SECTION 1: INTRODUCTION

ESE 430 – Feedback Control Systems

Introduction

- In ESE 330, you learned how to model dynamic systems and simulate their responses
 - Analysis how does a given system respond
 - Design (possibly) tuning system parameters to achieve a desired response
- In ESE 430, you will learn how to design *feedback control systems* to improve the response of a given system in three primary areas:
 - Dynamic response
 - Steady-state error
 - Stability

Introduction

- In this section of notes we will take a look at a simple motor-driven rack and pinion positioning system example to do the following:
 - Review dynamic system modeling fundamentals
 - Bond graphs
 - State-variable models
 - System poles/zeros
 - Transient response step, impulse, …
 - Frequency response
 - Introduce feedback control
 - What is it?
 - How can it help us obtain a desired system response?

5

Dynamic System Modeling

The design of a feedback control system requires first having a model of the system to be controlled. This sub-section provides a review of dynamic system modeling and analysis fundamentals.

Rack and Pinion Positioning System

- 7
- Simplified rack and pinion positioning system
 - E.g., automated assembly equipment, print-head driver, etc.

- Voltage source drives a DC motor
 - Motor inductance neglected here
- Motor turns shaft and pinion gear
- As pinion turns, rack translates
 - The thing to be positioned is attached to the rack
 - Rack connection has both compliance and damping

- Create a bond-graph model
- First, annotate the schematic
 - Label all node voltages

- Indicate assumed positive voltage polarities and current direction
- Label velocities at each mass and end of each spring and damper
- Choose displacements of springs and dampers to be positive in either compression or tension

- Next, tabulate all one- and two-port elements, along with relevant voltages or velocities
 - Bond orientation follows power convention
 - Include TF and GY equations

Element	Voltage/Velocity	
$v_s(t): S_e \rightarrow$	v_s	
$R_m: R \leftarrow$	$v_{R_m} = v_s - v_a$	
$\rightarrow GY \rightarrow$	v_a	
$\omega = 1/k_m \cdot v_a$	ω	
$\rightarrow TF \rightarrow$	ω	
$v = r \cdot \omega$	ν	
<i>m</i> : <i>I</i> ←	ν	
$b: R \leftarrow$	ν	
1/k:C ←	ν	

Use the table to construct a bond graph

Element	Voltage/Velocity	Element	Voltage/Velocity
$v_s(t): S_e \rightarrow$	v_s	$\rightarrow TF \rightarrow$	ω
$R_m: R \leftarrow$	$v_{R_m} = v_s - v_a$	$v = r \cdot \omega$ $m: I \leftarrow$	v
$\rightarrow GY \rightarrow$	v_a	$b: R \leftarrow$	ν
$\omega = 1/k_m \cdot v_a \qquad \qquad \omega$	$1/k: C \leftarrow$	ν	

Create computational bond graph and assign causality

I₆ and C₈ both have integral causality
 Two independent energy-storage elements
 A second-order system

12

State variables:

$$\mathbf{x} = \begin{bmatrix} p_6 \\ q_8 \end{bmatrix}$$

- □ Annotate the bond graph in preparation for state equation derivation
 - Sources
 - State variable derivatives as effort/flow on independent *I*'s and *C*'s
 - Apply constitutive laws to annotate the other power variables

¹³ State-Variable Model

14

Use annotated bond graph to derive a state-variable model for the system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x} + Du$$

- State derivatives are linear combinations of state variables and inputs
- Output is a linear combination of states and inputs

This is a SISO system

- Single-input, single-output
- \blacksquare u, y, and D are scalars

State Equation Derivation

- Follow causality through the bond graph to express state variable derivatives as linear combinations of states and inputs
- Start with \dot{p}_6

$$\dot{p}_6 = e_6 = e_5 - e_7 - e_8$$
$$\dot{p}_6 = \frac{1}{r}e_4 - R_7f_7 - \frac{1}{C_8}q_8$$

 $\dot{p}_6 = \frac{k_m}{r} f_3 - \frac{R_7}{I_6} p_6 - \frac{1}{C_8} q_8$

$$\begin{bmatrix} R \\ 2 \\ 2 \\ 2 \end{bmatrix} \xrightarrow{p_6} \frac{1}{l_6} p_6$$

$$S_e \xrightarrow{e_1(t)} 1 \xrightarrow{3} GY \xrightarrow{4} TF \xrightarrow{5} 1 \xrightarrow{7} R$$

$$f_{4} = 1/k_m \cdot e_3 \xrightarrow{f_5 = r \cdot f_4} \frac{1}{c_8} q_8 \xrightarrow{\dot{q}_8} q_8$$
(1)

$$f_{3} = f_{2} = \frac{1}{R_{2}}e_{2} = \frac{1}{R_{2}}(e_{1}(t) - e_{3}) = \frac{1}{R_{2}}e_{1}(t) - \frac{k_{m}}{R_{2}}f_{4}$$

$$f_{3} = \frac{1}{R_{2}}e_{1}(t) - \frac{k_{m}}{R_{2}}\frac{1}{r}f_{5} = \frac{1}{R_{2}}e_{1}(t) - \frac{k_{m}}{R_{2}}\frac{1}{r_{6}}p_{6}$$
(2)

State Equation and Output Equation

Substituting (2) into (1) give the first state equation:

$$\dot{p}_6 = -\frac{k_m^2 + R_7 r^2 R_2}{r^2 R_2 I_6} p_6 - \frac{1}{C_8} q_8 + \frac{k_m}{r R_2} e_1(t)$$
(3)

Next, move on to \dot{q}_8

$$\dot{q}_8 = f_8 = f_6 = \frac{1}{I_6} p_6$$

□ The second state equation:

$$\dot{q}_8 = \frac{1}{I_6} p_6$$

 The output is the position of the rack, which is also the displacement of the spring

$$y = q_8 \tag{5}$$

State-Variable System Model

- 17
- Equations (3) (5) can be assembled in matrix form to give the state-variable system model:

$$\begin{bmatrix} \dot{p}_{6} \\ \dot{q}_{8} \end{bmatrix} = \begin{bmatrix} -\frac{k_{m}^{2} + R_{7}r^{2}R_{2}}{r^{2}R_{2}I_{6}} & -\frac{1}{c_{8}} \\ \frac{1}{I_{6}} & 0 \end{bmatrix} \begin{bmatrix} p_{6} \\ q_{8} \end{bmatrix} + \begin{bmatrix} \frac{k_{m}}{rR_{2}} \\ 0 \end{bmatrix} e_{1}(t)$$
(6)
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} p_{6} \\ q_{8} \end{bmatrix}$$

Substituting in physical system parameters:

$$\begin{bmatrix} \dot{p} \\ \dot{\chi} \end{bmatrix} = \begin{bmatrix} -\frac{k_m^2 + br^2 R_m}{r^2 R_m m} & -k \\ \frac{1}{m} & 0 \end{bmatrix} \begin{bmatrix} p \\ \chi \end{bmatrix} + \begin{bmatrix} \frac{k_m}{r R_m} \\ 0 \end{bmatrix} e_1(t)$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ \chi \end{bmatrix}$$

$$(7)$$

Transfer Function

- 19
- The state-variable model is one of many possible mathematical models for the system
 - A time-domain model
- The *transfer function* is another model
 A *Laplace-domain* model
- The ratio of the output to the input in the Laplace domain, assuming zero initial conditions:

$$G(s) = \frac{Y(s)}{U(s)}$$

Useful for determining the Laplace-domain output

$$Y(s) = G(s) \cdot U(s)$$

System poles/zeros are readily apparent

• Substitute $s \rightarrow j\omega$ for frequency response function

A couple of ways to convert from the state-variable model to the transfer function

Calculate directly:

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Requires matrix inversion

■ Solve for the states using Cramer's rule, combine according to the output equation and solve algebraically for G(s) = Y(s)/U(s)

Matrix inversion is not required

We'll step through both methods

- 21
- From the A B C D matrices that define the state variable model:

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

□ For our example:

$$G(s) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} & k \\ -\frac{1}{m} & s \end{bmatrix}^{-1} \begin{bmatrix} \frac{k_m}{r R_m} \\ 0 \end{bmatrix}$$

□ The inverse of the (sI - A) matrix is

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{adj(s\mathbf{I} - \mathbf{A})}{|s\mathbf{I} - \mathbf{A}|} = \frac{adj(s\mathbf{I} - \mathbf{A})}{\Delta(s)}$$

 $\Box \Delta(s)$ is the *characteristic polynomial* of the system

The Characteristic Polynomial

22

The characteristic polynomial

$$\Delta(s) = |sI - A| = \begin{vmatrix} s + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} & k \\ -\frac{1}{m} & s \end{vmatrix}$$

$$\Delta(s) = s^2 + \frac{k_m^2 + br^2 R_m}{r^2 R_m m}s + \frac{k}{m}$$

Recall

- $\Delta(s)$ is the denominator of the Laplace transform of every state and the output
- The roots of $\Delta(s)$, the poles of the system, determine the nature of the system response

 $(s\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{\Delta(s)} \begin{bmatrix} s & -k \\ \frac{1}{m} & s + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} \end{bmatrix}$

□ Substituting back into the expression for G(s)

$$G(s) = \frac{1}{\Delta(s)} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s & -k \\ \frac{1}{m} & s + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} \end{bmatrix} \begin{bmatrix} \frac{k_m}{r R_m} \\ 0 \end{bmatrix}$$
$$G(s) = \frac{1}{\Delta(s)} \begin{bmatrix} \frac{1}{m} & s + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} \end{bmatrix} \begin{bmatrix} \frac{k_m}{r R_m} \\ 0 \end{bmatrix}$$

The system transfer function:

$$G(s) = \frac{\frac{k_m}{mR_m r}}{s^2 + \frac{k_m^2 + br^2 R_m}{r^2 R_m m}s + \frac{k_m}{m}}$$

K. Webb

23

24

- Alternatively, find G(s) by Laplace transforming the state equation and applying *Cramer's rule*
- □ The state equation in general form:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{1}$$

Apply the Laplace transform, assuming zero initial conditions

 $s\mathbf{X}(s) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}U(s)$

Collecting the transform of the state vector on the left-hand side

$$s\mathbf{X}(s) - \mathbf{A}\mathbf{X}(s) = \mathbf{B}U(s)$$

 \Box Factoring out **X**(s)

$$(s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{B}U(s)$$
(2)

Can now apply Cramer's rule to solve for individual elements in X(s), i.e., the Laplace transform of

individual states

$$X_i(s) = \frac{|(s\mathbf{I} - \mathbf{A})_i|}{|s\mathbf{I} - \mathbf{A}|}$$

- □ (sI − A)_i is the matrix formed by replacing the ith column of (sI − A) with BU(s), the RHS of (2)
- Determine as many states as are required to calculate Y(s)

25

26

State variable model for our system

$$\begin{bmatrix} \dot{p} \\ \dot{\chi} \end{bmatrix} = \begin{bmatrix} -\frac{k_m^2 + br^2 R_m}{r^2 R_m m} & -k \\ \frac{1}{m} & 0 \end{bmatrix} \begin{bmatrix} p \\ \chi \end{bmatrix} + \begin{bmatrix} \frac{k_m}{r R_m} \\ 0 \end{bmatrix} e_1(t)$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ \chi \end{bmatrix}$$

- □ Here the output depends only on the displacement of the spring, y(t) = x(t)
 - To find Y(s), apply Cramer's rule to the Laplace transformed state equation to find X(s)
 - NOTE: X(s) is the Laplace transform of the displacement of the spring, X(s) is the Laplace transform of the state vector

27

$$X(s) = \frac{|(s\mathbf{I} - \mathbf{A})_2|}{|s\mathbf{I} - \mathbf{A}|} = \frac{1}{\Delta(s)} \begin{vmatrix} s + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} & \frac{k_m}{R_m r} U(s) \\ -\frac{1}{m} & 0 \end{vmatrix} = \frac{k_m / mR_m r U(s)}{s^2 + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} s + \frac{k_m}{m}}$$

The Laplace transform of the output is

$$Y(s) = X(s) = \frac{\frac{k_m}{mR_m r} U(s)}{s^2 + \frac{k_m^2 + br^2 R_m}{r^2 R_m m} s + \frac{k_m}{m}}$$

Dividing both sides by the input gives the transfer function

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\frac{k_m}{mR_m r}}{s^2 + \frac{k_m^2 + br^2 R_m}{r^2 R_m m}s + \frac{k_m}{m}}$$

System Poles & Zeros

 $G(s) = \frac{\frac{k_m}{mR_m r}}{s^2 + \frac{k_m^2 + br^2 R_m}{r^2 R_m m}s + \frac{k}{m}}$

- □ **Poles:** values of s for which $G(s) = \infty$
 - **\square** The roots of the denominator, $\Delta(s)$
 - Solutions to the *characteristic equation*, $\Delta(s) = 0$ ■ Here, there are two poles

Zeros: values of s for which G(s) = 0
 The roots of the numerator polynomial
 Here, there are none

Natural Frequency & Damping Ratio

30

This second-order characteristic polynomial

$$\Delta(s) = s^2 + \frac{k_m^2 + br^2 R_m}{r^2 R_m m}s + \frac{k}{m}$$

can be re-written as

$$\Delta(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$$

 $\Box \zeta$ is the *damping ratio*

$$\zeta = \frac{k_m^2 + br^2 R_m}{2\sqrt{km}r^2 R_m}$$

 \square ω_n is the *natural frequency*

$$\omega_n = \sqrt{\frac{k}{m}}$$

System Poles & Zeros

The second-order system has two poles at

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

- The value of the damping ratio, ζ, determines the nature of the two poles:
 - $\Box \zeta > 1$: two real, distinct poles *over-damped*
 - $\Box \zeta = 1$: two real, identical poles *critically-damped*
 - $\Box \zeta < 1$: complex-conjugate pair poles *under-damped*
- Type of poles, and, therefore, the value of ζ, determines the nature of the response

System Poles & Zeros

ζ = 1.23 > 1 - over-damped - distinct, real poles
 Monotonic step response - no overshoot or ringing

33 Dynamic System Response

Dynamic System Response

- 34
- Often characterize systems by their responses to particular classes of inputs, e.g.:
 - Impulse response: response to an impulse with zero initial conditions time-domain response
 - Step response: response to a unit step with zero initial conditions time-domain response
 - Frequency response: system response to sinusoidal inputs of varying frequency – system gain and phase as functions of frequency – frequency-domain response
- Additionally, we often want to simulate the system's response to arbitrary inputs

Impulse Response

The system response in the Laplace domain is given by the product of the transfer function and the Laplace transform of the input

$$Y(s) = G(s) \cdot U(s)$$

The Laplace transform of an impulse function is $\mathcal{L}\{\delta(t)\} = 1$

therefore, a system's impulse response is the inverse Laplace transform of its transfer function

$$g(t) = \mathcal{L}^{-1}\{G(s)\}$$

Impulse Response

□ For our rack and pinion positioning system:

$$g(t) = \mathcal{L}^{-1}\{G(s)\} = \mathcal{L}^{-1}\left\{\frac{2.5}{s^2 + 5.5s + 5}\right\}$$

□ Inverse transform via *partial fraction expansion*

$$G(s) = \frac{2.5}{s^2 + 5.5s + 5} = \frac{r_1}{s + 1.15} + \frac{r_2}{s + 4.35}$$

$$2.5 = r_1(s + 4.35) + r_2(s + 1.15)$$

$$2.5 = (r_1 + r_2)s + 4.35r_1 + 1.15r_2$$
(1)

 Equating coefficients and solving the resulting system of two equations gives the following *residues*:

$$r_1 = 0.7809$$

 $r_2 = -0.7809$

Impulse Response

Substituting the residues back into (1) gives

 $G(s) = \frac{0.7809}{s+1.15} - \frac{0.7809}{s+4.35}$

 Inverse Laplace transforming gives the impulse response:

 $g(t) = 0.7809e^{-1.15t} - 0.7809e^{-4.35t}$

Step Response

- The step response in the Laplace domain is
 - $Y(s) = U(s) \cdot G(s)$

$$Y(s) = \frac{1}{s} \cdot \frac{2.5}{s^2 + 5.5s + 5}$$

 Inverse transforming gives the time-domain step response:

Rack and Pinion Positioning System Step Response

 $y(t) = 0.5 - 0.6795e^{-1.15t} + 0.1795e^{-4.35t}$

Frequency Response

 The *frequency response function* or *sinusoidal transfer function* is obtained by substituting *j*ω for *s* in the transfer function

$$G(j\omega) = \frac{2.5}{(j\omega)^2 + 5.5(j\omega) + 5}$$

- This complex function of frequency can be evaluated to give the system's:
 - Gain: the ratio of the magnitudes of the system's (sinusoidal) output to input as function of frequency
 - Phase: the phase shift from the (sinusoidal) input to the output as a function of frequency

Frequency Response

□ Gain and phase are plotted as a *Bode plot:*

41 Open-Loop System Response

Block Diagram Model

42

Our positioning system, or *plant*, can be represented in *block diagram* form as

- □ It has an input, u(t), and an output, y(t)
 - Input/output relationship described by the plant model: transfer function, state variable model, etc.

Open-Loop Configuration

- 43
- Say we want to command a 5 cm displacement from our plant
 Plant input, u(t), is a voltage applied to a motor
- We'd like the input to be the desired displacement, e.g. 5 cm
 This desired output specified by the *reference input*, r(t)
- Block diagram is now:

Added a *controller* block

- Constant gain, K_{OL} , to convert from r(t) to u(t)
- Value of K_{OL} depends on properties of the plant

Open-Loop Controller Gain

- How do we determine K_{OL} ?
- The steady-state gain of the system is

$$G_{ss} = \lim_{s \to 0} G(s) = \lim_{s \to 0} \left(\frac{2.5}{s^2 + 5.5s + 5} \right) = 0.5 \ m/V$$

 $\Box \quad \text{Set } K_{OL} = 1/G_{ss} = 2 V/m$

□ Say, for example, that we want a displacement of 5 cm

r(t) = 0.05 m $u(t) = K_{OL} \cdot r(t) = 2 V/m \cdot 0.05 m = 100 mV$ $y_{ss} = u(t) \cdot G_{ss} = 100 mV \cdot 0.5 m/V = 5 cm$

Open-Loop Response

 The open-loop controller yields a steady-state output equal to the reference input

$$y_{ss} = r(t)$$

Disturbance Input

Consider what happens if some external factor affects the system

- Additional load
- Increased drag due to part wear, etc.

This is a *disturbance*

• Model as an additional input to the plant, w(t):

Effect of Disturbance

- The open-loop controller (K_{OL}) was designed for the specific plant characteristics
 - Disturbance not accounted for

□ Now,

$$y_{ss} = [K_{OL} \cdot r(t) + w(t)]G_{ss}$$
$$y_{ss} = r(t) + w(t) \cdot G_{ss}$$

□ *Steady-state error* results

$$y_{ss} \neq r(t)$$
$$e_{ss} = r(t) - y_{ss}$$

48

Closed-Loop Feedback Control

Feedback Control

- Steady-state error due to disturbance input can be addressed by adding *feedback*
- The output is measured and *fed back* to the input
 Subtracted from the reference input *negative feedback*

Feedback Control

- □ This is a *closed-loop* configuration
- Difference between reference (desired output), r(t), and actual output, y(t), is the **error**, e(t)

$$e(t) = r(t) - y(t)$$

- \Box Error gets multiplied by the closed-loop controller gain, K_{CL}
- Input to the plant, u(t), is the controller output plus the disturbance input

$$u(t) = K_{CL} \cdot e(t) + w(t)$$

- 51
- Because y(t) is fed back and used to generate u(t), error is reduced
 - Though not eliminated, in this case
- Dynamics of the
 closed-loop system
 differ from the open loop system

Reducing Steady-State Error

- Increasing controller gain can further reduce steady-state error
- Closed-loop system
 dynamics have
 changed a lot
 - Faster risetime, increased overshoot
 - Could this pose a problem?

Closed-Loop Poles

- Nature of open-loop and closed-loop responses differ
 - Closed-loop system
 poles differ from openloop system poles

Feedback moves poles

Second-Order Under-Damped System Poles

- 54
- We'll see that feedback will allow us to move poles to desirable locations
- Second-order poles:

$$s_{1,2} = -\sigma \pm j\omega_d$$

$$s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

Damping ratio

$$\zeta = \frac{\sigma}{\omega_n} = \sin(\theta)$$

Natural frequency

$$\omega_n = \sqrt{\sigma^2 + \omega_d^2}$$

Damped natural frequency

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

K. Webb

Second-Order Under-Damped System Poles

- 55
- Pole location determines dynamic behavior
- Overshoot:

$$\% OS = e^{\left(\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}\right)} \cdot 100\%$$

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}}$$

• Settling time ($\pm 1\%$) approximation:

$$t_s \approx \frac{4.6}{\sigma}$$

Risetime approximation:

$$t_r \approx \frac{1.8}{\omega_n}$$

Adding Controller Dynamics

- 56
- Previous controller was a simple gain factor
 Proportional control
- Controller could also be designed to have dynamics of its own – a *compensator*
 - Controller transfer function may have poles and/or zeros
 - Allows for better control of closed-loop system response
 - Steady-state error possible to eliminate
 - Transient response risetime, overshoot, settling time

- Without getting into specifics, consider the effect of a controller that has a pole and two zeros
- Steady-state error
 has been eliminated
- Transient response
 nearly unchanged

K. Webb

- Perhaps we want a faster response
- Alter closed-loop
 response by
 changing controller
 transfer function
 - Much faster risetime
 - Still almost no overshoot
 - Still no steady-state error

- Modify the controller again
 - Even faster risetime
 - Now, very large overshoot
 - Significant ringing
 - A desirable response? Perhaps not

Controller Design

- How do we determine the controller transfer function to yield the desired response?
 - The topic of this course

What is the controller?

- A block in a block diagram? Yes.
- A mathematical function? Yes.

But, how do we implement it?

Electronics – digital computer or opamp circuits

ESE 430 Course Overview

- 61
- 1. Introduction
- 2. Block Diagrams & Signal Flow Graphs
- 3. Stability
- 4. Steady-State Error
- 5. Root-Locus Analysis
- 6. Root-Locus Design
- 7. Frequency-Response Analysis
- 8. Frequency-Response Design