# SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS

ESE 430 – Feedback Control Systems



# **Block Diagrams**

 In the introductory section we saw examples of *block diagrams* to represent systems, e.g.:



- Block diagrams consist of
  - Blocks these represent subsystems typically modeled by, and labeled with, a transfer function
  - Signals inputs and outputs of blocks signal direction indicated by arrows – could be voltage, velocity, force, etc.
  - Summing junctions points were signals are algebraically summed subtraction indicated by a negative sign near where the signal joins the summing junction

# Standard Block Diagram Forms

4

The basic input/output relationship for a single block is:



 $Y(s) = U(s) \cdot G(s)$ 

- Block diagram blocks can be connected in three basic forms:
  - Cascade
  - Parallel
  - Feedback
- We'll next look at each of these forms and derive a singleblock equivalent for each

#### Cascade Form

Blocks connected in *cascade*:



$$G_{eq}(s) = G_1(s) \cdot G_2(s) \cdot G_3(s)$$

The equivalent transfer function of cascaded blocks is the product of the individual transfer functions

# Parallel Form

Blocks connected in parallel:



 $X_1(s) = U(s) \cdot G_1(s)$   $X_2(s) = U(s) \cdot G_2(s)$   $X_3(s) = U(s) \cdot G_3(s)$  $Y(s) = X_1(s) \pm X_2(s) \pm X_3(s)$ 

$$Y(s) = U(s) \cdot G_1(s) \pm U(s) \cdot G_2(s) \pm U(s) \cdot G_3(s)$$
$$Y(s) = U(s)[G_1(s) \pm G_2(s) \pm G_3(s)] = U(s) \cdot G_{eq}(s)$$
$$G_{eq}(s) = G_1(s) \pm G_2(s) \pm G_3(s)$$

The equivalent transfer function is the sum of the individual transfer functions:



#### Feedback Form

□ Of obvious interest to us, is the *feedback form*:



$$Y(s) = E(s)G(s)$$
  

$$Y(s) = [R(s) - X(s)]G(s)$$
  

$$Y(s) = [R(s) - Y(s)H(s)]G(s)$$

$$Y(s)[1 + G(s)H(s)] = R(s)G(s)$$
$$Y(s) = R(s) \cdot \frac{G(s)}{1 + G(s)H(s)}$$

 $\Box$  The *closed-loop transfer function*, T(s), is

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

#### Feedback Form



Note that this is *negative feedback*, for *positive feedback*:

$$T(s) = \frac{G(s)}{1 - G(s)H(s)}$$

- □ The G(s)H(s) factor in the denominator is the **loop gain** or **open-loop transfer function**
- □ The gain from input to output with the feedback path broken is the *forward path gain* here, G(s)

□ In general:

$$T(s) = \frac{\text{forward path gain}}{1 - \text{loop gain}}$$

#### **Closed-Loop Transfer Function - Example**

Calculate the closed-loop transfer function



- $\square$  D(s) and G(s) are in cascade
- □  $H_1(s)$  is in cascade with the feedback system consisting of D(s), G(s), and  $H_2(s)$

$$T(s) = H_1(s) \cdot \frac{D(s)G(s)}{1 + D(s)G(s)H_2(s)}$$
$$T(s) = \frac{H_1(s)D(s)G(s)}{1 + D(s)G(s)H_2(s)}$$

#### **Unity-Feedback Systems**

We're often interested in unity-feedback systems



Feedback path gain is unity

Can always reconfigure a system to unity-feedback form

Closed-loop transfer function is:

$$T(s) = \frac{D(s)G(s)}{1 + D(s)G(s)}$$

# <sup>11</sup> Block Diagram Manipulation

# Block Diagram Algebra

- 12
- Often want to simplify block diagrams into simpler, recognizable forms
  - **•** To determine the equivalent transfer function
- Simplify to instances of the three standard forms, then simplify those forms
- Move blocks around relative to summing junctions
   and pickoff points simplify to a standard form
  - Move blocks forward/backward past summing junctions
  - Move blocks forward/backward past pickoff points

#### Moving Blocks Back Past a Summing Junction

13

The following two block diagrams are equivalent:



 $Y(s) = [U_1(s) + U_2(s)]G(s) = U_1(s)G(s) + U_2(s)G(s)$ 

#### Moving Blocks Forward Past a Summing Junction

14

The following two block diagrams are equivalent:



$$Y(s) = U_1(s)G(s) + U_2(s) = \left[U_1(s) + U_2(s)\frac{1}{G(s)}\right]G(s)$$

#### Moving Blocks Relative to Pickoff Points

We can move blocks backward past pickoff points:



And, we can move them forward past pickoff points:



Rearrange the following into a unity-feedback system



- □ Move the feedback block, H(s), forward, past the summing junction
- Add an inverse block on R(s) to compensate for the move



Closed-loop transfer function:

$$T(s) = \frac{\frac{1}{H(s)}H(s)G(s)}{1 + G(s)H(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

 Find the closed-loop transfer function of the following system through block-diagram simplification



17

18

 $\Box$   $G_1(s)$  and  $H_1(s)$  are in feedback form



19

Move  $G_2(s)$  backward past the pickoff point



□ Block from previous step,  $G_2(s)$ , and  $H_2(s)$  become a feedback system that can be simplified

- 20
- Simplify the feedback subsystem
- □ Note that we've dropped the function of s notation, (s), for clarity



21

Simplify the two parallel subsystems



$$G_{eq}(s) = G_3 + \frac{G_4}{G_2}$$

22

- Now left with two cascaded subsystems
  - Transfer functions multiply

$$G_{eq}(s) = \frac{G_1 G_2 G_3 + G_1 G_4}{1 - G_1 H_1 + G_1 G_2 H_2}$$



The equivalent, close-loop transfer function is

$$T(s) = \frac{G_1 G_2 G_3 + G_1 G_4}{1 - G_1 H_1 + G_1 G_2 H_2}$$

# <sup>24</sup> Multiple-Input Systems

#### Multiple Input Systems

- 25
- Systems often have more than one input
   E.g., reference, R(s), and disturbance, W(s)



Two transfer functions:From reference to output

$$T(s) = Y(s)/R(s)$$

From disturbance to output

$$T_w(s) = Y(s)/W(s)$$

#### Transfer Function – Reference

- 26
- Find transfer function from R(s) to Y(s)
   A linear system superposition applies
   Set W(s) = 0



$$T(s) = \frac{Y(s)}{R(s)} = \frac{D(s)G(s)}{1 + D(s)G(s)}$$

#### Transfer Function – Reference

Next, find transfer function from W(s) to Y(s)
 Set R(s) = 0

System now becomes:



$$T_{w}(s) = \frac{Y(s)}{W(s)} = \frac{G_{w}(s)G(s)}{1 + D(s)G(s)}$$

### Multiple Input Systems

Two inputs, two transfer functions

$$T(s) = \frac{D(s)G(s)}{1+D(s)G(s)}$$
 and  $T_w(s) = \frac{G_w(s)G(s)}{1+D(s)G(s)}$ 

- D(s) is the controller transfer function
   Ultimately, we'll determine this
   We have control over both T(s) and T<sub>w</sub>(s)
- What do we want these to be?
   Design T(s) for desired performance
   Design T<sub>w</sub>(s) for disturbance rejection



# Signal Flow Graphs

An alternative to block diagrams for graphically describing systems



- □ Signal flow graphs consist of:
  - Nodes represent signals
  - Branches represent system blocks
- Branches labeled with system transfer functions
- Nodes (sometimes) labeled with signal names
- Arrows indicate signal flow direction
- Implicit summation at nodes
  - Always a positive sum
  - Negative signs associated with branch transfer functions

# Block Diagram → Signal Flow Graph

- To convert from a block diagram to a signal flow graph:
  - 1. Identify and label all signals on the block diagram
  - 2. Place a node for each signal
  - 3. Connect nodes with branches in place of the blocks
    - Maintain correct direction
    - Label branches with corresponding transfer functions
    - Negate transfer functions as necessary to provide negative feedback
  - 4. If desired, simplify where possible

32

Convert to a signal flow graph



Label any unlabeled signals
 Place a node for each signal





Connect nodes with branches, each representing a system block



□ Note the -1 to provide negative feedback of  $X_2(s)$ 



- Nodes with a single input and single output can be eliminated, if desired
  - **This makes sense for**  $X_1(s)$  and  $X_2(s)$
  - Leave U(s) to indicate separation between controller and plant



34

- 35
- Revisit the block diagram from earlier

• Convert to a signal flow graph



 $\Box$  Label all signals, then place a node for each  $x_{s(s)}$ 





Connect nodes with branches





□ Simplify – eliminate  $X_5(s)$ ,  $X_6(s)$ ,  $X_7(s)$ , and  $X_8(s)$ 



# Signal Flow Graphs vs. Block Diagrams

- 38
- Signal flow graphs and block diagrams are alternative, though equivalent, tools for graphical representation of interconnected systems
- □ A generalization (not a rule)
  - Signal flow graphs more often used when dealing with state-space system models
  - Block diagrams more often used when dealing with transfer function system models

# <sup>39</sup> Mason's Rule

# Mason's Rule

- We've seen how to reduce a complicated block diagram to a single input-to-output transfer function
  - Many successive simplifications
- Mason's rule provides a formula to calculate the same overall transfer function
  - Single application of the formula
  - Can get complicated
- Before presenting the Mason's rule formula, we need to define some terminology

#### Loop Gain





- Loop gain total gain (product of individual gains) around any path in the signal flow graph
  - Beginning and ending at the same node
  - Not passing through any node more than once
- Here, there are three loops with the following gains:
  - 1.  $-G_1H_3$
  - 2.  $G_2H_1$
  - $3. \quad -G_2G_3H_2$

#### Forward Path Gain



- Forward path gain gain along any path from the input to the output
  - Not passing through any node more than once
- Here, there are two forward paths with the following gains:
  - 1.  $G_1 G_2 G_3 G_4$
  - 2.  $G_1G_2G_5$

# Non-Touching Loops



Non-touching loops – loops that do not have any nodes in common

🗆 Here,

- 1.  $-G_1H_3$  does not touch  $G_2H_1$
- 2.  $-G_1H_3$  does not touch  $-G_2G_3H_2$

# Non-Touching Loop Gains



- Non-touching loop gains the product of loop gains from non-touching loops, taken two, three, four, or more at a time
- Here, there are only two pairs of non-touching loops

$$1. \quad [-G_1H_3] \cdot [G_2H_1]$$

2.  $[-G_1H_3] \cdot [-G_2G_3H_2]$ 

44

#### Mason's Rule

45

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{P} T_k \Delta_k$$

where

- P = # of forward paths
- $T_k =$ gain of the  $k^{th}$  forward path
- $\Delta = 1 \Sigma(\text{loop gains})$

+ $\Sigma$ (non-touching loop gains taken two-at-a-time)

 $-\Sigma$ (non-touching loop gains taken three-at-a-time)

+ $\Sigma$ (non-touching loop gains taken four-at-a-time)

 $-\Sigma$  ...

 $\Delta_k = \Delta - \Sigma$  (loop gain terms in  $\Delta$  that touch the  $k^{th}$  forward path)

#### Mason's Rule - Example



P = 2

- Forward path gains:
  - $T_1 = G_1 G_2 G_3 G_4$  $T_2 = G_1 G_2 G_5$
- $\Box$   $\Sigma$ (loop gains):
  - $-G_1H_3 + G_2H_1 G_2G_3H_2$

 $\Sigma(\text{NTLGs taken two-at-a-time}):$  $(-G_1H_3G_2H_1) + (G_1H_3G_2G_3H_2)$ 

Δ:

 $\Delta = 1 - (-G_1H_3 + G_2H_1 - G_2G_3H_2)$  $+ (-G_1H_3G_2H_1 + G_1H_3G_2G_3H_2)$ 

46

#### Mason's Rule – Example - $\Delta_k$

- 47
- Simplest way to find Δ<sub>k</sub> terms is to calculate Δ with the k<sup>th</sup> path removed must remove *nodes* as well



With forward path 1 removed, there are no loops, so

$$\Delta_1 = 1 - 0$$
$$\Delta_1 = 1$$

#### Mason's Rule – Example - $\Delta_k$

48



Similarly, removing forward path 2 leaves no loops, so

$$\begin{array}{l} \Delta_2 = 1 - 0\\ \Delta_2 = 1 \end{array}$$

#### Mason's Rule - Example

#### For our example:

 $\Delta_1 =$ 

$$P = 2$$
  

$$T_1 = G_1 G_2 G_3 G_4$$
  

$$T_2 = G_1 G_2 G_5$$
  

$$\Delta = 1 + G_1 H_3 - G_2 H_1 + G_2 G_3 H_2 - G_1 H_3 G_2 H_1 + G_1 H_3 G_2 G_3 H_2$$
  

$$\Delta_1 = 1$$
  

$$\Delta_2 = 1$$

$$T(s) = \frac{T_1 \Delta_1 + T_2 \Delta_2}{\Delta}$$
$$T(s) = \frac{G_1 G_2 G_3 G_4 + G_1 G_2 G_5}{1 + G_1 H_3 - G_2 H_1 + G_2 G_3 H_2 - G_1 H_3 G_2 H_1 + G_1 H_3 G_2 G_3 H_2}$$

D



# Controller Design – Preview

- 51
- We now have the tools necessary to determine the transfer function of closed-loop feedback systems
- Let's take a closer look at how feedback can help us achieve a desired response

■ Just a preview – this is the objective of the whole course

Consider a simple first-order system

$$\begin{array}{c|c} U(s) & \underline{Plant} & Y(s) \\ \hline & \underline{1} & \\ \hline & s+2 \end{array}$$

□ A single real pole at  $s = -2 \frac{rad}{sec}$ 

#### **Open-Loop Step Response**

52



This system

 exhibits the
 expected first order step
 response
 No overshoot or
 ringing



#### Add Feedback

Now let's enclose the system in a feedback loop



Add controller block with transfer function D(s)
 Closed-loop transfer function becomes:

$$T(s) = \frac{D(s)\frac{1}{s+2}}{1+D(s)\frac{1}{s+2}} = \frac{D(s)}{s+2+D(s)}$$

Clearly the addition of feedback and the controller changes the transfer function – but how?
 Let's consider a couple of example cases for D(s)

#### Add Feedback

First, consider a simple gain block for the controller



- Error signal, E(s), amplified by a constant gain, K<sub>C</sub>
   A proportional controller, with gain K<sub>C</sub>
- Now, the closed-loop transfer function is:

$$T(s) = \frac{\frac{K_C}{s+2}}{1 + \frac{K_C}{s+2}} = \frac{K_C}{s+2 + K_C}$$

- □ A single real pole at  $s = -(2 + K_C)$ 
  - Pole moved to a higher frequency
  - A faster response

#### **Open-Loop Step Response**



- As feedback gain increases:
  - Pole moves to a higher frequency
  - Response gets faster



#### First-Order Controller

Next, allow the controller to have some dynamics of its own



- □ Now the controller is a first-order block with gain  $K_C$  and a pole at s = -b
- □ This yields the following closed-loop transfer function:

$$T(s) = \frac{\frac{K_C}{(s+b)}\frac{1}{(s+2)}}{1 + \frac{K_C}{(s+b)}\frac{1}{(s+2)}} = \frac{K_C}{s^2 + (2+b)s + 2b + K_C}$$

- □ The closed-loop system is now *second-order* 
  - One pole from the plant
  - One pole from the controller

#### First-Order Controller



$$T(s) = \frac{K_C}{s^2 + (2+b)s + 2b + K_C}$$

Two closed-loop poles:

$$s_{1,2} = -\frac{(b+2)}{2} \pm \frac{\sqrt{b^2 - 4b + 4 - 4K_C}}{2}$$

- $\Box$  Pole locations determined by *b* and *K*<sub>*C*</sub>
  - Controller parameters we have control over these
  - Design the controller to place the poles where we want them
- □ So, where do we want them?
  - Design to performance specifications
  - Risetime, overshoot, settling time, etc.

# **Design to Specifications**

58

The second-order closed-loop transfer function

$$T(s) = \frac{K_C}{s^2 + (2+b)s + 2b + K_C}$$

can be expressed as

$$T(s) = \frac{K_C}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{K_C}{s^2 + 2\sigma s + \omega_n^2}$$

- Let's say we want a closed-loop response that satisfies the following specifications:
  - $\bullet \% OS \le 5\%$
  - $\bullet t_s \le 600 \, msec$
- Use %OS and t<sub>s</sub> specs to determine values of ζ and σ
   Then use ζ and σ to determine K<sub>c</sub> and b

# Determine $\zeta$ from Specifications

Overshoot and damping ratio, ζ, are related as follows:

$$\zeta = \frac{-\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}}$$

□ The requirement is  $\% OS \le 5\%$ , so

$$\zeta \ge \frac{-\ln(0.05)}{\sqrt{\pi^2 + \ln^2(0.05)}} = 0.69$$

□ Allowing some margin, set  $\zeta = 0.75$ 

#### Determine $\sigma$ from Specifications

Settling time (±1%) can be approximated from  $\sigma$  as

$$t_s \approx \frac{4.6}{\sigma}$$

- □ The requirement is  $t_s \leq 600 \text{ msec}$
- □ Allowing for some margin, design for  $t_s = 500 \text{ msec}$

$$t_s \approx \frac{4.6}{\sigma} = 500 \ msec \rightarrow \sigma = \frac{4.6}{500 \ msec}$$

which gives

$$\sigma = 9.2 \frac{rad}{sec}$$

 $\hfill\square$  We can then calculate the natural frequency from  $\zeta$  and  $\sigma$ 

$$\omega_n = \frac{\sigma}{\zeta} = \frac{9.2}{0.75} = 12.27 \frac{rad}{sec}$$

51

□ The characteristic polynomial is

$$s^{2} + (2+b)s + 2b + K_{c} = s^{2} + 2\sigma s + \omega_{n}^{2}$$

□ Equating coefficients to solve for *b*:

$$2 + b = 2\sigma = 18.4$$
  
 $b = 16.4$ 

and *K<sub>c</sub>*:

$$2b + K_c = \omega_n^2 = (12.27)^2 = 150.5$$
  
 $K_c = 150.5 - 2 \cdot 16.4 = 117.7 \rightarrow 118$   
 $K_c = 118$ 

□ The controller transfer function is

$$D(s) = \frac{118}{s + 16.4}$$

#### **Closed-Loop Poles**

- Closed-loop system
   is now second order
- Controller designed to place the two closed-loop poles at desirable locations:

• 
$$s_{1,2} = -9.2 \pm j8.13$$
  
•  $\zeta = 0.75$   
•  $\omega_n = 12.3$ 



# **Closed-Loop Step Response**

- Closed-loop step
   response satisfies
   the specifications
- Approximations
   were used
  - If requirements not met *iterate*



63