SECTION 5: ROOT-LOCUS ANALYSIS

ESE 430 - Feedback Control Systems

2

Introduction

Introduction

\square Consider a general feedback system:
\square Closed-loop transfer function is

$$
T(s)=\frac{K G(s)}{1+K G(s) H(s)}
$$

$\square G(s)$ is the forward-path transfer function

- May include controller and plant
$\square H(s)$ is the feedback-path transfer function
\square Each are, in general, rational polynomials in s

$$
G(s)=\frac{N_{G}(s)}{D_{G}(s)} \quad \text { and } \quad H(s)=\frac{N_{H}(s)}{D_{H}(s)}
$$

Introduction

\square So, the closed-loop transfer function is

$$
T(s)=\frac{K \frac{N_{G}(s)}{D_{G}(s)}}{1+K \frac{N_{G}(s)}{D_{G}(s)} N_{H}(s)} D_{H}(s) \quad ~=\frac{K N_{G}(s) D_{H}(s)}{D_{G}(s) D_{H}(s)+K N_{G}(s) N_{H}(s)}
$$

\square Closed-loop zeros:

- Zeros of $G(s)$
- Poles of $H(s)$
\square Closed-loop poles:
- A function of gain, K
- Consistent with what we've already seen - feedback moves poles

Closed-Loop Poles vs. Gain

\square How do closed-loop poles vary as a function of K ?

- Plot for $K=0,0.5,1,2,5,10,20$
\square Trajectory of closed-loop poles vs. gain (or some other parameter): root locus
\square Graphical tool to help determine the controller gain that will put poles where we want them
\square We'll learn techniques for sketching this locus by hand

Root Locus

\square An example of the type of root locus we'll learn to sketch by hand, as well as plot in MATLAB:

Root Locus

Evaluation of Complex Functions

Vector Interpretation of Complex Functions

\square Consider a function of a complex variable s

$$
G(s)=\frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots}
$$

where z_{i} are the zeros of the function, and p_{i} are the poles of the function
\square We can write the function as

$$
G(s)=\frac{\prod_{i=1}^{m}\left(s-z_{i}\right)}{\prod_{i=1}^{n}\left(s-p_{i}\right)}
$$

where m is the \# of zeros, and n is the \# of poles

Vector Interpretation of Complex Functions

\square At any value of s, i.e. any point in the complex plane, $G(s)$ evaluates to a complex number

- Another point in the complex plane with magnitude and phase

$$
G(s)=M \angle \theta
$$

where

$$
M=|G(s)|=\frac{\left|\prod_{i=1}^{m}\left(s-z_{i}\right)\right|}{\left|\prod_{i=1}^{n}\left(s-p_{i}\right)\right|}
$$

and

$$
\begin{aligned}
& \theta=\angle\left[\prod_{i=1}^{m}\left(s-z_{i}\right)\right]-\angle\left[\prod_{i=1}^{n}\left(s-p_{i}\right)\right] \\
& \theta=\sum_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum_{i=1}^{n} \angle\left(s-p_{i}\right)
\end{aligned}
$$

Vector Interpretation of Complex Functions

\square Each term $\left(s-z_{i}\right)$ represents a vector from z_{i} to the point, s, at which we're evaluating $G(s)$
\square Each $\left(s-p_{i}\right)$ represents a vector from p_{i} to s
\square For example:

$$
G(s)=\frac{(s+3)}{(s+4)\left(s^{2}+2 s+5\right)}
$$

- Zero at: $s=-3$
- Poles at: $s_{1,2}=-1 \pm j 2$ and $s_{3}=-4$
\square Evaluate $G(s)$ at $s=-2+j$

$$
\left.G(s)\right|_{s=-2+j}
$$

Vector Interpretation of Complex Functions

\square First, evaluate the magnitude

$$
\begin{aligned}
& |G(s)|=\frac{\left|s-z_{1}\right|}{\left|s-p_{1}\right|\left|s-p_{2}\right|\left|s-p_{3}\right|} \\
& \left|s-z_{1}\right|=|1+j|=\sqrt{2} \\
& \left|s-p_{1}\right|=|-1-j|=\sqrt{2} \\
& \left|s-p_{2}\right|=|-1+j 3|=\sqrt{10} \\
& \left|s-p_{3}\right|=|2+j|=\sqrt{5}
\end{aligned}
$$

\square The resulting magnitude:

$$
\begin{aligned}
|G(s)| & =\frac{\sqrt{2}}{\sqrt{2} \sqrt{10} \sqrt{5}}=\frac{\sqrt{2}}{10} \\
|G(s)| & =0.1414
\end{aligned}
$$

Vector Interpretation of Complex Functions

\square Next, evaluate the angle

$$
\begin{gathered}
\angle G(s)=\angle\left(s-z_{1}\right)-\angle\left(s-p_{1}\right) \\
-\angle\left(s-p_{2}\right)-\angle\left(s-p_{3}\right) \\
\angle\left(s-z_{1}\right)=\angle(1+j)=45^{\circ} \\
\angle\left(s-p_{1}\right)=\angle(-1-j)=-135^{\circ} \\
\angle\left(s-p_{2}\right)=\angle(-1+j 3)=108.4^{\circ} \\
\angle\left(s-p_{3}\right)=\angle(2+j)=26.6^{\circ}
\end{gathered}
$$

\square The result:

$$
\left.G(s)\right|_{s=-2+j}=0.1414 \angle 45^{\circ}
$$

Finite vs. Infinite Poles and Zeros

\square Consider the following transfer function

$$
G(s)=\frac{(s+8)}{s(s+3)(s+10)}
$$

- One finite zero: $s=-8$
- Three finite poles: $s=0, s=-3$, and $s=-10$
\square But, as $s \rightarrow \infty$

$$
\lim _{s \rightarrow \infty} G(s)=\frac{\infty}{\infty^{3}}=0
$$

- This implies there must be a zero at $s=\infty$
\square All functions have an equal number of poles and zeros
\square If $G(s)$ has n poles and m zeros, where $n \geq m$, then $G(s)$ has $(n-m)$ zeros at $s=C^{\infty}$
- C^{∞} is an infinite complex number - infinite magnitude and some angle

The Root Locus

Root Locus - Definition

\square Consider a general feedback system:
\square Closed-loop transfer function is

$$
T(s)=\frac{K G(s)}{1+K G(s) H(s)}
$$

\square Closed-loop poles are roots of

$$
1+K G(s) H(s)
$$

\square That is, the solutions to

$$
1+K G(s) H(s)=0
$$

\square Or, the values of s for which

$$
\begin{equation*}
K G(s) H(s)=-1 \tag{1}
\end{equation*}
$$

Root Locus - Definition

\square Because $G(s)$ and $H(s)$ are complex functions, (1) is really two equations:

$$
\angle G(s) H(s)=(2 i+1) 180^{\circ}
$$

that is, the angle is an odd multiple of 180°, and

$$
|K G(s) H(s)|=1
$$

\square So, if a certain value of s satisfies the angle criterion

$$
\angle G(s) H(s)=(2 i+1) 180^{\circ}
$$

then that value of s is a closed-loop pole for some value of K
\square And, that value of K is given by the magnitude criterion

$$
K=\left|\frac{1}{G(s) H(s)}\right|
$$

Root Locus - Definition

\square The root locus is the set of all points in the s-plane that satisfy the angle criterion

$$
\angle G(s) H(s)=(2 i+1) 180^{\circ}
$$

- The set of all closed-loop poles for $0 \leq K \leq \infty$
\square We'll use the angle criterion to sketch the root locus
\square We will derive rules for sketching the root locus
- Not necessary to test all possible s-plane points

Angle Criterion - Example

\square Determine if $s_{1}=-3+j 2$ is on this system's root locus

$\square s_{1}$ is on the root locus if it satisfies the angle criterion

$$
\angle G\left(s_{1}\right)=(2 i+1) 180^{\circ}
$$

\square From the pole/zero diagram

$$
\begin{aligned}
& \angle G\left(s_{1}\right)=-\left(135^{\circ}+90^{\circ}\right) \\
& \angle G\left(s_{1}\right)=-225^{\circ} \neq(2 i+1) 180^{\circ}
\end{aligned}
$$

$\square s_{1}$ does not satisfy the angle criterion

- It is not on the root locus

Angle Criterion - Example

\square Is $s_{2}=-2+j$ on the root locus?
\square Now we have

$$
\angle G\left(s_{2}\right)=-\left(135^{\circ}+45^{\circ}\right)=-180^{\circ}
$$

$\square S_{2}$ is on the root locus

\square What gain results in a closed-loop pole at s_{2} ?
\square Use the magnitude criterion to determine K

$$
K=\left|\frac{1}{G\left(s_{2}\right)}\right|=\left|\left(s_{2}+1\right)\left(s_{2}+3\right)\right|=\sqrt{2} \cdot \sqrt{2}=2
$$

$\square K=2$ yields a closed-loop pole at $s_{2}=-2+j$
\square And at its complex conjugate, $\bar{s}_{2}=-2-j$

Root Locus - Real-axis segments

Real-Axis Root-Locus Segments

\square We'll first consider points on the real axis, and whether or not they are on the root locus
\square Consider a system with the following open-loop poles

- Is s_{1} on the root locus? I.e., does it satisfy the angle criterion?
\square Angle contributions from complex poles cancel
\square Pole to the right of s_{1} :

$$
-\angle\left(s_{1}-p_{1}\right)=-180^{\circ}
$$

\square All poles/zeros to the left of s_{1} :

$$
-\angle\left(s_{1}-p_{2}\right)=-\angle\left(s_{1}-p_{3}\right)=\angle\left(s_{1}-z_{1}\right)=0^{\circ}
$$

$\square s_{1}$ satisfies the angle criterion, $\angle G\left(s_{1}\right)=-180^{\circ}$, so it is on the root locus

Real-Axis Root-Locus Segments

\square Now, determine if point s_{2} is on the root locus
\square Again angles from complex poles cancel

- Always true for real-axis points
\square Pole and zero to the left of S_{2} contribute 0°
- Always true for real-axis points

\square Two poles to the right of s_{1} :

$$
-\angle\left(s_{2}-p_{1}\right)-\angle\left(s_{2}-p_{2}\right)=-360^{\circ}
$$

\square Angle criterion is not satisfied

$$
\angle G\left(s_{2}\right)=-360^{\circ} \neq(2 i+1) 180^{\circ}
$$

$\square S_{2}$ is not on the root locus

Real-Axis Root-Locus Segments

\square From the preceding development, we can conclude the following concerning real-axis segments of the root locus:

All points on the real axis to the left of an odd number of open-loop poles and/or zeros are on the root locus

Root Locus - Non-Real-Axis Segments

Non-Real-Axis Root-Locus Segments

\square Transfer functions of physically-realizable systems are rational polynomials with real-valued coefficients

- Complex poles/zeros come in complex-conjugate pairs

Root locus is symmetric about the real axis

\square Root locus is a plot of closed loop poles as K varies from $0 \rightarrow \infty$
\square Where does the locus start? Where does it end?

Non-Real-Axis Root-Locus Segments

$$
T(s)=\frac{K G(s)}{1+K G(s) H(s)}
$$

\square We've seen that we can represent this closed-loop transfer function as

$$
T(s)=\frac{K N_{G}(s) D_{H}(s)}{D_{G}(s) D_{H}(s)+K N_{G}(s) N_{H}(s)}
$$

\square The closed-loop poles are the roots of the closed-loop characteristic polynomial

$$
\Delta(s)=D_{G}(s) D_{H}(s)+K N_{G}(s) N_{H}(s)
$$

\square As $K \rightarrow 0$

$$
\Delta(s) \rightarrow D_{G}(s) D_{H}(s)
$$

\square Closed-loop poles approach the open-loop poles
\square Root locus starts at the open-loop poles for $K=0$

Non-Real-Axis Root-Locus Segments

\square As $K \rightarrow \infty$

$$
\Delta(s) \rightarrow K N_{G}(s) N_{H}(s)
$$

\square So, as $K \rightarrow \infty$, the closed-loop poles approach the openloop zeros
\square Root locus ends at the open-loop zeros for $K=\infty$

- Including the $n-m$ zeros at C^{∞}
\square Previous example:
- $n=5$ poles, $m=1$ zero
- One pole goes to the finite zero
$\times \quad$ 个
- Remaining poles go to the $(n-m)=4$ zeros at C^{∞}
\square Where are those zeros? (what angles?)
\square How do the poles get there as $K \rightarrow \infty$?

Non-Real-Axis Root-Locus Segments

\square As $K \rightarrow \infty, m$ of the n poles approach the m finite zeros
\square The remaining $(n-m)$ poles are at C^{∞}
\square Looking back from C^{∞}, it appears that these ($n-m$) poles all came from the same point on the real axis, σ_{a}
\square Considering only these $(n-m)$ poles, the corresponding root locus equation is

$$
G_{a}=1+K \frac{1}{\left(s-\sigma_{a}\right)^{n-m}}=0
$$

\square These poles travel from σ_{a} (approximately) to C^{∞} along $(n-m)$ asymptotes at angles of $\theta_{a, i}$

Root Locus - Asymptote Angles

Asymptote Angles - $\theta_{a, i}$

\square To determine the angles of the $(n-m)$ asymptotes, consider a point, s_{1}, very far from σ_{a}
\square If s_{1} is on the root locus, then

$$
\angle G_{a}\left(s_{1}\right)=(2 i+1) 180^{\circ}
$$

\square That is, the $(n-m)$ angles from σ_{a} to s_{1} sum to an odd multiple of 180°

$$
(n-m) \theta_{a, i}=(2 i+1) 180^{\circ}
$$

\square Therefore, the angles of the asymptotes are

$$
\theta_{a, i}=\frac{(2 i+1) 180^{\circ}}{n-m}
$$

Asymptote Angles - $\theta_{a, i}$

\square For example

- $n=5$ poles and $m=3$ zeros
$\square(n-m)=2$ poles go to C^{∞} as $K \rightarrow \infty$
- Poles approach C^{∞} along asymptotes at angles of

$$
\begin{aligned}
& \theta_{a, 0}=\frac{(2 \cdot 0+1) 180^{\circ}}{5-3}=\frac{180^{\circ}}{2}=90^{\circ} \\
& \theta_{a, 1}=\frac{540^{\circ}}{2}=270^{\circ}
\end{aligned}
$$

$\square \operatorname{If}(n-m)=3$

$$
\theta_{a, 0}=\frac{180^{\circ}}{3}=60^{\circ}, \quad \theta_{a, 1}=\frac{540^{\circ}}{3}=180^{\circ}, \quad \theta_{a, 2}=\frac{900^{\circ}}{3}=300^{\circ}
$$

Root Locus - Asymptote Origin

Asymptote Origin

\square The $(n-m)$ asymptotes come from a point, σ_{a}, on the real axis where is σ_{a} located?
\square The root locus equation can be written

$$
1+K \frac{b(s)}{a(s)}=0
$$

where

$$
\begin{aligned}
& b(s)=s^{m}+b_{1} s^{m-1}+\cdots+b_{m} \\
& a(s)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n}
\end{aligned}
$$

\square According to a property of monic polynomials:

$$
\begin{aligned}
a_{1} & =-\Sigma p_{i} \\
b_{1} & =-\Sigma z_{i}
\end{aligned}
$$

where p_{i} are the open-loop poles, and z_{i} are the open-loop zeros

Asymptote Origin

\square The closed-loop characteristic polynomial is

$$
s^{n}+a_{1} s^{n-1}+\cdots+a_{n}+K\left(s^{m}+b_{1} s^{m-1}+\cdots+b_{m}\right)
$$

\square If $m<(n-1)$, i.e. at least two more poles than zeros, then

$$
a_{1}=-\Sigma r_{i}
$$

where r_{i} are the closed-loop poles
\square The sum of the closed-loop poles is:

- Independent of K
- Equal to the sum of the open-loop poles

$$
-\Sigma p_{i}=-\Sigma r_{i}=a_{1}
$$

\square The equivalent open-loop location for the $(n-m)$ poles going to infinity is σ_{a}

- These poles, similarly, have a constant sum:

$$
(n-m) \sigma_{a}
$$

Asymptote Origin

\square As $K \rightarrow \infty, m$ of the closed-loop poles go to the open loop zeros

- Their sum is the sum of the open-loop zeros
\square The remainder of the poles go to C^{∞}
- Their sum is $(n-m) \sigma_{a}$
\square The sum of all closed-loop poles is equal to the sum of the open-loop poles

$$
\Sigma r_{i}=\Sigma z_{i}+(n-m) \sigma_{a}=\Sigma p_{i}
$$

\square The origin of the asymptotes is

$$
\sigma_{a}=\frac{\Sigma p_{i}-\Sigma z_{i}}{n-m}
$$

Root Locus Asymptotes - Example

\square Consider the following system

$\square m=1$ open-loop zero and $n=5$ open-loop poles
\square As $K \rightarrow \infty$:

- One pole approaches the open-loop zero
- Four poles go to C^{∞} along asymptotes at angles of:

$$
\begin{array}{ll}
\theta_{a, 0}=\frac{180^{\circ}}{4}=45^{\circ}, & \theta_{a, 1}=\frac{540^{\circ}}{4}=135^{\circ} \\
\theta_{a, 2}=\frac{900^{\circ}}{4}=225^{\circ}, & \theta_{a, 3}=\frac{1260^{\circ}}{4}=315^{\circ}
\end{array}
$$

Root Locus Asymptotes - Example

\square The origin of the asymptotes is

$$
\begin{aligned}
& \sigma_{a}=\frac{\Sigma p_{i}-\Sigma z_{i}}{n-m} \\
& \sigma_{a}=\frac{((-1)+(-4)+(-5)+(-2+j)+(-2-j))-(-3)}{5-1} \\
& \sigma_{a}=\frac{-14+3}{4}=-2.75
\end{aligned}
$$

\square As $K \rightarrow \infty$, four poles approach C^{∞} along four asymptotes emanating from $s=-2.75$ at angles of $45^{\circ}, 135^{\circ}, 225^{\circ}$, and 315°

Root Locus Asymptotes - Example

Root Locus

39

Refining the Root Locus

Refining the Root Locus

\square So far we've learned how to accurately sketch:

- Real-axis root locus segments
\square Root locus segments heading toward C^{∞}, but only far from σ_{a}
\square Root locus from previous example illustrates additional characteristics we must address:
- Real-axis breakaway/break-in points
- Angles of departure/arrival at complex poles/zeros
$\square j \omega$-axis crossing locations

41

Real-Axis Breakaway/Break-In Points

Real-Axis Breakaway/Break-In Points

\square Consider the following system and its root locus

\square Two finite poles approach two finite zeros as $K \rightarrow \infty$

- Where do they leave the real axis?
- Breakaway point
- Where do they re-join the real axis?
- Break-in point

Real-Axis Breakaway Points

\square Breakaway point occurs somewhere between $s=-1$ and $s=-2$

- Breakaway angle:

$$
\theta_{\text {breakaway }}=\frac{180^{\circ}}{n}
$$

where n is the number of poles that come together - here, $\pm 90^{\circ}$

- As gain increases, poles come together
 then leave the real axis
- Along the real-axis segment, maximum gain occurs at the breakaway point
\square To calculate the breakaway point:
- Determine an expression for gain, K, as a function of S
- Differentiate w.r.t. s
- Find s for $d K / d s=0$ to locate the maximum gain point

Real-Axis Breakaway Points

\square All points on the root locus satisfy

$$
K=-\frac{1}{G(s) H(s)}
$$

\square On the segment containing the breakaway point, $s=\sigma$, so

$$
K=-\frac{1}{G(\sigma) H(\sigma)}
$$

\square The breakaway point is a maximum gain point, so

$$
\frac{d K}{d \sigma}=\frac{d}{d \sigma}\left(-\frac{1}{G(\sigma) H(\sigma)}\right)=0
$$

\square Solving for σ yields the breakaway point

Real-Axis Breakaway Points

\square For our example, along the real axis

$$
K=-\frac{1}{G(\sigma)}=-\frac{(\sigma+1)(\sigma+2)}{(\sigma+3)(\sigma+4)}=-\frac{\sigma^{2}+3 \sigma+2}{\sigma^{2}+7 \sigma+12}
$$

\square Differentiating w.r.t. σ

$$
\frac{d K}{d \sigma}=-\frac{\left(\sigma^{2}+7 \sigma+12\right)(2 \sigma+3)-\left(\sigma^{2}+3 \sigma+2\right)(2 \sigma+7)}{\left(\sigma^{2}+7 \sigma+12\right)^{2}}=0
$$

\square Setting the derivative to zero

$$
\begin{aligned}
& \left(\sigma^{2}+7 \sigma+12\right)(2 \sigma+3)-\left(\sigma^{2}+3 \sigma+2\right)(2 \sigma+7)=0 \\
& 4 \sigma^{2}+20 \sigma+22=0 \\
& \sigma=-1.63,-3.37
\end{aligned}
$$

\square The breakaway point occurs at $s=-1.63$

Real-Axis Break-In Points

\square The poles re-join the real axis at a break-in point

- A minimum gain point
\square As gain increases, poles move apart
- Break-in angles are the same as breakaway angles

$$
\theta_{\text {break-in }}=\frac{180^{\circ}}{n}
$$

\square As for the breakaway point, the break-in point satisfies

$$
\frac{d K}{d \sigma}=\frac{d}{d \sigma}\left(-\frac{1}{G(s) H(s)}\right)=0
$$

\square In fact, this yields both breakaway and break-in points
\square For our example, we had $\sigma=-1.63,-3.37$
\square Breakaway point: $s=-1.63$
\square Break-in point: $s=-3.37$

Real-Axis Breakaway/Break-In Points

Root Locus

48

Angles of Departure/Arrival

Angles of Departure/Arrival

\square Consider the following two systems

$$
G_{1}(s)=\frac{s^{2}+0.2 s+2.26}{s^{2}+0.2 s+4.01} \quad G_{2}(s)=\frac{s^{2}+0.2 s+4.01}{s^{2}+0.2 s+2.26}
$$

Root Locus

Root Locus

\square Similar systems, with very different stability behavior

- Understanding how to determine angles of departure from complex poles and angles of arrival at complex zeros will allow us to predict this

Angle of Departure

\square To find the angle of departure from a pole, p_{1} :

- Consider a test point, s_{0}, very close to p_{1}
- The angle from p_{1} to s_{0} is ϕ_{1}
- The angle from all other poles/zeros, ϕ_{i} / ψ_{i}, to s_{0} are approximated as the angle from p_{i} or z_{i} to p_{1}
- Apply the angle criterion to find ϕ_{1}

$$
\sum_{i=1}^{m} \psi_{i}-\phi_{1}-\sum_{i=2}^{n} \phi_{i}=(2 i+1) 180^{\circ}
$$

\square Solving for the departure angle, ϕ_{1} :

$$
\phi_{1}=\sum_{i=1}^{m} \psi_{i}-\sum_{i=2}^{n} \phi_{i}-180^{\circ}
$$

\square In words:

$$
\phi_{\text {depart }}=\Sigma \angle(\text { zeros })-\Sigma \angle(\text { other poles })-180^{\circ}
$$

Angle of Departure

\square If we have complex-conjugate open-loop poles with multiplicity q, then

$$
\sum_{i=1}^{m} \psi_{i}-q \phi_{1}-\sum_{i=q+1}^{n} \phi_{i}=(2 i+1) 180^{\circ}
$$

\square The q different angles of departure from the multiple poles are

$$
\phi_{1, i}=\frac{\sum_{i=1}^{m} \psi_{i}-\sum_{i=q+1}^{n} \phi_{i}-(2 i+1) 180^{\circ}}{q}
$$

where $i=1,2, \ldots q$

Angle of Arrival

\square Following the same procedure, we can derive an expression for the angle of arrival at a complex zero of multiplicity q

$$
\psi_{1, i}=\frac{\sum_{i=1}^{n} \phi_{i}-\sum_{i=q+1}^{m} \psi_{i}+(2 i+1) 180^{\circ}}{q}
$$

\square In summary

$$
\begin{aligned}
& \phi_{\text {depart }, i}=\frac{\Sigma \angle(\text { zeros })-\Sigma \angle(\text { other poles })-(2 i+1) 180^{\circ}}{\text { multiplicity }} \\
& \psi_{\text {arrive }, i}=\frac{\Sigma \angle(\text { poles })-\Sigma \angle(\text { other zeros })+(2 i+1) 180^{\circ}}{\text { multiplicity }}
\end{aligned}
$$

Departure/Arrival Angles - Example

\square Angle of departure from p_{1}

$$
\begin{aligned}
\phi_{1} & =\sum_{i=1}^{m} \psi_{i}-\sum_{i=2}^{n} \phi_{i}-180^{\circ} \\
\phi_{1} & =\left[90^{\circ}+90^{\circ}\right]-\left[90^{\circ}+92.9^{\circ}\right]-180^{\circ} \\
\phi_{1} & =-182.9^{\circ}
\end{aligned}
$$

\square Due to symmetry:

$$
\phi_{2}=-\phi_{1}=182.9^{\circ}
$$

\square Angle of arrival at z_{1}

$$
\begin{aligned}
& \psi_{1}=\sum_{i=1}^{m} \phi_{i}-\sum_{i=2}^{n} \psi_{i}+180^{\circ} \\
& \psi_{1}=\left[-90^{\circ}+90^{\circ}+93.8^{\circ}\right]-\left[90^{\circ}\right]+180^{\circ} \\
& \psi_{1}=183.8^{\circ}, \quad \psi_{2}=-183.8^{\circ}
\end{aligned}
$$

Root Locus

Departure/Arrival Angles - Example

Root Locus

Departure/Arrival Angles - Example

\square Next, consider the other system
\square Angle of departure from p_{1}
ϕ_{1}
$=\left[-90^{\circ}+90^{\circ}\right]-\left[90^{\circ}+93.8^{\circ}\right]$
-180°
$\phi_{1}=-363.8^{\circ} \rightarrow-3.8^{\circ}$
$\phi_{2}=3.8^{\circ}$
\square Angle of arrival at z_{1}
ψ_{1}
$=\left[90^{\circ}+90^{\circ}+92.9^{\circ}\right]-\left[90^{\circ}\right]$
$+180^{\circ}$

$$
\psi_{1}=362.9^{\circ} \rightarrow 2.9^{\circ}
$$

$$
\psi_{2}=-2.9^{\circ}
$$

Departure/Arrival Angles - Example

Root Locus

57 $j \omega$-Axis Crossing Points

$j \omega$-Axis Crossing Points

\square To determine the location of a $j \omega$-axis crossing

- Apply Routh-Hurwitz
- Find value of K that results in a row of zeros
- Marginal stability
- $j \omega$-axis poles
- Roots of row preceding the zero row are $j \omega$-axis crossing points
\square Or, plot in MATLAB
- More on this later

Root Locus

59
 Sketching the Root Locus - Summary

Root Locus Sketching Procedure - Summary

1. Plot open-loop poles and zeros in the s-plane
2. Plot locus segments on the real axis to the left of an odd number of poles and/or zeros
3. For the $(n-m)$ poles going to C^{∞}, sketch asymptotes at angles $\theta_{a, i}$, centered at σ_{a}, where

$$
\begin{aligned}
& \theta_{a, i}=\frac{(2 i+1) 180^{\circ}}{n-m} \\
& \sigma_{a}=\frac{\sum_{i=1}^{n} p_{i}-\sum_{i=1}^{m} z_{i}}{n-m}
\end{aligned}
$$

Root Locus Sketching Procedure - Summary

4. Calculate departure angles from complex poles of multiplicity $q \geq 1$

$$
\phi_{i}=\frac{\Sigma \angle(\text { zeros })-\Sigma \angle(\text { other poles })-(2 i+1) 180^{\circ}}{q}
$$

and arrival angles at complex zeros of multiplicity $q \geq 1$

$$
\psi_{i}=\frac{\Sigma \angle(\text { poles })-\Sigma \angle(\text { other zeros })+(2 i+1) 180^{\circ}}{q}
$$

5. Determine real-axis breakaway/break-in points as the solutions to

$$
\frac{d}{d \sigma}\left(\frac{1}{G(\sigma) H(\sigma)}\right)=0
$$

Breakaway/break-in angles are $180^{\circ} / n$ to the real axis
6. If desired, apply Routh-Hurwitz to determine $j \omega$-axis crossings

Sketching the Root Locus - Example 1

\square Consider a satellite, controlled by a proportionalderivative (PD) controller

- A example of a double-integrator plant
- We'll learn about PD controllers in the next section
- Closed-loop transfer function

$$
T(s)=\frac{K(s+1)}{s^{2}+K s+K}
$$

\square Sketch the root locus

- Two open-loop poles at the origin
- One open-loop zero at $s=-1$

Sketching the Root Locus - Example 1

1. Plot open-loop poles and zeros

- Two poles, one zero

2. Plot real-axis segments

- To the left of the zero

3. Asymptotes to C^{∞}

- One pole goes to the finite zero
- One pole goes to ∞ at 180° along the real axis

Root Locus

Sketching the Root Locus - Example 1

4. Departure/arrival angles

- No complex poles or zeros

5. Breakaway/break-in points

- Breakaway occurs at multiple roots - at $s=0$
- Break-in point:

$$
\begin{aligned}
& \frac{d}{d s}\left(\frac{s^{2}}{(s+1)}\right)=0 \\
& \frac{(s+1) 2 s-s^{2}}{(s+1)^{2}}=0 \\
& s^{2}+2 s=0 \rightarrow s=-2,0
\end{aligned}
$$

Sketching the Root Locus - Example 2

\square Now consider the same satellite with a different controller

\square A lead compensator - more in the next section

- Closed-loop transfer function

$$
T(s)=\frac{K(s+1)}{s^{3}+12 s^{2}+K s+K}
$$

\square Sketch the root locus

Sketching the Root Locus - Example 2

1. Plot open-loop poles and zeros

Root Locus

Sketching the Root Locus - Example 2

4. Departure/arrival angles

- No complex open-loop poles or zeros

5. Breakaway/break-in points

$$
\begin{aligned}
& \frac{d}{d s}\left(\frac{s^{2}(s+12)}{(s+1)}\right)=0 \\
& \frac{(s+1)\left(3 s^{2}+24 s\right)-\left(s^{3}+12 s^{2}\right)}{(s+1)^{2}}=0 \\
& 2 s^{3}+15 s^{2}+24 s=0 \\
& s=0,-2.31,-5.19
\end{aligned}
$$

- Breakaway: $s=0, s=-5.19$

ㅁ Break-in: $s=-2.31$

Root Locus

Sketching the Root Locus - Example 3

\square Now move the controller's pole to $s=-9$

\square Closed-loop transfer function

$$
T(s)=\frac{K(s+1)}{s^{3}+9 s^{2}+K s+K}
$$

\square Sketch the root locus

Sketching the Root Locus - Example 3

1. Plot open-loop poles and zeros

- Again, three open-loop poles and one zero

2. Plot real-axis segments

- Between the zero and the pole at $s=$ -9

3. Asymptotes to C^{∞}

$$
\begin{gathered}
\theta_{a, 1}=90^{\circ} \\
\theta_{a, 2}=270^{\circ} \\
\sigma_{a}=\frac{-9-(-1)}{2}=-4
\end{gathered}
$$

4. Departure/arrival angles

- No complex open-loop poles or zeros

Root Locus

Sketching the Root Locus - Example 3

4. Breakaway/break-in points

$$
\begin{aligned}
& \frac{d}{d s}\left(\frac{s^{2}(s+9)}{(s+1)}\right)=0 \\
& \frac{(s+1)\left(3 s^{2}+18 s\right)-\left(s^{3}+9 s^{2}\right)}{(s+1)^{2}}=0 \\
& 2 s^{3}+12 s^{2}+18 s=0 \\
& s=0,-3,-3
\end{aligned}
$$

- Breakaway: $s=0, s=-3$

ㅁ Break-in: $s=-3$
\square Three poles converge/diverge at $s=$ - 3

- Breakaway angles: $0^{\circ}, 120^{\circ}, 240^{\circ}$
- Break-in angles: $60^{\circ}, 180^{\circ}, 300^{\circ}$

Root Locus

feedback.m

sys = feedback(G,H,sign)
\square G: forward-path model-tf, ss, zpk, etc.

- H: feedback-path model
- sign: -1 for neg. feedback, +1 for pos. feedback optional - default is -1
\square sys: closed-loop system model object of the same type as G and H
\square Generates a closed-loop system model from forward-path and feedback-path models
\square For unity feedback, $\mathrm{H}=1$

feedback.m

\square For example:

> T=feedback(G,H);

T=feedback(G,1);

T=feedback(G1*G2,H);

$$
[\mathrm{r}, \mathrm{~K}]=\operatorname{rlocus}(\mathrm{G}, \mathrm{~K})
$$

- G: open-loop model - tf, ss, zpk, etc.
$\square \mathrm{K}$: vector of gains at which to calculate the locus - optional MATLAB will choose gains by default
- r: vector of closed-loop pole locations
\square K: gains corresponding to pole locations in r
\square If no outputs are specified a root locus is plotted in the current (or new) figure window
- This is the most common use model, e.g.:
rlocus(G,K)

75

Generalized Root Locus

Generalized Root Locus

\square We've seen that we can plot the root locus as a function of controller gain, K
\square Can also plot the locus as a function of other parameters

- For example, open-loop pole locations
\square Consider the following system:

\square Plot the root locus as a function of pole location, α
\square Closed-loop transfer function is

$$
T(s)=\frac{\frac{1}{s(s+\alpha)}}{1+\frac{1}{s(s+\alpha)}}=\frac{1}{s^{2}+\alpha s+1}
$$

Generalized Root Locus

$$
T(s)=\frac{1}{s^{2}+\alpha s+1}
$$

\square Want the denominator to be in the root-locus form:

$$
1+\alpha G(s) H(s)
$$

\square First, isolate α in the denominator

$$
T(s)=\frac{1}{\left(s^{2}+1\right)+\alpha s}
$$

\square Next, divide through by the remaining denominator terms

$$
T(s)=\frac{\frac{1}{s^{2}+1}}{1+\alpha \frac{s}{s^{2}+1}}
$$

Generalized Root Locus

$$
T(s)=\frac{\frac{1}{s^{2}+1}}{1+\alpha \frac{s}{s^{2}+1}}
$$

\square The open-loop transfer function term in this form is

$$
G(s) H(s)=\frac{s}{s^{2}+1}
$$

\square Sketch the root locus:

1. Plot poles and zeros
\square A zero at the origin and poles at $s= \pm j$
2. Plot real-axis segments

- Entire negative real axis is left of a single zero

Generalized Root Locus

3. Asymptote to C^{∞}

Root Locus

- Single asymptote along negative real axis

4. Departure angles

$$
\begin{aligned}
& \phi_{1}=90^{\circ}-90^{\circ}-180^{\circ} \\
& \phi_{1}=-180^{\circ}=-\phi_{2}
\end{aligned}
$$

5. Break-in point

$$
\begin{aligned}
& \frac{d}{d \sigma}\left(\frac{1}{G(\sigma) H(\sigma)}\right)=\frac{d}{d \sigma}\left(\frac{\sigma^{2}+1}{\sigma}\right)=0 \\
& \frac{\sigma(2 \sigma)-\left(\sigma^{2}+1\right)}{\sigma^{2}}=0 \\
& \sigma^{2}-1=0 \rightarrow \sigma=+1,-1
\end{aligned}
$$

$\square s=+1$ is not on the locus
\square Break-in point: $s=-1$

Design via Gain Adjustment

Design via Gain Adjustment

\square Root locus provides a graphical representation of closed-loop pole locations vs. gain
\square We have known relationships (some approx.) between pole locations and transient response

- These apply to $\mathbf{2}^{\text {nd }}$-order systems with no zeros
\square Often, we don't have a $2^{\text {nd }}$-order system with no zeros
- Would still like a link between pole locations and transient response
\square Can sometimes approximate higher-order systems as $2^{\text {nd }}$-order
\square Valid only under certain conditions
- Always verify response through simulation

Second-Order Approximation

\square A higher-order system with a pair of second-order poles can reasonably be approximated as second-order if:

1) Any higher-order closed-loop poles are either:
a) at much higher frequency ($>\sim 5 \times$) than the dominant $2^{\text {nd }}-$ order pair of poles, or
b) nearly canceled by closed-loop zeros
2) Closed-loop zeros are either:
a) at much higher frequency ($>\sim 5 \times$) than the dominant $2^{\text {nd }}-$ order pair of poles, or
b) nearly canceled by closed-loop poles

Design via Gain Adjustment - Example

\square Determine K for 10% overshoot
\square Assuming a $2^{\text {nd }}-$ order approximation applies:

$$
\zeta=\frac{-\ln (O S)}{\sqrt{\pi^{2}+\ln ^{2}(O S)}}=0.59
$$

\square Next, plot root locus in MATLAB
\square Find gain corresponding to $2^{\text {nd }}-$ order poles with $\zeta=0.59$

- If possible - often it is not
\square Determine if a $\mathbf{2}^{\text {nd }}$-order approximation is justified
\square Verify transient response through simulation

Design via Gain Adjustment - Example

\square Root locus shows that a pair of closed-loop poles with $\zeta=0.59$ exist for $K=5.23$:

$$
s_{1,2}=-1.25 \pm j 1.71
$$

\square Where is the third closed-loop pole?

Root Locus

Design via Gain Adjustment - Example

\square Third pole is at

$$
s=-3.5
$$

- Not high enough in frequency for its effect to be negligible
\square But, it is in close proximity to a closedloop zero
\square Is a $2^{\text {nd }}$-order approximation justified?
\square Simulate

Root Locus

Design via Gain Adjustment - Example

\square Step response compared to a true $2^{\text {nd- }}$ order system

- No third pole, no zero
\square Very similar response
- 11.14\% overshoot
$\square 2^{\text {nd }}-$ order approximation is valid
\square Slight reduction in gain would yield 10% overshoot

Design via Gain Adjustment - Example

\square Step response compared to systems with:

- No zero
- No third pole
\square Quite different responses
\square Partial pole/zero cancellation makes $2^{\text {nd }}$ order approximation valid, in this example

When Gain Adjustment Fails

\square Root loci do not go through every point in the s-plane

- Can't always satisfy a single performance specification, e.g. overshoot or settling time
\square Can satisfy two specifications, e.g. overshoot and settling time, even less often
\square Also, gain adjustment affects steady-state error performance
- In general, cannot simultaneously satisfy dynamic requirements and error requirements
\square In those cases, we must add dynamics to the controller
- A compensator

