SECTION 1: INTRODUCTION

ESE 430 - Feedback Control Systems

2

Introduction

Introduction

\square In ESE 330, you learned how to model dynamic systems and simulate their responses
\square Analysis - how does a given system respond

- Design (possibly) - tuning system parameters to achieve a desired response
\square In ESE 430, you will learn how to design feedback control systems to improve the response of a given system in three primary areas:
- Dynamic response
\square Steady-state error
\square Stability

Introduction

\square In this section of notes we will take a look at a simple motor-driven rack and pinion positioning system example to do the following:

- Review dynamic system modeling fundamentals
- Bond graphs
- State-variable models
- System poles/zeros
- Transient response - step, impulse, ...
- Frequency response
- Introduce feedback control
- What is it?
- How can it help us obtain a desired system response?

5

Dynamic System Modeling

The design of a feedback control system requires first having a model of the system to be controlled.
This sub-section provides a review of dynamic system modeling and analysis fundamentals.

Rack and Pinion Positioning System

\square Simplified rack and pinion positioning system

- E.g., automated assembly equipment, print-head driver, etc.

- Voltage source drives a DC motor
- Motor inductance neglected here
- Motor turns shaft and pinion gear
- As pinion turns, rack translates
- The thing to be positioned is attached to the rack
- Rack connection has both compliance and damping

Bond-Graph Model

\square Create a bond-graph model
\square First, annotate the schematic

- Label all node voltages

- Indicate assumed positive voltage polarities and current direction
- Label velocities at each mass and end of each spring and damper
- Choose displacements of springs and dampers to be positive in either compression or tension

Bond-Graph Model

Element

Voltage/Velocity
\square Next, tabulate all one- and two-port elements, along with relevant voltages or velocities

- Bond orientation follows power convention
- Include TF and GY equations

Element	Voltage/Velocity
$v_{s}(t): S_{e} \rightharpoonup$	v_{s}
$R_{m}: R \leftharpoonup$	$v_{R_{m}}=v_{s}-v_{a}$
$-G Y \rightharpoonup$	v_{a}
$\omega=1 / k_{m} \cdot v_{a}$	ω
$T F \rightharpoonup$	ω
$v=r \cdot \omega$	v
$m: I \leftharpoonup$	v
$b: R \leftharpoonup$	v
$1 / k: C \leftharpoonup$	v

Bond-Graph Model

\square Use the table to construct a bond graph

Element	Voltage/Velocity
$v_{s}(t): S_{e} \rightharpoonup$	v_{s}
$R_{m}: R \leftharpoonup$	$v_{R_{m}}=v_{s}-v_{a}$
$\rightharpoonup G Y \rightharpoonup$	v_{a}
$\omega=1 / k_{m} \cdot v_{a}$	ω

Element	Voltage/Velocity
$-T F \rightharpoonup$	ω
$=r \cdot \omega$	v
$m: I \leftharpoonup$	v
$b: R \leftharpoonup$	v
$1 / k: C \leftharpoonup$	v

Bond-Graph Model

\square Create computational bond graph and assign causality

$\square I_{6}$ and C_{8} both have integral causality
\square Two independent energy-storage elements
\square A second-order system

Bond-Graph Model

\square State variables:

$$
\mathbf{x}=\left[\begin{array}{l}
p_{6} \\
q_{8}
\end{array}\right]
$$

\square Annotate the bond graph in preparation for state equation derivation

- Sources
- State variable derivatives as effort/flow on independent I's and C's
- Apply constitutive laws to annotate the other power variables

State-Variable Model

State-Variable System Model

\square Use annotated bond graph to derive a state-variable model for the system

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B} u \\
& y=\mathbf{C} \mathbf{x}+D u
\end{aligned}
$$

\square State derivatives are linear combinations of state variables and inputs

- Output is a linear combination of states and inputs
- This is a SISO system
- Single-input, single-output
$-u, y$, and D are scalars

State Equation Derivation

\square Follow causality through the bond graph to express state variable derivatives as linear combinations of states and inputs

- Start with \dot{p}_{6}

$$
\begin{align*}
& \dot{p}_{6}=e_{6}=e_{5}-e_{7}-e_{8} \\
& \dot{p}_{6}=\frac{1}{r} e_{4}-R_{7} f_{7}-\frac{1}{C_{8}} q_{8} \\
& \dot{p}_{6}=\frac{k_{m}}{r} f_{3}-\frac{R_{7}}{I_{6}} p_{6}-\frac{1}{C_{8}} q_{8} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& f_{3}=f_{2}=\frac{1}{R_{2}} e_{2}=\frac{1}{R_{2}}\left(e_{1}(t)-e_{3}\right)=\frac{1}{R_{2}} e_{1}(t)-\frac{k_{m}}{R_{2}} f_{4} \\
& f_{3}=\frac{1}{R_{2}} e_{1}(t)-\frac{k_{m}}{R_{2}} \frac{1}{r} f_{5}=\frac{1}{R_{2}} e_{1}(t)-\frac{k_{m}}{R_{2} r} \frac{1}{I_{6}} p_{6} \tag{2}
\end{align*}
$$

State Equation and Output Equation

\square Substituting (2) into (1) give the first state equation:

$$
\begin{equation*}
\dot{p}_{6}=-\frac{k_{m}^{2}+R_{7} r^{2} R_{2}}{r^{2} R_{2} I_{6}} p_{6}-\frac{1}{C_{8}} q_{8}+\frac{k_{m}}{r R_{2}} e_{1}(t) \tag{3}
\end{equation*}
$$

\square Next, move on to \dot{q}_{8}

$$
\dot{q}_{8}=f_{8}=f_{6}=\frac{1}{I_{6}} p_{6}
$$

\square The second state equation:

$$
\begin{equation*}
\dot{q}_{8}=\frac{1}{I_{6}} p_{6} \tag{4}
\end{equation*}
$$

\square The output is the position of the rack, which is also the displacement of the spring

$$
\begin{equation*}
y=q_{8} \tag{5}
\end{equation*}
$$

State-Variable System Model

\square Equations (3) - (5) can be assembled in matrix form to give the state-variable system model:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{p}_{6} \\
\dot{q}_{8}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{k_{m}^{2}+R_{7} r^{2} R_{2}}{r^{2} R_{2} I_{6}} & -\frac{1}{C_{8}} \\
\frac{1}{I_{6}} & 0
\end{array}\right]\left[\begin{array}{c}
p_{6} \\
q_{8}
\end{array}\right]+\left[\begin{array}{c}
\frac{k_{m}}{r R_{2}} \\
0
\end{array}\right] e_{1}(t)} \tag{6}\\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
p_{6} \\
q_{8}
\end{array}\right]
\end{align*}
$$

\square Substituting in physical system parameters:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{p} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right]+\left[\begin{array}{c}
\frac{k_{m}}{r R_{m}} \\
0
\end{array}\right] e_{1}(t)} \tag{7}\\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right]
\end{align*}
$$

Transfer Function

Transfer Function

\square The state-variable model is one of many possible mathematical models for the system

- A time-domain model
\square The transfer function is another model
- A Laplace-domain model
\square The ratio of the output to the input in the Laplace domain, assuming zero initial conditions:

$$
G(s)=\frac{Y(s)}{U(s)}
$$

- Useful for determining the Laplace-domain output

$$
Y(s)=G(s) \cdot U(s)
$$

- System poles/zeros are readily apparent
- Substitute $s \rightarrow j \omega$ for frequency response function

Transfer Function

\square A couple of ways to convert from the state-variable model to the transfer function

- Calculate directly:

$$
G(s)=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

- Requires matrix inversion
\square Solve for the states using Cramer's rule, combine according to the output equation and solve algebraically for $G(s)=Y(s) / U(s)$
- Matrix inversion is not required
\square We'll step through both methods

State Space \rightarrow Transfer Function - 1

\square From the ABCD matrices that define the state variable model:

$$
G(s)=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

\square For our example:

$$
G(s)=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
s+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} & k \\
-\frac{1}{m} & s
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{k_{m}}{r_{m}} \\
0
\end{array}\right]
$$

\square The inverse of the $(s I-A)$ matrix is

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\frac{\operatorname{adj}(\mathbf{s} \mathbf{I}-\mathbf{A})}{|s \mathbf{I}-\mathbf{A}|}=\frac{\operatorname{adj}(\mathbf{s I}-\mathbf{A})}{\Delta(s)}
$$

$\square \Delta(s)$ is the characteristic polynomial of the system

The Characteristic Polynomial

\square The characteristic polynomial

$$
\begin{aligned}
& \Delta(s)=|s I-A|=\left|\begin{array}{cc}
s+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} & k \\
-\frac{1}{m} & s
\end{array}\right| \\
& \Delta(s)=s^{2}+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} s+\frac{k}{m}
\end{aligned}
$$

\square Recall
$\square \Delta(s)$ is the denominator of the Laplace transform of every state and the output
\square The roots of $\Delta(s)$, the poles of the system, determine the nature of the system response

State Space \rightarrow Transfer Function - 1

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\frac{1}{\Delta(s)}\left[\begin{array}{cc}
s & -k \\
\frac{1}{m} & s+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m}
\end{array}\right]
$$

\square Substituting back into the expression for $G(s)$

$$
\left.\begin{array}{c}
G(s)=\frac{1}{\Delta(s)}\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
s & -k \\
\frac{1}{m} & s+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m}
\end{array}\right]\left[\begin{array}{c}
\frac{k_{m}}{r R_{m}} \\
0
\end{array}\right] \\
G(s)=\frac{1}{\Delta(s)}\left[\frac{1}{m} \quad s+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m}\right.
\end{array}\right]\left[\begin{array}{c}
\frac{k_{m}}{r R_{m}} \\
0
\end{array}\right] \quad .
$$

\square The system transfer function:

$$
G(s)=\frac{k_{m} / m R_{m} r}{s^{2}+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} s+\frac{k}{m}}
$$

State Space \rightarrow Transfer Function - 2

\square Alternatively, find $G(s)$ by Laplace transforming the state equation and applying Cramer's rule
\square The state equation in general form:

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \tag{1}
\end{equation*}
$$

\square Apply the Laplace transform, assuming zero initial conditions

$$
s \mathbf{X}(s)=\mathbf{A} \mathbf{X}(s)+\mathbf{B} U(s)
$$

\square Collecting the transform of the state vector on the left-hand side

$$
s \mathbf{X}(s)-\mathbf{A X}(s)=\mathbf{B} U(s)
$$

\square Factoring out $\mathbf{X}(s)$

$$
\begin{equation*}
(s \mathbf{I}-\mathbf{A}) \mathbf{X}(s)=\mathbf{B} U(s) \tag{2}
\end{equation*}
$$

State Space \rightarrow Transfer Function - 2

\square Can now apply Cramer's rule to solve for individual elements in $\mathbf{X}(s)$, i.e., the Laplace transform of individual states

$$
X_{i}(s)=\frac{\left|(s \mathbf{I}-\mathbf{A})_{i}\right|}{|s \mathbf{I}-\mathbf{A}|}
$$

$\square(s \mathbf{I}-\mathbf{A})_{i}$ is the matrix formed by replacing the $i^{\text {th }}$ column of ($s \mathbf{I}-\mathbf{A}$) with $\mathbf{B} U(s)$, the RHS of (2)
\square Determine as many states as are required to calculate $Y(s)$

State Space \rightarrow Transfer Function - 2

\square State variable model for our system

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{p} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} & -k \\
\frac{1}{m} & 0
\end{array}\right]\left[\begin{array}{c}
p \\
x
\end{array}\right]+\left[\begin{array}{c}
\frac{k_{m}}{r R_{m}} \\
0
\end{array}\right] e_{1}(t)} \\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
p \\
x
\end{array}\right]
\end{aligned}
$$

\square Here the output depends only on the displacement of the spring, $y(t)=x(t)$

- To find $Y(s)$, apply Cramer's rule to the Laplace transformed state equation to find $X(s)$
- NOTE: $X(s)$ is the Laplace transform of the displacement of the spring, $\mathbf{X}(s)$ is the Laplace transform of the state vector

State Space \rightarrow Transfer Function - 2

$$
X(s)=\frac{\left|(s \mathbf{I}-\mathbf{A})_{2}\right|}{|s \mathbf{I}-\mathbf{A}|}=\frac{1}{\Delta(s)}\left|\begin{array}{cc}
s+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} & \frac{k_{m}}{R_{m} r} U(s) \\
-\frac{1}{m} & 0
\end{array}\right|=\frac{k_{m} / m R_{m} r U(s)}{s^{2}+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} s+\frac{k}{m}}
$$

\square The Laplace transform of the output is

$$
Y(s)=X(s)=\frac{k_{m} / m R_{m} r U(s)}{s^{2}+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} s+\frac{k}{m}}
$$

\square Dividing both sides by the input gives the transfer function

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{k_{m} / m R_{m} r}{s^{2}+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} s+\frac{k}{m}}
$$

28

System Poles \& Zeros

System Poles \& Zeros

$$
G(s)=\frac{k_{m} / m R_{m} r}{s^{2}+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} s+\frac{k}{m}}
$$

\square Poles: values of s for which $G(s)=\infty$
\square The roots of the denominator, $\Delta(s)$
\square Solutions to the characteristic equation, $\Delta(s)=0$

- Here, there are two poles
\square Zeros: values of s for which $G(s)=0$
\square The roots of the numerator polynomial
\square Here, there are none

Natural Frequency \& Damping Ratio

\square This second-order characteristic polynomial

$$
\Delta(s)=s^{2}+\frac{k_{m}^{2}+b r^{2} R_{m}}{r^{2} R_{m} m} s+\frac{k}{m}
$$

can be re-written as

$$
\Delta(s)=s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}
$$

$\square \zeta$ is the damping ratio

$$
\zeta=\frac{k_{m}^{2}+b r^{2} R_{m}}{2 \sqrt{k m} r^{2} R_{m}}
$$

$\square \omega_{n}$ is the natural frequency

$$
\omega_{n}=\sqrt{\frac{k}{m}}
$$

System Poles \& Zeros

\square The second-order system has two poles at

$$
s_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

\square The value of the damping ratio, ζ, determines the nature of the two poles:
$\square \zeta>1$: two real, distinct poles - over-damped
$\square \zeta=1$: two real, identical poles - critically-damped
$\square \zeta<1$: complex-conjugate pair poles - under-damped
\square Type of poles, and, therefore, the value of ζ, determines the nature of the response

System Poles \& Zeros

\square Assume the following system parameter values:

- $R_{m}=8 \Omega$
- $k_{m}=0.02 \mathrm{Nm} / \mathrm{A}$
- $r=0.01 \mathrm{~m}$

ㅁ $m=0.1 \mathrm{~kg}$

- $k=0.5 \mathrm{~N} / \mathrm{m}$
- $b=0.05 \mathrm{Ns} / \mathrm{m}$
\square Poles:
- $s_{1}=-1.15 \mathrm{rad} / \mathrm{sec}$
- $s_{2}=-4.35 \mathrm{rad} / \mathrm{sec}$

$\square \zeta=1.23>1$ - over-damped - distinct, real poles
- Monotonic step response - no overshoot or ringing

33
 Dynamic System Response

Dynamic System Response

\square Often characterize systems by their responses to particular classes of inputs, e.g.:

- Impulse response: response to an impulse with zero initial conditions - time-domain response
- Step response: response to a unit step with zero initial conditions - time-domain response
- Frequency response: system response to sinusoidal inputs of varying frequency - system gain and phase as functions of frequency - frequency-domain response
\square Additionally, we often want to simulate the system's response to arbitrary inputs

Impulse Response

\square The system response in the Laplace domain is given by the product of the transfer function and the Laplace transform of the input

$$
Y(s)=G(s) \cdot U(s)
$$

\square The Laplace transform of an impulse function is

$$
\mathcal{L}\{\delta(t)\}=1
$$

therefore, a system's impulse response is the inverse Laplace transform of its transfer function

$$
g(t)=\mathcal{L}^{-1}\{G(s)\}
$$

Impulse Response

\square For our rack and pinion positioning system:

$$
g(t)=\mathcal{L}^{-1}\{G(s)\}=\mathcal{L}^{-1}\left\{\frac{2.5}{s^{2}+5.5 s+5}\right\}
$$

\square Inverse transform via partial fraction expansion

$$
\begin{align*}
& G(s)=\frac{2.5}{s^{2}+5.5 s+5}=\frac{r_{1}}{s+1.15}+\frac{r_{2}}{s+4.35} \tag{1}\\
& 2.5=r_{1}(s+4.35)+r_{2}(s+1.15) \\
& 2.5=\left(r_{1}+r_{2}\right) s+4.35 r_{1}+1.15 r_{2}
\end{align*}
$$

\square Equating coefficients and solving the resulting system of two equations gives the following residues:

$$
\begin{aligned}
& r_{1}=0.7809 \\
& r_{2}=-0.7809
\end{aligned}
$$

Impulse Response

\square Substituting the residues back into (1) gives

$$
G(s)=\frac{0.7809}{s+1.15}-\frac{0.7809}{s+4.35}
$$

\square Inverse Laplace transforming gives the impulse response:

$$
g(t)=0.7809 e^{-1.15 t}-0.7809 e^{-4.35 t}
$$

Step Response

\square The step response in the Laplace domain is

$$
\begin{aligned}
& Y(s)=U(s) \cdot G(s) \\
& Y(s)=\frac{1}{s} \cdot \frac{2.5}{s^{2}+5.5 s+5}
\end{aligned}
$$

\square Inverse transforming gives the time-domain step response:

Rack and Pinion Positioning System Step Response

$$
y(t)=0.5-0.6795 e^{-1.15 t}+0.1795 e^{-4.35 t}
$$

Frequency Response

\square The frequency response function or sinusoidal transfer function is obtained by substituting $j \omega$ for s in the transfer function

$$
G(j \omega)=\frac{2.5}{(j \omega)^{2}+5.5(j \omega)+5}
$$

\square This complex function of frequency can be evaluated to give the system's:

- Gain: the ratio of the magnitudes of the system's (sinusoidal) output to input as function of frequency
- Phase: the phase shift from the (sinusoidal) input to the output as a function of frequency

Frequency Response

\square Gain and phase are plotted as a Bode plot:

41

Open-Loop System Response

Block Diagram Model

\square Our positioning system, or plant, can be represented in block diagram form as

\square It has an input, $u(t)$, and an output, $y(t)$

- Input/output relationship described by the plant model: transfer function, state variable model, etc.

Open-Loop Configuration

\square Say we want to command a 5 cm displacement from our plant

- Plant input, $u(t)$, is a voltage applied to a motor
\square We'd like the input to be the desired displacement, e.g. 5 cm
- This desired output specified by the reference input, $r(t)$
\square Block diagram is now:

\square Added a controller block
- Constant gain, $K_{O L}$, to convert from $r(t)$ to $u(t)$
- Value of $K_{O L}$ depends on properties of the plant

Open-Loop Controller Gain

\square How do we determine $K_{O L}$?
\square The steady-state gain of the system is

$$
G_{s S}=\lim _{s \rightarrow 0} G(s)=\lim _{s \rightarrow 0}\left(\frac{2.5}{s^{2}+5.5 s+5}\right)=0.5 \mathrm{~m} / V
$$

- Set $K_{O L}=1 / G_{S S}=2 \mathrm{~V} / \mathrm{m}$
\square Say, for example, that we want a displacement of 5 cm

$$
\begin{aligned}
& r(t)=0.05 \mathrm{~m} \\
& u(t)=K_{O L} \cdot r(t)=2 \mathrm{~V} / \mathrm{m} \cdot 0.05 \mathrm{~m}=100 \mathrm{mV} \\
& y_{s s}=u(t) \cdot G_{s s}=100 \mathrm{mV} \cdot 0.5 \mathrm{~m} / \mathrm{V}=5 \mathrm{~cm}
\end{aligned}
$$

Open-Loop Response

\square The open-loop controller yields a steady-state output equal to the reference input

$$
y_{s s}=r(t)
$$

Disturbance Input

\square Consider what happens if some external factor affects the system

- Additional load
- Increased drag due to part wear, etc.
\square This is a disturbance
\square Model as an additional input to the plant, $w(t)$:

Effect of Disturbance

\square The open-loop controller ($K_{O L}$) was designed for the specific plant characteristics

- Disturbance not accounted for
\square Now,

$$
\begin{aligned}
& y_{s S}=\left[K_{O L} \cdot r(t)+w(t)\right] G_{S S} \\
& y_{s s}=r(t)+w(t) \cdot G_{s s}
\end{aligned}
$$

\square Steady-state error results

$$
\begin{aligned}
& y_{s s} \neq r(t) \\
& e_{s s}=r(t)-y_{s s}
\end{aligned}
$$

Closed-Loop Feedback Control

Feedback Control

\square Steady-state error due to disturbance input can be addressed by adding feedback
\square The output is measured and fed back to the input
\square Subtracted from the reference input - negative feedback

Feedback Control

\square This is a closed-loop configuration
\square Difference between reference (desired output), $r(t)$, and actual output, $y(t)$, is the error, $e(t)$

$$
e(t)=r(t)-y(t)
$$

\square Error gets multiplied by the closed-loop controller gain, $K_{C L}$
\square Input to the plant, $u(t)$, is the controller output plus the disturbance input

$$
u(t)=K_{C L} \cdot e(t)+w(t)
$$

Closed-Loop Response

\square Because $y(t)$ is fed back and used to generate $u(t)$, error is reduced

- Though not eliminated, in this case
\square Dynamics of the closed-loop system differ from the open-
 loop system

Reducing Steady-State Error

\square Increasing controller gain can further reduce steady-state error
\square Closed-loop system dynamics have changed a lot
\square Faster risetime, increased overshoot

\square Could this pose a problem?

Closed-Loop Poles

\square Nature of open-loop and closed-loop responses differ

- Closed-loop system poles differ from openloop system poles
\square Feedback moves poles

Open-Loop and Closed-Loop System Poles

Second-Order Under-Damped System Poles

\square We'll see that feedback will allow us to move poles to desirable locations
\square Damping ratio
\square Natural frequency
\square Second-order poles:

$$
\begin{aligned}
& s_{1,2}=-\sigma \pm j \omega_{d} \\
& s_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}
\end{aligned}
$$

$$
\zeta=\frac{\sigma}{\omega_{n}}=\sin (\theta)
$$

$$
\omega_{n}=\sqrt{\sigma^{2}+\omega_{d}^{2}}
$$

\square Damped natural frequency

$$
\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

Second-Order Pole Locations

Second-Order Under-Damped System Poles

\square Pole location determines dynamic behavior
\square Overshoot:

$$
\begin{aligned}
& \% O S=e^{\left(\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}\right)} \cdot 100 \% \\
& \zeta=-\frac{\ln (O S)}{\sqrt{\pi^{2}+\ln ^{2}(O S)}}
\end{aligned}
$$

\square Settling time ($\pm 1 \%$) approximation:

$$
t_{s} \approx \frac{4.6}{\sigma}
$$

\square Risetime approximation:

$$
t_{r} \approx \frac{1.8}{\omega_{n}}
$$

Second-Order Pole Locations

Adding Controller Dynamics

\square Previous controller was a simple gain factor

- Proportional control
\square Controller could also be designed to have dynamics of its own - a compensator
- Controller transfer function may have poles and/or zeros
- Allows for better control of closed-loop system response
- Steady-state error - possible to eliminate
- Transient response - risetime, overshoot, settling time

Closed-Loop Response

\square Without getting into specifics, consider the effect of a controller that has a pole and two zeros
\square Steady-state error has been eliminated
\square Transient response nearly unchanged

Closed-Loop Response

\square Perhaps we want a faster response
\square Alter closed-loop response by changing controller transfer function

- Much faster risetime
\square Still almost no overshoot
\square Still no steady-state error

Closed-Loop Response

\square Modify the controller again

- Even faster risetime
\square Now, very large overshoot
\square Significant ringing
- A desirable response? Perhaps not

Controller Design

\square How do we determine the controller transfer function to yield the desired response?

- The topic of this course
\square What is the controller?
\square A block in a block diagram? Yes.
\square A mathematical function? Yes.
\square But, how do we implement it?
- Electronics - digital computer or opamp circuits

ESE 430 Course Overview

1. Introduction
2. Block Diagrams \& Signal Flow Graphs
3. Stability
4. Steady-State Error
5. Root-Locus Analysis
6. Root-Locus Design
7. Frequency-Response Analysis
8. Frequency-Response Design
