
ESE 430 – Feedback Control Systems

SECTION 1: INTRODUCTION
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Introduction

 In ESE 330, you learned how to model dynamic 
systems and simulate their responses
 Analysis – how does a given system respond
 Design (possibly) – tuning system parameters to 

achieve a desired response

 In ESE 430, you will learn how to design feedback 
control systems to improve the response of a given 
system in three primary areas:
 Dynamic response
 Steady-state error
 Stability



K. Webb ESE 430

4

Introduction

 In this section of notes we will take a look at a simple 
motor-driven rack and pinion positioning system 
example to do the following:

 Review dynamic system modeling fundamentals
 Bond graphs
 State-variable models
 System poles/zeros 
 Transient response – step, impulse, …
 Frequency response

 Introduce feedback control
 What is it? 
 How can it help us obtain a desired system response?
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The design of a feedback control system requires 
first having a model of the system to be controlled. 
This sub-section provides a review of dynamic 
system modeling and analysis fundamentals.

Dynamic System Modeling5
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Bond-Graph Model6
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Rack and Pinion Positioning System

 Simplified rack and 
pinion positioning 
system
 E.g., automated 

assembly equipment, 
print-head driver, etc.

 Voltage source drives a DC motor
 Motor inductance neglected here

 Motor turns shaft and pinion gear

 As pinion turns, rack translates
 The thing to be positioned is attached to the rack
 Rack connection has both compliance and damping
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Bond-Graph Model

 Create a bond-graph 
model

 First, annotate the 
schematic
 Label all node voltages

 Indicate assumed positive voltage polarities and current 
direction

 Label velocities at each mass and end of each spring and 
damper

 Choose displacements of springs and dampers to be positive 
in either compression or tension
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Bond-Graph Model

 Next, tabulate all one- and 
two-port elements, along 
with relevant voltages or 
velocities
 Bond orientation follows 

power convention
 Include TF and GY equations

Element Voltage/Velocity

𝑣𝑣𝑠𝑠 𝑡𝑡 : 𝑆𝑆𝑒𝑒 ⇀ 𝑣𝑣𝑠𝑠
𝑅𝑅𝑚𝑚:𝑅𝑅 ↼ 𝑣𝑣𝑅𝑅𝑚𝑚 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑎𝑎
⇀ 𝐺𝐺𝐺𝐺 ⇀

𝜔𝜔 = ⁄1 𝑘𝑘𝑚𝑚 � 𝑣𝑣𝑎𝑎
𝑣𝑣𝑎𝑎
𝜔𝜔

⇀ 𝑇𝑇𝑇𝑇 ⇀
𝑣𝑣 = 𝑟𝑟 � 𝜔𝜔

𝜔𝜔
𝑣𝑣

𝑚𝑚: 𝐼𝐼 ↼ 𝑣𝑣
𝑏𝑏:𝑅𝑅 ↼ 𝑣𝑣

1/𝑘𝑘:𝐶𝐶 ↼ 𝑣𝑣
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Bond-Graph Model

 Use the table to construct a bond graph
Element Voltage/Velocity

𝑣𝑣𝑠𝑠 𝑡𝑡 : 𝑆𝑆𝑒𝑒 ⇀ 𝑣𝑣𝑠𝑠

𝑅𝑅𝑚𝑚:𝑅𝑅 ↼ 𝑣𝑣𝑅𝑅𝑚𝑚 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑎𝑎

⇀ 𝐺𝐺𝐺𝐺 ⇀
𝜔𝜔 = ⁄1 𝑘𝑘𝑚𝑚 � 𝑣𝑣𝑎𝑎

𝑣𝑣𝑎𝑎
𝜔𝜔

Element Voltage/Velocity

⇀ 𝑇𝑇𝑇𝑇 ⇀
𝑣𝑣 = 𝑟𝑟 � 𝜔𝜔

𝜔𝜔
𝑣𝑣

𝑚𝑚: 𝐼𝐼 ↼ 𝑣𝑣

𝑏𝑏:𝑅𝑅 ↼ 𝑣𝑣

1/𝑘𝑘:𝐶𝐶 ↼ 𝑣𝑣
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Bond-Graph Model

 Create computational bond graph and assign 
causality

 𝐼𝐼6 and 𝐶𝐶8 both have integral causality
 Two independent energy-storage elements
 A second-order system
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Bond-Graph Model

 State variables:

𝐱𝐱 =
𝑝𝑝6
𝑞𝑞8

 Annotate the bond graph in preparation for state equation derivation
 Sources
 State variable derivatives as effort/flow on independent 𝐼𝐼’s and 𝐶𝐶’s
 Apply constitutive laws to annotate the other power variables
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State-Variable System Model

 Use annotated bond graph to derive a state-variable 
model for the system

�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐁𝐁𝑢𝑢
𝑦𝑦 = 𝐂𝐂𝐱𝐱 + 𝐷𝐷𝑢𝑢

 State derivatives are linear combinations of state 
variables and inputs

 Output is a linear combination of states and inputs
 This is a SISO system
 Single-input, single-output
 𝑢𝑢, 𝑦𝑦, and 𝐷𝐷 are scalars
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State Equation Derivation

 Follow causality through the bond graph to express 
state variable derivatives as linear combinations of 
states and inputs

 Start with �̇�𝑝6
�̇�𝑝6 = 𝑒𝑒6 = 𝑒𝑒5 − 𝑒𝑒7 − 𝑒𝑒8

�̇�𝑝6 =
1
𝑟𝑟 𝑒𝑒4 − 𝑅𝑅7𝑓𝑓7 −

1
𝐶𝐶8
𝑞𝑞8

�̇�𝑝6 = 𝑘𝑘𝑚𝑚
𝑟𝑟
𝑓𝑓3 −

𝑅𝑅7
𝐼𝐼6
𝑝𝑝6 −

1
𝐶𝐶8
𝑞𝑞8 (1)

𝑓𝑓3 = 𝑓𝑓2 = 1
𝑅𝑅2
𝑒𝑒2 = 1

𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑒𝑒3 = 1

𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑘𝑘𝑚𝑚

𝑅𝑅2
𝑓𝑓4

𝑓𝑓3 = 1
𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑘𝑘𝑚𝑚

𝑅𝑅2

1
𝑟𝑟
𝑓𝑓5 = 1

𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑘𝑘𝑚𝑚

𝑅𝑅2𝑟𝑟
1
𝐼𝐼6
𝑝𝑝6 (2)
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State Equation and Output Equation

 Substituting (2) into (1) give the first state equation:

�̇�𝑝6 = −𝑘𝑘𝑚𝑚2 +𝑅𝑅7𝑟𝑟2𝑅𝑅2
𝑟𝑟2𝑅𝑅2𝐼𝐼6

𝑝𝑝6 −
1
𝐶𝐶8
𝑞𝑞8 + 𝑘𝑘𝑚𝑚

𝑟𝑟𝑅𝑅2
𝑒𝑒1 𝑡𝑡 (3)

 Next, move on to  �̇�𝑞8

�̇�𝑞8 = 𝑓𝑓8 = 𝑓𝑓6 =
1
𝐼𝐼6
𝑝𝑝6

 The second state equation:

�̇�𝑞8 = 1
𝐼𝐼6
𝑝𝑝6 (4)

 The output is the position of the rack, which is also the 
displacement of the spring

𝑦𝑦 = 𝑞𝑞8 (5)
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State-Variable System Model

 Equations (3) – (5) can be assembled in matrix form to give 
the state-variable system model:

�̇�𝑝6
�̇�𝑞8

=
−𝑘𝑘𝑚𝑚2 +𝑅𝑅7𝑟𝑟2𝑅𝑅2

𝑟𝑟2𝑅𝑅2𝐼𝐼6
− 1
𝐶𝐶8

1
𝐼𝐼6

0

𝑝𝑝6
𝑞𝑞8 +

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅2
0

𝑒𝑒1 𝑡𝑡 (6)

𝑦𝑦 = 0 1
𝑝𝑝6
𝑞𝑞8

 Substituting in physical system parameters:

�̇�𝑝
�̇�𝑥 =

−𝑘𝑘𝑚𝑚2 +𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0

𝑝𝑝
𝑥𝑥 +

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0
𝑒𝑒1 𝑡𝑡 (7)

𝑦𝑦 = 0 1
𝑝𝑝
𝑥𝑥
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Transfer Function18
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Transfer Function

 The state-variable model is one of many possible mathematical 
models for the system
 A time-domain model

 The transfer function is another model
 A Laplace-domain model

 The ratio of the output to the input in the Laplace domain, assuming 
zero initial conditions:

𝐺𝐺 𝑠𝑠 =
𝐺𝐺 𝑠𝑠
𝑈𝑈 𝑠𝑠

 Useful for determining the Laplace-domain output

𝐺𝐺 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 ⋅ 𝑈𝑈 𝑠𝑠

 System poles/zeros are readily apparent
 Substitute 𝑠𝑠 → 𝑗𝑗𝜔𝜔 for frequency response function



K. Webb ESE 430

20

Transfer Function

 A couple of ways to convert from the state-variable 
model to the transfer function
 Calculate directly: 

𝐺𝐺 𝑠𝑠 = 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + 𝐃𝐃

 Requires matrix inversion

 Solve for the states using Cramer’s rule, combine 
according to the output equation and solve 
algebraically  for  𝐺𝐺 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 /𝑈𝑈 𝑠𝑠
Matrix inversion is not required

 We’ll step through both methods
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State Space  Transfer Function – 1 

 From the 𝐀𝐀 𝐁𝐁 𝐂𝐂 𝐃𝐃 matrices that define the state 
variable model:

𝐺𝐺 𝑠𝑠 = 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + 𝐃𝐃

 For our example:

𝐺𝐺 𝑠𝑠 = 0 1
𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘

−
1
𝑚𝑚

𝑠𝑠

−1

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0

 The inverse of the 𝑠𝑠𝐼𝐼 − 𝐴𝐴 matrix is

𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1 =
𝑎𝑎𝑎𝑎𝑗𝑗 𝑠𝑠𝐈𝐈 − 𝐀𝐀
𝑠𝑠𝐈𝐈 − 𝐀𝐀

=
𝑎𝑎𝑎𝑎𝑗𝑗 𝑠𝑠𝐈𝐈 − 𝐀𝐀

𝛥𝛥 𝑠𝑠

 Δ 𝑠𝑠 is the characteristic polynomial of the system
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The Characteristic Polynomial

 The characteristic polynomial

Δ 𝑠𝑠 = 𝑠𝑠𝐼𝐼 − 𝐴𝐴 =
𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘

−
1
𝑚𝑚

𝑠𝑠

Δ 𝑠𝑠 = 𝑠𝑠2 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 +
𝑘𝑘
𝑚𝑚

 Recall
 Δ 𝑠𝑠 is the denominator of the Laplace transform of 

every state and the output
 The roots of Δ 𝑠𝑠 , the poles of the system, determine 

the nature of the system response
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State Space  Transfer Function – 1 

𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1 =
1

𝛥𝛥 𝑠𝑠

𝑠𝑠 −𝑘𝑘
1
𝑚𝑚

𝑠𝑠 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

 Substituting back into the expression for 𝐺𝐺 𝑠𝑠

𝐺𝐺 𝑠𝑠 =
1

𝛥𝛥 𝑠𝑠 0 1
𝑠𝑠 −𝑘𝑘
1
𝑚𝑚 𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0

𝐺𝐺 𝑠𝑠 =
1

𝛥𝛥 𝑠𝑠
1
𝑚𝑚 𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0

 The system transfer function:

𝐺𝐺 𝑠𝑠 =
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚
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State Space  Transfer Function – 2 

 Alternatively, find 𝐺𝐺 𝑠𝑠 by Laplace transforming the state equation 
and applying Cramer’s rule

 The state equation in general form:

�̇�𝐱 = 𝐀𝐀𝐱𝐱 + 𝐁𝐁u (1)

 Apply the Laplace transform, assuming zero initial conditions

𝑠𝑠𝐗𝐗 𝑠𝑠 = 𝐀𝐀𝐗𝐗 𝑠𝑠 + 𝐁𝐁𝑈𝑈 𝑠𝑠

 Collecting the transform of the state vector on the left-hand side

𝑠𝑠𝐗𝐗 𝑠𝑠 − 𝐀𝐀𝐗𝐗 𝑠𝑠 = 𝐁𝐁𝑈𝑈 𝑠𝑠

 Factoring out 𝐗𝐗 𝑠𝑠

𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝐗𝐗 𝑠𝑠 = 𝐁𝐁𝑈𝑈 𝑠𝑠 (2)
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State Space  Transfer Function – 2 

 Can now apply Cramer’s rule to solve for individual 
elements in 𝐗𝐗 𝑠𝑠 , i.e., the Laplace transform of 
individual states

𝑋𝑋𝑖𝑖 𝑠𝑠 =
𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖

𝑠𝑠𝐈𝐈 − 𝐀𝐀

 𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖 is the matrix formed by replacing the 𝑖𝑖𝑡𝑡𝑡
column of 𝑠𝑠𝐈𝐈 − 𝐀𝐀 with 𝐁𝐁𝑈𝑈 𝑠𝑠 , the RHS of (2)

 Determine as many states as are required to 
calculate 𝐺𝐺 𝑠𝑠
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State Space  Transfer Function – 2 

 State variable model for our system

�̇�𝑝
�̇�𝑥 =

−𝑘𝑘𝑚𝑚2 +𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0

𝑝𝑝
𝑥𝑥 +

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0
𝑒𝑒1 𝑡𝑡

𝑦𝑦 = 0 1
𝑝𝑝
𝑥𝑥

 Here the output depends only on the displacement 
of the spring, 𝑦𝑦 𝑡𝑡 = 𝑥𝑥 𝑡𝑡
 To find 𝐺𝐺 𝑠𝑠 , apply Cramer’s rule to the Laplace 

transformed state equation to find 𝑋𝑋 𝑠𝑠
 NOTE: 𝑋𝑋 𝑠𝑠 is the Laplace transform of the displacement of 

the spring, 𝐗𝐗 𝑠𝑠 is the Laplace transform of the state vector
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State Space  Transfer Function – 2 

𝑋𝑋 𝑠𝑠 =
𝑠𝑠𝐈𝐈 − 𝐀𝐀 2

𝑠𝑠𝐈𝐈 − 𝐀𝐀
=

1
Δ 𝑠𝑠

𝑠𝑠 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚
𝑅𝑅𝑚𝑚𝑟𝑟

𝑈𝑈 𝑠𝑠

−
1
𝑚𝑚

0
=

�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟𝑈𝑈 𝑠𝑠

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚

 The Laplace transform of the output is

𝐺𝐺 𝑠𝑠 = 𝑋𝑋 𝑠𝑠 =
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟𝑈𝑈 𝑠𝑠

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚

 Dividing both sides by the input gives the transfer function 

𝐺𝐺 𝑠𝑠 =
𝐺𝐺 𝑠𝑠
𝑈𝑈 𝑠𝑠

=
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚



K. Webb ESE 430

System Poles & Zeros28



K. Webb ESE 430

29

System Poles & Zeros

𝐺𝐺 𝑠𝑠 =
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚

 Poles: values of 𝑠𝑠 for  which 𝐺𝐺 𝑠𝑠 = ∞
 The roots of the denominator, Δ 𝑠𝑠
 Solutions to the characteristic equation, Δ 𝑠𝑠 = 0
 Here, there are two poles

 Zeros: values of s for which 𝐺𝐺 𝑠𝑠 = 0
 The roots of the numerator polynomial
 Here, there are none
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Natural Frequency & Damping Ratio

 This second-order characteristic polynomial

𝛥𝛥 𝑠𝑠 = 𝑠𝑠2 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 +
𝑘𝑘
𝑚𝑚

can be re-written as

Δ 𝑠𝑠 = 𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

 𝜁𝜁 is the damping ratio

𝜁𝜁 =
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
2 𝑘𝑘𝑚𝑚𝑟𝑟2𝑅𝑅𝑚𝑚

 𝜔𝜔𝑛𝑛 is the natural frequency

𝜔𝜔𝑛𝑛 = 𝑘𝑘
𝑚𝑚



K. Webb ESE 430

31

System Poles & Zeros

 The second-order system has two poles at

𝑠𝑠1,2 = −𝜁𝜁𝜔𝜔𝑛𝑛 ± 𝜔𝜔𝑛𝑛 𝜁𝜁2 − 1

 The value of the damping ratio, 𝜁𝜁, determines the 
nature of the two poles:
 𝜻𝜻 > 𝟏𝟏: two real, distinct poles – over-damped
 𝜻𝜻 = 𝟏𝟏: two real, identical poles – critically-damped
 𝜻𝜻 < 𝟏𝟏: complex-conjugate pair poles – under-damped

 Type of poles, and, therefore, the value of 𝜁𝜁, 
determines the nature of the response
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System Poles & Zeros

 Assume the following system 
parameter values:
 𝑅𝑅𝑚𝑚 = 8 Ω
 𝑘𝑘𝑚𝑚 = 0.02 𝑁𝑁𝑚𝑚/𝐴𝐴
 𝑟𝑟 = 0.01 𝑚𝑚
 𝑚𝑚 = 0.1 𝑘𝑘𝑘𝑘
 𝑘𝑘 = 0.5 𝑁𝑁/𝑚𝑚
 𝑏𝑏 = 0.05 𝑁𝑁𝑠𝑠/𝑚𝑚

 Poles: 
 𝑠𝑠1 = −1.15 𝑟𝑟𝑎𝑎𝑎𝑎/𝑠𝑠𝑒𝑒𝑠𝑠
 𝑠𝑠2 = −4.35 𝑟𝑟𝑎𝑎𝑎𝑎/𝑠𝑠𝑒𝑒𝑠𝑠

 𝜁𝜁 = 1.23 > 1 – over-damped – distinct, real poles
 Monotonic step response – no overshoot or ringing
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Dynamic System Response

 Often characterize systems by their responses to 
particular classes of inputs, e.g.:

 Impulse response: response to an impulse with zero initial 
conditions – time-domain response

 Step response: response to a unit step with zero initial 
conditions – time-domain response

 Frequency response: system response to sinusoidal inputs 
of varying frequency – system gain and phase as functions 
of frequency – frequency-domain response

 Additionally, we often want to simulate the system’s 
response to arbitrary inputs
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Impulse Response

 The system response in the Laplace domain is given 
by the product of the transfer function and the 
Laplace transform of the input

𝐺𝐺 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 ⋅ 𝑈𝑈 𝑠𝑠

 The Laplace transform of an impulse function is

ℒ 𝛿𝛿 𝑡𝑡 = 1

therefore, a system’s impulse response is the 
inverse Laplace transform of its transfer function

𝑘𝑘 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠
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Impulse Response

 For our rack and pinion positioning system:

𝑘𝑘 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠 = ℒ−1
2.5

𝑠𝑠2 + 5.5𝑠𝑠 + 5

 Inverse transform via partial fraction expansion

𝐺𝐺 𝑠𝑠 = 2.5
𝑠𝑠2+5.5𝑠𝑠+5

= 𝑟𝑟1
𝑠𝑠+1.15

+ 𝑟𝑟2
𝑠𝑠+4.35

(1)

2.5 = 𝑟𝑟1 𝑠𝑠 + 4.35 + 𝑟𝑟2 𝑠𝑠 + 1.15

2.5 = 𝑟𝑟1 + 𝑟𝑟2 𝑠𝑠 + 4.35𝑟𝑟1 + 1.15𝑟𝑟2

 Equating coefficients and solving  the resulting system of two equations 
gives the following residues:

𝑟𝑟1 = 0.7809
𝑟𝑟2 = −0.7809
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Impulse Response

 Substituting the 
residues back into (1) 
gives

𝐺𝐺 𝑠𝑠 =
0.7809
𝑠𝑠 + 1.15

−
0.7809
𝑠𝑠 + 4.35

 Inverse Laplace 
transforming gives the 
impulse response:

𝑘𝑘 𝑡𝑡 = 0.7809𝑒𝑒−1.15𝑡𝑡 − 0.7809𝑒𝑒−4.35𝑡𝑡
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Step Response

 The step response in 
the Laplace domain is
𝐺𝐺 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺 𝑠𝑠

𝐺𝐺 𝑠𝑠 =
1
𝑠𝑠 ⋅

2.5
𝑠𝑠2 + 5.5𝑠𝑠 + 5

 Inverse transforming 
gives the time-domain 
step response:

𝑦𝑦 𝑡𝑡 = 0.5 − 0.6795𝑒𝑒−1.15𝑡𝑡 + 0.1795𝑒𝑒−4.35𝑡𝑡
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Frequency Response

 The frequency response function or sinusoidal transfer 
function is obtained by substituting 𝑗𝑗𝜔𝜔 for 𝑠𝑠 in the 
transfer function

𝐺𝐺 𝑗𝑗𝜔𝜔 =
2.5

𝑗𝑗𝜔𝜔 2 + 5.5 𝑗𝑗𝜔𝜔 + 5

 This complex function of frequency can be evaluated to 
give the system’s:

 Gain: the ratio of the magnitudes of the system’s 
(sinusoidal) output to input as function of frequency

 Phase: the phase shift from the (sinusoidal) input to the 
output as a function of frequency
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Frequency Response

 Gain and phase are plotted as a Bode plot:
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Block Diagram Model

 Our positioning system, or plant, can be 
represented in block diagram form as

 It has an input, 𝑢𝑢 𝑡𝑡 , and an output, 𝑦𝑦 𝑡𝑡
 Input/output relationship described by the  plant 

model: transfer function, state variable model, etc. 
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Open-Loop Configuration

 Say we want to command a 5 𝑠𝑠𝑚𝑚 displacement from our plant
 Plant input, 𝑢𝑢 𝑡𝑡 , is a voltage applied to a motor

 We’d like the input to be the desired displacement, e.g. 5 𝑠𝑠𝑚𝑚
 This desired output specified by the reference input, 𝑟𝑟(𝑡𝑡)

 Block diagram is now:

 Added a controller block
 Constant gain, 𝐾𝐾𝑂𝑂𝑂𝑂, to convert from 𝑟𝑟 𝑡𝑡 to 𝑢𝑢 𝑡𝑡
 Value of 𝐾𝐾𝑂𝑂𝑂𝑂 depends on properties of the plant
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Open-Loop Controller Gain

 How do we determine 𝐾𝐾𝑂𝑂𝑂𝑂?
 The steady-state gain of the system is 

𝐺𝐺𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0

𝐺𝐺 𝑠𝑠 = lim
𝑠𝑠→0

2.5
𝑠𝑠2 + 5.5𝑠𝑠 + 5

= 0.5 𝑚𝑚/𝑉𝑉

 Set 𝐾𝐾𝑂𝑂𝑂𝑂 = 1/𝐺𝐺𝑠𝑠𝑠𝑠 = 2 𝑉𝑉/𝑚𝑚
 Say, for example, that we want a displacement of  5 𝑠𝑠𝑚𝑚

𝑟𝑟 𝑡𝑡 = 0.05 𝑚𝑚

𝑢𝑢 𝑡𝑡 = 𝐾𝐾𝑂𝑂𝑂𝑂 ⋅ 𝑟𝑟 𝑡𝑡 = 2 ⁄𝑉𝑉 𝑚𝑚 ⋅ 0.05 𝑚𝑚 = 100 𝑚𝑚𝑉𝑉

𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑢𝑢 𝑡𝑡 ⋅ 𝐺𝐺𝑠𝑠𝑠𝑠 = 100 𝑚𝑚𝑉𝑉 ⋅ 0.5 ⁄𝑚𝑚 𝑉𝑉 = 5 𝑠𝑠𝑚𝑚
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Open-Loop Response

 The open-loop 
controller yields 
a steady-state 
output equal to 
the reference 
input

𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑟𝑟 𝑡𝑡
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Disturbance Input

 Consider what happens if some external factor 
affects the system
 Additional load
 Increased drag due to part wear, etc.

 This is a disturbance
 Model as an additional input to the plant, 𝑤𝑤 𝑡𝑡 :
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Effect of Disturbance

 The open-loop controller 
(𝐾𝐾𝑂𝑂𝑂𝑂) was designed for the 
specific plant 
characteristics
 Disturbance not 

accounted for
 Now,

𝑦𝑦𝑠𝑠𝑠𝑠 = 𝐾𝐾𝑂𝑂𝑂𝑂 ⋅ 𝑟𝑟 𝑡𝑡 + 𝑤𝑤 𝑡𝑡 𝐺𝐺𝑠𝑠𝑠𝑠
𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑟𝑟 𝑡𝑡 + 𝑤𝑤 𝑡𝑡 ⋅ 𝐺𝐺𝑠𝑠𝑠𝑠

 Steady-state error results
𝑦𝑦𝑠𝑠𝑠𝑠 ≠ 𝑟𝑟 𝑡𝑡

𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑟𝑟 𝑡𝑡 − 𝑦𝑦𝑠𝑠𝑠𝑠
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Feedback Control

 Steady-state error due to disturbance input can be 
addressed by adding feedback

 The output is measured and fed back to the input
 Subtracted from the reference input – negative 

feedback
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Feedback Control

 This is a closed-loop configuration
 Difference between reference (desired output), 𝑟𝑟 𝑡𝑡 , and 

actual output, 𝑦𝑦 𝑡𝑡 , is the error, 𝑒𝑒 𝑡𝑡
𝑒𝑒 𝑡𝑡 = 𝑟𝑟 𝑡𝑡 − 𝑦𝑦 𝑡𝑡

 Error gets multiplied by the closed-loop controller gain, 𝐾𝐾𝐶𝐶𝑂𝑂
 Input to the plant, 𝑢𝑢 𝑡𝑡 , is the controller output plus the 

disturbance input
𝑢𝑢 𝑡𝑡 = 𝐾𝐾𝐶𝐶𝑂𝑂 ⋅ 𝑒𝑒 𝑡𝑡 + 𝑤𝑤 𝑡𝑡
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Closed-Loop Response

 Because 𝑦𝑦 𝑡𝑡 is fed 
back and used to 
generate 𝑢𝑢 𝑡𝑡 , error 
is reduced
 Though not 

eliminated, in this 
case

 Dynamics of the 
closed-loop system 
differ from the open-
loop system
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Reducing Steady-State Error

 Increasing controller 
gain can further 
reduce steady-state 
error

 Closed-loop system 
dynamics have 
changed a lot
 Faster risetime, 

increased overshoot
 Could this pose a 

problem?
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Closed-Loop Poles

 Nature of open-loop 
and closed-loop 
responses differ
 Closed-loop system 

poles differ from open-
loop system poles

 Feedback moves poles
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Second-Order Under-Damped System Poles

 We’ll see that feedback will allow us to 
move poles to desirable locations

 Second-order poles:
𝑠𝑠1,2 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑
𝑠𝑠1,2 = −𝜁𝜁𝜔𝜔𝑛𝑛 ± 𝑗𝑗𝜔𝜔𝑛𝑛 1 − 𝜁𝜁2

 Damping ratio

𝜁𝜁 =
𝜎𝜎
𝜔𝜔𝑛𝑛

= sin 𝜃𝜃

 Natural frequency

𝜔𝜔𝑛𝑛 = 𝜎𝜎2 + 𝜔𝜔𝑑𝑑2

 Damped natural frequency

𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛 1 − 𝜁𝜁2
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Second-Order Under-Damped System Poles

 Pole location determines dynamic 
behavior

 Overshoot:

%𝑂𝑂𝑆𝑆 = 𝑒𝑒
−𝜁𝜁𝜁𝜁
1−𝜁𝜁2 ⋅ 100%

𝜁𝜁 = −
ln 𝑂𝑂𝑆𝑆

𝜋𝜋2 + ln2 𝑂𝑂𝑆𝑆

 Settling time (±1%) approximation:

𝑡𝑡𝑠𝑠 ≈
4.6
𝜎𝜎

 Risetime approximation:

𝑡𝑡𝑟𝑟 ≈
1.8
𝜔𝜔𝑛𝑛
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Adding Controller Dynamics

 Previous controller was a simple gain factor
 Proportional control

 Controller could also be designed to have dynamics of 
its own – a compensator
 Controller transfer function may have poles and/or zeros
 Allows for better control of closed-loop system response
 Steady-state error – possible to eliminate
 Transient response – risetime, overshoot, settling time
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Closed-Loop Response

 Without getting into 
specifics, consider 
the effect of a 
controller that has a 
pole and two zeros

 Steady-state error 
has been eliminated

 Transient response 
nearly unchanged
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Closed-Loop Response

 Perhaps we want a 
faster response

 Alter closed-loop 
response by 
changing controller 
transfer function
 Much faster risetime
 Still almost no 

overshoot
 Still no steady-state 

error
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Closed-Loop Response

 Modify the 
controller again
 Even faster risetime
 Now, very large 

overshoot
 Significant ringing
 A desirable 

response? Perhaps 
not
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Controller Design

 How do we determine the controller transfer function 
to yield the desired response?
 The topic of this course

 What is the controller? 
 A block in a block diagram? Yes.
 A mathematical function? Yes.

 But, how do we implement it?
 Electronics – digital computer or opamp circuits
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ESE 430 Course Overview

1. Introduction
2. Block Diagrams & Signal Flow Graphs
3. Stability
4. Steady-State Error
5. Root-Locus Analysis
6. Root-Locus Design
7. Frequency-Response Analysis
8. Frequency-Response Design
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