SECTION 3: STABILITY
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- Introduction
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Stability
e
Consider the following 2"-order systems

15 8
Gl(s) ~ (s+3)(s+5) and GZ(S)  s2+445+8
G1(s) has two real poles:
s{;=-—3 and s, =-5

G,(s) has a complex-conjugate pair of poles:
S12 = —2%j2
The step response of each system is:
y.(t) = 1.5e7°t — 2,573t + 1
y,(t) = —e~4[cos(2t) + sin(2t)] + 1
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Stability
-0V
Both step responses are a superposition of:

o Natural response (transient)
o Driven or forced response (steady-state)

Natural Response Driven Response

y.(t) = 1.5e7°t — 2.5¢73¢
y,(t) = —e~?t[cos(2t) + sin(2t)]

+1
+1

In both cases, the natural response decays to zero
ast - oo

K. Webb ESE 430



Stability
-

Both step responses are characteristic of stable systems

Step Response
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Stability
.
Now, consider the following similar-looking systems:

15
G3(s) = (

s—3)(s-5)
G3(s) has two real poles

s;=3 and s, =5
G,(s) has a complex-conjugate pair of poles
S12 =2xj2
The step responses of these systems are:
ys(t) = 1.5e° — 2.5e3t + 1
y.(t) = —e?t[cos(2t) + sin(2t)] + 1

K. Webb ESE 430



Stability
-

Again, step responses consist of a natural response
component and a driven component

Driven Response
+ 1

Natural Response
y.(t) = 1.5e>t — 2.5¢3¢

y,(t) = —e?t[cos(2t) + sin(2t)]

+ 1

Now, as t — oo, the natural responses do not decay
to zero

o They blow up — why?
o Exponential terms are positive
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Stability

Step responses characteristic of unstable systems
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Stability
-

Why are the exponential terms positive?
o Determined by the system poles

For the over-damped system, the poles are
s{ =01y and s, =0y
And, the step response is
y(t) = re’tt + r,e%t 4+ ry
For the under-damped system, the poles are
S12 = 0 X Jwg
The step response is
y(t) = 1 e cos(wyt) + r,e% sin(wyt) + 13
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Stability and System Poles

Sign of the exponentials determined by o, the real
part of the system poles

Ifo <0

o Pole is in the left half-plane (LHP)
o Natural response - 0ast — o
o System is stable

Ifo >0

o Pole is in the right half-plane (RHP)
o Natural response = 0 ast = o

o System is unstable
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Purely-Imaginary Poles

.
LHP poles correspond to stable systems

RHP poles correspond to unstable systems

It seems that the imaginary axis is the boundary for
stability

What if poles are on the imaginary axis?

Consider the following system

4
Gs(s) = s?+4

Two purely-imaginary poles
S1,2 = 1j2
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Marginal Stability
e

Step response for this undamped system is

Natural Response

ys(t) = —cos(2t)

Driven Response

+ 1

Natural response neither decays to zero, nor grows
without bound

o Oscillates indefinitely
o System is marginally stable
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Marginal Stability
e

Step response is characteristic of a marginally-stable
system

Step Response
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Repeated Imaginary Poles

We'll look at one more interesting case before presenting a
formal definition for stability

Consider the following system

G.(s) = 16 B 16
6\ T Sh 1852+ 16 (52 + 4)2

Repeated poles on the imaginary axis

S12 = *j2 and S34 = *j2

The step response for this system is

Natural Response Driven Response

yo(t) = —cos(2t) — t -sin(2t) | +1
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Repeated Imaginary Poles
e

Ve(t) = —cos(2t) — t - sin(2t) + 1

Multiplying time factor causes the natural response
to grow without bound

o An unstable system

o Results from repeated poles

Multiple identical poles on the imaginary axis
implies an unstable system
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Repeated Imaginary Poles
-

Step response shows that the system is unstable

Step Response
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Definitions of Stability



Definitions of Stability — Natural Response
e

We know that system response is the sum of a natural
response and a driven response

Can define the categories of stability based on the
natural response:

Stable
O A system is stable if its natural response - 0ast = o

Unstable
o A system is unstable if its natural response — coast — oo

Marginally Stable

o A system is marginally stable if its natural response neither
decays nor grows, but remains constant or oscillates
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BIBO Stability
e

Alternatively, we can define stability based on the
total response

Bounded-input, bounded-output (BIBO) stability

Stable

o A system is stable if every bounded input yields a
bounded output

Unstable

o A system is unstable if any bounded input yields an
unbounded output
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Closed-Loop Poles and Stability
R
Stable

O A stable system has all of its closed-loop poles in the
left-half plane

Unstable

o An unstable system has at least one pole in the right
half-plane and/or repeated poles on the imaginary axis

Marginally Stable

o A marginally-stable system has non-repeated poles on
the imaginary axis and (possibly) poles in the left half-
plane
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Determining Stability
R

Stability determined by pole locations
O Poles determined by the characteristic polynomial, A(s)

Factoring the characteristic polynomial will always tell
us if a system is stable or not

o Easily done with a computer or calculator

Would like to be able to detect RHP poles without a
computer

o Form of A(s) may indicate RHP poles directly, or

o Routh-Hurwitz Criterion
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Stability from A(s) Coefficients

-
A stable system has all poles in the LHP

Num(s)

T(s) = (s+a)(s+ay)(s+a,)

o Poles: p; = —a;
o For all LHP poles, a; > 0, Vi
o Result is that all coefficients of A(s) are positive

If any coefficient of A(s) is negative, there is at least one
RHP pole, and the system is unstable

If any coefficient of A(s) is zero, the system is unstable or, at
best, marginally stable

If all coefficients of A(s) are positive, the system may be
stable or may be unstable
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Routh-Hurwitz Criterion
I

Need a method to detect RHP poles if all
coefficients of A(s) are positive:

0 Routh-Hurwitz criterion

General procedure:

1. Generate a Routh table using the characteristic
polynomial of the closed-loop system

2. Apply the Routh-Hurwitz criterion to interpret the
table and determine the number (not locations) of RHP

poles
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Routh-Hurwitz — Utility

Routh-Hurwitz was very useful for determining stability
in the days before computers

o Factoring polynomials by hand is difficult
Still useful for design, e.g.:

K
s3+6s2+8s+K

D ST TE) =

\)lg s s+ 6s+8

Stable for some range of gain, K, but unstable beyond
that range

Routh-Hurwitz allows us to determine that range
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Routh Table
-

Consider a 4th-order closed-loop transfer function:

Num(s)

T(s) =
(s) a,s* + azs3 + a,s? + a;s + ag

Routh table has one row for each power of s in A(s)

o First row contains coefficients of even powers of s (odd if
the order of A(s) is odd)

o Second row contains coefficients of odd (even) powers of s
o Fill in zeros if needed — if even order

s* a, a, a

3 a3 aq 0

2

S
S
Sl
SO
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Routh Table

Remaining table entries calculated using entries from
two preceding rows as follows:

s* a, a, ag
s3 as a, 0
|a4 a2| |a4 ao a4 O
2 a, a a 0 0
S 13 11 _ bl "3 — b2 _ as — b3 =0
as as as
as a1| az 0 a; 0
S1 bl b2 _ bl 0 bl 0
- — G - 2=10 — 3=0
b, by by
b; b, b; O by O
0
S e O_d1 e O—dz—O e O—d3—0
C1 C1 €1
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Routh Table — Example
e

Consider the following feedback system

T >0 (s+4)(5+6)(s+10) ?

The closed-loop transfer function is

5000
s3 4+ 20s2 + 124s + 5240

T(s) =

The first two rows of the Routh table are

1 124

2 20 1 5240 262

S

Note that we can simplify by scaling an entire row by any factor
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Routh Table — Example
e
Calculate the remaining table entries:

§3 1 124

52 26 1 5240 262

1 1124 Lo

; - 208 - 138 -0

O 126y 19

s w0l g 38 ol

How do we interpret this table?
O Routh-Hurwitz criterion
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Routh-Hurwitz Criterion
I

Routh-Hurwitz Criterion

o The number of poles in the RHP is equal to the number
of sign changes in the first column of the Routh table

Apply this criterion to our example:

s3 1 124
52 1 262
st —138 0
s9 262 0

Two sign changes in the first column indicate two
RHP poles — system is unstable
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Routh-Hurwitz — Stability Requirements

Consider the same system, where controller gain is left
as a parameter

\T ‘ (5+4)(s+6)(s+10)

Closed-loop transfer function:

100K
s3 + 20s% + 124s + 240 + 100K

T(s) =

Plant itself is stable

o Presumably there is some range of gain, K, for which the
closed-loop system is also stable

o Use Routh-Hurwitz to determine this range
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Routh-Hurwitz — Stability Requirements

[
100K

T(s) =
(8) = 3772052 ¥ 1245 7 240 T 100K

Create the Routh table

s3 1 124
s? 20 1 24041006k 12 + 5K
|1 124 |1 0
1
1 1
. | 1 12+5K| | 1 0|
s Clz-sk o | 1-138 ol _
112 — 5K =12 + 5K 1 0
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Routh-Hurwitz — Stability Requirements
e

s3 1 124

s? 1 12 + 5K
st 112 — 5K 0

s 12 + 5K 0

Since K > 0, only the third element in the first column can
be negative

Stable for
112 —-5K >0

K <224
Unstable (two RHP poles) for

112 -5K <0
K > 22.4
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Routh Table — Special Cases
e

Two special cases can arise when creating a Routh
table:

1. A zero in only the first column of a row
Divide-by-zero problem when forming the next row

2. An entire row of zeros

Indicates the presence of pairs of poles that are mirrored
about the imaginary axis

We'll next look at methods for dealing with each of
these scenarios
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Routh Table — Zero in the First Column
-

If a zero appears in the first column

1. Replace the zero with +€

2. Complete the Routh table as usual

3. Take the limitase — 0

4. Evaluate the sign of the first-column entries

For example:
10

T(s) =
(5) s°> 4+ 3s*+2s34+652+65+9

First two rows in the Routh table:

s° 1 2 6
s* 31 6 2 9 3
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First-Column Zero — Example

s> 1 2

st 1 2

; |1 2 |1 6

S 1 21 11 31
1 0 € 1 3

Replace the first-column zero with € and proceed as usual

e ol

1 2 1 3
s? _le 3|__26"3 _le 0|__3
e € e
€ 3 € 0
. 266 3 3‘_- 3.2 266 3 O‘_
T 2e=3 " €73:-3 T 2e=3 -V
€ €

Continuing on the next page ...
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First-Column Zero — Example

5 1 2 6
4 1 2
3 € 3 0
2 —_
2 €e—3 3 0
€
3¢2
1
3e — 0 0
€T 2¢—3
26 — 3 3 26 — 3 0 26 — 3 0
€ € €
0 3¢e? 3¢e? 3¢e?
36—26_3 0 36—26_3 0 36—26_3 0
3¢ _ €% 3 €% 3¢ — €%
€~ 2¢=-3 € 2¢=3 € 2¢=3

Next, take the limitase — 0
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First-Column Zero — Example
-

Taking the limit as € = 0 and looking at the first column:

s> 1 s> 1
s* 1 st
s3 € s3 0
lim
26 — 3

2 €—0 2

S S — o0
€ >
3e?
st 3e-— st] 0
¢ 26 — 3

SO 3 S0 3

Two sign changes
o Two RHP poles
o System is unstable
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Imaginary [rad/sec]

Routh Table — Row of Zeros

A whole row of zeros indicates the presence of pairs of
poles that are mirrored about the imaginary axis:

3 - - T - 3 T - T - 3
2 - 2f X - 2t X x
? 2
1F @ 1t @ 1t
= =
g g
0 — * > 0 > 0
© ©
= =
At g 17 g 17
E E
2 2 p 4 2 X X
-3 : ' : : -3 : ' - : -3 : , - :
-3 -2 -1 0 1 2 3 -3 2 -1 0 1 2 3 -3 2 -1 0 1 2 3
Real [rad/sec] Real [rad/sec] Real [rad/sec]

At best, the system is marginally stable
Use a Routh table to determine if it is unstable
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Routh Table — Row of Zeros
-

If an entire row of zeros appears in a Routh table

1. Create an auxiliary polynomial from the row above
the row of zeros, skipping every other power of s

2. Differentiate the auxiliary polynomial w.r.t. s

3. Replace the zero row with the coefficients of the
resulting polynomial

4. Complete the Routh table as usual

5. Evaluate the sign of the first-column entries

K. Webb ESE 430



Row of Zeros — Example
-
Consider the following system

1

T =
() = S ss ¥ 117 + 2352 + 285 + 12

The first few rows of the Routh table:

5 1 11 28
5 23 12
1 11 | | |
s 23 6 1 5 512 _ 256 4 55 _ 0
|5 243| |5 12| i g
——=31 =124 — =0

Continuing on the next page ...
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Row of Zeros — Example
-

s° 1 11 28

st 5 23 12

s3 1 4

s? 1 4

g b b i i
w1 =0 =1 =0 =1 =0

A row of zeros has appeared

o Create an auxiliary polynomial from the s row

P(s) =s*+4
o Differentiate
dP 5
_ = S
ds

o Replace the s row with the dP/ds coefficients
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Row of Zeros — Example

.,
P
=

Replacing the s! row with the coefficients of dP/ds

28

s° 1 11 28

st 5 23 12

s3 1 4

s? 1

st 02 0 0

o ko 2 o 2 o
—T —T7 —T7 7

No sign changes, so RHP poles, but
o Row of zeros indicates that system is marginally stable
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Stability Evaluation — Summary

If coefficients of A(s) have different signs
o System is unstable

If some coefficients of A(s) are zero
o System is, at best, marginally stable

If all A(s) coefficients have the same sign
o System may be stable or unstable
O Generate a Routh table and apply Routh-Hurwitz criterion

o Replace any zero first-column entries with € and let take the
limitase —- 0

o Replace a row of zeros with coefficients from the derivative
of the auxiliary polynomial

If no RHP poles are detected, the system is marginally stable
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