=+12 \frac{d B}{o c t}$ for $\omega>\omega_{n}$
- Straight-line asymptotes intersect at $\left(\omega_{n}, 0 d B\right)$
- ζ-dependent peaking around ω_{n}
\square Phase:
- 0° for $\omega \leq 0.1 \cdot \omega_{n}$
- 90° for $\omega=\omega_{n}$
- 180° for $\omega \geq 10 \cdot \omega_{n}$
- $\frac{+90^{\circ}}{d e c}$ for $0.1 \omega_{c} \leq \omega \leq 10 \omega_{c}$

Bode Phase Component -- Second-Order Zeros

Bode Plot - Second-Order Pole

\square Complex-conjugate poles:

$$
s_{1,2}=-\sigma \pm j \omega_{d}
$$

Gain:

- $0 d B$ for $\omega \leq \omega_{n}$
- $-40 \frac{d B}{d e c}=-12 \frac{d B}{o c t}$ for $\omega>\omega_{n}$
- Straight-line asymptotes intersect at $\left(\omega_{n}, 0 d B\right)$
- ζ-dependent peaking around ω_{n}
\square Phase:
- 0° for $\omega \leq 0.1 \cdot \omega_{n}$

ㅁ -90° for $\omega=\omega_{n}$
ㅁ -180° for $\omega \geq 10 \cdot \omega_{n}$

- $\frac{-90^{\circ}}{d e c}$ for $0.1 \omega_{c} \leq \omega \leq 10 \omega_{c}$

Bode Gain Component -- Second-Order Poles

Bode Phase Component -- Second-Order Poles

Bode Plot Construction - Example

\square Consider a system with the following transfer function

$$
G(s)=\frac{10(s+20)}{s(s+400)}
$$

\square Put it into Bode form

$$
G(s)=\frac{10 \cdot 20\left(\frac{s}{20}+1\right)}{s \cdot 400\left(\frac{s}{400}+1\right)}=\frac{0.5\left(\frac{s}{20}+1\right)}{s \cdot\left(\frac{s}{400}+1\right)}
$$

\square Represent as a product of factors

$$
G(s)=0.5 \cdot\left(\frac{s}{20}+1\right) \cdot \frac{1}{s} \cdot \frac{1}{\left(\frac{s}{400}+1\right)}
$$

Bode Plot Construction - Example

Bode Gain Plot - Asymptotic Approximation

Bode Plot Construction - Example

Relationship between Pole/Zero Plots and Bode Plots

It is also possible to calculate a system's
frequency response directly from that system's pole/zero plot.

Bode Construction from Pole/Zero Plots

\square Transfer function can be expressed as

$$
G(s)=\frac{\prod_{i}\left(s-z_{i}\right)}{\prod_{i}\left(s-p_{i}\right)} \xrightarrow{s \rightarrow j \omega} G(j \omega)=\frac{\prod_{i}\left(j \omega-z_{i}\right)}{\prod_{i}\left(j \omega-p_{i}\right)}
$$

- Numerator is a product of first-order zero terms
- Denominator is a product of first-order pole terms
- $j \omega$ is a point on the imaginary axis

ㅁ $\left(j \omega-z_{i}\right)$ represents a vector from z_{i} to $j \omega$

- ($j \omega-p_{i}$) represents a vector from p_{i} to $j \omega$
\square Gain is given by

$$
|G(j \omega)|=\frac{\left|\prod_{i}\left(j \omega-z_{i}\right)\right|}{\left|\prod_{i}\left(j \omega-p_{i}\right)\right|}
$$

\square Phase can be calculated as

$$
\angle G(j \omega)=\Sigma \angle\left(j \omega-z_{i}\right)-\Sigma \angle\left(j \omega-p_{i}\right)
$$

\square Possible to evaluate the frequency response graphically from a pole/zero diagram

- Not done in practice, but provides useful insight

Bode Construction from Pole/Zero Plots

\square Consider the following system:

$$
G(j \omega)=\frac{(j \omega+3)}{(j \omega+2+j 1.75)(j \omega+2-j 1.75)}
$$

\square Evaluate at $\omega=2.5 \mathrm{rad} / \mathrm{sec}$

- Gain:

$$
\begin{aligned}
& |G(j 2.5)|=\frac{|3+j 2.5|}{|2+j 4.25| 2+j 0.75 \mid} \\
& |G(j 2.5)|=\frac{3.9}{4.7 \cdot 2.1} \\
& |G(j 2.5)|=0.389 \rightarrow-8.2 d B
\end{aligned}
$$

\square Phase:

$$
\begin{aligned}
& \angle G(j 2.5)=\theta_{1}-\theta_{2}-\theta_{3} \\
& \theta_{1}=\angle(3+j 2.5)=39.8^{\circ} \\
& \theta_{2}=\angle(2+j 0.75)=20.6^{\circ} \\
& \theta_{3}=\angle(2+j 4.25)=64.8^{\circ} \\
& \angle G(j 2.5)=-45.5^{\circ}
\end{aligned}
$$

Polar Frequency Response Plots

Polar Frequency Response Plots

$\square G(j \omega)$ is a complex function of frequency

- Typically plot as Bode plots
- Magnitude and phase plotted separately
- Aids visualization of system behavior
\square A real and an imaginary part at each value of ω
- A point in the complex plane at each frequency
- Defines a curve in the complex plane
- A polar plot
- Parametrized by frequency - not as easy to distinguish frequency as on a Bode plot
\square Polar plots are not terribly useful as a means of displaying a frequency response
- Useful in control system design - Nyquist stability criterion

Polar Frequency Response Plots

\square Identical frequency responses plotted two ways:

- Bode plot and polar plot
\square Note uneven frequency spacing along polar plot curve
- Dependent on frequency rates of change of gain and phase

69
 Frequency and Time Domains

A system's frequency response and it's various time-domain responses are simply different perspectives on the same dynamic behavior.

Frequency and Time Domains

\square We've seen many ways we can represent a system

- $n^{t h}$-order differential equation
- Bond-graph model
- State-variable model
- Impulse response
- Step response
- Transfer function
- Frequency response/Bode plot \quad representations
\square All are valid and complete models
- They all contain the same information in different forms
- Different ways of looking at the same thing

Time/Frequency Domain Correlation

$\square \quad G_{1}(s)=\frac{9.87}{s^{2}+5.655 s+9.87}$
$\square \quad G_{2}(s)=\frac{987}{s^{2}+18.85 s+987}$

Pole/Zero Plot

K. Webb

Step Response

72 Frequency-Domain Analysis in MATLAB
As was the case for time-domain simulation, MATLAB has some useful functions for simulating system behavior in the frequency domain as well.

System Objects

\square MATLAB has data types dedicated to linear system models
\square Two primary system model objects:
\square State-space model
\square Transfer function model
\square Objects created by calling MATLAB functions

- ss.m- creates a state-space model
- tf.m-creates a transfer function model

State-Space Model - ss (...)

$$
\text { sys }=s s(A, B, C, D)
$$

- A: system matrix $-n \times n$
- B: input matrix $-n \times m$
- C: output matrix $-p \times n$
- D: feed-through matrix $-p \times m$
\square sys: state-space model object
\square State-space model object will be used as an input to other MATLAB functions

Transfer Function Model - tf (...)

sys = tf (Num, Den)

- Num: vector of numerator polynomial coefficients
- Den: vector of denominator polynomial coefficients
- sys: transfer function model object
\square Transfer function is assumed to be of the form

$$
G(s)=\frac{b_{1} s^{r}+b_{2} s^{r-1}+\cdots+b_{r} s+b_{r+1}}{a_{1} s^{n}+a_{2} s^{n-1}+\cdots+a_{n} s+a_{n+1}}
$$

\square Inputs to tf (...) are
口 Num = [b1,b2, ...,br+1];
口 Den = [a1, a2, ..., an+1];

Frequency Response Simulation - bode (...)

$$
[\text { mag, phase }]=\text { bode }(s y s, w)
$$

- sys: system model - state-space, transfer function, or other
- w: optional frequency vector - in rad/sec
- mag: system gain response vector
- phase: system phase response vector - in degrees
\square If no outputs are specified, bode response is automatically plotted - preferable to plot yourself
\square Frequency vector input is optional
- If not specified, MATLAB will generate automatically
\square May need to do: squeeze (mag) and squeeze (phase) to eliminate singleton dimensions of output matrices

Log-spaced Vectors - logspace (...)

$$
f=\operatorname{logspace}(x 0, x 1, N)
$$

- $\times 0$: first point in f is $10^{x_{0}}$
- x 1 : last point in f is $10^{x_{1}}$
$\square \mathrm{N}$: number of points in f
- f: vector of logarithmically-spaced points
\square Generates N logarithmically-spaced points between $10^{x_{0}}$ and $10^{x_{1}}$
\square Useful for generating independent-variable vectors for log plots (e.g., frequency vectors for bode plots)
- Linearly spaced on a logarithmic axis

