
ESE 430 – Feedback Control Systems

SECTION 1: INTRODUCTION
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Introduction

 In ESE 330, you learned how to model dynamic 
systems and simulate their responses
 Analysis – how does a given system respond
 Design (possibly) – tuning system parameters to 

achieve a desired response

 In ESE 430, you will learn how to design feedback 
control systems to improve the response of a given 
system in three primary areas:
 Dynamic response
 Steady-state error
 Stability
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Introduction

 In this section of notes we will take a look at a simple 
motor-driven rack and pinion positioning system 
example to do the following:

 Review dynamic system modeling fundamentals
 Bond graphs
 State-variable models
 System poles/zeros 
 Transient response – step, impulse, …
 Frequency response

 Introduce feedback control
 What is it? 
 How can it help us obtain a desired system response?



K. Webb ESE 430

The design of a feedback control system requires 
first having a model of the system to be controlled. 
This sub-section provides a review of dynamic 
system modeling and analysis fundamentals.

Dynamic System Modeling5
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Bond-Graph Model6
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Rack and Pinion Positioning System

 Simplified rack and 
pinion positioning 
system
 E.g., automated 

assembly equipment, 
print-head driver, etc.

 Voltage source drives a DC motor
 Motor inductance neglected here

 Motor turns shaft and pinion gear

 As pinion turns, rack translates
 The thing to be positioned is attached to the rack
 Rack connection has both compliance and damping
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Bond-Graph Model

 Create a bond-graph 
model

 First, annotate the 
schematic
 Label all node voltages

 Indicate assumed positive voltage polarities and current 
direction

 Label velocities at each mass and end of each spring and 
damper

 Choose displacements of springs and dampers to be positive 
in either compression or tension
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Bond-Graph Model

 Next, tabulate all one- and 
two-port elements, along 
with relevant voltages or 
velocities
 Bond orientation follows 

power convention
 Include TF and GY equations

Element Voltage/Velocity

𝑣𝑣𝑠𝑠 𝑡𝑡 : 𝑆𝑆𝑒𝑒 ⇀ 𝑣𝑣𝑠𝑠
𝑅𝑅𝑚𝑚:𝑅𝑅 ↼ 𝑣𝑣𝑅𝑅𝑚𝑚 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑎𝑎
⇀ 𝐺𝐺𝐺𝐺 ⇀

𝜔𝜔 = ⁄1 𝑘𝑘𝑚𝑚 � 𝑣𝑣𝑎𝑎
𝑣𝑣𝑎𝑎
𝜔𝜔

⇀ 𝑇𝑇𝑇𝑇 ⇀
𝑣𝑣 = 𝑟𝑟 � 𝜔𝜔

𝜔𝜔
𝑣𝑣

𝑚𝑚: 𝐼𝐼 ↼ 𝑣𝑣
𝑏𝑏:𝑅𝑅 ↼ 𝑣𝑣

1/𝑘𝑘:𝐶𝐶 ↼ 𝑣𝑣
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Bond-Graph Model

 Use the table to construct a bond graph
Element Voltage/Velocity

𝑣𝑣𝑠𝑠 𝑡𝑡 : 𝑆𝑆𝑒𝑒 ⇀ 𝑣𝑣𝑠𝑠

𝑅𝑅𝑚𝑚:𝑅𝑅 ↼ 𝑣𝑣𝑅𝑅𝑚𝑚 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑎𝑎

⇀ 𝐺𝐺𝐺𝐺 ⇀
𝜔𝜔 = ⁄1 𝑘𝑘𝑚𝑚 � 𝑣𝑣𝑎𝑎

𝑣𝑣𝑎𝑎
𝜔𝜔

Element Voltage/Velocity

⇀ 𝑇𝑇𝑇𝑇 ⇀
𝑣𝑣 = 𝑟𝑟 � 𝜔𝜔

𝜔𝜔
𝑣𝑣

𝑚𝑚: 𝐼𝐼 ↼ 𝑣𝑣

𝑏𝑏:𝑅𝑅 ↼ 𝑣𝑣

1/𝑘𝑘:𝐶𝐶 ↼ 𝑣𝑣
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Bond-Graph Model

 Create computational bond graph and assign 
causality

 𝐼𝐼6 and 𝐶𝐶8 both have integral causality
 Two independent energy-storage elements
 A second-order system
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Bond-Graph Model

 State variables:

𝐱𝐱 =
𝑝𝑝6
𝑞𝑞8

 Annotate the bond graph in preparation for state equation derivation
 Sources
 State variable derivatives as effort/flow on independent 𝐼𝐼’s and 𝐶𝐶’s
 Apply constitutive laws to annotate the other power variables
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State-Variable System Model

 Use annotated bond graph to derive a state-variable 
model for the system

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝑢𝑢
𝑦𝑦 = 𝐂𝐂𝐂𝐂 + 𝐷𝐷𝐷𝐷

 State derivatives are linear combinations of state 
variables and inputs

 Output is a linear combination of states and inputs
 This is a SISO system
 Single-input, single-output
 𝑢𝑢, 𝑦𝑦, and 𝐷𝐷 are scalars
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State Equation Derivation

 Follow causality through the bond graph to express 
state variable derivatives as linear combinations of 
states and inputs

 Start with 𝑝̇𝑝6
𝑝̇𝑝6 = 𝑒𝑒6 = 𝑒𝑒5 − 𝑒𝑒7 − 𝑒𝑒8

𝑝̇𝑝6 =
1
𝑟𝑟 𝑒𝑒4 − 𝑅𝑅7𝑓𝑓7 −

1
𝐶𝐶8
𝑞𝑞8

𝑝̇𝑝6 = 𝑘𝑘𝑚𝑚
𝑟𝑟
𝑓𝑓3 −

𝑅𝑅7
𝐼𝐼6
𝑝𝑝6 −

1
𝐶𝐶8
𝑞𝑞8 (1)

𝑓𝑓3 = 𝑓𝑓2 = 1
𝑅𝑅2
𝑒𝑒2 = 1

𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑒𝑒3 = 1

𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑘𝑘𝑚𝑚

𝑅𝑅2
𝑓𝑓4

𝑓𝑓3 = 1
𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑘𝑘𝑚𝑚

𝑅𝑅2

1
𝑟𝑟
𝑓𝑓5 = 1

𝑅𝑅2
𝑒𝑒1 𝑡𝑡 − 𝑘𝑘𝑚𝑚

𝑅𝑅2𝑟𝑟
1
𝐼𝐼6
𝑝𝑝6 (2)
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State Equation and Output Equation

 Substituting (2) into (1) give the first state equation:

𝑝̇𝑝6 = −𝑘𝑘𝑚𝑚2 +𝑅𝑅7𝑟𝑟2𝑅𝑅2
𝑟𝑟2𝑅𝑅2𝐼𝐼6

𝑝𝑝6 −
1
𝐶𝐶8
𝑞𝑞8 + 𝑘𝑘𝑚𝑚

𝑟𝑟𝑅𝑅2
𝑒𝑒1 𝑡𝑡 (3)

 Next, move on to  𝑞̇𝑞8

𝑞̇𝑞8 = 𝑓𝑓8 = 𝑓𝑓6 =
1
𝐼𝐼6
𝑝𝑝6

 The second state equation:

𝑞̇𝑞8 = 1
𝐼𝐼6
𝑝𝑝6 (4)

 The output is the position of the rack, which is also the 
displacement of the spring

𝑦𝑦 = 𝑞𝑞8 (5)
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State-Variable System Model

 Equations (3) – (5) can be assembled in matrix form to give 
the state-variable system model:

𝑝̇𝑝6
𝑞̇𝑞8

=
−𝑘𝑘𝑚𝑚2 +𝑅𝑅7𝑟𝑟2𝑅𝑅2

𝑟𝑟2𝑅𝑅2𝐼𝐼6
− 1
𝐶𝐶8

1
𝐼𝐼6

0

𝑝𝑝6
𝑞𝑞8 +

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅2
0

𝑒𝑒1 𝑡𝑡 (6)

𝑦𝑦 = 0 1
𝑝𝑝6
𝑞𝑞8

 Substituting in physical system parameters:

𝑝̇𝑝
𝑥̇𝑥 =

−𝑘𝑘𝑚𝑚2 +𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0

𝑝𝑝
𝑥𝑥 +

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0
𝑒𝑒1 𝑡𝑡 (7)

𝑦𝑦 = 0 1
𝑝𝑝
𝑥𝑥
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Transfer Function18
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Transfer Function

 The state-variable model is one of many possible mathematical 
models for the system
 A time-domain model

 The transfer function is another model
 A Laplace-domain model

 The ratio of the output to the input in the Laplace domain, assuming 
zero initial conditions:

𝐺𝐺 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑈𝑈 𝑠𝑠

 Useful for determining the Laplace-domain output

𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 ⋅ 𝑈𝑈 𝑠𝑠

 System poles/zeros are readily apparent
 Substitute 𝑠𝑠 → 𝑗𝑗𝑗𝑗 for frequency response function
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Transfer Function

 A couple of ways to convert from the state-variable 
model to the transfer function
 Calculate directly: 

𝐺𝐺 𝑠𝑠 = 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + 𝐃𝐃

 Requires matrix inversion

 Solve for the states using Cramer’s rule, combine 
according to the output equation and solve 
algebraically  for  𝐺𝐺 𝑠𝑠 = 𝑌𝑌 𝑠𝑠 /𝑈𝑈 𝑠𝑠
Matrix inversion is not required

 We’ll step through both methods
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State Space  Transfer Function – 1 

 From the 𝐀𝐀 𝐁𝐁 𝐂𝐂 𝐃𝐃 matrices that define the state 
variable model:

𝐺𝐺 𝑠𝑠 = 𝐂𝐂 𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1𝐁𝐁 + 𝐃𝐃

 For our example:

𝐺𝐺 𝑠𝑠 = 0 1
𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘

−
1
𝑚𝑚

𝑠𝑠

−1

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0

 The inverse of the 𝑠𝑠𝑠𝑠 − 𝐴𝐴 matrix is

𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1 =
𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝐈𝐈 − 𝐀𝐀
𝑠𝑠𝐈𝐈 − 𝐀𝐀

=
𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝐈𝐈 − 𝐀𝐀

𝛥𝛥 𝑠𝑠

 Δ 𝑠𝑠 is the characteristic polynomial of the system
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The Characteristic Polynomial

 The characteristic polynomial

Δ 𝑠𝑠 = 𝑠𝑠𝑠𝑠 − 𝐴𝐴 =
𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘

−
1
𝑚𝑚

𝑠𝑠

Δ 𝑠𝑠 = 𝑠𝑠2 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 +
𝑘𝑘
𝑚𝑚

 Recall
 Δ 𝑠𝑠 is the denominator of the Laplace transform of 

every state and the output
 The roots of Δ 𝑠𝑠 , the poles of the system, determine 

the nature of the system response
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State Space  Transfer Function – 1 

𝑠𝑠𝐈𝐈 − 𝐀𝐀 −1 =
1

𝛥𝛥 𝑠𝑠

𝑠𝑠 −𝑘𝑘
1
𝑚𝑚

𝑠𝑠 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

 Substituting back into the expression for 𝐺𝐺 𝑠𝑠

𝐺𝐺 𝑠𝑠 =
1

𝛥𝛥 𝑠𝑠 0 1
𝑠𝑠 −𝑘𝑘
1
𝑚𝑚 𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0

𝐺𝐺 𝑠𝑠 =
1

𝛥𝛥 𝑠𝑠
1
𝑚𝑚 𝑠𝑠 +

𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0

 The system transfer function:

𝐺𝐺 𝑠𝑠 =
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚
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State Space  Transfer Function – 2 

 Alternatively, find 𝐺𝐺 𝑠𝑠 by Laplace transforming the state equation 
and applying Cramer’s rule

 The state equation in general form:

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁u (1)

 Apply the Laplace transform, assuming zero initial conditions

𝑠𝑠𝐗𝐗 𝑠𝑠 = 𝐀𝐀𝐀𝐀 𝑠𝑠 + 𝐁𝐁𝑈𝑈 𝑠𝑠

 Collecting the transform of the state vector on the left-hand side

𝑠𝑠𝐗𝐗 𝑠𝑠 − 𝐀𝐀𝐀𝐀 𝑠𝑠 = 𝐁𝐁𝑈𝑈 𝑠𝑠

 Factoring out 𝐗𝐗 𝑠𝑠

𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝐗𝐗 𝑠𝑠 = 𝐁𝐁𝑈𝑈 𝑠𝑠 (2)
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State Space  Transfer Function – 2 

 Can now apply Cramer’s rule to solve for individual 
elements in 𝐗𝐗 𝑠𝑠 , i.e., the Laplace transform of 
individual states

𝑋𝑋𝑖𝑖 𝑠𝑠 =
𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖

𝑠𝑠𝐈𝐈 − 𝐀𝐀

 𝑠𝑠𝐈𝐈 − 𝐀𝐀 𝑖𝑖 is the matrix formed by replacing the 𝑖𝑖𝑡𝑡𝑡
column of 𝑠𝑠𝐈𝐈 − 𝐀𝐀 with 𝐁𝐁𝑈𝑈 𝑠𝑠 , the RHS of (2)

 Determine as many states as are required to 
calculate 𝑌𝑌 𝑠𝑠
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State Space  Transfer Function – 2 

 State variable model for our system

𝑝̇𝑝
𝑥̇𝑥 =

−𝑘𝑘𝑚𝑚2 +𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

−𝑘𝑘
1
𝑚𝑚

0

𝑝𝑝
𝑥𝑥 +

𝑘𝑘𝑚𝑚
𝑟𝑟𝑅𝑅𝑚𝑚

0
𝑒𝑒1 𝑡𝑡

𝑦𝑦 = 0 1
𝑝𝑝
𝑥𝑥

 Here the output depends only on the displacement 
of the spring, 𝑦𝑦 𝑡𝑡 = 𝑥𝑥 𝑡𝑡
 To find 𝑌𝑌 𝑠𝑠 , apply Cramer’s rule to the Laplace 

transformed state equation to find 𝑋𝑋 𝑠𝑠
 NOTE: 𝑋𝑋 𝑠𝑠 is the Laplace transform of the displacement of 

the spring, 𝐗𝐗 𝑠𝑠 is the Laplace transform of the state vector
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State Space  Transfer Function – 2 

𝑋𝑋 𝑠𝑠 =
𝑠𝑠𝐈𝐈 − 𝐀𝐀 2

𝑠𝑠𝐈𝐈 − 𝐀𝐀
=

1
Δ 𝑠𝑠

𝑠𝑠 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚
𝑅𝑅𝑚𝑚𝑟𝑟

𝑈𝑈 𝑠𝑠

−
1
𝑚𝑚

0
=

�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟𝑈𝑈 𝑠𝑠

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚

 The Laplace transform of the output is

𝑌𝑌 𝑠𝑠 = 𝑋𝑋 𝑠𝑠 =
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟𝑈𝑈 𝑠𝑠

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚

 Dividing both sides by the input gives the transfer function 

𝐺𝐺 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑈𝑈 𝑠𝑠

=
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚
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System Poles & Zeros

𝐺𝐺 𝑠𝑠 =
�𝑘𝑘𝑚𝑚
𝑚𝑚𝑅𝑅𝑚𝑚𝑟𝑟

𝑠𝑠2 + 𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 + 𝑘𝑘
𝑚𝑚

 Poles: values of 𝑠𝑠 for  which 𝐺𝐺 𝑠𝑠 = ∞
 The roots of the denominator, Δ 𝑠𝑠
 Solutions to the characteristic equation, Δ 𝑠𝑠 = 0
 Here, there are two poles

 Zeros: values of s for which 𝐺𝐺 𝑠𝑠 = 0
 The roots of the numerator polynomial
 Here, there are none



K. Webb ESE 430

30

Natural Frequency & Damping Ratio

 This second-order characteristic polynomial

𝛥𝛥 𝑠𝑠 = 𝑠𝑠2 +
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
𝑟𝑟2𝑅𝑅𝑚𝑚𝑚𝑚

𝑠𝑠 +
𝑘𝑘
𝑚𝑚

can be re-written as

Δ 𝑠𝑠 = 𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

 𝜁𝜁 is the damping ratio

𝜁𝜁 =
𝑘𝑘𝑚𝑚2 + 𝑏𝑏𝑟𝑟2𝑅𝑅𝑚𝑚
2 𝑘𝑘𝑘𝑘𝑟𝑟2𝑅𝑅𝑚𝑚

 𝜔𝜔𝑛𝑛 is the natural frequency

𝜔𝜔𝑛𝑛 = 𝑘𝑘
𝑚𝑚
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System Poles & Zeros

 The second-order system has two poles at

𝑠𝑠1,2 = −𝜁𝜁𝜔𝜔𝑛𝑛 ± 𝜔𝜔𝑛𝑛 𝜁𝜁2 − 1

 The value of the damping ratio, 𝜁𝜁, determines the 
nature of the two poles:
 𝜻𝜻 > 𝟏𝟏: two real, distinct poles – over-damped
 𝜻𝜻 = 𝟏𝟏: two real, identical poles – critically-damped
 𝜻𝜻 < 𝟏𝟏: complex-conjugate pair poles – under-damped

 Type of poles, and, therefore, the value of 𝜁𝜁, 
determines the nature of the response
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System Poles & Zeros

 Assume the following system 
parameter values:
 𝑅𝑅𝑚𝑚 = 8 Ω
 𝑘𝑘𝑚𝑚 = 0.02 𝑁𝑁𝑁𝑁/𝐴𝐴
 𝑟𝑟 = 0.01 𝑚𝑚
 𝑚𝑚 = 0.1 𝑘𝑘𝑘𝑘
 𝑘𝑘 = 0.5 𝑁𝑁/𝑚𝑚
 𝑏𝑏 = 0.05 𝑁𝑁𝑁𝑁/𝑚𝑚

 Poles: 
 𝑠𝑠1 = −1.15 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠
 𝑠𝑠2 = −4.35 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠

 𝜁𝜁 = 1.23 > 1 – over-damped – distinct, real poles
 Monotonic step response – no overshoot or ringing
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Dynamic System Response

 Often characterize systems by their responses to 
particular classes of inputs, e.g.:

 Impulse response: response to an impulse with zero initial 
conditions – time-domain response

 Step response: response to a unit step with zero initial 
conditions – time-domain response

 Frequency response: system response to sinusoidal inputs 
of varying frequency – system gain and phase as functions 
of frequency – frequency-domain response

 Additionally, we often want to simulate the system’s 
response to arbitrary inputs
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Impulse Response

 The system response in the Laplace domain is given 
by the product of the transfer function and the 
Laplace transform of the input

𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 ⋅ 𝑈𝑈 𝑠𝑠

 The Laplace transform of an impulse function is

ℒ 𝛿𝛿 𝑡𝑡 = 1

therefore, a system’s impulse response is the 
inverse Laplace transform of its transfer function

𝑔𝑔 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠
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Impulse Response

 For our rack and pinion positioning system:

𝑔𝑔 𝑡𝑡 = ℒ−1 𝐺𝐺 𝑠𝑠 = ℒ−1
2.5

𝑠𝑠2 + 5.5𝑠𝑠 + 5

 Inverse transform via partial fraction expansion

𝐺𝐺 𝑠𝑠 = 2.5
𝑠𝑠2+5.5𝑠𝑠+5

= 𝑟𝑟1
𝑠𝑠+1.15

+ 𝑟𝑟2
𝑠𝑠+4.35

(1)

2.5 = 𝑟𝑟1 𝑠𝑠 + 4.35 + 𝑟𝑟2 𝑠𝑠 + 1.15

2.5 = 𝑟𝑟1 + 𝑟𝑟2 𝑠𝑠 + 4.35𝑟𝑟1 + 1.15𝑟𝑟2

 Equating coefficients and solving  the resulting system of two equations 
gives the following residues:

𝑟𝑟1 = 0.7809
𝑟𝑟2 = −0.7809
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Impulse Response

 Substituting the 
residues back into (1) 
gives

𝐺𝐺 𝑠𝑠 =
0.7809
𝑠𝑠 + 1.15

−
0.7809
𝑠𝑠 + 4.35

 Inverse Laplace 
transforming gives the 
impulse response:

𝑔𝑔 𝑡𝑡 = 0.7809𝑒𝑒−1.15𝑡𝑡 − 0.7809𝑒𝑒−4.35𝑡𝑡
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Step Response

 The step response in 
the Laplace domain is
𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 =
1
𝑠𝑠 ⋅

2.5
𝑠𝑠2 + 5.5𝑠𝑠 + 5

 Inverse transforming 
gives the time-domain 
step response:

𝑦𝑦 𝑡𝑡 = 0.5 − 0.6795𝑒𝑒−1.15𝑡𝑡 + 0.1795𝑒𝑒−4.35𝑡𝑡
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Frequency Response

 The frequency response function or sinusoidal transfer 
function is obtained by substituting 𝑗𝑗𝑗𝑗 for 𝑠𝑠 in the 
transfer function

𝐺𝐺 𝑗𝑗𝑗𝑗 =
2.5

𝑗𝑗𝑗𝑗 2 + 5.5 𝑗𝑗𝑗𝑗 + 5

 This complex function of frequency can be evaluated to 
give the system’s:

 Gain: the ratio of the magnitudes of the system’s 
(sinusoidal) output to input as function of frequency

 Phase: the phase shift from the (sinusoidal) input to the 
output as a function of frequency
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Frequency Response

 Gain and phase are plotted as a Bode plot:
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Block Diagram Model

 Our positioning system, or plant, can be 
represented in block diagram form as

 It has an input, 𝑢𝑢 𝑡𝑡 , and an output, 𝑦𝑦 𝑡𝑡
 Input/output relationship described by the  plant 

model: transfer function, state variable model, etc. 
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Open-Loop Configuration

 Say we want to command a 5 𝑐𝑐𝑐𝑐 displacement from our plant
 Plant input, 𝑢𝑢 𝑡𝑡 , is a voltage applied to a motor

 We’d like the input to be the desired displacement, e.g. 5 𝑐𝑐𝑐𝑐
 This desired output specified by the reference input, 𝑟𝑟(𝑡𝑡)

 Block diagram is now:

 Added a controller block
 Constant gain, 𝐾𝐾𝑂𝑂𝑂𝑂, to convert from 𝑟𝑟 𝑡𝑡 to 𝑢𝑢 𝑡𝑡
 Value of 𝐾𝐾𝑂𝑂𝑂𝑂 depends on properties of the plant
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Open-Loop Controller Gain

 How do we determine 𝐾𝐾𝑂𝑂𝑂𝑂?
 The steady-state gain of the system is 

𝐺𝐺𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0

𝐺𝐺 𝑠𝑠 = lim
𝑠𝑠→0

2.5
𝑠𝑠2 + 5.5𝑠𝑠 + 5

= 0.5 𝑚𝑚/𝑉𝑉

 Set 𝐾𝐾𝑂𝑂𝑂𝑂 = 1/𝐺𝐺𝑠𝑠𝑠𝑠 = 2 𝑉𝑉/𝑚𝑚
 Say, for example, that we want a displacement of  5 𝑐𝑐𝑐𝑐

𝑟𝑟 𝑡𝑡 = 0.05 𝑚𝑚

𝑢𝑢 𝑡𝑡 = 𝐾𝐾𝑂𝑂𝑂𝑂 ⋅ 𝑟𝑟 𝑡𝑡 = 2 ⁄𝑉𝑉 𝑚𝑚 ⋅ 0.05 𝑚𝑚 = 100 𝑚𝑚𝑚𝑚

𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑢𝑢 𝑡𝑡 ⋅ 𝐺𝐺𝑠𝑠𝑠𝑠 = 100 𝑚𝑚𝑚𝑚 ⋅ 0.5 ⁄𝑚𝑚 𝑉𝑉 = 5 𝑐𝑐𝑐𝑐
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Open-Loop Response

 The open-loop 
controller yields 
a steady-state 
output equal to 
the reference 
input

𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑟𝑟 𝑡𝑡
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Disturbance Input

 Consider what happens if some external factor 
affects the system
 Additional load
 Increased drag due to part wear, etc.

 This is a disturbance
 Model as an additional input to the plant, 𝑤𝑤 𝑡𝑡 :
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Effect of Disturbance

 The open-loop controller 
(𝐾𝐾𝑂𝑂𝑂𝑂) was designed for the 
specific plant 
characteristics
 Disturbance not 

accounted for
 Now,

𝑦𝑦𝑠𝑠𝑠𝑠 = 𝐾𝐾𝑂𝑂𝑂𝑂 ⋅ 𝑟𝑟 𝑡𝑡 + 𝑤𝑤 𝑡𝑡 𝐺𝐺𝑠𝑠𝑠𝑠
𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑟𝑟 𝑡𝑡 + 𝑤𝑤 𝑡𝑡 ⋅ 𝐺𝐺𝑠𝑠𝑠𝑠

 Steady-state error results
𝑦𝑦𝑠𝑠𝑠𝑠 ≠ 𝑟𝑟 𝑡𝑡

𝑒𝑒𝑠𝑠𝑠𝑠 = 𝑟𝑟 𝑡𝑡 − 𝑦𝑦𝑠𝑠𝑠𝑠
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Feedback Control

 Steady-state error due to disturbance input can be 
addressed by adding feedback

 The output is measured and fed back to the input
 Subtracted from the reference input – negative 

feedback
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Feedback Control

 This is a closed-loop configuration
 Difference between reference (desired output), 𝑟𝑟 𝑡𝑡 , and 

actual output, 𝑦𝑦 𝑡𝑡 , is the error, 𝑒𝑒 𝑡𝑡
𝑒𝑒 𝑡𝑡 = 𝑟𝑟 𝑡𝑡 − 𝑦𝑦 𝑡𝑡

 Error gets multiplied by the closed-loop controller gain, 𝐾𝐾𝐶𝐶𝐶𝐶
 Input to the plant, 𝑢𝑢 𝑡𝑡 , is the controller output plus the 

disturbance input
𝑢𝑢 𝑡𝑡 = 𝐾𝐾𝐶𝐶𝐶𝐶 ⋅ 𝑒𝑒 𝑡𝑡 + 𝑤𝑤 𝑡𝑡
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Closed-Loop Response

 Because 𝑦𝑦 𝑡𝑡 is fed 
back and used to 
generate 𝑢𝑢 𝑡𝑡 , error 
is reduced
 Though not 

eliminated, in this 
case

 Dynamics of the 
closed-loop system 
differ from the open-
loop system
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Reducing Steady-State Error

 Increasing controller 
gain can further 
reduce steady-state 
error

 Closed-loop system 
dynamics have 
changed a lot
 Faster risetime, 

increased overshoot
 Could this pose a 

problem?
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Closed-Loop Poles

 Nature of open-loop 
and closed-loop 
responses differ
 Closed-loop system 

poles differ from open-
loop system poles

 Feedback moves poles
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Second-Order Under-Damped System Poles

 We’ll see that feedback will allow us to 
move poles to desirable locations

 Second-order poles:
𝑠𝑠1,2 = −𝜎𝜎 ± 𝑗𝑗𝜔𝜔𝑑𝑑
𝑠𝑠1,2 = −𝜁𝜁𝜔𝜔𝑛𝑛 ± 𝑗𝑗𝜔𝜔𝑛𝑛 1 − 𝜁𝜁2

 Damping ratio

𝜁𝜁 =
𝜎𝜎
𝜔𝜔𝑛𝑛

= sin 𝜃𝜃

 Natural frequency

𝜔𝜔𝑛𝑛 = 𝜎𝜎2 + 𝜔𝜔𝑑𝑑2

 Damped natural frequency

𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛 1 − 𝜁𝜁2
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Second-Order Under-Damped System Poles

 Pole location determines dynamic 
behavior

 Overshoot:

%𝑂𝑂𝑂𝑂 = 𝑒𝑒
−𝜁𝜁𝜁𝜁
1−𝜁𝜁2 ⋅ 100%

𝜁𝜁 = −
ln 𝑂𝑂𝑂𝑂

𝜋𝜋2 + ln2 𝑂𝑂𝑂𝑂

 Settling time (±1%) approximation:

𝑡𝑡𝑠𝑠 ≈
4.6
𝜎𝜎

 Risetime approximation:

𝑡𝑡𝑟𝑟 ≈
1.8
𝜔𝜔𝑛𝑛
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Adding Controller Dynamics

 Previous controller was a simple gain factor
 Proportional control

 Controller could also be designed to have dynamics of 
its own – a compensator
 Controller transfer function may have poles and/or zeros
 Allows for better control of closed-loop system response
 Steady-state error – possible to eliminate
 Transient response – risetime, overshoot, settling time
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Closed-Loop Response

 Without getting into 
specifics, consider 
the effect of a 
controller that has a 
pole and two zeros

 Steady-state error 
has been eliminated

 Transient response 
nearly unchanged
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Closed-Loop Response

 Perhaps we want a 
faster response

 Alter closed-loop 
response by 
changing controller 
transfer function
 Much faster risetime
 Still almost no 

overshoot
 Still no steady-state 

error
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Closed-Loop Response

 Modify the 
controller again
 Even faster risetime
 Now, very large 

overshoot
 Significant ringing
 A desirable 

response? Perhaps 
not



K. Webb ESE 430

60

Controller Design

 How do we determine the controller transfer function 
to yield the desired response?
 The topic of this course

 What is the controller? 
 A block in a block diagram? Yes.
 A mathematical function? Yes.

 But, how do we implement it?
 Electronics – digital computer or opamp circuits



K. Webb ESE 430

61

ESE 430 Course Overview

1. Introduction
2. Block Diagrams & Signal Flow Graphs
3. Stability
4. Steady-State Error
5. Root-Locus Analysis
6. Root-Locus Design
7. Frequency-Response Analysis
8. Frequency-Response Design
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