SECTION 3: STABILITY

ESE 430 - Feedback Control Systems

2

Introduction

Stability

\square Consider the following $2^{\text {nd }}$-order systems

$$
G_{1}(s)=\frac{15}{(s+3)(s+5)} \quad \text { and } \quad G_{2}(s)=\frac{8}{s^{2}+4 s+8}
$$

$\square G_{1}(s)$ has two real poles:

$$
s_{1}=-3 \text { and } s_{2}=-5
$$

$\square G_{2}(s)$ has a complex-conjugate pair of poles:

$$
s_{1,2}=-2 \pm j 2
$$

\square The step response of each system is:

$$
\begin{aligned}
& y_{1}(t)=1.5 e^{-5 t}-2.5 e^{-3 t}+1 \\
& y_{2}(t)=-e^{-2 t}[\cos (2 t)+\sin (2 t)]+1
\end{aligned}
$$

Stability

\square Both step responses are a superposition of:

- Natural response (transient)
- Driven or forced response (steady-state)

$$
\begin{array}{lll}
\text { Natural Response } & \text { Driven Response } \\
y_{1}(t)=1.5 e^{-5 t}-2.5 e^{-3 t} & +1 \\
y_{2}(t)=-e^{-2 t}[\cos (2 t)+\sin (2 t)] & +1
\end{array}
$$

\square In both cases, the natural response decays to zero as $t \rightarrow \infty$

Stability

\square Both step responses are characteristic of stable systems

Stability

\square Now, consider the following similar-looking systems:

$$
G_{3}(s)=\frac{15}{(s-3)(s-5)} \quad \text { and } \quad G_{4}(s)=\frac{8}{s^{2}-4 s+8}
$$

$\square G_{3}(s)$ has two real poles

$$
s_{1}=3 \quad \text { and } \quad s_{2}=5
$$

$\square G_{4}(s)$ has a complex-conjugate pair of poles

$$
s_{1,2}=2 \pm j 2
$$

\square The step responses of these systems are:

$$
\begin{aligned}
& y_{3}(t)=1.5 e^{5 t}-2.5 e^{3 t}+1 \\
& y_{4}(t)=-e^{2 t}[\cos (2 t)+\sin (2 t)]+1
\end{aligned}
$$

Stability

\square Again, step responses consist of a natural response component and a driven component

Natural Response \quad I Driven Response

$$
\begin{array}{lll}
y_{1}(t)=1.5 e^{5 t}-2.5 e^{3 t} & +1 \\
y_{2}(t)=-e^{2 t}[\cos (2 t)+\sin (2 t)] & +1
\end{array}
$$

\square Now, as $t \rightarrow \infty$, the natural responses do not decay to zero

- They blow up - why?
- Exponential terms are positive

Stability

\square Step responses characteristic of unstable systems

Stability

\square Why are the exponential terms positive?

- Determined by the system poles
\square For the over-damped system, the poles are

$$
s_{1}=\sigma_{1} \quad \text { and } \quad s_{2}=\sigma_{2}
$$

\square And, the step response is

$$
y(t)=r_{1} e^{\sigma_{1} t}+r_{2} e^{\sigma_{2} t}+r_{3}
$$

\square For the under-damped system, the poles are

$$
s_{1,2}=\sigma \pm j \omega_{d}
$$

\square The step response is

$$
y(t)=r_{1} e^{\sigma t} \cos \left(\omega_{d} t\right)+r_{2} e^{\sigma t} \sin \left(\omega_{d} t\right)+r_{3}
$$

Stability and System Poles

\square Sign of the exponentials determined by σ, the real part of the system poles
\square If $\sigma<0$
\square Pole is in the left half-plane (LHP)
\square Natural response $\rightarrow 0$ as $t \rightarrow \infty$
\square System is stable
\square If $\sigma>0$
\square Pole is in the right half-plane (RHP)
\square Natural response $\rightarrow \infty$ as $t \rightarrow \infty$
\square System is unstable

Purely-Imaginary Poles

\square LHP poles correspond to stable systems
\square RHP poles correspond to unstable systems
\square It seems that the imaginary axis is the boundary for stability
\square What if poles are on the imaginary axis?
\square Consider the following system

$$
G_{5}(s)=\frac{4}{s^{2}+4}
$$

\square Two purely-imaginary poles

$$
s_{1,2}= \pm j 2
$$

Marginal Stability

\square Step response for this undamped system is

Natural Response I Driven Response
 $$
y_{5}(t)=-\cos (2 t) \quad+1
$$

\square Natural response neither decays to zero, nor grows without bound
\square Oscillates indefinitely
\square System is marginally stable

Marginal Stability

\square Step response is characteristic of a marginally-stable system

Step Response

Repeated Imaginary Poles

\square We'll look at one more interesting case before presenting a formal definition for stability
\square Consider the following system

$$
G_{6}(s)=\frac{16}{s^{4}+8 s^{2}+16}=\frac{16}{\left(s^{2}+4\right)^{2}}
$$

\square Repeated poles on the imaginary axis

$$
s_{1,2}= \pm j 2 \quad \text { and } \quad s_{3,4}= \pm j 2
$$

\square The step response for this system is

Natural Response

$$
y_{6}(t)=-\cos (2 t)-t \cdot \sin (2 t)
$$

Driven Response

$+1$

Repeated Imaginary Poles

$$
y_{6}(t)=-\cos (2 t)-t \cdot \sin (2 t)+1
$$

\square Multiplying time factor causes the natural response to grow without bound

- An unstable system
\square Results from repeated poles
\square Multiple identical poles on the imaginary axis implies an unstable system

Repeated Imaginary Poles

\square Step response shows that the system is unstable

17
 Definitions of Stability

Definitions of Stability - Natural Response

\square We know that system response is the sum of a natural response and a driven response
\square Can define the categories of stability based on the natural response:
\square Stable

- A system is stable if its natural response $\rightarrow 0$ as $t \rightarrow \infty$
\square Unstable
- A system is unstable if its natural response $\rightarrow \infty$ as $t \rightarrow \infty$
\square Marginally Stable
- A system is marginally stable if its natural response neither decays nor grows, but remains constant or oscillates

BIBO Stability

\square Alternatively, we can define stability based on the total response
\square Bounded-input, bounded-output (BIBO) stability
\square Stable

- A system is stable if every bounded input yields a bounded output
\square Unstable
\square A system is unstable if any bounded input yields an unbounded output

Closed-Loop Poles and Stability

\square Stable
\square A stable system has all of its closed-loop poles in the left-half plane
\square Unstable

- An unstable system has at least one pole in the right half-plane and/or repeated poles on the imaginary axis
\square Marginally Stable
\square A marginally-stable system has non-repeated poles on the imaginary axis and (possibly) poles in the left halfplane

21

Determining System Stability

Determining Stability

\square Stability determined by pole locations
\square Poles determined by the characteristic polynomial, $\Delta(s)$
\square Factoring the characteristic polynomial will always tell us if a system is stable or not
\square Easily done with a computer or calculator
\square Would like to be able to detect RHP poles without a computer

- Form of $\Delta(s)$ may indicate RHP poles directly, or
- Routh-Hurwitz Criterion

Stability from $\Delta(s)$ Coefficients

\square A stable system has all poles in the LHP

$$
T(s)=\frac{\operatorname{Num}(s)}{\left(s+a_{1}\right)\left(s+a_{2}\right) \cdots\left(s+a_{n}\right)}
$$

- Poles: $p_{i}=-a_{i}$
- For all LHP poles, $a_{i}>0$, $\forall i$
- Result is that all coefficients of $\Delta(s)$ are positive
\square If any coefficient of $\Delta(s)$ is negative, there is at least one RHP pole, and the system is unstable
\square If any coefficient of $\Delta(s)$ is zero, the system is unstable or, at best, marginally stable
\square If all coefficients of $\Delta(s)$ are positive, the system may be stable or may be unstable

Routh-Hurwitz Criterion

\square Need a method to detect RHP poles if all coefficients of $\Delta(s)$ are positive:
\square Routh-Hurwitz criterion
\square General procedure:

1. Generate a Routh table using the characteristic polynomial of the closed-loop system
2. Apply the Routh-Hurwitz criterion to interpret the table and determine the number (not locations) of RHP poles

Routh-Hurwitz - Utility

\square Routh-Hurwitz was very useful for determining stability in the days before computers

- Factoring polynomials by hand is difficult
\square Still useful for design, e.g.:

$$
T(s)=\frac{K}{s^{3}+6 s^{2}+8 s+K}
$$

\square Stable for some range of gain, K, but unstable beyond that range
\square Routh-Hurwitz allows us to determine that range

Routh Table

\square Consider a $4^{\text {th }}$-order closed-loop transfer function:

$$
T(s)=\frac{\operatorname{Num}(s)}{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
$$

\square Routh table has one row for each power of s in $\Delta(s)$
\square First row contains coefficients of even powers of s (odd if the order of $\Delta(s)$ is odd)
\square Second row contains coefficients of odd (even) powers of s

- Fill in zeros if needed - if even order

s^{4}	a_{4}	a_{2}	a_{0}
s^{3}	a_{3}	a_{1}	0
s^{2}			
s^{1}			
s^{0}			

Routh Table

\square Remaining table entries calculated using entries from two preceding rows as follows:

$$
\begin{array}{l|ccc}
s^{4} & a_{4} & a_{2} & a_{0} \\
s^{3} & a_{1} & 0 \\
s^{2} & -\frac{\left|\begin{array}{ll}
a_{4} & a_{2} \\
a_{3} & a_{1}
\end{array}\right|}{a_{3}}=b_{1} & -\frac{\left|\begin{array}{cc}
a_{4} & a_{0} \\
a_{3} & 0
\end{array}\right|}{a_{3}}=b_{2} & -\frac{\left|\begin{array}{ll}
a_{4} & 0 \\
a_{3} & 0
\end{array}\right|}{a_{3}}=b_{3}=0 \\
s^{1} & -\frac{\left|\begin{array}{ll}
a_{3} & a_{1} \\
b_{1} & b_{2}
\end{array}\right|}{b_{1}}=c_{1} & -\frac{\left|\begin{array}{ll}
a_{3} & 0 \\
b_{1} & 0
\end{array}\right|}{b_{1}}=c_{2}=0 & -\frac{\left|\begin{array}{ll}
a_{3} & 0 \\
b_{1} & 0
\end{array}\right|}{b_{1}}=c_{3}=0 \\
s^{0} & -\frac{\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & 0
\end{array}\right|}{c_{1}}=d_{1} & -\frac{\left|\begin{array}{ll}
b_{1} & 0 \\
c_{1} & 0
\end{array}\right|}{c_{1}}=d_{2}=0 & -\frac{\left|\begin{array}{ll}
b_{1} & 0 \\
c_{1} & 0
\end{array}\right|}{c_{1}}=d_{3}=0
\end{array}
$$

Routh Table - Example

\square Consider the following feedback system

\square The closed-loop transfer function is

$$
T(s)=\frac{5000}{s^{3}+20 s^{2}+124 s+5240}
$$

\square The first two rows of the Routh table are

s^{3}	1	124
s^{2}	20	1

\square Note that we can simplify by scaling an entire row by any factor

Routh Table - Example

\square Calculate the remaining table entries:

$$
\begin{array}{l|ll}
s^{3} & 1 & 124 \\
s^{2} & \begin{array}{ll}
1 & 5240 \\
201 & 262
\end{array} \\
s^{1} & -\frac{\left|\begin{array}{ll}
1 & 124 \\
1 & 262
\end{array}\right|}{1}=-138 & -\frac{\left|\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right|}{1}=0 \\
s^{0} & -\frac{\left|\begin{array}{cc}
1 & 262 \\
-138 & 0
\end{array}\right|}{-138}=262 & -\frac{\left|\begin{array}{cc}
1 & 0 \\
-138 & 0
\end{array}\right|}{1}=0
\end{array}
$$

\square How do we interpret this table?

- Routh-Hurwitz criterion

Routh-Hurwitz Criterion

\square Routh-Hurwitz Criterion

- The number of poles in the RHP is equal to the number of sign changes in the first column of the Routh table
\square Apply this criterion to our example:

s^{3}	1	124
s^{2}	1	262
s^{1}	-138	0
s^{0}	262	0

\square Two sign changes in the first column indicate two RHP poles \rightarrow system is unstable

Routh-Hurwitz - Stability Requirements

\square Consider the same system, where controller gain is left as a parameter

\square Closed-loop transfer function:

$$
T(s)=\frac{100 K}{s^{3}+20 s^{2}+124 s+240+100 K}
$$

\square Plant itself is stable

- Presumably there is some range of gain, K, for which the closed-loop system is also stable
\square Use Routh-Hurwitz to determine this range

Routh-Hurwitz - Stability Requirements

$$
T(s)=\frac{100 K}{s^{3}+20 s^{2}+124 s+240+100 K}
$$

\square Create the Routh table

s^{3}	1	124
s^{2}	201	$240+100 \mathrm{~K} 12+5 \mathrm{~K}$
s^{1}	$-\frac{\left\|\begin{array}{cc}1 & 124 \\ 1 & 12+5 K\end{array}\right\|}{1}=112-5 K$	$-\frac{\left\|\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right\|}{1}=0$
s^{0}	$-\frac{\left\|\begin{array}{c} 1 \\ 112-5 K \\ 12+5 K \\ 0 \end{array}\right\|}{112-5 K}=12+5 K$	$-\frac{\left\|\begin{array}{cc} 1 & 0 \\ -138 & 0 \end{array}\right\|}{1}=0$

Routh-Hurwitz - Stability Requirements

s^{3}	1	124
s^{2}	1	$12+5 K$
s^{1}	$112-5 K$	0
s^{0}	$12+5 K$	0

\square Since $K>0$, only the third element in the first column can be negative
\square Stable for

$$
\begin{aligned}
& 112-5 K>0 \\
& K<22.4
\end{aligned}
$$

\square Unstable (two RHP poles) for

$$
\begin{aligned}
& 112-5 K<0 \\
& K>22.4
\end{aligned}
$$

Routh Table - Special Cases

\square Two special cases can arise when creating a Routh table:

1. A zero in only the first column of a row

- Divide-by-zero problem when forming the next row

2. An entire row of zeros

- Indicates the presence of pairs of poles that are mirrored about the imaginary axis
\square We'll next look at methods for dealing with each of these scenarios

Routh Table - Zero in the First Column

\square If a zero appears in the first column

1. Replace the zero with $\pm \epsilon$
2. Complete the Routh table as usual
3. Take the limit as $\epsilon \rightarrow 0$
4. Evaluate the sign of the first-column entries
\square For example:

$$
T(s)=\frac{10}{s^{5}+3 s^{4}+2 s^{3}+6 s^{2}+6 s+9}
$$

\square First two rows in the Routh table:

s^{5}	1	2	6
s^{4}	31	62	93

First-Column Zero - Example

s^{5}	1 s^{4}	1	2
s^{3}	$-\frac{\left\|\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right\|}{1}=0 \epsilon$	$-\frac{\left\|\begin{array}{ll}1 & 6 \\ 1 & 3\end{array}\right\|}{1}=3$	3
	$-\frac{\left\|\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right\|}{1}=0$		

\square Replace the first-column zero with ϵ and proceed as usual

\square Continuing on the next page ...

First-Column Zero - Example

$$
\begin{aligned}
& \begin{array}{l|lll}
s^{5} & 1 & 2 & 6 \\
s^{4} & 1 & 2 & 3 \\
s^{3} & \epsilon & 3 & 0 \\
s^{2} & \frac{2 \epsilon-3}{\epsilon} & 3 & 0
\end{array} \\
& s^{1} \quad 3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3} \\
& s^{0}-\frac{\left|\begin{array}{cc}
\frac{2 \epsilon-3}{\epsilon} & 3 \\
3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3} & 0
\end{array}\right|}{3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3}}=3 \\
& -\frac{\left|\begin{array}{cc}
\frac{2 \epsilon-3}{\epsilon} & 0 \\
3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3} & 0
\end{array}\right|}{3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3}}=0 \quad-\frac{\left|\begin{array}{cc}
\frac{2 \epsilon-3}{\epsilon} & 0 \\
3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3} & 0
\end{array}\right|}{3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3}}=0
\end{aligned}
$$

\square Next, take the limit as $\epsilon \rightarrow 0$

First-Column Zero - Example

\square Taking the limit as $\epsilon \rightarrow 0$ and looking at the first column:

s^{5}	1
s^{4}	1
s^{3}	ϵ
s^{2}	$\frac{2 \epsilon-3}{\epsilon}$
s^{1}	$3 \epsilon-\frac{3 \epsilon^{2}}{2 \epsilon-3}$
s^{0}	3

$\xrightarrow{\lim _{\epsilon \rightarrow 0} \longrightarrow}$| s^{5} | 1 |
| :---: | :---: |
| s^{4} | 1 |
| s^{3} | 0 |
| s^{2} | $-\infty$ |
| s^{1} | 0 |
| s^{0} | 3 |

\square Two sign changes

- Two RHP poles
- System is unstable

Routh Table - Row of Zeros

\square A whole row of zeros indicates the presence of pairs of poles that are mirrored about the imaginary axis:

\square At best, the system is marginally stable
\square Use a Routh table to determine if it is unstable

Routh Table - Row of Zeros

\square If an entire row of zeros appears in a Routh table

1. Create an auxiliary polynomial from the row above the row of zeros, skipping every other power of s
2. Differentiate the auxiliary polynomial w.r.t. s
3. Replace the zero row with the coefficients of the resulting polynomial
4. Complete the Routh table as usual
5. Evaluate the sign of the first-column entries

Row of Zeros - Example

\square Consider the following system

$$
T(s)=\frac{1}{s^{5}+5 s^{4}+11 s^{3}+23 s^{2}+28 s+12}
$$

\square The first few rows of the Routh table:

s^{5}	1	11	28
s^{4}	5	23	12
s^{3}	$-\frac{\left\|\begin{array}{ll} 1 & 11 \\ 5 & 23 \end{array}\right\|}{5}=6.41$	$-\frac{\left\|\begin{array}{ll}1 & 28 \\ 5 & 12\end{array}\right\|}{5}=25.64$	$-\frac{\left\|\begin{array}{ll} 1 & 0 \\ 5 & 0 \end{array}\right\|}{5}=0$
s^{2}	$-\frac{\left\|\begin{array}{cc} 5 & 23 \\ 1 & 4 \end{array}\right\|}{1}=31$	$-\frac{\left\|\begin{array}{cc}5 & 12 \\ 1 & 0\end{array}\right\|}{1}=124$	$-\frac{\left\|\begin{array}{ll}5 & 0 \\ 1 & 0\end{array}\right\|}{1}=0$

\square Continuing on the next page ...

Row of Zeros - Example

s^{5}	1	11	28
s^{4}	5	23	12
s^{3}	1	4	0
s^{2}	1	4	0
s^{1}	$-\frac{\left\|\begin{array}{ll}1 & 4 \\ 1 & 4\end{array}\right\|}{1}=0$	$-\frac{\left\|\begin{array}{ll}1 & 4 \\ 1 & 4\end{array}\right\|}{1}=0$	$-\frac{\left\|\begin{array}{cc}5 & 0 \\ 1 & 0\end{array}\right\|}{1}=0$

\square A row of zeros has appeared

- Create an auxiliary polynomial from the s^{2} row

$$
P(s)=s^{2}+4
$$

- Differentiate

$$
\frac{d P}{d s}=2 s
$$

- Replace the s^{1} row with the $d P / d s$ coefficients

Row of Zeros - Example

$$
\frac{d P}{d s}=2 s
$$

\square Replacing the s^{1} row with the coefficients of $d P / d s$

s^{5}	1	11	28
s^{4}	5	23	12
s^{3}	1	4	0
s^{2}	1	4	0
s^{1}	02	0	0
s^{0}	$-\frac{\left\|\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right\|}{2}=4$	$-\frac{\left\|\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right\|}{2}=0$	$-\frac{\left\|\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right\|}{2}=0$

\square No sign changes, so RHP poles, but
\square Row of zeros indicates that system is marginally stable

Stability Evaluation - Summary

\square If coefficients of $\Delta(s)$ have different signs
\square System is unstable
\square If some coefficients of $\Delta(s)$ are zero
\square System is, at best, marginally stable
\square If all $\Delta(s)$ coefficients have the same sign
\square System may be stable or unstable
\square Generate a Routh table and apply Routh-Hurwitz criterion
\square Replace any zero first-column entries with ϵ and let take the limit as $\epsilon \rightarrow 0$
\square Replace a row of zeros with coefficients from the derivative of the auxiliary polynomial

- If no RHP poles are detected, the system is marginally stable

