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Introduction

Consider a general feedback system:

R(s)

() K-G(s)
Closed-loop transfer function is L HEs)

KG(s)
1+ KG(s)H(s)

T(s) =

G (s) is the forward-path transfer function

o May include controller and plant
H(s) is the feedback-path transfer function

Each are, in general, rational polynomialsin s

Ng(s)

N
G(s) = Y6 4y H(s) = 32

Dg(s)
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Introduction

.
So, the closed-loop transfer function is

K Ng(s)
o) D __ KN®)Dy()
1+ kNeG) Nu(s) ~ Dg()Dy () + KNg(s)Ny (5)
D¢ (s) Dy(s)

Closed-loop zeros:
o Zeros of G(s)
o Poles of H(s)

Closed-loop poles:
o A function of gain, K

o Consistent with what we’ve already seen — feedback moves
poles
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Closed-Loop Poles vs. Gain

How do closed-loop poles vary as o [ o
a function of K? _T )

o Plotfor K =0,0.5,1,2,5,10, 20

—_—

5+8)
(s+2)

Trajectory of closed-loop poles vs.
gain (or some other parameter):

Closed-Loop Poles vs. K

—_
(=]

root locus T X X

. . 4r X
Graphical tool to help determine 7, x
the controller gain that will put | o % <2 ¢3¢

£ X K=10
poles where we want them 72 X koo x
;

We'll learn techniques for 1 . x
sketching this locus by hand 0

15 -10 5 0
Real [rad/sec]
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Root Locus
I

An example of the type of root locus we’ll learn to
sketch by hand, as well as plot in MATLAB:

Root Locus
10
8
6
L 4
=
3
ﬁ 2
Rl
Z 0 O O—x
el
g -2
i)
(1]
E 4
6
8
10 1 L L L
-20 -15 -10 -5 0 5

Real Axis (seco nds'1)
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Evaluation of Complex Functions
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Vector Interpretation of Complex Functions
e
Consider a function of a complex variable s

(s —z)(s —2zy) -
(s —p)(s—pz) -

G(s) =

where z; are the zeros of the function, and p; are
the poles of the function

We can write the function as

_ i=1(s — z)
6(5) = i=1(s —p1)

where m is the # of zeros, and n is the # of poles
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Vector Interpretation of Complex Functions

At any value of s, i.e. any point in the complex plane, G(s)
evaluates to a complex number

o Another point in the complex plane with magnitude and phase

G(s) =Ms6O
where

|:Z1(S — Zi)l

“_ ..?:1(5 R pi)‘

- [T ool [T o
0 = 2214(5 —Z;) — 2114(5 — Pi)
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Vector Interpretation of Complex Functions

Each term (s — z;) represents a vector from z; to the
point, s, at which we’re evaluating G (s)

Each (s — p;) represents a vector from p; to s

For example:
(s +3)

6) = G DGIr 25+ 5)

O Zero at: s = —3
o Polesat: s;, = —1%j2 and s3 = —4

Evaluate G(s) ats = —2 +
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Vector Interpretation of Complex Functions

First, evaluate the magnitude

6(s)] = |s — z4| G(s) =|G(s)|£G(s)
|s = p1lls — p2lls — ps|
s—zi|=114+]| = V2 e T
s—pil=1-1-jl=v2 &
s —p2l =[-1+,3[=+v10 e
. TN
s—pl=l2+=v5 U,
The resulting magnitude: P3 2 \
VZ oz 2
1G(s)| = =
\/7\/1_0\@ 10
1G(s)| = 0.1414 g
K. Webb
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Vector Interpretation of Complex Functions
-

Next, evaluate the angle
£G(s) = £(s —2z1) — £(s —p1)
—£(s —pz) — £(s — p3)
£(s—2zy) =24(1+j) =45°
£(s —py) = £(-1—j) = —-135°

£(s —py) = £(—1+j3) =108.4°

L(s—p3) =22+ )) =26.6°

The result:

G(s)

S=—2+j

K. Webb

= 0.1414245°

G(s) = [G(s)|£G(s)

p1 MNm
XK
Q"’\.-"""‘F--‘el
N
s=-2+j
.
WTIN
_)lt...----""e3 & ¢1 Re>
P3 23
s
o)
l::rj’
8
py X
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Finite vs. Infinite Poles and Zeros
e

Consider the following transfer function
(s + 8)

69 = 513G+ 10

o One finite zero: s = —8
o Three finite poles: s = 0,s = —3,and s = —10
But,as s =

CO

lim G(s) =—=0

S—00 003

o This implies there must be a zeroat s = o
All functions have an equal number of poles and zeros

If G(s) has n poles and m zeros, where n = m, then G(s) has
(n—m) zerosats = C*

o C® is an infinite complex number — infinite magnitude and some angle
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n The Root Locus
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Root Locus — Definition

Consider a general feedback system:  «, Vs
> K-G(s) 5
Closed-loop transfer function is L HEs)
KG(s
T(s) = (s)

1+ KG(s)H(s)

Closed-loop poles are roots of
1+ KG(s)H(s)

That is, the solutions to
1+ KG(s)H(s) =0

Or, the values of s for which
KG(s)H(s) = —1 (1)
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Root Locus — Definition
e

Because G(s) and H(s) are complex functions, (1) is really two
equations:
£G(s)H(s) = (2i + 1)180°

that is, the angle is an odd multiple of 180°, and
|IKG(s)H(s)| =1

So, if a certain value of s satisfies the angle criterion

2G(s)H(s) = (2i + 1)180°

then that value of s is a closed-loop pole for some value of K

And, that value of K is given by the magnitude criterion

K — 1
B |G(S)H(S)
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Root Locus — Definition
e

The root locus is the set of all points in the s-plane
that satisfy the angle criterion

£G(s)H(s) = (20 +1)180°

o The set of all closed-loop poles for 0 < K < o

We'll use the angle criterion to sketch the root locus
o We will derive rules for sketching the root locus
o Not necessary to test all possible s-plane points
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Angle Criterion — Example
e
Determine if s; = —3 + j2 is on this system’s root locus

Y
R(s) @ ; 1 (s)

KT (s+1)(s+3)

s1 is on the root locus if it satisfies the angle criterion
£G(sy) = (2i +1)180°

From the pole/zero diagram 173472 im
£G(s;) = —(135° + 90°)
£G(s{) = —225°# (2i +1)180° 1
s, does not satisfy the angle
criterion ;92 { Lxel Re,
o It is not on the root locus P2 P1

K. Webb ESE 430



Angle Criterion — Example
R

Is s, = —2 + j on the root locus? Ao
Now we have 2= 24

£G(s,) = —(135° + 45°) = —180° N,
O s, is on the root locus e =

What gain results in a closed-loop pole at s,?
o Use the magnitude criterion to determine K

= (s + D(s; +3) =v2-V2 =2

K=

G(sz)

K = 2 yields a closed-loop poleats, = -2 +j
o And at its complex conjugate, 5, = —2 —j
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Real-axis segments
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Real-Axis Root-Locus Segments
R

We’ll first consider points on the real axis, and whether or
not they are on the root locus

Consider a system with the following open-loop poles
O Is s; on the root locus? l.e., does it satisfy the angle criterion?

Angle contributions from Xy |
complex poles cancel L
Pole to the right of s;: s Re
- — "o = >
—L(Sl — pl) = —180° P3 2 P2 P1
All poles/zeros to the left ps %01
of S1-

—£(s1 —pz) = —4(s; —p3) = 4(s1 —z,) = 0°

s, satisfies the angle criterion, 2G(s;) = —180°, so it is
on the root locus
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Real-Axis Root-Locus Segments
R

Now, determine if point s, is on the root locus
Again angles from complex poles

NNIm

cancel P4 Xr-

o Always true for real-axis points o

Pole and zero to the left of s, 5, Re
contribute 0° S oy S
o Always true for real-axis points .

ps x_.'-.-...

Two poles to the right of s;:
—£(s2 = p1) — £(s2 — p2) = —360°
Angle criterion is not satisfied
£G(s,) = —360° # (2i + 1)180°

S, is not on the root locus
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Real-Axis Root-Locus Segments

From the preceding development, we can conclude the
following concerning real-axis segments of the root

locus:

on the root locus

All points on the real axis to the left of an odd
number of open-loop poles and/or zeros are

Im

Re

K. Webb
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Root Locus — Non-Real-Axis Segments
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Non-Real-Axis Root-Locus Segments
R

Transfer functions of physically-realizable systems
are rational polynomials with real-valued
coefficients

o Complex poles/zeros come in complex-conjugate pairs

Root locus is symmetric about the real axis

Root locus is a plot of closed loop poles as K varies
from0 — oo

Where does the locus start? Where does it end?
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Non-Real-Axis Root-Locus Segments

-0V
KG(s)
1+ KG(s)H(s)

We've seen that we can represent this closed-loop
transfer function as

T(s) =

KNg(s)Dy(s)
D¢ (s)Dy(s) + KNg(s)Ny(s)
The closed-loop poles are the roots of the closed-loop
characteristic polynomial

A(s) = Dg(s)Dy(s) + KNg(s)Ny(s)

T(s) =

AsK - 0
A(s) = Dg(s)Dy(s)

Closed-loop poles approach the open-loop poles
O Root locus starts at the open-loop poles for K = 0
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Non-Real-Axis Root-Locus Segments

As K — oo
A(s) > KNg(s)Ny(s)

So, as K = oo, the closed-loop poles approach the open-

loop zeros
O Root locus ends at the open-loop zeros for K =
o Including the n — m zeros at C™ » ~

Im

Re

Previous example:
o n = 5poles, m =1 zero

o One pole goes to the finite zero x

O Remaining poles go to the (n — m) = 4 zeros at C®
o Where are those zeros? (what angles?)
o How do the poles get there as K — oo?
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Non-Real-Axis Root-Locus Segments
R

As K — oo, m of the n poles approach the m finite zeros
The remaining (n — m) poles are at C®

Looking back from C®, it appears that these (n — m)
poles all came from the same point on the real axis, g,

Considering only these (n — m) poles, the
corresponding root locus equation is

1
G,=1+K =0
“ (S_Ua)n_m

These poles travel from o, (approximately) to C* along
(n — m) asymptotes at angles of 6 ;
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Asymptote Angles — 0 ;
e

To determine the angles of the (n — m) asymptotes,
consider a point, s, very far from g,

If s; is on the root locus, then
£G,(s;) = (2i + 1)180°

That is, the (n — m) angles from g, to s; sum to an odd
multiple of 180°

(n—m)6y; = (2i + 1)180°

Therefore, the angles of the asymptotes are

- (2i+1)180°

ot n—m
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Asymptote Angles — 0 ;
e
For example
on = 5 polesand m = 3 zeros
o(n—m)=2polesgotoC® as K -
O Poles approach C* along asymptotes at angles of

_(2:0+1)180° 180°

9a,0 5—3 2

= 90°

(e]

54 )
Qa’l — 2 — 270

If (n—m) =3

Bao =2 =60° B0y =2"=180° B, =-"-=300°
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Asymptote Origin
e

The (n — m) asymptotes come from a point, g,, on the real axis -
where is g, located?
The root locus equation can be written

b(s)
1+Kﬁ_0

b(s) =s™+b;s™t+.-+b,

a(s) =s"+a;s" 1+ +a,

where

According to a property of monic polynomials:
a, = —Xp;
b]_ = - Zi
where p; are the open-loop poles, and z; are the open-loop zeros
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Asymptote Origin

The closed-loop characteristic polynomial is
s"+a;s™ 1t + o+ ay + K™+ bys™ 1+ -+ by)
If m < (n— 1), i.e. at least two more poles than zeros, then
a, = —X71
where 7; are the closed-loop poles

The sum of the closed-loop poles is:
o Independent of K

o Equal to the sum of the open-loop poles
—Lpp =L =g

The equivalent open-loop location for the (n — m) poles going to
infinity is g,

o These poles, similarly, have a constant sum:

(Tl _ m)o-a
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Asymptote Origin
e

As K — oo, m of the closed-loop poles go to the open
loop zeros

o Their sum is the sum of the open-loop zeros
The remainder of the poles go to C™
o Their sumis (n — m)ay

The sum of all closed-loop poles is equal to the sum of
the open-loop poles

Xr=2z;+ (n—m)o, = X p;

The origin of the asymptotes is

Zpi—ZZi
Oq =

n—m
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Root Locus Asymptotes — Example

-
Consider the following system

R(s) @ (s+3) Y(sl

}|J : (s+1)(s+4)(s+5)(s’+45+5)

m = 1 open-loop zero and n = 5 open-loop poles

As K — oo:
o One pole approaches the open-loop zero
O Four poles go to C® along asymptotes at angles of:

0 — 450, 9,y = 5100 = 135°

Ha,O —

Oz = 2m = 225°, g3 =——— = 315°
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Root Locus Asymptotes — Example
R

The origin of the asymptotes is

Zpi —ZZl'
Oq =
n—m
(D HED+EDH 2D+ (=2-)) = (3)
Oa = 51
—14 + 3
O, = 2 = —2.75

As K — oo, four poles approach C* along four

asymptotes emanating from s = —2.75 at angles of
45°,135°, 225°, and 315°
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Root Locus Asymptotes — Example
I

Root Locus

Imaginary Axis (seconds'")

Real Axis (seconds'1)
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Refining the Root Locus
R

So far we’ve learned how to accurately sketch:
o Real-axis root locus segments
O Root locus segments heading toward C®, but only far from g,

Root locus from previous Root Locus
example illustrates i |
additional characteristics '
we must address:

o Real-axis

breakaway/break-in
points

o Angles of
departure/arrival at
complex poles/zeros

Imaginary Axis (seconds'1)
o

-8 -6 -4 -2 0 2

Real Axis (seconds'1)

O jw-axis crossing locations
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Real-Axis Breakaway/Break-In Points
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Real-Axis Breakaway/Break-In Points

-
Consider the following system and its root locus

R(s) =) (s+3)(s+4) Y(s)
2 ‘ (s+1)(s+2)
- Root Locus
1 T T T T T T
0.8F
Two finite poles approach o8|

two finite zeros as K —» oo
o Where do they leave the

Imaginary Axis (seconds’")
o

real axis? 02}

Breakaway point 04r

06

O Where do they re-join the 03
real axis? 45 4 35 3 25 =2 45 1 05 0 05

Real Axis (seconds‘1)

Break-in point
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Real-Axis Breakaway Points

Root Locus

Breakaway point occurs somewhere 1
betweens = —1and s = —2 o]

o Breakaway angle: I

041

0.2r

180°
n

where n is the number of poles that
come together — here, £90°

ebreakaway =
-0.2¢

0.4

Imaginary Axis (seconds’)
(=]

06}

-0.81

.. -1 P
O As gain increases, poles come together A ettt
then leave the real axis

o Along the real-axis segment, maximum gain occurs at the breakaway
point

To calculate the breakaway point:

o Determine an expression for gain, K, as a function of s

o Differentiate w.r.t. s

o Find s for dK/ds = 0 to locate the maximum gain point

K. Webb ESE 430
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Real-Axis Breakaway Points
R

All points on the root locus satisfy
1

K= oHE)

On the segment containing the breakaway point, s = o,

SO
1

K== HO

The breakaway point is a maximum gain point, so

dk d 1 _ 0
do do <_ G(a)H(a)) B

Solving for o yields the breakaway point
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Real-Axis Breakaway Points
R

For our example, along the real axis

1 (c+1D(@+2) o*+30+2

Kz_mz_(a+3)(a+4)__02+70+12

Differentiating w.r.t. o

dKk  (0°+70+12)(20+3) —(6°+30+2)20+7) 0
do (02 + 70+ 12)2 B

Setting the derivative to zero
(62 +70+12)(20+3)— (6% +30+2)(20+7) =0
462 + 200 + 22 = 0
o = —1.63,—3.37

The breakaway point occurs at s = —1.63
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Real-Axis Break-In Points

The poles re-join the real axis at a break-in point
o A minimum gain point
o As gain increases, poles move apart

o Break-in angles are the same as breakaway angles
180°

n
As for the breakaway point, the break-in point satisfies

dK d 1 o
do ~ do (‘ G(s)H(s)) N
In fact, this yields both breakaway and break-in points

For our example, we had 0 = —1.63, —3.37
o Breakaway point: s = —1.63
O Break-in point: s = —3.37

gbreak—in =
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Real-Axis Breakaway/Break-In Points

Root Locus
1
08F
9 s =-337 s=—-1.63
8 04f
| =
o
[&]
& 02F
0
é 0 L C O ................................. bY e ———————————————————sn
ey
& 02}
D
©
£ -04F
-06F
-0.8F
-1

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Real Axis (seconds'1)
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Angles of Departure/Arrival
R

Consider the following two systems
s2+0.25+2.26 s2+0.25+4.01

Gl(S) = s240.25+4.01 Gz (S) - $240.25+2.26

Root Locus Root Locus
2.5 T T T T T T T 2.5

151 1 151 1

05}

05}

-05F -05F

2F 4 2t 4

-25

Imaginary Axis (seconds1)
o
b

Imaginary Axis (seconds1)
o
b

L L L L 1 L i 25 L L L L 1 L i
1.2 -1 -0.8 -06 0.4 -0.2 0 0.2 1.2 -1 -0.8 -06 0.4 -0.2 0 0.2

Real Axis (seconds'1) Real Axis (seconds'1)

Similar systems, with very different stability behavior

o Understanding how to determine angles of departure from complex
poles and angles of arrival at complex zeros will allow us to predict this
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Angle of Departure
R

To find the angle of departure from a pole, p;:
o Consider a test point, sy, very close to p;
o The angle from p; to sq is ¢4

o The angle from all other poles/zeros, ¢;/1;, to s, are approximated as the angle
from p; or z; to p,

o Apply the angle criterion to find ¢4

ZZ;/% — ¢ - Z;dh- = (2 +1)180°

Solving for the departure angle, ¢:
m n

br=) Wi—) ;- 180°
=1 1=2

Paepart = LL(zeros) — X£(other poles) — 180°

In words:

K. Webb ESE 430



Angle of Departure
e

If we have complex-conjugate open-loop poles with
multiplicity g, then

Zzllpi —qP1 — zn ¢; = (2i +1)180°

i=q+1

The g different angles of departure from the
multiple poles are

N = Xl i — (20 + 1)180°
q

b1

wherei = 1,2, ...q
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Angle of Arrival
R

Following the same procedure, we can derive an
expression for the angle of arrival at a complex zero

of multiplicity q

X1 — X gt + (20 +1)180°

Y1,
q
In summary
_ Xz(zeros) — Z£(other poles) — (2i +1)180°
Paeparti = multiplicity

_ Xz(poles) — Zs(other zeros) + (2i +1)180°
Varrivei = multiplicity
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Departure/Arrival Angles — Example
e

Angle of departure from p4

Root Locus

m n 2.5
¢1=z_ Yvi— ) ¢ —180° |
=1 1=2 ol < D1
¢ =1[90° 4+ 90°] —[90° + 92.9°] — 180° 15} oz
¢, = —182.9° %‘ 1t
% 05
Due to symmetry: _‘g ; Lo
¢, = —¢, = 182.9° g o5
£
Angle of arrival at z; T
m n 1.5¢ o %2
1/)1 — Z ¢i — l/)i + 180° 2} x D2
=1 i=2
% 08 06 04 02 0 0.2

Y, = [—90° 4+ 90° + 93.8°] — [90°] + 180°-
1/11 = 183-80; 1/J2 = —183.8°

K. Webb ESE 430
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Departure/Arrival Angles — Example
3

Root Locus
2.5

1.5

05F

-05F

2

-2.5

Imaginary Axis (seconds’")
o
X

-1.2 -1 -0.8 -06 -0.4 -0.2 0 0.2
Real Axis (seconds'1)
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Departure/Arrival Angles — Example
e

Next, consider the other system

Angle of departure from p4 )5 oo

¢4 2l °on

= [—90° + 90°] — [90° + 93.8°] 15 x P1

- 1800 ) 1F

¢, = —363.8° > —3.8° 3 o)

¢, = 3.8° ? ° T
g) -05F

Angle of arrival at z; £

l/J1 15} X Dy

= [90° 4+ 90° + 92.9°] — [90°] o} 0z

+180° 2

25 : : : : ;
o ° -1 -0.8 -06 -0.4 -0.2 0 0.2
l/)l - 3629 - 29 Real Axis (seconds'1)
Y, = —2.9°
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Departure/Arrival Angles — Example
3

Root Locus
25 !
2.9°
2F G———:> .
15F H— .
< 3.8°
B 1
c
3
ﬁ 05F
R
Z 0 x
Py
E 05F
i)
[4¥]
E  Aar
-15F >«—-..> .
_2- G———- -
_2.5 [ 1 [ 1 1 [
-1.2 -1 -0.8 -06 04 -0.2 0 0.2

Real Axis (seconds'1)
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Jw-Axis Crossing Points
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Jw-Axis Crossing Points
e

To determine the location of a Root Locus
Jjw-axis crossing °
o Apply Routh-Hurwitz T
o Find value of K that results in a
row of zeros
Marginal stability
Jjw-axis poles
o Roots of row preceding the
ZEero row are jw-axis crossing

Imaginary Axis (seconds'1)
o

points A
Or, plot in MATLAB 4f
o More on this later Sg o p > 0 2

Real Axis (seconds’1)
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Sketching the Root Locus - Summary
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Root Locus Sketching Procedure — Summary
e

Plot open-loop poles and zeros in the s-plane

Plot locus segments on the real axis to the left of an odd
number of poles and/or zeros

For the (n — m) poles going to C*, sketch asymptotes at
angles 6, ;, centered at g, where

_ (2i+1)180°
- n—m

a,l

n m
_ ij=1Di — Li=17%i

n—m

Oa
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Root Locus Sketching Procedure — Summary
e

Calculate departure angles from complex poles of multiplicity g = 1
_ Xz(zeros) — Z4£(other poles) — (2i + 1)180°
q

and arrival angles at complex zeros of multiplicity g = 1

i

_ Xz(poles) — Zs(other zeros) + (2i +1)180°
q

Determine real-axis breakaway/break-in points as the solutions to

d 1 0
do (G(O‘)H(O‘)) B

Breakaway/break-in angles are 180°/n to the real axis

i

If desired, apply Routh-Hurwitz to determine jw-axis crossings

K. Webb ESE 430



Sketching the Root Locus — Example 1

Consider a satellite, controlled by a proportional-
derivative (PD) controller

REs) (\’T} K(s+1) 1 ¥(s)
o A example of a double-integrator plant
o We'll learn about PD controllers in the next section

o Closed-loop transfer function
K(s+1)

(%]
N

Sketch the root locus
o Two open-loop poles at the origin
o One open-loop zeroat s = —1
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Sketching the Root Locus — Example 1

Plot open-loop poles and
Zeros 18

Root Locus

0 Two poles, one zero 1!

Plot real-axis segments
O To the left of the zero

05¢F

Asymptotes to C*

Imaginary Axis (secondsi1)
o
O
x

051

0 One pole goes to the finite
Zero 4

L1 One pole goes to oo at 180° - | | | |
along the real axis Y s 2 0

Real Axis (secends'1)
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Sketching the Root Locus — Example 1

e
Departure/arrival angles

Root Locus

O No complex poles or zeros 15

Breakaway/break-in points i

N

-0.5F

0 Breakaway occurs at multiple
roots—ats =0

0 Break-in point:

d s? _ 0
ds ((S + 1)) B

Imaginary Axis (seconds’)
o
(0}

(s+1)2s —s* At
(s+1)2
1 3 2 r 0
SZ + 25 = 0 - S = —2, 0 Real Axis (seconds™")
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Sketching the Root Locus — Example 2
R

Now consider the same satellite with a different

controller
R(s) =\ K(s+1) 1 Y(s)

’\ZT (s+12)

o A lead compensator — more in the next section

(]

o Closed-loop transfer function
K(s+1)

T(s) =
(s) s34+ 1252+ Ks+ K

Sketch the root locus

K. Webb ESE 430



Sketching the Root Locus — Example 2
e

Plot open-loop poles and zeros

0 Now three open-loop poles and

one zero

Plot real-axis segments

0 Between the zero and the pole at

s=-—12
Asymptotes to C*

180°
9(1,1 — 5 - 900

0,2 = 240" _ 270°
a2 = "5 =
—12 — (-1
O, = 2( ) = —5.5

K. Webb

Imaginary Axis (seconds’)

Root Locus
4 T LI
3f
2|
1
0OF ¥ é X
At ////;ﬂ
s =-55
2L
_3 -
_4 L L L 1 1 1 1
-14 -12 -10 -8 -6 -4 -2 0

Real Axis (seconds'1)
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Sketching the Root Locus — Example 2

Departure/arrival angles

Root Locus
0 No complex open-loop poles or zeros 4
Breakaway/break-in points 3t :
d (s*(s+12)\ _ . |s=-231 -
ds\ (s+1) E \
o 1F .
(s+1DBs> +245) — (s +1257) 5 o . ol
(s + 1)2 Y% \
3 2 — =
25° + 155+ 24s =0 Ll | s=-519.
s=0,-2.31,-5.19
OO0 Breakaway: s =0,s = —5.19 N

. . —_ _4 L L 1 1 ; 1 1 1
(] Break-in: s = —2.31 14 12 10 -8 6 4 2 0

Real Axis (seconds'1)
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Sketching the Root Locus — Example 3
-

Now move the controller’s poleto s = —9

R(s) @ K(s+1) 1 Y(s)

\,r (s+9) s°

o Closed-loop transfer function
K(s+1)
s34+9s2+Ks+K

T(s) =

Sketch the root locus

K. Webb ESE 430



Sketching the Root Locus — Example 3
-

Plot open-loop poles and zeros Root Locus
0 Again, three open-loop poles and one 3 '
zero
Plot real-axis segments 2t
O Between the zero and the poleats =
-9 8 g}
Asymptotes to C® g
i O © X
01 = 90° - /
6,,=270° g |
a,2 E c= a4
_ —9-(-1)
o o, = —4 )
Departure/arrival angles |
0 No complex open-loop poles or zeros ” 8 r 4 2 0

Real Axis (seconds"|)
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Sketching the Root Locus — Example 3
-

Breakaway/break-in points

Root Locus

w

d (s?(s+9) _ 0
ds\ (s+1) |
2-
(s +1)(3s* +18s) — (s> +9s5%) 0
(s + 1)2 g
253 + 1252 4+ 185 = 0 &
O
s=0,-3,-3 3
0 Breakaway: s =0,s = -3 ? Al
0 Break-in: s = -3
Three poles converge/diverge at s = A
—3
0 Breakaway angles: 0°, 120°, 240°
0 Break-in angles: 60°, 180°, 300° R . ” 2 0

Real Axis (seconds'1)
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Root Locus in MATLAB



feedback.m

e
sys = feedback(G,H,sign)

o G: forward-path model — tF, sS, zpk, etc.
o H: feedback-path model

o sign: -1 for neg. feedback, +1 for pos. feedback —
optional — default is -1

O SYS: closed-loop system model object of the same
type as G and H

Generates a closed-loop system model from
forward-path and feedback-path models

For unity feedback, H=1

K. Webb ESE 430



feedback._m

For example:
R(s) (5 G(s) 3
‘\’L T=Feedback(G,H);
H(s)
R(s) ;/2\ 6ls) 3 T=feed baCk(G ’ 1) ;
NG Gy(s 5 Gals R
S Gis) 1 616 T=Feedback(G1*G2,H);

|

H(s)

K. Webb

ESE 430



rlocus.m
e

[r,K] =rlocus(G,K)

o G: open-loop model — tF, ss, zZpk, etc.

o K: vector of gains at which to calculate the locus — optional —
MATLAB will choose gains by default

o I: vector of closed-loop pole locations
o K: gains corresponding to pole locations in r

If no outputs are specified a root locus is plotted in the
current (or new) figure window

o This is the most common use model, e.g.:

rlocus(G,K)
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Generalized Root Locus
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Generalized Root Locus
e

We’ve seen that we can plot the root locus as a function of
controller gain, K

Can also plot the locus as a function of other parameters
o For example, open-loop pole locations
Consider the following system:

&r s(s+a)
Plot the root locus as a function of pole location, a
Closed-loop transfer function is

1
ss+a) 1
1 Cs24+as+1
1+S(s+a)

T(s) =

K. Webb ESE 430



Generalized Root Locus
e

T(s) =

s?24+as+1
Want the denominator to be in the root-locus form:
1+ aG(s)H(s)

First, isolate a in the denominator

1
I'(s) = (s2+ 1)+ as
Next, divide through by the remaining denominator terms
1
T(s) = s? + %9
1+ a

K. Webb ESE 430



Generalized Root Locus

1

2+1
T(S)zl S +S
T

The open-loop transfer function term in this form is

G)H(S) = 5=

Sketch the root locus:
Plot poles and zeros

O A zero at the origin and poles at s = +j

Plot real-axis segments

O Entire negative real axis is left of a single zero

K. Webb ESE 430



Generalized Root Locus
S —

AsymptOte tO COO Root Locus
0 Single asymptote along negative 1.5
real axis
Departure angles 1t
¢; = 90°—90° - 180° R
¢, = —180° = —¢, %0 o
Break-in point )
d 1 d (02 +1 < 0
= = 0 ©
do \G(o)H (o) do o S
£ -05}
d(20) — (6% + 1)
2 =0
o a4l
0°—1=0 - o=+1,—-1
J s = +1is not on the locus 15 — - = 0 -
J Break-in point: s = —1 Real Axis (seconds™)
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Design via Gain Adjustment
R

Root locus provides a graphical representation of
closed-loop pole locations vs. gain

We have known relationships (some approx.) between
pole locations and transient response

O These apply to 2"-order systems with no zeros

Often, we don’t have a 2"9%-order system with no zeros

o Would still like a link between pole locations and transient
response

Can sometimes approximate higher-order systems as
2"9-order

o Valid only under certain conditions
o Always verify response through simulation

K. Webb ESE 430



Second-Order Approximation
R

A higher-order system with a pair of second-order poles
can reasonably be approximated as second-order if:

Any higher-order closed-loop poles are either:

a) at much higher frequency (> ~5 X) than the dominant
2"d-order pair of poles, or

b) nearly canceled by closed-loop zeros

Closed-loop zeros are either:

a) at much higher frequency (> ~5 X) than the dominant
2"d-order pair of poles, or

b) nearly canceled by closed-loop poles

K. Webb ESE 430



Design via Gain Adjustment — Example
R

R(s) @ (s+3) Y(s)

K
}r 5(s+2)(s+4)

Determine K for 10% overshoot

Assuming a 2"%-order approximation applies:
—1n(0S)

= = 0.59
Jm2 +In2(05S)

¢

Next, plot root locus in MATLAB

Find gain corresponding to 2"-order poles with { = 0.59
o If possible — often it is not

Determine if a 2"9-order approximation is justified

Verify transient response through simulation
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Design via Gain Adjustment — Example
e

Root locus shows that L Pottooe
a pair of closed-loop
poles with ¢ = 0.59
exist for K = 5.23: I

51’2 —_ —125 i]171

System: G

Gain: 5.23

Pole: -1.25 + 1.71i

Damping: 0.59

Overshoot (%): 10
“. \ Frequency (radfs): 2.12

-‘1)

Imaginary Axis (seconds
o

Where is the third
closed-loop pole? 2|

-4 -3 -2 -1 0 1
Real Axis (second5'1)
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Design via Gain Adjustment — Example
e

Thlrd p0|e |S at Root Locus
4 — , ,
s =-—35
di |
o Not high enough in
frequency forits effectto  _ 7
be negligible g
O But, itis in close <
. . % 0 —H—O % x
proximity to a closed- = |
loop zero § Al
Is a 2"d-order 2
approximation justified? af
o Simulate .,

-4 -3 2 -1 0 1
Real Axis (Seconds'1)

- wee ESE 430



Design via Gain Adjustment — Example
R

Ste p res p onse I}tisponse of 3"9-Order System and 2"%-Order Approximation
nd_ 3'9.Order System
CO m pa red to a t ru e 2 """"" 29 Order Ay:proximation |

121

order system

o No third pole, no zero i

Very similar response 08}
o 11.14% overshoot

y(®

06

2"d-order 04
approximation is valid

0.2r
Slight reduction in gain
would yield 10% overshoot 0 2 4 6 8

Time [sec]
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Design via Gain Adjustment — Example
R

Ste p re S p O n Se I}isponse of 3"%-Order System and 2"9Order Approximation
compada red to systems — gj—g:ioer System
with: 128 | e No third pole

o No zero
o No third pole

Quite different
responses

y(®)

Partial pole/zero

cancellation makes 2n9-
order approximation i
valid, in this example 4 . - . !

Time [sec]

K. Webb ESE 430



When Gain Adjustment Fails

Root loci do not go through every point in the s-plane

o Can’t always satisfy a single performance specification, e.g.
overshoot or settling time

o Can satisfy two specifications, e.g. overshoot and settling
time, even less often

Also, gain adjustment affects steady-state error
performance

o In general, cannot simultaneously satisfy dynamic
requirements and error requirements

In those cases, we must add dynamics to the controller
O A compensator

K. Webb ESE 430
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