SECTION 1: INTRODUCTION

- ESE 430 — Feedback Control Systems
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Introduction

In ESE 330, you learned how to model dynamic
systems and simulate their responses

o Analysis — how does a given system respond

0 Design (possibly) — tuning system parameters to
achieve a desired response

In ESE 430, you will learn how to design feedback
control systems to improve the response of a given
system in three primary areas:

o Dynamic response
o Steady-state error
o Stability
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Introduction
e

In this section of notes we will take a look at a simple
motor-driven rack and pinion positioning system
example to do the following:

o Review dynamic system modeling fundamentals
Bond graphs
State-variable models
System poles/zeros
Transient response — step, impulse, ...
Frequency response

o Introduce feedback control
What is it?
How can it help us obtain a desired system response?
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- Dynamic System Modeling

The design of a feedback control system requires
first having a model of the system to be controlled.

This sub-section provides a review of dynamic
system modeling and analysis fundamentals.
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- Bond-Graph Model



Rack and Pinion Positioning System

Simplified rack and
pinion positioning

/7777777

Rm
system M
o E.g., automated vo(t) ©
assembly equipment,
print-head driver, etc. v

o Voltage source drives a DC motor

Motor inductance neglected here
o Motor turns shaft and pinion gear

O As pinion turns, rack translates
The thing to be positioned is attached to the rack
Rack connection has both compliance and damping
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Bond-Graph Model

e
Create a bond-graph

model v Rn N

] +\/\/\— :
First, annotate the LS N
schematic vi(t) O

4

o Label all node voltages
o Indicate assumed positive voltage polarities and current
direction

o Label velocities at each mass and end of each spring and
damper

o Choose displacements of springs and dampers to be positive
in either compression or tension
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Bond-Graph Model

o~
~
3
[T 77777

| Element | _Voltage/Velocity

Next, tabulate all one- and vs(£): Se = v
R,.:R — v = V. —7
two-port elements, along m Rm = Ys — Va
: -~ GY - v,
with relevant voltages or ©=1/k, v, “
velocities TR A .
o Bond orientation follows v=rtw i
power convention m:1 v
: b:R — v
o Include TF and GY equations
1/k:C — v
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Bond-Graph Model
-

Use the table to construct a bond graph

m Voltage/Velocity m Voltage/Velocity

vs(£): S, — i
V=T-w v
R, R ~ VR, = Vs — Vg m: ] — v
- GY - o b:R — %
©=1/km " a @ 1/k:C — v
Rm:R m ]

W /]
vi(t) :Se—]—GY—TF——1—— R

w=1/kn'V, V=rw

/
1/k :C
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Bond-Graph Model

Create computational bond graph and assign
causality

| ]

Se——NIH—GY—TF—1—>R

f4= 1/km‘93 f5= r'f4 ‘[
8

C

I and Cg both have integral causality
o Two independent energy-storage elements
o A second-order system
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Bond-Graph Model
-

8

Annotate the bond graph in preparation for state equation derivation
o Sources

o State variable derivatives as effort/flow on independent I’s and C’s

o Apply constitutive laws to annotate the other power variables

R L

Se—" N1 ——GY——TF—1—/—R

f4= 1/km‘93 f5= r'f4
%SCIS ds

C
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- State-Variable Model



State-Variable System Model
e

Use annotated bond graph to derive a state-variable
model for the system

X = AX + Bu
y=Cx+ Du

o State derivatives are linear combinations of state
variables and inputs

o Output is a linear combination of states and inputs

o This is a SISO system
Single-input, single-output
u, y,and D are scalars
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State Equation Derivation
e

Follow causality through the bond graph to express
state variable derivatives as linear combinations of

states and inputs
R I
Start with pg F
. 2 Ps %Eps
P = €c = €5 — €7 — €g t 3 4 5 7
Se ei(t) \:1: \GY \:TF \=1= \R
A 1 1 fo= 1/km-es fs=rfy T
p6:;€4—R7f7—C—8q8 %ng o
“
C

(1)

. _ km Ry 1
Pe =~ f3 1. P66~ ¢, 48

fizh=pe =5 @®—e)=re®—2f

K 1

1 kml, _ 1 km 1
f3 = R_231(t) —R_Z;fs > e1(t) R, 1. D6 (2)
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State Equation and Output Equation
e

Substituting (2) into (1) give the first state equation:

. — k%l+R7T2R2 . i k_m
Pe =~ p o Pe g dst p-e(t) (3)
Next, move on to ¢
ds R T
. 1 2 p lps
CI8=f8=f6=I_p6 e
° SN 2 GY N TF——1——>R
fi= 1/km-€3 fe=rf,
The second state equation: Y gy |4
. 1 C
ds = 1~ Pe (4)
6
The output is the position of the rack, which is also the
displacement of the spring
Y = (s (5)
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State-Variable System Model

-
Equations (3) — (5) can be assembled in matrix form to give

the state-variable system model:

1_

ds

y =

pe]

- kZ,+R,;7T%R,

T2R216
1
Ig

0 1] Pe]

ds

Cg

0

!’”RZI e, (t)

Substituting in physical system parameters:

1=

K. Webb

o 1)

[ Kiu+br®Riy
r2Rym
1

m

—k

0

Km

7]+ Tm] e, (t)

0

(6)

(7)
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Transfer Function
e

The state-variable model is one of many possible mathematical
models for the system

o A time-domain model

The transfer function is another model
o A Laplace-domain model

The ratio of the output to the input in the Laplace domain, assuming
zero initial conditions:
Y(s)
U(s)
o Useful for determining the Laplace-domain output

Y(s) =G(s)-U(s)

G(s) =

o System poles/zeros are readily apparent
o Substitute s — jw for frequency response function
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Transfer Function
e

A couple of ways to convert from the state-variable
model to the transfer function

o Calculate directly:
G(s) =C(sI-—A)'B+D
Requires matrix inversion

o Solve for the states using Cramer’s rule, combine
according to the output equation and solve

algebraically for G(s) =Y (s)/U(s)
Matrix inversion is not required

We’ll step through both methods
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State Space > Transfer Function —1

From the A B C D matrices that define the state

variable model:

G(s)=C(sI—A)"'B+D

kZ, + br*R,,
S+

G(s)=1[0 1] ’"Zf’"m

m

The inverse of the (sI — A) matrix is

(sI—A) 1=

S

adj(sI — A) 3 adj(sI —A)

|sI — A

A(s)

A(s) is the characteristic polynomial of the system

K. Webb
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The Characteristic Polynomial

-
The characteristic polynomial

S+k,%n+br2Rm
2
A(s) = |sI — Al = r fmm
—— s
m
kZ + br®R k
A(s) = s? + — O

r’R,,m m
Recall

o A(s) is the denominator of the Laplace transform of
every state and the output

O The roots of A(s), the poles of the system, determine
the nature of the system response
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State Space > Transfer Function —1
-

S —k
(sI—A)"1= B B N kZ, + br?R,,
As) m ° r2R,,m

Substituting back into the expression for G (s)

1 S —k ko
_ | 1 k2 + br?R,, || n
G(s) 106) [0 1] 1 s 4 Sim i m||TR,,
m r“R,,m 0
k
1 |1 kZ + br2R,, | [=
G _ = m m
O=10m T R ””;m
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State Space > Transfer Function — 2
-

Alternatively, find G (s) by Laplace transforming the state equation
and applying Cramer’s rule

The state equation in general form:

X = AX + Bu (1)

Apply the Laplace transform, assuming zero initial conditions

sX(s) = AX(s) + BU(s)

Collecting the transform of the state vector on the left-hand side

sX(s) — AX(s) = BU(s)

Factoring out X(s)
(sI — A)X(s) = BU(s) (2)
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State Space > Transfer Function — 2
-

Can now apply Cramer’s rule to solve for individual
elements in X(s), i.e., the Laplace transform of
individual states

|(sT — A);]

Xi(s) = SI—A|

(sI — A); is the matrix formed by replacing the i‘"
column of (sI — A) with BU(s), the RHS of (2)

Determine as many states as are required to
calculate Y (s)
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State Space > Transfer Function — 2
-

State variable model for our system

' [ Kintbr?Ry k-

W I (T e e
R 0_

y=l0 1]

Here the output depends only on the displacement
of the spring, y(t) = x(t)

o To find Y (s), apply Cramer’s rule to the Laplace
transformed state equation to find X (s)

NOTE: X (s) is the Laplace transform of the displacement of
the spring, X(s) is the Laplace transform of the state vector
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State Space > Transfer Function — 2

k2, + br?R,, k,, K
X(s) = |(sT — A),]| _ 1 r2R,,m Ry, uls) _ " mR,,r U(s)
|sI — A| A(s) 1 &2 k2 +br2RmS+£
m 0 r2R,m m

The Laplace transform of the output is

Km

mR,,r U(s)

Y(s) =X(s) =

S
r°R,m m

Dividing both sides by the input gives the transfer function

Km
G(s) = Y(s) mR,, T
_U(S)_S kin + br?Rp  k
r’R,,m m
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- System Poles & Zeros
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System Poles & Zeros

km/
G(s) = mR,,r
5 +k,%1+br2RmS+£
r*R,m m

Poles: values of s for which G(s) =

O The roots of the denominator, A(s)

o Solutions to the characteristic equation, A(s) = 0
o Here, there are two poles

Zeros: values of s for which G(s) =0
o The roots of the numerator polynomial
o Here, there are none
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Natural Frequency & Damping Ratio
-

This second-order characteristic polynomial

A(s) = s> + Kin + brszS + L3
r’R,,m m

can be re-written as
A(s) = s? 4+ 2{w,s + w?
¢ is the damping ratio
kZ + br?R,,
S = 2Vkmr2R,,

wy, is the natural frequency

|k
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System Poles & Zeros

-
The second-order system has two poles at

S1,2 = —Cwn iwn\/(z —1

The value of the damping ratio, ¢, determines the
nature of the two poles:

o { > 1:two real, distinct poles — over-damped
o ¢ = 1:two real, identical poles — critically-damped

0 { < 1: complex-conjugate pair poles — under-damped

Type of poles, and, therefore, the value of ¢,
determines the nature of the response
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System Poles & Zeros
e

ASSU me th e fOl |OW| ng SySte m Rack and Pinion Positioning System -- Poles
parameter values: | | | |

R, =8Q ol
ky =0.02Nm/A
r=0.01m
m=0.1kg
k=05N/m

b =0.05Ns/m

» o
L I |
= A
- W
o O,

-
nn

Imaginary [rad/sec]

Poles:
o s; =—1.15rad/sec

o s, =—4.35rad/sec %5 4 3 2 1 0 1

Real [rad/sec]

¢ = 1.23 > 1 — over-damped — distinct, real poles

o Monotonic step response — no overshoot or ringing
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Dynamic System Response

Often characterize systems by their responses to
particular classes of inputs, e.g.:

O Impulse response: response to an impulse with zero initial
conditions — time-domain response

O Step response: response to a unit step with zero initial
conditions — time-domain response

O Frequency response: system response to sinusoidal inputs
of varying frequency — system gain and phase as functions
of frequency — frequency-domain response

Additionally, we often want to simulate the system’s
response to arbitrary inputs
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Impulse Response
R

The system response in the Laplace domain is given
by the product of the transfer function and the
Laplace transform of the input

Y(s) =G(s)-U(s)
The Laplace transform of an impulse function is
L{6()} =1

therefore, a system’s impulse response is the
inverse Laplace transform of its transfer function

gt) = L7HG(s)}
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Impulse Response
R

For our rack and pinion positioning system:

) o 25
g9(t) = L7HG ()} = L7 {52 T+ 555 + 5}

Inverse transform via partial fraction expansion

G(S)= 2.5 . n n ) (1)

s2+55s+5 s+1.15 s+4.35

2.5 =1r(s +4.35) + (s + 1.15)
25=(r; +1r)s+435nn +1.15n,

Equating coefficients and solving the resulting system of two equations
gives the following residues:

r, = 0.7809
r, = —0.7809
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Impulse Response
R

Rack and Pinion Positioning System Impulse Response

Substituting the 04
residues back into (1) 05!
gives 0al
6(s) = 0.7809  0.7809 025
Y TS¥115 s+435  Eo
0)0.15
Inverse Laplace >
transforming gives the %]
impulse response: A

Time [sec]

g(t) = 0.7809¢~ 115t — (0,7809¢ 35t
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Step Response

Rack and Pinion Positioning System Step Response

The step response in
the Laplace domain is

Y(s) =U(s)-G(s)

1 2.5

V) =5 @ ¥sss+5 =

x@®) [m]

Inverse transforming
gives the time-domain

step response: I

y(t) = 0.5 — 0.6795¢ 115t 4 0.1795¢~*35¢
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Frequency Response

The frequency response function or sinusoidal transfer
function is obtained by substituting jw for s in the
transfer function

G(w) =

2.5
(jw)? +55(w) + 5

This complex function of frequency can be evaluated to
give the system’s:

O Gain: the ratio of the magnitudes of the system’s
(sinusoidal) output to input as function of frequency

O Phase: the phase shift from the (sinusoidal) input to the
output as a function of frequency
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Frequency Response

Gain and phase are plotted as a Bode plot:

Rack and Pinion Positioning System Frequency Response
0 T T T R a———

20+
40+
60

Gain [dB]

-80r

-100

phae [deg]

_200-3 | HIHHI—Q L ‘......|0 1
10 10 10 10 10 10
Frequency [HZ]
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Open-Loop System Response



Block Diagram Model
R

Our positioning system, or plant, can be
represented in block diagram form as

u(t) Plant \\/(t)
G(s) f

It has an input, u(t), and an output, y(t)

o Input/output relationship described by the plant
model: transfer function, state variable model, etc.
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Open-Loop Configuration
-

Say we want to command a 5 cm displacement from our plant

o Plant input, u(t), is a voltage applied to a motor

We’d like the input to be the desired displacement, e.g. 5 cm

o This desired output specified by the reference input, r(t)

Block diagram is now:

(t) Controller | () Plant y(t)
Kot G(s) '

Added a controller block
o Constant gain, K, to convert from r(t) to u(t)

o Value of Ky; depends on properties of the plant

K. Webb ESE 430



Open-Loop Controller Gain
R

f(t) Controller | (1) Plant y(t)

e S
KoL G(s)

How do we determine K, ?

The steady-state gain of the system is

2.5
6o =09 = Iy (555 5) =05 ™Y

SetKp;, =1/Gys =2V /m
Say, for example, that we want a displacement of 5 cm
r(t) = 0.05m
u(t) =Ko, -r(t) =2V/m-0.05m =100 mV
s = u(t) - Geo =100mV - 0.5m/V =5cm
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Open-Loop Response
e

The open-loop

Open-Loop Step Response

5.5
controller yields :
4.5
a steady-state J
output equal to o5

o L e e e e W at

the reference ol o

input 2r
1.5+
Vss = 7(t) 'l
05

C'0 1 2 3 tll 5 6 7 8

Time [sec]
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Disturbance Input
e

Consider what happens if some external factor
affects the system

o Additional load
o Increased drag due to part wear, etc.

This is a disturbance
o0 Model as an additional input to the plant, w(t):

w(t)

f(t) Controller fL u(t) Plant y(t)
— ., 2
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Effect of Disturbance
-

The open-loop controller

(KOL) was deSlgned for the Step Response in Presence of Disturbance
specific plant 55 - | ' ' ' '
characteristics 5
o Disturbance not 45

accounted for 4r
Now, Rl

s/ [ @ ||

Vss = [KOL -r(t) + W(t)]Gss S 25 y(H

Vss = 17(t) + w(t) - Ggs

Steady-state error results 1
05
Yss # 1(t) . |
0 1 2 3 . 4 5 6 7 8
eSS — r(t) — ySS Time [sec]
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- Closed-Loop Feedback Control



Feedback Control
-

Steady-state error due to disturbance input can be
addressed by adding feedback
The output is measured and fed back to the input

O Subtracted from the reference input — negative
feedback

w(t)

((t) et Controller f|(\ u(t) Plant y(t)
) ’

\;T Ket
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Feedback Control

wi(t)

r(t) N elt) Controller fl(z\ u(t) Plant y(t)
z KeL 2/ G(S)

This is a closed-loop configuration

Difference between reference (desired output), r(t), and
actual output, y(t), is the error, e(t)

e(t) =r(t) —y(t)

Error gets multiplied by the closed-loop controller gain, K.

Input to the plant, u(t), is the controller output plus the
disturbance input

u(t) = Ko - e(t) + w(t)
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Closed-Loop Response
e

Because y(t) is fed
back and used to 55
generate u(t), error
is reduced

o Though not

eliminated, in this
case

Dynamics of the
closed-loop system
differ from the open- Time._feed
loop system

Feedback Reduces Steady-State Error

--------- r(t)
Open-Loop
--------- Closed_Loop -
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Reducing Steady-State Error
e

Increasing controller

g 3 | N can f u rt h er Inlcreased IControIIaI.-r Gain tal. Reducel Steady-lstate Errtl)r
reduce steady-state " %
error 5 ";_:ﬁ;..-....-.::.: ke
Closed-loop system ¢ N O
dynamics have 2 T
changed a lot
o Faster risetime,

increased overshoot S

Time [sec]

o Could this pose a
problem?
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Closed-Loop Poles
e

N at U re Of O pe n - I OO p Open-Loop and Closed-Loop System Poles
and closed-loop ° X X oventone]
responses differ af X Ko =15 |
O Closed-loop system = 2 X
poles differ from open- %
loop system poles T *
E)-Z X
Feedback moves poles
4t
6 | [x |
5 4 3 2 1 0 1

Real [rad/sec]
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Second-Order Under-Damped System Poles
e

We’'ll see that feedback will allow us to
move poles to desirable locations

Second-Order Pole Locations

Second-order poles:
. S1 =-0+jWwy
S12 = —0 X jwg X +wa
_ . [1_ 72
S12 = —Cwp T jwp/1—C¢ D
s DN -
Damping ratio . ]
1] H
o 50 ;
{ = — = sin(0) £ o
wn
Natural frequency
2 x JWq
wn - 0-2 + wd Sl='G'jLUd
0
Damped natural frequency Real

wg = Wy 1 — (3
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Second-Order Under-Damped System Poles
e

Pole location determines dynamic

behavior
Second-Order Pole Locations
Overshoot:
S1 =-0+jWwy
< —qm ) x +Hwgy
%0S = e \WW1-¢*/ . 100% T
; - In(0S) i NS
JmZ +1n2(0S) g
Settling time (+1%) approximation:
. 4.6 9
~ — JWy
> o S1 = -0-jWyq
Risetime approximation: :
18 Real
t, ~ —
r (Un
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Adding Controller Dynamics

Previous controller was a simple gain factor

o Proportional control

Controller could also be designed to have dynamics of
its own — a compensator

o Controller transfer function may have poles and/or zeros

o Allows for better control of closed-loop system response
Steady-state error — possible to eliminate
Transient response —risetime, overshoot, settling time

w(t)

() @ e(t) Controller f|(2\ u(t) Plant y(t)
Gq(s) &/ Ga(s) ’
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Closed-Loop Response
R
Without getting into

SpECifiCS’ Consider 55 ,CIOSEd-L,oop StEF,. Responlse w/ Co,ntm"er E,)y"amics.
the effect of a M| T —
controller that hasa .
pole and two zeros ;z: _________ -
- Open-Loop

Steady-state error =, / 7 -
has been eliminated s

|
Transient response /A
nearly unchanged T T
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Closed-Loop Response

-
Perhaps we want a

faster response 55 Cl?sed-Loolp Respolnse for[?ifferent (Itontro[IeIrDynamics
Alter closed-loop N
response by o |
changing controller =5 |
. E 3t e )
transfer function > t,=21 sec Gortrollor 3|
=4 033 =00% | Controller 4

O Much faster risetime il ¢ = 525msoc

15} rd _ %
o Still almost no j! ©%4= 02

overshoot 05

o Still no steady-state 1 2 34 5 & 71 8

Time [sec]

error
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Closed-Loop Response
e

Modify the

CO nt ro I I e r a ga i n o Closed-Loop Response for Different Controller Dynamics
-.Q
o Even faster risetime i
6
o Now, very large
] !‘ 's‘-’.".
overshoot e i Y = ,m
- Controller 4 |1
1 11 1 1 S I Controller 5
o Significant ringing 2 (=525 msec
o A desirable 0% =02
response? Perhaps B Sian
not L | . I
2 3 4 5 6 7 8
Time [sec]
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Controller Design

w(t)

r(t) o e(t) | Controller fL u(t) Plant y(t)
; &

T 27?

How do we determine the controller transfer function
to yield the desired response?

o The topic of this course

What is the controller?

o A block in a block diagram? Yes.
o A mathematical function? Yes.

But, how do we implement it?
o Electronics — digital computer or opamp circuits
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ESE 430 Course Overview
e

Introduction

Block Diagrams & Signal Flow Graphs
Stability

Steady-State Error

Root-Locus Analysis

Root-Locus Design
Frequency-Response Analysis
Frequency-Response Design
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