
ESE 430 – Feedback Control Systems

SECTION 2: BLOCK DIAGRAMS 
& SIGNAL FLOW GRAPHS
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Block Diagrams

 In the introductory section we saw examples of block diagrams
to represent systems, e.g.:

 Block diagrams consist of 

 Blocks – these represent subsystems – typically modeled by, and labeled 
with, a transfer function

 Signals – inputs and outputs of blocks – signal direction indicated by 
arrows – could be voltage, velocity, force, etc.

 Summing junctions – points were signals are algebraically summed –
subtraction indicated by a negative sign near where the signal joins the 
summing junction
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Standard Block Diagram Forms

 The basic input/output relationship for a single block is:

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺 𝑠𝑠

 Block diagram blocks can be connected in three basic forms:
 Cascade
 Parallel
 Feedback

 We’ll next look at each of these forms and derive a single-
block equivalent for each
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Cascade Form

 Blocks connected in cascade:

𝑋𝑋1 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠 ,  𝑋𝑋2 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑋𝑋2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝐺𝐺1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

 The equivalent transfer function of cascaded blocks is the 
product of the individual transfer functions 
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Parallel Form

 Blocks connected in parallel:
𝑋𝑋1 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠

𝑋𝑋2 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠

𝑋𝑋3 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 ± 𝑋𝑋2 𝑠𝑠 ± 𝑋𝑋3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠 ± 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ± 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 𝐺𝐺1 𝑠𝑠 ± 𝐺𝐺2 𝑠𝑠 ± 𝐺𝐺3 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝐺𝐺1 𝑠𝑠 ± 𝐺𝐺2 𝑠𝑠 ± 𝐺𝐺3 𝑠𝑠

 The equivalent transfer function is the sum of the individual 
transfer functions:
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Feedback Form

 Of obvious interest to us, is the feedback form:

𝑌𝑌 𝑠𝑠 = 𝐸𝐸 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 − 𝑋𝑋 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 − 𝑌𝑌 𝑠𝑠 𝐻𝐻 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 ⋅
𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠

 The closed-loop transfer function, 𝑇𝑇 𝑠𝑠 , is

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Feedback Form

 Note that this is negative feedback, for positive feedback:  

𝑇𝑇 𝑠𝑠 =
𝐺𝐺 𝑠𝑠

1 − 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠

 The 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 factor in the denominator is the loop gain or open-loop 
transfer function

 The gain from input to output with the feedback path broken is the 
forward path gain – here, 𝐺𝐺 𝑠𝑠

 In general:

𝑇𝑇 𝑠𝑠 =
forward path gain

1 − loop gain

𝑇𝑇 𝑠𝑠 =
𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Closed-Loop Transfer Function - Example

 Calculate the closed-loop transfer function

 𝐷𝐷 𝑠𝑠 and 𝐺𝐺 𝑠𝑠 are in cascade
 𝐻𝐻1 𝑠𝑠 is in cascade with the feedback system consisting of 𝐷𝐷 𝑠𝑠 , 
𝐺𝐺 𝑠𝑠 , and 𝐻𝐻2 𝑠𝑠

𝑇𝑇 𝑠𝑠 = 𝐻𝐻1 𝑠𝑠 ⋅
𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠 𝐻𝐻2 𝑠𝑠

𝑇𝑇 𝑠𝑠 =
𝐻𝐻1 𝑠𝑠 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠 𝐻𝐻2 𝑠𝑠
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Unity-Feedback Systems

 We’re often interested in unity-feedback systems

 Feedback path gain is unity
 Can always reconfigure a system to unity-feedback form

 Closed-loop transfer function is:

𝑇𝑇 𝑠𝑠 =
𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Block Diagram Manipulation11
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Block Diagram Algebra

 Often want to simplify block diagrams into simpler, 
recognizable forms 
 To determine the equivalent transfer function

 Simplify to instances of the three standard forms, 
then simplify those forms 

 Move blocks around relative to summing junctions 
and pickoff points – simplify to a standard form
 Move blocks forward/backward past summing junctions
 Move blocks forward/backward past pickoff points
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Moving Blocks Back Past a Summing Junction

 The following two block diagrams are equivalent:

𝑌𝑌 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠 𝐺𝐺 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 𝐺𝐺 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Moving Blocks Forward Past a Summing Junction

 The following two block diagrams are equivalent:

𝑌𝑌 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 𝐺𝐺 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠
1

𝐺𝐺 𝑠𝑠
𝐺𝐺 𝑠𝑠
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Moving Blocks Relative to Pickoff Points

 We can move blocks backward past pickoff points:

 And, we can move them forward past pickoff points:
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Block Diagram Simplification – Example 1

 Rearrange the following into a unity-feedback system

 Move the feedback block, 𝐻𝐻 𝑠𝑠 , forward, 
past the summing junction

 Add an inverse block on 𝑅𝑅 𝑠𝑠 to 
compensate for the move 

 Closed-loop transfer function:

𝑇𝑇 𝑠𝑠 =

1
𝐻𝐻 𝑠𝑠 𝐻𝐻 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
=

𝐺𝐺 𝑠𝑠
1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Block Diagram Simplification – Example 2

 Find the closed-loop transfer function of the following 
system through block-diagram simplification
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Block Diagram Simplification – Example 2

 𝐺𝐺1 𝑠𝑠 and 𝐻𝐻1 𝑠𝑠 are in feedback form

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 =
𝐺𝐺1 𝑠𝑠

1 − 𝐺𝐺1 𝑠𝑠 𝐻𝐻1 𝑠𝑠
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Block Diagram Simplification – Example 2

 Move 𝐺𝐺2 𝑠𝑠 backward past the pickoff point

 Block from previous step, 𝐺𝐺2 𝑠𝑠 , and 𝐻𝐻2 𝑠𝑠 become a 
feedback system that can be simplified
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Block Diagram Simplification – Example 2

 Simplify the feedback subsystem
 Note that we’ve dropped the function of 𝑠𝑠 notation, 𝑠𝑠 , for clarity

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 =

𝐺𝐺1𝐺𝐺2
1 − 𝐺𝐺1𝐻𝐻1

1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
1 − 𝐺𝐺1𝐻𝐻1

=
𝐺𝐺1𝐺𝐺2

1 − 𝐺𝐺1𝐻𝐻1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
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Block Diagram Simplification – Example 2

 Simplify the two parallel subsystems

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝐺𝐺3 +
𝐺𝐺4
𝐺𝐺2
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Block Diagram Simplification – Example 2

 Now left with two cascaded subsystems
 Transfer functions multiply

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 =
𝐺𝐺1𝐺𝐺2𝐺𝐺3 + 𝐺𝐺1𝐺𝐺4

1 − 𝐺𝐺1𝐻𝐻1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
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Block Diagram Simplification – Example 2

 The equivalent, close-loop transfer function is

𝑇𝑇 𝑠𝑠 =
𝐺𝐺1𝐺𝐺2𝐺𝐺3 + 𝐺𝐺1𝐺𝐺4

1 − 𝐺𝐺1𝐻𝐻1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
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Multiple-Input Systems24
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Multiple Input Systems

 Systems often have more than  one input
 E.g., reference, 𝑅𝑅 𝑠𝑠 , and disturbance, 𝑊𝑊 𝑠𝑠

 Two transfer functions:
 From reference to output

𝑇𝑇 𝑠𝑠 = ⁄𝑌𝑌 𝑠𝑠 𝑅𝑅 𝑠𝑠

 From disturbance to output

𝑇𝑇𝑤𝑤 𝑠𝑠 = 𝑌𝑌 𝑠𝑠 /𝑊𝑊 𝑠𝑠
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Transfer Function – Reference 

 Find transfer function from 𝑅𝑅 𝑠𝑠 to 𝑌𝑌 𝑠𝑠
 A linear system – superposition applies
 Set 𝑊𝑊 𝑠𝑠 = 0

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Transfer Function – Reference 

 Next, find transfer function from 𝑊𝑊 𝑠𝑠 to 𝑌𝑌 𝑠𝑠
 Set 𝑅𝑅 𝑠𝑠 = 0
 System now becomes:

𝑇𝑇𝑤𝑤 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑊𝑊 𝑠𝑠

=
𝐺𝐺𝑤𝑤 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Multiple Input Systems

 Two inputs, two transfer functions

𝑇𝑇 𝑠𝑠 = 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
1+𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

and        𝑇𝑇𝑤𝑤 𝑠𝑠 = 𝐺𝐺𝑤𝑤 𝑠𝑠 𝐺𝐺 𝑠𝑠
1+𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

 𝐷𝐷 𝑠𝑠 is the controller transfer function
 Ultimately, we’ll determine this
 We have control over both 𝑇𝑇 𝑠𝑠 and 𝑇𝑇𝑤𝑤 𝑠𝑠

 What do we want these to be?
 Design 𝑇𝑇 𝑠𝑠 for desired performance
 Design 𝑇𝑇𝑤𝑤 𝑠𝑠 for disturbance rejection
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Signal Flow Graphs29
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Signal Flow Graphs

 An alternative to block diagrams for graphically describing systems

 Signal flow graphs consist of:
 Nodes –represent signals
 Branches –represent system blocks

 Branches labeled with system transfer functions
 Nodes (sometimes) labeled with signal names
 Arrows indicate signal flow direction
 Implicit summation at nodes

 Always a positive sum
 Negative signs associated with branch transfer functions
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Block Diagram → Signal Flow Graph

 To convert from a block diagram to a signal flow 
graph:

1. Identify and label all signals on the block diagram
2. Place a node for each signal
3. Connect nodes with branches in place of the blocks
 Maintain correct direction 
 Label branches with corresponding transfer functions
 Negate transfer functions as necessary to provide negative 

feedback

4. If desired, simplify where possible
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Signal Flow Graph – Example 1

 Convert to a signal flow graph

 Label any unlabeled signals
 Place a node for each signal



K. Webb ESE 430

33

Signal Flow Graph – Example 1

 Connect nodes with branches, each representing a system block

 Note the -1 to provide negative feedback of 𝑋𝑋2 𝑠𝑠
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Signal Flow Graph – Example 1

 Nodes with a single input and single output can be 
eliminated, if desired
 This makes sense for 𝑋𝑋1 𝑠𝑠 and 𝑋𝑋2 𝑠𝑠
 Leave 𝑈𝑈 𝑠𝑠 to indicate separation between controller and plant 
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Signal Flow Graph – Example 2

 Revisit the block diagram from earlier
 Convert to a signal flow graph

 Label all signals, then place a node for each
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Signal Flow Graph – Example 2

 Connect nodes with branches
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Signal Flow Graph – Example 2

 Simplify – eliminate 𝑋𝑋5 𝑠𝑠 , 𝑋𝑋6 𝑠𝑠 , 𝑋𝑋7 𝑠𝑠 , and 𝑋𝑋8 𝑠𝑠
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Signal Flow Graphs vs. Block Diagrams

 Signal flow graphs and block diagrams are 
alternative, though equivalent, tools for graphical 
representation of interconnected systems

 A generalization (not a rule)
 Signal flow graphs – more often used when dealing 

with state-space system models

 Block diagrams – more often used when dealing with 
transfer function system models
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Mason’s Rule39
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Mason’s Rule

 We’ve seen how to reduce a complicated block 
diagram to a single input-to-output transfer 
function
 Many successive simplifications

 Mason’s rule provides a formula to calculate the 
same overall transfer function
 Single application of the formula
 Can get complicated

 Before presenting the Mason’s rule formula, we 
need to define some terminology
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Loop Gain

 Loop gain – total gain (product of individual gains) around 
any path in the signal flow graph
 Beginning and ending at the same node
 Not passing through any node more than once

 Here, there are three loops with the following gains:
1. −𝐺𝐺1𝐻𝐻3
2. 𝐺𝐺2𝐻𝐻1
3. −𝐺𝐺2𝐺𝐺3𝐻𝐻2
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Forward Path Gain

 Forward path gain – gain along any path from the input 
to the output
 Not passing through any node more than once

 Here, there are two forward paths with the following 
gains:
1. 𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4
2. 𝐺𝐺1𝐺𝐺2𝐺𝐺5
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Non-Touching Loops

 Non-touching loops – loops that do not have any 
nodes in common

 Here, 
1. −𝐺𝐺1𝐻𝐻3 does not touch 𝐺𝐺2𝐻𝐻1
2. −𝐺𝐺1𝐻𝐻3 does not touch −𝐺𝐺2𝐺𝐺3𝐻𝐻2
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Non-Touching Loop Gains

 Non-touching loop gains – the product of loop gains 
from non-touching loops, taken two, three, four, or 
more at a time

 Here, there are only two pairs of non-touching loops 
1. −𝐺𝐺1𝐻𝐻3 ⋅ 𝐺𝐺2𝐻𝐻1
2. −𝐺𝐺1𝐻𝐻3 ⋅ −𝐺𝐺2𝐺𝐺3𝐻𝐻2
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Mason’s Rule

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
1
Δ
�
𝑘𝑘=1

𝑃𝑃

𝑇𝑇𝑘𝑘Δ𝑘𝑘

where

𝑃𝑃 = # of forward paths

𝑇𝑇𝑘𝑘 = gain of the 𝑘𝑘𝑡𝑡𝑡 forward path

Δ = 1 − Σ(loop gains) 

+Σ(non-touching loop gains taken two-at-a-time)

−Σ(non-touching loop gains taken three-at-a-time) 

+Σ(non-touching loop gains taken four-at-a-time)

−Σ …

Δ𝑘𝑘 = Δ − Σ(loop gain terms in Δ that touch the 𝑘𝑘𝑡𝑡𝑡 forward path) 
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Mason’s Rule - Example

 # of forward paths:
𝑃𝑃 = 2

 Forward path gains:
𝑇𝑇1 = 𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4
𝑇𝑇2 = 𝐺𝐺1𝐺𝐺2𝐺𝐺5

 Σ(loop gains):
−𝐺𝐺1𝐻𝐻3 + 𝐺𝐺2𝐻𝐻1 − 𝐺𝐺2𝐺𝐺3𝐻𝐻2

 Σ(NTLGs taken two-at-a-time):
−𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2

 Δ:
Δ = 1 − −𝐺𝐺1𝐻𝐻3 + 𝐺𝐺2𝐻𝐻1 − 𝐺𝐺2𝐺𝐺3𝐻𝐻2

+ −𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2
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Mason’s Rule – Example - Δ𝑘𝑘
 Simplest way to find Δ𝑘𝑘 terms is to calculate Δ with the 𝑘𝑘𝑡𝑡𝑡

path removed – must remove nodes as well
 𝑘𝑘 = 1:

 With forward path 1 removed, there are no loops, so

Δ1 = 1 − 0
Δ1 = 1
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Mason’s Rule – Example - Δ𝑘𝑘

 𝑘𝑘 = 2:

 Similarly, removing forward path 2 leaves no loops, so

Δ2 = 1 − 0
Δ2 = 1
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Mason’s Rule - Example

 For our example:
𝑃𝑃 = 2
𝑇𝑇1 = 𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4
𝑇𝑇2 = 𝐺𝐺1𝐺𝐺2𝐺𝐺5
Δ = 1 + 𝐺𝐺1𝐻𝐻3 − 𝐺𝐺2𝐻𝐻1 + 𝐺𝐺2𝐺𝐺3𝐻𝐻2 − 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2
Δ1 = 1
Δ2 = 1

 The closed-loop transfer function:

𝑇𝑇 𝑠𝑠 =
𝑇𝑇1Δ1 + 𝑇𝑇2Δ2

Δ

𝑇𝑇 𝑠𝑠 =
𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4 + 𝐺𝐺1𝐺𝐺2𝐺𝐺5

1 + 𝐺𝐺1𝐻𝐻3 − 𝐺𝐺2𝐻𝐻1 + 𝐺𝐺2𝐺𝐺3𝐻𝐻2 − 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
1
Δ
�
𝑘𝑘=1

𝑃𝑃

𝑇𝑇𝑘𝑘Δ𝑘𝑘
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Controller Design – Preview 

 We now have the tools necessary to determine the 
transfer function of closed-loop feedback systems

 Let’s take a closer look at how feedback can help us 
achieve a desired response
 Just a preview – this is the objective of the whole course

 Consider a simple first-order system

 A single real pole at 𝑠𝑠 = −2 𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠
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Open-Loop Step Response

 This system 
exhibits the 
expected first-
order step 
response
 No overshoot or 

ringing
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Add Feedback

 Now let’s enclose the system in a feedback loop

 Add controller block with transfer function 𝐷𝐷 𝑠𝑠
 Closed-loop transfer function becomes:

𝑇𝑇 𝑠𝑠 =
𝐷𝐷 𝑠𝑠 1

𝑠𝑠 + 2
1 + 𝐷𝐷 𝑠𝑠 1

𝑠𝑠 + 2
=

𝐷𝐷 𝑠𝑠
𝑠𝑠 + 2 + 𝐷𝐷 𝑠𝑠

 Clearly the addition of feedback and the controller 
changes the transfer function – but how?
 Let’s consider a couple of example cases for 𝐷𝐷 𝑠𝑠
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Add Feedback

 First, consider a simple gain block for the controller

 Error signal, 𝐸𝐸 𝑠𝑠 , amplified by a constant gain, 𝐾𝐾𝐶𝐶
 A proportional controller, with gain 𝐾𝐾𝐶𝐶

 Now, the closed-loop transfer function is:

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶
𝑠𝑠 + 2

1 + 𝐾𝐾𝐶𝐶
𝑠𝑠 + 2

=
𝐾𝐾𝐶𝐶

𝑠𝑠 + 2 + 𝐾𝐾𝐶𝐶

 A single real pole at 𝑠𝑠 = − 2 + 𝐾𝐾𝐶𝐶
 Pole moved to a higher frequency
 A faster response
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Open-Loop Step Response

 As feedback gain 
increases:
 Pole moves to a 

higher frequency
 Response gets 

faster
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First-Order Controller

 Next, allow the controller to have some dynamics of its own

 Now the controller is a first-order block with gain 𝐾𝐾𝐶𝐶 and a pole at 
𝑠𝑠 = −𝑏𝑏

 This yields the following closed-loop transfer function:

𝑇𝑇 𝑠𝑠 =

𝐾𝐾𝐶𝐶
𝑠𝑠 + 𝑏𝑏

1
𝑠𝑠 + 2

1 + 𝐾𝐾𝐶𝐶
𝑠𝑠 + 𝑏𝑏

1
𝑠𝑠 + 2

=
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶

 The closed-loop system is now second-order
 One pole from the plant
 One pole from the controller
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First-Order Controller

 Two closed-loop poles:

𝑠𝑠1,2 = −
𝑏𝑏 + 2

2 ±
𝑏𝑏2 − 4𝑏𝑏 + 4 − 4𝐾𝐾𝐶𝐶

2

 Pole locations determined by 𝑏𝑏 and 𝐾𝐾𝐶𝐶
 Controller parameters – we have control over these
 Design the controller to place the poles where we want them

 So, where do we want them?
 Design to performance specifications
 Risetime, overshoot, settling time, etc.

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶
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Design to Specifications

 The second-order closed-loop transfer function

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶
can be expressed as 

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
=

𝐾𝐾𝐶𝐶
𝑠𝑠2 + 2𝜎𝜎𝑠𝑠 + 𝜔𝜔𝑛𝑛2

 Let’s say we want a closed-loop response that satisfies the 
following specifications:
 %𝑂𝑂𝑂𝑂 ≤ 5%
 𝑡𝑡𝑠𝑠 ≤ 600 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 Use %𝑂𝑂𝑂𝑂 and 𝑡𝑡𝑠𝑠 specs to determine values of 𝜁𝜁 and 𝜎𝜎
 Then use 𝜁𝜁 and 𝜎𝜎 to determine 𝐾𝐾𝐶𝐶 and 𝑏𝑏
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Determine 𝜁𝜁 from Specifications

 Overshoot and damping ratio, 𝜁𝜁, are related as 
follows:

𝜁𝜁 =
− ln 𝑂𝑂𝑂𝑂

𝜋𝜋2 + ln2 𝑂𝑂𝑂𝑂

 The requirement is %𝑂𝑂𝑂𝑂 ≤ 5%, so

𝜁𝜁 ≥
− ln 0.05

𝜋𝜋2 + ln2 0.05
= 0.69

 Allowing some margin, set 𝜁𝜁 = 0.75
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Determine 𝜎𝜎 from Specifications

 Settling time (±1%) can be approximated from 𝜎𝜎 as

𝑡𝑡𝑠𝑠 ≈
4.6
𝜎𝜎

 The requirement is 𝑡𝑡𝑠𝑠 ≤ 600 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 Allowing for some margin, design for 𝑡𝑡𝑠𝑠 = 500 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑠𝑠 ≈
4.6
𝜎𝜎

= 500 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝜎𝜎 =
4.6

500 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

which gives

𝜎𝜎 = 9.2
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠

 We can then calculate the natural frequency from 𝜁𝜁 and 𝜎𝜎

𝜔𝜔𝑛𝑛 =
𝜎𝜎
𝜁𝜁

=
9.2

0.75
= 12.27

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠
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Determine Controller Parameters from 𝜎𝜎 and 𝜔𝜔𝑛𝑛

 The characteristic polynomial is 

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶 = 𝑠𝑠2 + 2𝜎𝜎𝜎𝜎 + 𝜔𝜔𝑛𝑛2

 Equating coefficients to solve for 𝑏𝑏:

2 + 𝑏𝑏 = 2𝜎𝜎 = 18.4
𝑏𝑏 = 16.4

and 𝐾𝐾𝑐𝑐:
2𝑏𝑏 + 𝐾𝐾𝐶𝐶 = 𝜔𝜔𝑛𝑛2 = 12.27 2 = 150.5
𝐾𝐾𝐶𝐶 = 150.5 − 2 ⋅ 16.4 = 117.7 → 118
𝐾𝐾𝑐𝑐 = 118

 The controller transfer function is

𝐷𝐷 𝑠𝑠 =
118

𝑠𝑠 + 16.4
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Closed-Loop Poles

 Closed-loop system 
is now second order

 Controller designed 
to place the two 
closed-loop poles at 
desirable locations:
 𝑠𝑠1,2 = −9.2 ± 𝑗𝑗𝑗.13

 𝜁𝜁 = 0.75

 𝜔𝜔𝑛𝑛 = 12.3

Controller 
pole

Plant
pole
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Closed-Loop Step Response

 Closed-loop step 
response satisfies 
the specifications

 Approximations 
were used
 If requirements not 

met - iterate
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