
ESE 430 – Feedback Control Systems

SECTION 2: BLOCK DIAGRAMS 
& SIGNAL FLOW GRAPHS
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Block Diagrams

 In the introductory section we saw examples of block diagrams
to represent systems, e.g.:

 Block diagrams consist of 

 Blocks – these represent subsystems – typically modeled by, and labeled 
with, a transfer function

 Signals – inputs and outputs of blocks – signal direction indicated by 
arrows – could be voltage, velocity, force, etc.

 Summing junctions – points were signals are algebraically summed –
subtraction indicated by a negative sign near where the signal joins the 
summing junction
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Standard Block Diagram Forms

 The basic input/output relationship for a single block is:

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺 𝑠𝑠

 Block diagram blocks can be connected in three basic forms:
 Cascade
 Parallel
 Feedback

 We’ll next look at each of these forms and derive a single-
block equivalent for each
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Cascade Form

 Blocks connected in cascade:

𝑋𝑋1 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠 ,  𝑋𝑋2 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑋𝑋2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝐺𝐺1 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

 The equivalent transfer function of cascaded blocks is the 
product of the individual transfer functions 
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Parallel Form

 Blocks connected in parallel:
𝑋𝑋1 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠

𝑋𝑋2 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠

𝑋𝑋3 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 ± 𝑋𝑋2 𝑠𝑠 ± 𝑋𝑋3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺1 𝑠𝑠 ± 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺2 𝑠𝑠 ± 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺3 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 𝐺𝐺1 𝑠𝑠 ± 𝐺𝐺2 𝑠𝑠 ± 𝐺𝐺3 𝑠𝑠 = 𝑈𝑈 𝑠𝑠 ⋅ 𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝐺𝐺1 𝑠𝑠 ± 𝐺𝐺2 𝑠𝑠 ± 𝐺𝐺3 𝑠𝑠

 The equivalent transfer function is the sum of the individual 
transfer functions:
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Feedback Form

 Of obvious interest to us, is the feedback form:

𝑌𝑌 𝑠𝑠 = 𝐸𝐸 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 − 𝑋𝑋 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 − 𝑌𝑌 𝑠𝑠 𝐻𝐻 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑌𝑌 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 ⋅
𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠

 The closed-loop transfer function, 𝑇𝑇 𝑠𝑠 , is

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Feedback Form

 Note that this is negative feedback, for positive feedback:  

𝑇𝑇 𝑠𝑠 =
𝐺𝐺 𝑠𝑠

1 − 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠

 The 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 factor in the denominator is the loop gain or open-loop 
transfer function

 The gain from input to output with the feedback path broken is the 
forward path gain – here, 𝐺𝐺 𝑠𝑠

 In general:

𝑇𝑇 𝑠𝑠 =
forward path gain

1 − loop gain

𝑇𝑇 𝑠𝑠 =
𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Closed-Loop Transfer Function - Example

 Calculate the closed-loop transfer function

 𝐷𝐷 𝑠𝑠 and 𝐺𝐺 𝑠𝑠 are in cascade
 𝐻𝐻1 𝑠𝑠 is in cascade with the feedback system consisting of 𝐷𝐷 𝑠𝑠 , 
𝐺𝐺 𝑠𝑠 , and 𝐻𝐻2 𝑠𝑠

𝑇𝑇 𝑠𝑠 = 𝐻𝐻1 𝑠𝑠 ⋅
𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠 𝐻𝐻2 𝑠𝑠

𝑇𝑇 𝑠𝑠 =
𝐻𝐻1 𝑠𝑠 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠 𝐻𝐻2 𝑠𝑠
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Unity-Feedback Systems

 We’re often interested in unity-feedback systems

 Feedback path gain is unity
 Can always reconfigure a system to unity-feedback form

 Closed-loop transfer function is:

𝑇𝑇 𝑠𝑠 =
𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Block Diagram Manipulation11
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Block Diagram Algebra

 Often want to simplify block diagrams into simpler, 
recognizable forms 
 To determine the equivalent transfer function

 Simplify to instances of the three standard forms, 
then simplify those forms 

 Move blocks around relative to summing junctions 
and pickoff points – simplify to a standard form
 Move blocks forward/backward past summing junctions
 Move blocks forward/backward past pickoff points



K. Webb ESE 430

13

Moving Blocks Back Past a Summing Junction

 The following two block diagrams are equivalent:

𝑌𝑌 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠 𝐺𝐺 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 𝐺𝐺 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Moving Blocks Forward Past a Summing Junction

 The following two block diagrams are equivalent:

𝑌𝑌 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 𝐺𝐺 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠 = 𝑈𝑈1 𝑠𝑠 + 𝑈𝑈2 𝑠𝑠
1

𝐺𝐺 𝑠𝑠
𝐺𝐺 𝑠𝑠
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Moving Blocks Relative to Pickoff Points

 We can move blocks backward past pickoff points:

 And, we can move them forward past pickoff points:
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Block Diagram Simplification – Example 1

 Rearrange the following into a unity-feedback system

 Move the feedback block, 𝐻𝐻 𝑠𝑠 , forward, 
past the summing junction

 Add an inverse block on 𝑅𝑅 𝑠𝑠 to 
compensate for the move 

 Closed-loop transfer function:

𝑇𝑇 𝑠𝑠 =

1
𝐻𝐻 𝑠𝑠 𝐻𝐻 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
=

𝐺𝐺 𝑠𝑠
1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Block Diagram Simplification – Example 2

 Find the closed-loop transfer function of the following 
system through block-diagram simplification
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Block Diagram Simplification – Example 2

 𝐺𝐺1 𝑠𝑠 and 𝐻𝐻1 𝑠𝑠 are in feedback form

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 =
𝐺𝐺1 𝑠𝑠

1 − 𝐺𝐺1 𝑠𝑠 𝐻𝐻1 𝑠𝑠
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Block Diagram Simplification – Example 2

 Move 𝐺𝐺2 𝑠𝑠 backward past the pickoff point

 Block from previous step, 𝐺𝐺2 𝑠𝑠 , and 𝐻𝐻2 𝑠𝑠 become a 
feedback system that can be simplified
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Block Diagram Simplification – Example 2

 Simplify the feedback subsystem
 Note that we’ve dropped the function of 𝑠𝑠 notation, 𝑠𝑠 , for clarity

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 =

𝐺𝐺1𝐺𝐺2
1 − 𝐺𝐺1𝐻𝐻1

1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
1 − 𝐺𝐺1𝐻𝐻1

=
𝐺𝐺1𝐺𝐺2

1 − 𝐺𝐺1𝐻𝐻1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
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Block Diagram Simplification – Example 2

 Simplify the two parallel subsystems

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝐺𝐺3 +
𝐺𝐺4
𝐺𝐺2
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Block Diagram Simplification – Example 2

 Now left with two cascaded subsystems
 Transfer functions multiply

𝐺𝐺𝑒𝑒𝑒𝑒 𝑠𝑠 =
𝐺𝐺1𝐺𝐺2𝐺𝐺3 + 𝐺𝐺1𝐺𝐺4

1 − 𝐺𝐺1𝐻𝐻1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
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Block Diagram Simplification – Example 2

 The equivalent, close-loop transfer function is

𝑇𝑇 𝑠𝑠 =
𝐺𝐺1𝐺𝐺2𝐺𝐺3 + 𝐺𝐺1𝐺𝐺4

1 − 𝐺𝐺1𝐻𝐻1 + 𝐺𝐺1𝐺𝐺2𝐻𝐻2
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Multiple-Input Systems24
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Multiple Input Systems

 Systems often have more than  one input
 E.g., reference, 𝑅𝑅 𝑠𝑠 , and disturbance, 𝑊𝑊 𝑠𝑠

 Two transfer functions:
 From reference to output

𝑇𝑇 𝑠𝑠 = ⁄𝑌𝑌 𝑠𝑠 𝑅𝑅 𝑠𝑠

 From disturbance to output

𝑇𝑇𝑤𝑤 𝑠𝑠 = 𝑌𝑌 𝑠𝑠 /𝑊𝑊 𝑠𝑠
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Transfer Function – Reference 

 Find transfer function from 𝑅𝑅 𝑠𝑠 to 𝑌𝑌 𝑠𝑠
 A linear system – superposition applies
 Set 𝑊𝑊 𝑠𝑠 = 0

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Transfer Function – Reference 

 Next, find transfer function from 𝑊𝑊 𝑠𝑠 to 𝑌𝑌 𝑠𝑠
 Set 𝑅𝑅 𝑠𝑠 = 0
 System now becomes:

𝑇𝑇𝑤𝑤 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑊𝑊 𝑠𝑠

=
𝐺𝐺𝑤𝑤 𝑠𝑠 𝐺𝐺 𝑠𝑠

1 + 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
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Multiple Input Systems

 Two inputs, two transfer functions

𝑇𝑇 𝑠𝑠 = 𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠
1+𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

and        𝑇𝑇𝑤𝑤 𝑠𝑠 = 𝐺𝐺𝑤𝑤 𝑠𝑠 𝐺𝐺 𝑠𝑠
1+𝐷𝐷 𝑠𝑠 𝐺𝐺 𝑠𝑠

 𝐷𝐷 𝑠𝑠 is the controller transfer function
 Ultimately, we’ll determine this
 We have control over both 𝑇𝑇 𝑠𝑠 and 𝑇𝑇𝑤𝑤 𝑠𝑠

 What do we want these to be?
 Design 𝑇𝑇 𝑠𝑠 for desired performance
 Design 𝑇𝑇𝑤𝑤 𝑠𝑠 for disturbance rejection
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Signal Flow Graphs29
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Signal Flow Graphs

 An alternative to block diagrams for graphically describing systems

 Signal flow graphs consist of:
 Nodes –represent signals
 Branches –represent system blocks

 Branches labeled with system transfer functions
 Nodes (sometimes) labeled with signal names
 Arrows indicate signal flow direction
 Implicit summation at nodes

 Always a positive sum
 Negative signs associated with branch transfer functions
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Block Diagram → Signal Flow Graph

 To convert from a block diagram to a signal flow 
graph:

1. Identify and label all signals on the block diagram
2. Place a node for each signal
3. Connect nodes with branches in place of the blocks
 Maintain correct direction 
 Label branches with corresponding transfer functions
 Negate transfer functions as necessary to provide negative 

feedback

4. If desired, simplify where possible
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Signal Flow Graph – Example 1

 Convert to a signal flow graph

 Label any unlabeled signals
 Place a node for each signal
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Signal Flow Graph – Example 1

 Connect nodes with branches, each representing a system block

 Note the -1 to provide negative feedback of 𝑋𝑋2 𝑠𝑠
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Signal Flow Graph – Example 1

 Nodes with a single input and single output can be 
eliminated, if desired
 This makes sense for 𝑋𝑋1 𝑠𝑠 and 𝑋𝑋2 𝑠𝑠
 Leave 𝑈𝑈 𝑠𝑠 to indicate separation between controller and plant 
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Signal Flow Graph – Example 2

 Revisit the block diagram from earlier
 Convert to a signal flow graph

 Label all signals, then place a node for each
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Signal Flow Graph – Example 2

 Connect nodes with branches
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Signal Flow Graph – Example 2

 Simplify – eliminate 𝑋𝑋5 𝑠𝑠 , 𝑋𝑋6 𝑠𝑠 , 𝑋𝑋7 𝑠𝑠 , and 𝑋𝑋8 𝑠𝑠
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Signal Flow Graphs vs. Block Diagrams

 Signal flow graphs and block diagrams are 
alternative, though equivalent, tools for graphical 
representation of interconnected systems

 A generalization (not a rule)
 Signal flow graphs – more often used when dealing 

with state-space system models

 Block diagrams – more often used when dealing with 
transfer function system models
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Mason’s Rule39
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Mason’s Rule

 We’ve seen how to reduce a complicated block 
diagram to a single input-to-output transfer 
function
 Many successive simplifications

 Mason’s rule provides a formula to calculate the 
same overall transfer function
 Single application of the formula
 Can get complicated

 Before presenting the Mason’s rule formula, we 
need to define some terminology
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Loop Gain

 Loop gain – total gain (product of individual gains) around 
any path in the signal flow graph
 Beginning and ending at the same node
 Not passing through any node more than once

 Here, there are three loops with the following gains:
1. −𝐺𝐺1𝐻𝐻3
2. 𝐺𝐺2𝐻𝐻1
3. −𝐺𝐺2𝐺𝐺3𝐻𝐻2
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Forward Path Gain

 Forward path gain – gain along any path from the input 
to the output
 Not passing through any node more than once

 Here, there are two forward paths with the following 
gains:
1. 𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4
2. 𝐺𝐺1𝐺𝐺2𝐺𝐺5
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Non-Touching Loops

 Non-touching loops – loops that do not have any 
nodes in common

 Here, 
1. −𝐺𝐺1𝐻𝐻3 does not touch 𝐺𝐺2𝐻𝐻1
2. −𝐺𝐺1𝐻𝐻3 does not touch −𝐺𝐺2𝐺𝐺3𝐻𝐻2



K. Webb ESE 430

44

Non-Touching Loop Gains

 Non-touching loop gains – the product of loop gains 
from non-touching loops, taken two, three, four, or 
more at a time

 Here, there are only two pairs of non-touching loops 
1. −𝐺𝐺1𝐻𝐻3 ⋅ 𝐺𝐺2𝐻𝐻1
2. −𝐺𝐺1𝐻𝐻3 ⋅ −𝐺𝐺2𝐺𝐺3𝐻𝐻2
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Mason’s Rule

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
1
Δ
�
𝑘𝑘=1

𝑃𝑃

𝑇𝑇𝑘𝑘Δ𝑘𝑘

where

𝑃𝑃 = # of forward paths

𝑇𝑇𝑘𝑘 = gain of the 𝑘𝑘𝑡𝑡𝑡 forward path

Δ = 1 − Σ(loop gains) 

+Σ(non-touching loop gains taken two-at-a-time)

−Σ(non-touching loop gains taken three-at-a-time) 

+Σ(non-touching loop gains taken four-at-a-time)

−Σ …

Δ𝑘𝑘 = Δ − Σ(loop gain terms in Δ that touch the 𝑘𝑘𝑡𝑡𝑡 forward path) 
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Mason’s Rule - Example

 # of forward paths:
𝑃𝑃 = 2

 Forward path gains:
𝑇𝑇1 = 𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4
𝑇𝑇2 = 𝐺𝐺1𝐺𝐺2𝐺𝐺5

 Σ(loop gains):
−𝐺𝐺1𝐻𝐻3 + 𝐺𝐺2𝐻𝐻1 − 𝐺𝐺2𝐺𝐺3𝐻𝐻2

 Σ(NTLGs taken two-at-a-time):
−𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2

 Δ:
Δ = 1 − −𝐺𝐺1𝐻𝐻3 + 𝐺𝐺2𝐻𝐻1 − 𝐺𝐺2𝐺𝐺3𝐻𝐻2

+ −𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2
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Mason’s Rule – Example - Δ𝑘𝑘
 Simplest way to find Δ𝑘𝑘 terms is to calculate Δ with the 𝑘𝑘𝑡𝑡𝑡

path removed – must remove nodes as well
 𝑘𝑘 = 1:

 With forward path 1 removed, there are no loops, so

Δ1 = 1 − 0
Δ1 = 1
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Mason’s Rule – Example - Δ𝑘𝑘

 𝑘𝑘 = 2:

 Similarly, removing forward path 2 leaves no loops, so

Δ2 = 1 − 0
Δ2 = 1
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Mason’s Rule - Example

 For our example:
𝑃𝑃 = 2
𝑇𝑇1 = 𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4
𝑇𝑇2 = 𝐺𝐺1𝐺𝐺2𝐺𝐺5
Δ = 1 + 𝐺𝐺1𝐻𝐻3 − 𝐺𝐺2𝐻𝐻1 + 𝐺𝐺2𝐺𝐺3𝐻𝐻2 − 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2
Δ1 = 1
Δ2 = 1

 The closed-loop transfer function:

𝑇𝑇 𝑠𝑠 =
𝑇𝑇1Δ1 + 𝑇𝑇2Δ2

Δ

𝑇𝑇 𝑠𝑠 =
𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4 + 𝐺𝐺1𝐺𝐺2𝐺𝐺5

1 + 𝐺𝐺1𝐻𝐻3 − 𝐺𝐺2𝐻𝐻1 + 𝐺𝐺2𝐺𝐺3𝐻𝐻2 − 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐻𝐻1 + 𝐺𝐺1𝐻𝐻3𝐺𝐺2𝐺𝐺3𝐻𝐻2

𝑇𝑇 𝑠𝑠 =
𝑌𝑌 𝑠𝑠
𝑅𝑅 𝑠𝑠

=
1
Δ
�
𝑘𝑘=1

𝑃𝑃

𝑇𝑇𝑘𝑘Δ𝑘𝑘
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Controller Design – Preview 

 We now have the tools necessary to determine the 
transfer function of closed-loop feedback systems

 Let’s take a closer look at how feedback can help us 
achieve a desired response
 Just a preview – this is the objective of the whole course

 Consider a simple first-order system

 A single real pole at 𝑠𝑠 = −2 𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑒𝑒𝑠𝑠
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Open-Loop Step Response

 This system 
exhibits the 
expected first-
order step 
response
 No overshoot or 

ringing
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Add Feedback

 Now let’s enclose the system in a feedback loop

 Add controller block with transfer function 𝐷𝐷 𝑠𝑠
 Closed-loop transfer function becomes:

𝑇𝑇 𝑠𝑠 =
𝐷𝐷 𝑠𝑠 1

𝑠𝑠 + 2
1 + 𝐷𝐷 𝑠𝑠 1

𝑠𝑠 + 2
=

𝐷𝐷 𝑠𝑠
𝑠𝑠 + 2 + 𝐷𝐷 𝑠𝑠

 Clearly the addition of feedback and the controller 
changes the transfer function – but how?
 Let’s consider a couple of example cases for 𝐷𝐷 𝑠𝑠
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Add Feedback

 First, consider a simple gain block for the controller

 Error signal, 𝐸𝐸 𝑠𝑠 , amplified by a constant gain, 𝐾𝐾𝐶𝐶
 A proportional controller, with gain 𝐾𝐾𝐶𝐶

 Now, the closed-loop transfer function is:

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶
𝑠𝑠 + 2

1 + 𝐾𝐾𝐶𝐶
𝑠𝑠 + 2

=
𝐾𝐾𝐶𝐶

𝑠𝑠 + 2 + 𝐾𝐾𝐶𝐶

 A single real pole at 𝑠𝑠 = − 2 + 𝐾𝐾𝐶𝐶
 Pole moved to a higher frequency
 A faster response
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Open-Loop Step Response

 As feedback gain 
increases:
 Pole moves to a 

higher frequency
 Response gets 

faster
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First-Order Controller

 Next, allow the controller to have some dynamics of its own

 Now the controller is a first-order block with gain 𝐾𝐾𝐶𝐶 and a pole at 
𝑠𝑠 = −𝑏𝑏

 This yields the following closed-loop transfer function:

𝑇𝑇 𝑠𝑠 =

𝐾𝐾𝐶𝐶
𝑠𝑠 + 𝑏𝑏

1
𝑠𝑠 + 2

1 + 𝐾𝐾𝐶𝐶
𝑠𝑠 + 𝑏𝑏

1
𝑠𝑠 + 2

=
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶

 The closed-loop system is now second-order
 One pole from the plant
 One pole from the controller
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First-Order Controller

 Two closed-loop poles:

𝑠𝑠1,2 = −
𝑏𝑏 + 2

2 ±
𝑏𝑏2 − 4𝑏𝑏 + 4 − 4𝐾𝐾𝐶𝐶

2

 Pole locations determined by 𝑏𝑏 and 𝐾𝐾𝐶𝐶
 Controller parameters – we have control over these
 Design the controller to place the poles where we want them

 So, where do we want them?
 Design to performance specifications
 Risetime, overshoot, settling time, etc.

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶
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Design to Specifications

 The second-order closed-loop transfer function

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶
can be expressed as 

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐶𝐶

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
=

𝐾𝐾𝐶𝐶
𝑠𝑠2 + 2𝜎𝜎𝑠𝑠 + 𝜔𝜔𝑛𝑛2

 Let’s say we want a closed-loop response that satisfies the 
following specifications:
 %𝑂𝑂𝑂𝑂 ≤ 5%
 𝑡𝑡𝑠𝑠 ≤ 600 𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚

 Use %𝑂𝑂𝑂𝑂 and 𝑡𝑡𝑠𝑠 specs to determine values of 𝜁𝜁 and 𝜎𝜎
 Then use 𝜁𝜁 and 𝜎𝜎 to determine 𝐾𝐾𝐶𝐶 and 𝑏𝑏
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Determine 𝜁𝜁 from Specifications

 Overshoot and damping ratio, 𝜁𝜁, are related as 
follows:

𝜁𝜁 =
− ln 𝑂𝑂𝑂𝑂

𝜋𝜋2 + ln2 𝑂𝑂𝑂𝑂

 The requirement is %𝑂𝑂𝑂𝑂 ≤ 5%, so

𝜁𝜁 ≥
− ln 0.05

𝜋𝜋2 + ln2 0.05
= 0.69

 Allowing some margin, set 𝜁𝜁 = 0.75
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Determine 𝜎𝜎 from Specifications

 Settling time (±1%) can be approximated from 𝜎𝜎 as

𝑡𝑡𝑠𝑠 ≈
4.6
𝜎𝜎

 The requirement is 𝑡𝑡𝑠𝑠 ≤ 600 𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚
 Allowing for some margin, design for 𝑡𝑡𝑠𝑠 = 500 𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚

𝑡𝑡𝑠𝑠 ≈
4.6
𝜎𝜎

= 500 𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚 → 𝜎𝜎 =
4.6

500 𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚

which gives

𝜎𝜎 = 9.2
𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑚𝑚𝑚𝑚

 We can then calculate the natural frequency from 𝜁𝜁 and 𝜎𝜎

𝜔𝜔𝑛𝑛 =
𝜎𝜎
𝜁𝜁

=
9.2

0.75
= 12.27

𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑚𝑚𝑚𝑚
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Determine Controller Parameters from 𝜎𝜎 and 𝜔𝜔𝑛𝑛

 The characteristic polynomial is 

𝑠𝑠2 + 2 + 𝑏𝑏 𝑠𝑠 + 2𝑏𝑏 + 𝐾𝐾𝐶𝐶 = 𝑠𝑠2 + 2𝜎𝜎𝑠𝑠 + 𝜔𝜔𝑛𝑛2

 Equating coefficients to solve for 𝑏𝑏:

2 + 𝑏𝑏 = 2𝜎𝜎 = 18.4
𝑏𝑏 = 16.4

and 𝐾𝐾𝑠𝑠:
2𝑏𝑏 + 𝐾𝐾𝐶𝐶 = 𝜔𝜔𝑛𝑛2 = 12.27 2 = 150.5
𝐾𝐾𝐶𝐶 = 150.5 − 2 ⋅ 16.4 = 117.7 → 118
𝐾𝐾𝑠𝑠 = 118

 The controller transfer function is

𝐷𝐷 𝑠𝑠 =
118

𝑠𝑠 + 16.4
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Closed-Loop Poles

 Closed-loop system 
is now second order

 Controller designed 
to place the two 
closed-loop poles at 
desirable locations:
 𝑠𝑠1,2 = −9.2 ± 𝑗𝑗𝑗.13

 𝜁𝜁 = 0.75

 𝜔𝜔𝑛𝑛 = 12.3

Controller 
pole

Plant
pole
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Closed-Loop Step Response

 Closed-loop step 
response satisfies 
the specifications

 Approximations 
were used
 If requirements not 

met - iterate
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