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Block Diagrams
R

In the introductory section we saw examples of block diagrams
to represent systems, e.g.:

=
w
=z

U(s) 6,(5) Y(s)

O —

R(s) s Els)
R(s) J% U(s) ¥(s) 2 Gi(s)
Gy(s) Gals) [—— -

Block diagrams consist of

o Blocks — these represent subsystems — typically modeled by, and labeled
with, a transfer function

o Signals — inputs and outputs of blocks — signal direction indicated by
arrows — could be voltage, velocity, force, etc.

O Summing junctions — points were signals are algebraically summed —
subtraction indicated by a negative sign near where the signal joins the
summing junction
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Standard Block Diagram Forms

-
The basic input/output relationship for a single block is:

U(s) Y(s)

—3  G(s)

Y(s) =U(s) - G(s)

Block diagram blocks can be connected in three basic forms:
o Cascade

o Parallel

O Feedback

We'll next look at each of these forms and derive a single-
block equivalent for each
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Cascade Form
-

Blocks connected in cascade:

U(s) Gils) Xa(s) 6,(s) Xa(s) Gals) Y(s)

X1(s) =U(s) - G1(s), Xz(s) = X1(s) - G (s)
Y(s) = X,(s) - G3(s) = X1(5) - Go(s) - G3(s)

Y(s) = U(s) - G1(s) - G(s) - G3(s) = U(s) - Geq(S)
Geq(S) = G1(8) - Gz(s) - G3(s)

The equivalent transfer function of cascaded blocks is the
product of the individual transfer functions

U(s) Y(s)
— Ga(s)-Gas)-Gs(s) ——
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Parallel Form

-
Blocks connected in parallel:

e — X1(s) = U(s) - G1(s)
£ X3(s) = U(s) - Go(s)
U(s) 6,(5) X3(s) i\ﬁzﬂ Y(s)
T X3(s) = U(s) - Gs(s)
o L V() = X,(5) £ Xp(5) £ X3(s)

Y(s) =UC(s) - G1(s) £U(s) - Go(s) £ U(s) - G3(s)
Y(s) = U(s)[G1(s) £ G2(8) £ G3(s)] = U(s) - Geg(s)
Geq(s) = G1(s) £ Go(s) £ G3(s)

The equivalent transfer function is the sum of the individual
transfer functions:

U(s) Y(s)
— G4(s)2Ga(s)tGs(s) —
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Feedback Form

Of obvious interest to us, is the feedback form:

e S Sl N B y(s) = E()G(s)
‘ Y(s) = [R(s) — X(s)]G(s)
I Y(s) = [R(s) — Y(s)H(s)]G(s)
Y(s)[1+ G(s)H(s)] = R(s)G(s)
v(s) = R(s) - — ")

14+ G(s)H(s)
The closed-loop transfer function, T (s), is

Yis)  G(s)
R(s) 1+ G(s)H(s)

T(s) =
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Feedback Form

R(s) @ E(s) Gls) Y(s) G (S)

‘ . IS) = T e ®HG)

Note that this is negative feedback, for positive feedback:

G(s)
1—G(s)H(s)

T(s) =

The G(s)H (s) factor in the denominator is the loop gain or open-loop
transfer function

The gain from input to output with the feedback path broken is the
forward path gain — here, G(s)

In general:

forward path gain
T(s) = p g

1 — loop gain
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Closed-Loop Transfer Function - Example

-
Calculate the closed-loop transfer function

R Y
) Has) () D(s) G(s) )

s
T Ha(s)

D(s) and G(s) are in cascade

H,(s) is in cascade with the feedback system consisting of D(s),
G(S) and H,(s)

) D(s)G(s)
T(s) = Hy(s) - 1+ D(s)G(s)H,(s)
r(s) = H,(s)D(s)G(s)

1+ D(s)G(s)H,(s)
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Unity-Feedback Systems

.
We’'re often interested in unity-feedback systems

R(s) sz\ D(s) Gls) Yis)

Feedback path gain is unity

o Can always reconfigure a system to unity-feedback form

Closed-loop transfer function is:

D(s)G(s)

IS = 1T D60
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Block Diagram Algebra
R

Often want to simplify block diagrams into simpler,
recognizable forms
o To determine the equivalent transfer function

Simplify to instances of the three standard formes,
then simplify those forms

Move blocks around relative to summing junctions
and pickoff points — simplify to a standard form

o Move blocks forward/backward past summing junctions
o Move blocks forward/backward past pickoff points
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Moving Blocks Back Past a Summing Junction

e
The following two block diagrams are equivalent:

Ui(s) 6ls) @ Y}(S)

() o) — = xﬁ
T G(s)
Uz(S

)

U4(s)

Uy(s)

Y(s) = [U1(s) + Uz(s)]G(s) = U1(s)G(s) + U(s)G(s)
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Moving Blocks Forward Past a Summing Junction

e
The following two block diagrams are equivalent:

Ui(s) @ 6ls) Y(s)

Ui(s) G(s) ? Y/(S) — T

1

G(s)

U,(s) ,‘

Ua(s)

¥(8) = U()6(5) + Ua(s) = [U4(5) + Ua(9) = 6(5)

G(s)
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Moving Blocks Relative to Pickoff Points

.
We can move blocks backward past pickoff points:

G(s)

U(s)

U(s)-G(s)

U(s)

U(s)-G(s)

G(s)

U(s)

G(s)

And, we can move them forward past pickoff points:

U(s)-G(s)

U(s)

G(s)

U(s)-G(s)

K. Webb

U(s)

G(s)

G(s)

U(s)-G(s)

U(s)-G(s)
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Block Diagram Simplification — Example 1

Rearrange the following into a unity-feedback system

Move the feedback block, H(s), forward,

W5 G(s) e
- past the summing junction
Add an inverse block on R(s) to
) compensate for the move
" - () Hs) (s) e

H(s) T

Closed-loop transfer function:

OO G
IS = T GG~ 1+ CEHE)
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Block Diagram Simplification — Example 2

Find the closed-loop transfer function of the following
system through block-diagram simplification

Gafs)
RS) = l Y(s)
_ZJ A > } Ga(s) G,(s) Gs(s) /\Z_/ ?
Hi(s)

H,(s)
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Block Diagram Simplification — Example 2

G1(s) and H,(s) are in feedback form

R(s)

K. Webb

Ga(s)
-~ -
(A2 Guls) Gafs)

R
\

N N Ha(s)

Ha(s)

_ G1(s)
Gegq (s) =

Gs(s)

—

Y(s)
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Block Diagram Simplification — Example 2

-
Move G, (s) backward past the pickoff point

Ga(s)
(b fL
) / v
L o i Gils) Gs(s E—"

-/ 1-Gy(s)Hyls) | €

Ha(s)

Block from previous step, G,(s), and H,(s) become a
feedback system that can be simplified
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Block Diagram Simplification — Example 2

Simplify the feedback subsystem
Note that we’ve dropped the function of s notation, (s), for clarity

Gy

— — — — Gz
-~ - =~ ~
~N
R(S) / Gl G AN G 2 Y\(S)
2 3 ’\J 7

G1Gy
Goo(s) = —— 611 _ G
cq 1 4 GGy 1= GiHy + G1GoH,

1— G H,
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Block Diagram Simplification — Example 2
e

Simplify the two parallel subsystems

~
;7 S N
/ G, \
/ \
Gle l l
R(s) 1 - GyH, \ . fZ\ / Y(S)
1+ G,G,H, \ . 3 '\J//
1-GH, ~N - _ e
Gy
Geq (s) =Gs+—
G
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Block Diagram Simplification — Example 2
e

Now left with two cascaded subsystems

o Transfer functions multiply

R(s) G1G,

1-GH{+ G;G,H,

G3 + Gy

Y(s)

G1G,G3 + GGy

Gegq (s) =

K. Webb

1 - G]_Hl + GleHZ
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Block Diagram Simplification — Example 2

Gafs)
R l Y(s)
N E—E)— &l Gals) Gy(s) ,

\L Hi(s)

H,(s)

The equivalent, close-loop transfer function is

G,G,Gs + GG,
1— G,H, + G,G,H,

T(s) =
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Multiple Input Systems

Systems often have more than one input
o E.g., reference, R(s), and disturbance, W (s)

W(s)

Gu(s)

R(s) E(s)
E o

% U(s)

|

G(s)

Two transfer functions:
o From reference to output

T(s) =Y(s)/R(s)

o From disturbance to output

Tw(s) =Y (s)/W(s)

K. Webb

Y(s)
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Transfer Function — Reference
I

Find transfer function from R(s) to Y (s)
o A linear system — superposition applies

oSetW(s) =0
R(s) %E(S) D(s) U(s) 6(s) \\((5)
Y(s D(s)G(s
vy 2 V&) __DOEE)

R(s) 1+ D(s)G(s)
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Transfer Function — Reference

Next, find transfer function from W (s) to Y (s)
oSetR(s) =0
o System now becomes:

M Gus) ——(5) Gls) 3
D(s)

Y(s) = Gu(s)G(s)
W(s) 1+ D(s)G(s)
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Multiple Input Systems
-
Two inputs, two transfer functions

__ D(s)G(s) _ Gw(s)G(s)
T(s) = 1+D(5)G(5) and Tw(s) = 1+D(s)G ()

D(s) is the controller transfer function
o Ultimately, we’ll determine this
o We have control over both T(s) and T,, (s)

What do we want these to be?
o Design T (s) for desired performance
o Design T, (s) for disturbance rejection
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- Signal Flow Graphs
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Signal Flow Graphs

-
An alternative to block diagrams for graphically describing systems

R(s) 1 E(s) D(s) u(s) G(s) Y(s)

O >0 >O

Signal flow graphs consist of:
o Nodes —represent signals
o Branches —represent system blocks

Branches labeled with system transfer functions
Nodes (sometimes) labeled with signal names
Arrows indicate signal flow direction

Implicit summation at nodes
o Always a positive sum
o Negative signs associated with branch transfer functions
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Block Diagram — Signhal Flow Graph
e

To convert from a block diagram to a signal flow
graph:

1. ldentify and label all signals on the block diagram
2. Place a node for each signal

3. Connect nodes with branches in place of the blocks
Maintain correct direction
Label branches with corresponding transfer functions

Negate transfer functions as necessary to provide negative
feedback

4. If desired, simplify where possible
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Signal Flow Graph — Example 1

Convert to a signal flow graph

R(s) X;(s) E(s) U(s) Y(s)
—— His) —(3) S

D(s) G(s)
T X, (s)

Ha(s)

Label any unlabeled signals
Place a node for each signal

R(s) Xi(s) E(s) U(s) Y(s)
O O O O O

Xa(s)
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Signal Flow Graph — Example 1

RIs) Xils) = Els) U(s) Y(s)

Ha(s) D(s) G(s)
‘ Xa(s) Hz(S)

Connect nodes with branches, each representing a system block

R(s) H1(s) Xi(s) 1 E(s) D(s) U(s) G(s) Y(s)

O 2®; 2®

Note the -1 to provide negative feedback of X, (s)
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Signal Flow Graph — Example 1
e

R(s)  Ha(s) Xu(s) 1 Es)  D(s) u(s) G(s)  Y(s)

O O 128, O

Nodes with a single input and single output can be
eliminated, if desired

o This makes sense for X;(s) and X, (s)
O Leave U(s) to indicate separation between controller and plant

R(s)  Ha(s) E(s) D(s) U(s) G(s) Y(s)

O »O »O >

-Ha(s)
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Signal Flow Graph — Example 2

Revisit the block diagram from earlier
o Convert to a signal flow graph

Xa(s)

Ga(s)
R(s) Xa(s) Xals) Xa(s) Xa(s) Xs()JJ‘\ Y(s)
DO Gl<s)j Gals) [ Gals) [ (3) ’
Xsls)
Ha(s)
X7
& Hafs)

O] O] O] O] ®] O OY(s)

K. Webb ©
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Signal Flow Graph — Example 2

Gyls) el JL
R(s) @ Xi(s) @ Xa(s) Gi(s) Xs(s) 65(5) Xals) Gofs) Xs(s) @ Y(s)
XE(S) H(S)
o) Ha(s)
Connect nodes with branches
XS(S)

Gals)
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Signal Flow Graph — Example 2

Xg(s)

Xi(s) 1 5:_:_2{,?2 Ga(s) X3£f) Ga(s) .._x;sS) Ga(s) 35(5) 1

w(s)

Hz(s)

Simplify — eliminate X<(s), X¢(s), X5 (s), and Xg(s)

Gu(s)

Y(s)
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Signal Flow Graphs vs. Block Diagrams
R

Signal flow graphs and block diagrams are
alternative, though equivalent, tools for graphical
representation of interconnected systems

A generalization (not a rule)

o Signal flow graphs — more often used when dealing
with state-space system models

0 Block diagrams — more often used when dealing with
transfer function system models
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- Mason’s Rule

K. Webb ESE 430



Mason’s Rule

We’ve seen how to reduce a complicated block
diagram to a single input-to-output transfer
function

o Many successive simplifications

Mason’s rule provides a formula to calculate the
same overall transfer function

o Single application of the formula
o Can get complicated

Before presenting the Mason’s rule formula, we
need to define some terminology
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Loop Gain

Gs(s)

Rs) 1 Xi(s)  Ga(s) Xa(s) 1 Xa(s) 1 Xa(s) GaS)  Xs(s) Gs(s) Xss)  Ga(s) Y(s)
O =U =) U > >

-Ha(s) Hi(s)

-Ha(s)
Loop gain — total gain (product of individual gains) around
any path in the signal flow graph
O Beginning and ending at the same node
o Not passing through any node more than once

Here, there are three loops with the following gains:
1. —GqH;3

2. GoH4

3. —G,G4H,
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Forward Path Gain

Gs(s)

Ris) 1 Xi(s)  Ga(s) Xa(s) 1 Xa(s) 1 Xa(s)  Ga(S8)  Xs(s) Ga(s) Xs(s)  Ga(s) Y(s)
O ) =f"\ =f"\ [ > =f'\ -

/ /

-Ha(s) Hi(s)

-Ha(s)
Forward path gain — gain along any path from the input

to the output
o Not passing through any node more than once

Here, there are two forward paths with the following
gains:

. G1G,G3G,

). G1G,Gs
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Non-Touching Loops

Gs(s)

Ris) 1 Xi(s)  Ga(s) Xa(s) 1 Xa(s) 1 Xa(s)  Ga(S8)  Xs(s) Ga(s) Xs(s)  Ga(s) Y(s)
O U »O U »O >

-Ha(s) Ha(s)

-Ha(s)

Non-touching loops — loops that do not have any
nodes in common

Here,

1. —Gq1H; does not touch G, H;
2. —G1H; does not touch —G,G3H,
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Non-Touching Loop Gains

Gs(s)

Ris) 1 Xi(s)  Ga(s) Xa(s) 1 Xa(s) 1 Xa(s)  Ga(S8)  Xs(s) Ga(s) Xs(s)  Ga(s) Y(s)
O =f'\ =f"\ =f"\ [ > =f'\ -

N _/

-Ha(s) Hi(s)

-Hz(S)

Non-touching loop gains — the product of loop gains

from non-touching loops, taken two, three, four, or
more at a time

Here, there are only two pairs of non-touching loops
1. [=GiH3] - |Gy H,]
2. [=GiH3] - [-G,G3Hy]
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Mason’s Rule
X

R(S) Z TicBe

T(s) =

where

P = # of forward paths

T, = gain of the k" forward path

A =1 — X(loop gains)
+2X(non-touching loop gains taken two-at-a-time)
—2X(non-touching loop gains taken three-at-a-time)
+2X(non-touching loop gains taken four-at-a-time)
-2 ..

A, = A — Z(loop gain terms in A that touch the k! forward path)
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Mason’s Rule - Example

Gs(s)

Ris) 1 Xi(s)  Ga(s) Xa(s) 1 Xa(s) 1 Xa(s)  Ga(S8)  Xs(s) Ga(s) Xs(s)  Ga(s) Y(s)
O U »O U »O >

-Ha(s) Hi(s)

-Ha(s)

# of forward paths: Y(NTLGs taken two-at-a-time):
P =72 (—G1H3GyH,) + (G1H3G,G3H,)
Forward path gains: A:
Ty = G1G,G3G, A=1—- (—=GyH; + G,H; — G,G3H,)
T; = G1G3G5 +(—=G,H3G,H; + G;H3G,G3H,)
2(loop gains):
—GyHs + GyH, — G,G3H,
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Mason’s Rule — Example - A,
-

Simplest way to find A, terms is to calculate A with the kt"
path removed — must remove nodes as well

With forward path 1 removed, there are no loops, so

Ay =1—0
A1=1
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Mason’s Rule — Example - A,

R(s) Xa(s) Xa2(s) X3(s) X4(s) Xs(s) ! Gs(s) Xs(S) Ga(s) Y(s)

Similarly, removing forward path 2 leaves no loops, so

A2=1_0
A2=1
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Mason’s Rule - Example
-

For our example: P
Y(s) 1
h=z T(S)zR()zZzT"A"
S
T; = G1G,G3G, k=1
T, = G1G,G5
A=1+GH; — G,H; + G,G3;H, — G{H3G,H; + G{H;G,G3H,
Al —
A, =

G1G,G3G4 + G1 GG

T(s) =
(s) 1+ GH; — G,H;{ + G,G3H, — G{H3;G,H; + G1H3;G,G3H,
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Controller Design — Preview
R

We now have the tools necessary to determine the
transfer function of closed-loop feedback systems

Let’s take a closer look at how feedback can help us
achieve a desired response

o Just a preview — this is the objective of the whole course

Consider a simple first-order system

o
~+

lan Y(s)
1 >

2

U(s)

wn
+

rad

A single real pole at s = —2 P
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Open-Loop Step Response

2
1]
3
—~+

U(s) 1 \;'(5) 0per||-Loop Stlep Resplonse
s+2 .l
This system Y
oy o t =1.1 sec
exhibits the £ 06 =23 sec
. = 0S =0.0%
expected first- = >
0.4+
order step
response i
a No overshoot or T R T T T
ringing time [sec]
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Add Feedback

Now let’s enclose the system in a feedback loop

R(s)

=
—

lan

@ E(s) Controller U(s)

}/ D(s)

Y(s)

’H

N

S+

Add controller block with transfer function D(s)
Closed-loop transfer function becomes:

1
D(s) D(s)
T(S) — s+ 2 —
1+D(s)ﬁ s+ 2+ D(s)

Clearly the addition of feedback and the controller
changes the transfer function — but how?

O Let’s consider a couple of example cases for D(s)

K. Webb
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Add Feedback

First, consider a simple gain block for the controller

R(s)

@ E(s) | Controller| U(s) Plint

_/I\ Ke s+2

Error signal, E(s), amplified by a constant gain, K,
o A proportional controller, with gain K

Now, the closed-loop transfer function is:

Y(s)

K¢
14+ Ke  s+2+K
s+ 2

A single real poleats = —(2 + K.)

o Pole moved to a higher frequency
o A faster response

K. Webb
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Open-Loop Step Response
e

R(s) E(s) ontroller | U(s) Plant Y(s)
W Closed-Loop Step Response -- Proportional Feedback
1r Pty ‘.__-_3.'-'.“
As feedback gain
Increases:
—_ Open-Loop
Eostii / | e K =2
o Pole moves to a S A P K =5
. x ogar g KC =10
higher frequency
O Response gets
faster
0 0].5 '; 115 é 2&5 é 31.5 4
time [sec]
ESE 430
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First-Order Controller

Next, allow the controller to have some dynamics of its own

R(s)

E(s) Controller U(s) Plant

_/k\ s+b s+2

Now the controller is a first-order block with gain K- and a pole at
s=-—b

This yields the following closed-loop transfer function:
K. 1
T(s) = (s+b)(s+2) _ K¢

14 Kc 1 s24+Q+b)s+2b+K,
(s+b)(s+2)

Y(s)

The closed-loop system is now second-order
o One pole from the plant

o One pole from the controller

K. Webb
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First-Order Controller

o

—

Controller lan
@ E(s) ” U(s) N \\((5)
&) . ’

K¢
— s+b +2 T —
T (s) s2+(2+b)s+2b+ K,

wv

Two closed-loop poles:

(b+2) b%—4b+4— 4K,
S1,2 = — T
' 2 2

Pole locations determined by b and K
o Controller parameters — we have control over these
o Design the controller to place the poles where we want them

So, where do we want them?

o Design to performance specifications
o Risetime, overshoot, settling time, etc.

K. Webb
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Design to Specifications

-
The second-order closed-loop transfer function
Kc
s?2+(2+b)s+2b+ K,

T(s) =

can be expressed as
Kc Kc
S2 +2(w,s + w2  s24 205+ w?

T(s) =

Let’s say we want a closed-loop response that satisfies the
following specifications:

o %0S < 5%
ot; < 600msec

Use %0S and t, specs to determine values of { and ¢
O Then use ¢ and o to determine K. and b
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Determine ¢ from Specifications
I aasssss——————

Overshoot and damping ratio, {, are related as

follows:
—1n(0S)

B V12 +1n2(05)

The requirement is %0S < 5%, SO

(> —In(0.05) 0.69
B V12 +1n2(0.05) |

Allowing some margin, set { = 0.75
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Determine o from Specifications
-

Settling time (+1%) can be approximated from o as

4.6

t
5 g

The requirement is t; < 600 msec
Allowing for some margin, design for t; = 500 msec

. 4.6 500 4.6
~ — = - =
N msec d 500 msec
which gives
rad
o=92——
sec

We can then calculate the natural frequency from ¢ and o

g 9.2 rad
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Determine Controller Parameters from o and w,,
T

The characteristic polynomial is
s+ (2+b)s+2b+ K, =5%+ 205 + w?
Equating coefficients to solve for b:
24+b=20=184
b=164
and K
2b + K = w2 = (12.27)%2 = 150.5
K, =1505-2-164=117.7 - 118
K. =118
The controller transfer function is

118
s+ 16.4

K. Webb ESE 430
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Closed-Loop Poles
e
Closed-loop system

Open-Loop and Closed-Loop System Poles

1 10 I
IS now second order X Ororios
8t b4 X Closed-Loop |-
Controller designed T
I Closed-Loop Poles:
to place the two = Sy = "9-20£]8.13
3 2f
closed-loop poles at £ y
. . c
desirable locations: | ’\ /‘
g
0S12 = —9.2 £ j8.13 “I' Controller Plant
6 I I
o{ =0.75 Pere Pore
8t b4
0wy, = 12.3 -10 ' : '
-15 -10 -5 0

Real [rad/sec]
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Closed-Loop Step Response

Closed-loop step
response satisfies
the specifications

Approximations
were used

o If requirements not
met - iterate

K. Webb

Close-Loop Step Response -- First-Order D(s)

1+
0.8}

= tr = 186.1 msec
—06f t_=537.2 msec
= 0S = 2.9%

04+

0.2

0 1 1 | | 1 1 |
0 05 1 1.5 2 25 3 35 4
time [sec]
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