
ESE 430 – Feedback Control Systems

SECTION 5: 
ROOT-LOCUS ANALYSIS
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Introduction

 Consider a general feedback system:

 Closed-loop transfer function is

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐾𝐾 𝑠𝑠

1 + 𝐾𝐾𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠

 𝐾𝐾 𝑠𝑠 is the forward-path transfer function
 May include controller and plant

 𝐻𝐻 𝑠𝑠 is the feedback-path transfer function
 Each are, in general, rational polynomials in 𝑠𝑠

𝐾𝐾 𝑠𝑠 = 𝑁𝑁𝐺𝐺 𝑠𝑠
𝐷𝐷𝐺𝐺 𝑠𝑠

and    𝐻𝐻 𝑠𝑠 = 𝑁𝑁𝐻𝐻 𝑠𝑠
𝐷𝐷𝐻𝐻 𝑠𝑠
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Introduction

 So, the closed-loop transfer function is

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠
𝐷𝐷𝐺𝐺 𝑠𝑠

1 + 𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠
𝐷𝐷𝐺𝐺 𝑠𝑠

𝑁𝑁𝐻𝐻 𝑠𝑠
𝐷𝐷𝐻𝐻 𝑠𝑠

=
𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠 𝐷𝐷𝐻𝐻 𝑠𝑠

𝐷𝐷𝐺𝐺 𝑠𝑠 𝐷𝐷𝐻𝐻 𝑠𝑠 + 𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠 𝑁𝑁𝐻𝐻 𝑠𝑠

 Closed-loop zeros:
 Zeros of 𝐾𝐾 𝑠𝑠
 Poles of 𝐻𝐻 𝑠𝑠

 Closed-loop poles:
 A function of gain, 𝐾𝐾
 Consistent with what we’ve already seen – feedback moves 

poles
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Closed-Loop Poles vs. Gain

 How do closed-loop poles vary as 
a function of 𝐾𝐾?
 Plot for 𝐾𝐾 = 0, 0.5, 1, 2, 5, 10, 20

 Trajectory of closed-loop poles vs. 
gain (or some other parameter): 
root locus

 Graphical tool to help determine 
the controller gain that will put 
poles where we want them

 We’ll learn techniques for 
sketching this locus by hand
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Root Locus

 An example of the type of root locus we’ll learn to 
sketch by hand, as well as plot in MATLAB:



K. Webb ESE 430

Evaluation of Complex Functions7
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Vector Interpretation of Complex Functions

 Consider a function of a complex variable 𝑠𝑠

𝐾𝐾 𝑠𝑠 =
𝑠𝑠 − 𝑧𝑧1 𝑠𝑠 − 𝑧𝑧2 ⋯
𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯

where 𝑧𝑧𝑖𝑖 are the zeros of the function, and 𝑝𝑝𝑖𝑖 are 
the poles of the function

 We can write the function as

𝐾𝐾 𝑠𝑠 =
∏𝑖𝑖=1
𝑚𝑚 𝑠𝑠 − 𝑧𝑧𝑖𝑖

∏𝑖𝑖=1
𝑛𝑛 𝑠𝑠 − 𝑝𝑝𝑖𝑖

where 𝑚𝑚 is the # of zeros, and 𝑛𝑛 is the # of poles
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Vector Interpretation of Complex Functions

 At any value of 𝑠𝑠, i.e. any point in the complex plane, 𝐾𝐾 𝑠𝑠
evaluates to a complex number 
 Another point in the complex plane with magnitude and phase

𝐾𝐾 𝑠𝑠 = 𝑀𝑀𝑀𝑀𝑀
where

𝑀𝑀 = 𝐾𝐾 𝑠𝑠 =
∏𝑖𝑖=1
𝑚𝑚 𝑠𝑠 − 𝑧𝑧𝑖𝑖

∏𝑖𝑖=1
𝑛𝑛 𝑠𝑠 − 𝑝𝑝𝑖𝑖

and
𝑀𝑀 = 𝑀 �

𝑖𝑖=1

𝑚𝑚
𝑠𝑠 − 𝑧𝑧𝑖𝑖 − 𝑀 �

𝑖𝑖=1

𝑛𝑛
𝑠𝑠 − 𝑝𝑝𝑖𝑖

𝑀𝑀 = �
𝑖𝑖=1

𝑚𝑚
𝑀 𝑠𝑠 − 𝑧𝑧𝑖𝑖 −�

𝑖𝑖=1

𝑛𝑛
𝑀 𝑠𝑠 − 𝑝𝑝𝑖𝑖
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Vector Interpretation of Complex Functions

 Each term 𝑠𝑠 − 𝑧𝑧𝑖𝑖 represents a vector from 𝑧𝑧𝑖𝑖 to the 
point, 𝑠𝑠, at which we’re evaluating 𝐾𝐾 𝑠𝑠

 Each 𝑠𝑠 − 𝑝𝑝𝑖𝑖 represents a vector from 𝑝𝑝𝑖𝑖 to 𝑠𝑠
 For example:

𝐾𝐾 𝑠𝑠 =
𝑠𝑠 + 3

𝑠𝑠 + 4 𝑠𝑠2 + 2𝑠𝑠 + 5
 Zero at:  𝑠𝑠 = −3
 Poles at:  𝑠𝑠1,2 = −1 ± 𝑗𝑗2 and  𝑠𝑠3 = −4

 Evaluate 𝐾𝐾 𝑠𝑠 at 𝑠𝑠 = −2 + 𝑗𝑗

𝐾𝐾 𝑠𝑠 �
𝑠𝑠=−2+𝑗𝑗
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Vector Interpretation of Complex Functions

 First, evaluate the magnitude

𝐾𝐾 𝑠𝑠 =
𝑠𝑠 − 𝑧𝑧1

𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 𝑠𝑠 − 𝑝𝑝3
𝑠𝑠 − 𝑧𝑧1 = 1 + 𝑗𝑗 = 2
𝑠𝑠 − 𝑝𝑝1 = −1 − 𝑗𝑗 = 2
𝑠𝑠 − 𝑝𝑝2 = −1 + 𝑗𝑗3 = 10
𝑠𝑠 − 𝑝𝑝3 = 2 + 𝑗𝑗 = 5

 The resulting magnitude:

𝐾𝐾 𝑠𝑠 =
2

2 10 5
=

2
10

𝐾𝐾 𝑠𝑠 = 0.1414

𝐾𝐾 𝑠𝑠 = 𝐾𝐾 𝑠𝑠 𝑀𝐾𝐾 𝑠𝑠
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Vector Interpretation of Complex Functions

 Next, evaluate the angle
𝑀𝐾𝐾 𝑠𝑠 = 𝑀 𝑠𝑠 − 𝑧𝑧1 − 𝑀 𝑠𝑠 − 𝑝𝑝1

−𝑀 𝑠𝑠 − 𝑝𝑝2 − 𝑀 𝑠𝑠 − 𝑝𝑝3
𝑀 𝑠𝑠 − 𝑧𝑧1 = 𝑀 1 + 𝑗𝑗 = 45°

𝑀 𝑠𝑠 − 𝑝𝑝1 = 𝑀 −1 − 𝑗𝑗 = −135°

𝑀 𝑠𝑠 − 𝑝𝑝2 = 𝑀 −1 + 𝑗𝑗3 = 108.4°

𝑀 𝑠𝑠 − 𝑝𝑝3 = 𝑀 2 + 𝑗𝑗 = 26.6°

 The result:

𝐾𝐾 𝑠𝑠 �
𝑠𝑠=−2+𝑗𝑗

= 0.1414𝑀45°

𝐾𝐾 𝑠𝑠 = 𝐾𝐾 𝑠𝑠 𝑀𝐾𝐾 𝑠𝑠
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Finite vs. Infinite Poles and Zeros

 Consider the following transfer function

𝐾𝐾 𝑠𝑠 =
𝑠𝑠 + 8

𝑠𝑠 𝑠𝑠 + 3 𝑠𝑠 + 10
 One finite zero:  𝑠𝑠 = −8
 Three finite poles:  𝑠𝑠 = 0, 𝑠𝑠 = −3, and 𝑠𝑠 = −10

 But, as 𝑠𝑠 → ∞
lim
𝑠𝑠→∞

𝐾𝐾 𝑠𝑠 =
∞
∞3 = 0

 This implies there must be a zero at 𝑠𝑠 = ∞

 All functions have an equal number of poles and zeros
 If 𝐾𝐾 𝑠𝑠 has 𝑛𝑛 poles and 𝑚𝑚 zeros, where 𝑛𝑛 ≥ 𝑚𝑚, then 𝐾𝐾 𝑠𝑠 has 

𝑛𝑛 −𝑚𝑚 zeros at 𝑠𝑠 = 𝐶𝐶∞

 𝐶𝐶∞ is an infinite complex number – infinite magnitude and some angle
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The Root Locus14
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Root Locus – Definition 

 Consider a general feedback system:

 Closed-loop transfer function is

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐾𝐾 𝑠𝑠

1 + 𝐾𝐾𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠

 Closed-loop poles are roots of
1 + 𝐾𝐾𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠

 That is, the solutions to
1 + 𝐾𝐾𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 0

 Or, the values of 𝑠𝑠 for which

𝐾𝐾𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠 = −1 (1)
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Root Locus – Definition 

 Because 𝐾𝐾 𝑠𝑠 and 𝐻𝐻 𝑠𝑠 are complex functions, (1) is really two 
equations:

𝑀𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 2𝑖𝑖 + 1 180°

that is, the angle is an odd multiple of 180°, and
𝐾𝐾𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 1

 So, if a certain value of 𝑠𝑠 satisfies the angle criterion 

𝑀𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 2𝑖𝑖 + 1 180°

then that value of 𝑠𝑠 is a closed-loop pole for some value of 𝐾𝐾

 And, that value of 𝐾𝐾 is given by the magnitude criterion

𝐾𝐾 =
1

𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Root Locus – Definition 

 The root locus is the set of all points in the s-plane 
that satisfy the angle criterion

𝑀𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 2𝑖𝑖 + 1 180°

 The set of all closed-loop poles for 0 ≤ 𝐾𝐾 ≤ ∞

 We’ll use the angle criterion to sketch the root locus
 We will derive rules for sketching the root locus
 Not necessary to test all possible s-plane points
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Angle Criterion – Example 

 Determine if 𝑠𝑠1 = −3 + 𝑗𝑗2 is on this system’s root locus

 𝑠𝑠1 is on the root locus if it satisfies the angle criterion
𝑀𝐾𝐾 𝑠𝑠1 = 2𝑖𝑖 + 1 180°

 From the pole/zero diagram
𝑀𝐾𝐾 𝑠𝑠1 = − 135° + 90°
𝑀𝐾𝐾 𝑠𝑠1 = −225° ≠ 2𝑖𝑖 + 1 180°

 𝑠𝑠1 does not satisfy the angle 
criterion
 It is not on the root locus
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Angle Criterion – Example 

 Is 𝑠𝑠2 = −2 + 𝑗𝑗 on the root locus?
 Now we have

𝑀𝐾𝐾 𝑠𝑠2 = − 135° + 45° = −180°

 𝑠𝑠2 is on the root locus

 What gain results in a closed-loop pole at 𝑠𝑠2?
 Use the magnitude criterion to determine 𝐾𝐾

𝐾𝐾 =
1

𝐾𝐾 𝑠𝑠2
= 𝑠𝑠2 + 1 𝑠𝑠2 + 3 = 2 ⋅ 2 = 2

 𝐾𝐾 = 2 yields a closed-loop pole at 𝑠𝑠2 = −2 + 𝑗𝑗
 And at its complex conjugate, �̅�𝑠2 = −2 − 𝑗𝑗
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Root Locus – Real-axis segments20
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Real-Axis Root-Locus Segments

 We’ll first consider points on the real axis, and whether or 
not they are on the root locus

 Consider a system with the following open-loop poles
 Is 𝑠𝑠1 on the root locus? I.e., does it satisfy the angle criterion?

 Angle contributions from 
complex poles cancel

 Pole to the right of 𝑠𝑠1:
−𝑀 𝑠𝑠1 − 𝑝𝑝1 = −180°

 All poles/zeros to the left
of 𝑠𝑠1:

−𝑀 𝑠𝑠1 − 𝑝𝑝2 = −𝑀 𝑠𝑠1 − 𝑝𝑝3 = 𝑀 𝑠𝑠1 − 𝑧𝑧1 = 0°

 𝑠𝑠1 satisfies the angle criterion, 𝑀𝐾𝐾 𝑠𝑠1 = −180°, so it is
on the root locus
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Real-Axis Root-Locus Segments

 Now, determine if point 𝑠𝑠2 is on the root locus
 Again angles from complex poles 

cancel
 Always true for real-axis points

 Pole and zero to the left of 𝑠𝑠2
contribute 0°
 Always true for real-axis points

 Two poles to the right of 𝑠𝑠1: 
−𝑀 𝑠𝑠2 − 𝑝𝑝1 − 𝑀 𝑠𝑠2 − 𝑝𝑝2 = −360°

 Angle criterion is not satisfied
𝑀𝐾𝐾 𝑠𝑠2 = −360° ≠ 2𝑖𝑖 + 1 180°

 𝑠𝑠2 is not on the root locus
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Real-Axis Root-Locus Segments

 From the preceding development, we can conclude the 
following concerning real-axis segments of the root 
locus:

All points on the real axis to the left of an odd
number of open-loop poles and/or zeros are
on the root locus
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Root Locus – Non-Real-Axis Segments24
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Non-Real-Axis Root-Locus Segments

 Transfer functions of physically-realizable systems 
are rational polynomials with real-valued
coefficients
 Complex poles/zeros come in complex-conjugate pairs

 Root locus is a plot of closed loop poles as 𝐾𝐾 varies 
from 0 → ∞

 Where does the locus start? Where does it end?

Root locus is symmetric about the real axis
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Non-Real-Axis Root-Locus Segments

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝐾𝐾 𝑠𝑠

1 + 𝐾𝐾𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠

 We’ve seen that we can represent this closed-loop 
transfer function as

𝑇𝑇 𝑠𝑠 =
𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠 𝐷𝐷𝐻𝐻 𝑠𝑠

𝐷𝐷𝐺𝐺 𝑠𝑠 𝐷𝐷𝐻𝐻 𝑠𝑠 + 𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠 𝑁𝑁𝐻𝐻 𝑠𝑠

 The closed-loop poles are the roots of the closed-loop 
characteristic polynomial

Δ 𝑠𝑠 = 𝐷𝐷𝐺𝐺 𝑠𝑠 𝐷𝐷𝐻𝐻 𝑠𝑠 + 𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠 𝑁𝑁𝐻𝐻 𝑠𝑠
 As 𝐾𝐾 → 0

Δ 𝑠𝑠 → 𝐷𝐷𝐺𝐺 𝑠𝑠 𝐷𝐷𝐻𝐻 𝑠𝑠

 Closed-loop poles approach the open-loop poles
 Root locus starts at the open-loop poles for 𝐾𝐾 = 0
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Non-Real-Axis Root-Locus Segments

 As 𝐾𝐾 → ∞
Δ 𝑠𝑠 → 𝐾𝐾𝑁𝑁𝐺𝐺 𝑠𝑠 𝑁𝑁𝐻𝐻 𝑠𝑠

 So, as 𝐾𝐾 → ∞, the closed-loop poles approach the open-
loop zeros
 Root locus ends at the open-loop zeros for 𝐾𝐾 = ∞
 Including the 𝑛𝑛 − 𝑚𝑚 zeros at 𝐶𝐶∞

 Previous example:
 𝑛𝑛 = 5 poles, 𝑚𝑚 = 1 zero
 One pole goes to the finite zero
 Remaining poles go to the 𝑛𝑛 − 𝑚𝑚 = 4 zeros at 𝐶𝐶∞
 Where are those zeros? (what angles?)
 How do the poles get there as 𝐾𝐾 → ∞?
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Non-Real-Axis Root-Locus Segments

 As 𝐾𝐾 → ∞, 𝑚𝑚 of the 𝑛𝑛 poles approach the 𝑚𝑚 finite zeros
 The remaining 𝑛𝑛 −𝑚𝑚 poles are at 𝐶𝐶∞

 Looking back from 𝐶𝐶∞, it appears that these 𝑛𝑛 −𝑚𝑚
poles all came from the same point on the real axis, 𝜎𝜎𝑎𝑎

 Considering only these 𝑛𝑛 −𝑚𝑚 poles, the 
corresponding root locus equation is

𝐾𝐾𝑎𝑎 = 1 + 𝐾𝐾
1

𝑠𝑠 − 𝜎𝜎𝑎𝑎 𝑛𝑛−𝑚𝑚 = 0

 These poles travel from 𝜎𝜎𝑎𝑎 (approximately) to 𝐶𝐶∞ along 
𝑛𝑛 −𝑚𝑚 asymptotes at angles of 𝑀𝑀𝑎𝑎,𝑖𝑖
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Root Locus – Asymptote Angles29
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Asymptote Angles – 𝑀𝑀𝑎𝑎,𝑖𝑖

 To determine the angles of the 𝑛𝑛 −𝑚𝑚 asymptotes, 
consider a point, 𝑠𝑠1, very far from 𝜎𝜎𝑎𝑎

 If 𝑠𝑠1 is on the root locus, then
𝑀𝐾𝐾𝑎𝑎 𝑠𝑠1 = 2𝑖𝑖 + 1 180°

 That is, the 𝑛𝑛 −𝑚𝑚 angles from 𝜎𝜎𝑎𝑎 to 𝑠𝑠1 sum to an odd 
multiple of 180°

𝑛𝑛 −𝑚𝑚 𝑀𝑀𝑎𝑎,𝑖𝑖 = 2𝑖𝑖 + 1 180°

 Therefore, the angles of the asymptotes are

𝑀𝑀𝑎𝑎,𝑖𝑖 =
2𝑖𝑖 + 1 180°
𝑛𝑛 −𝑚𝑚
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Asymptote Angles – 𝑀𝑀𝑎𝑎,𝑖𝑖

 For example
 𝑛𝑛 = 5 poles and 𝑚𝑚 = 3 zeros
 𝑛𝑛 −𝑚𝑚 = 2 poles go to 𝐶𝐶∞ as 𝐾𝐾 → ∞
 Poles approach 𝐶𝐶∞ along asymptotes at angles of

𝑀𝑀𝑎𝑎,0 =
2 ⋅ 0 + 1 180°

5 − 3
=

180°
2

= 90°

𝑀𝑀𝑎𝑎,1 =
540°

2
= 270°

 If 𝑛𝑛 −𝑚𝑚 = 3
𝑀𝑀𝑎𝑎,0 = 180°

3
= 60°,     𝑀𝑀𝑎𝑎,1 = 540°

3
= 180°,      𝑀𝑀𝑎𝑎,2 = 900°

3
= 300°
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Root Locus – Asymptote Origin32
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Asymptote Origin

 The 𝑛𝑛 −𝑚𝑚 asymptotes come from a point, 𝜎𝜎𝑎𝑎, on the real axis -
where is 𝜎𝜎𝑎𝑎 located?

 The root locus equation can be written

1 + 𝐾𝐾
𝑏𝑏 𝑠𝑠
𝑎𝑎 𝑠𝑠 = 0

where
𝑏𝑏 𝑠𝑠 = 𝑠𝑠𝑚𝑚 + 𝑏𝑏1𝑠𝑠𝑚𝑚−1 + ⋯+ 𝑏𝑏𝑚𝑚
𝑎𝑎 𝑠𝑠 = 𝑠𝑠𝑛𝑛 + 𝑎𝑎1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛

 According to a property of monic polynomials:
𝑎𝑎1 = −Σ 𝑝𝑝𝑖𝑖
𝑏𝑏1 = −Σ 𝑧𝑧𝑖𝑖

where 𝑝𝑝𝑖𝑖 are the open-loop poles, and 𝑧𝑧𝑖𝑖 are the open-loop zeros
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Asymptote Origin

 The closed-loop characteristic polynomial is
𝑠𝑠𝑛𝑛 + 𝑎𝑎1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛 + 𝐾𝐾 𝑠𝑠𝑚𝑚 + 𝑏𝑏1𝑠𝑠𝑚𝑚−1 + ⋯+ 𝑏𝑏𝑚𝑚

 If 𝑚𝑚 < 𝑛𝑛 − 1 , i.e. at least two more poles than zeros, then
𝑎𝑎1 = −Σ 𝑟𝑟𝑖𝑖

where 𝑟𝑟𝑖𝑖 are the closed-loop poles
 The sum of the closed-loop poles is:

 Independent of 𝐾𝐾
 Equal to the sum of the open-loop poles

−Σ 𝑝𝑝𝑖𝑖 = −Σ 𝑟𝑟𝑖𝑖 = 𝑎𝑎1
 The equivalent open-loop location for the 𝑛𝑛 −𝑚𝑚 poles going to 

infinity is 𝜎𝜎𝑎𝑎
 These poles, similarly, have a constant sum:

𝑛𝑛 −𝑚𝑚 𝜎𝜎𝑎𝑎
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Asymptote Origin

 As 𝐾𝐾 → ∞, 𝑚𝑚 of the closed-loop poles go to the open 
loop zeros
 Their sum is the sum of the open-loop zeros

 The remainder of the poles go to 𝐶𝐶∞
 Their sum is 𝑛𝑛 −𝑚𝑚 𝜎𝜎𝑎𝑎

 The sum of all closed-loop poles is equal to the sum of 
the open-loop poles

Σ 𝑟𝑟𝑖𝑖 = Σ 𝑧𝑧𝑖𝑖 + 𝑛𝑛 −𝑚𝑚 𝜎𝜎𝑎𝑎 = Σ 𝑝𝑝𝑖𝑖
 The origin of the asymptotes is

𝜎𝜎𝑎𝑎 =
Σ 𝑝𝑝𝑖𝑖 − Σ 𝑧𝑧𝑖𝑖
𝑛𝑛 − 𝑚𝑚
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Root Locus Asymptotes – Example 

 Consider the following system

 𝑚𝑚 = 1 open-loop zero and 𝑛𝑛 = 5 open-loop poles
 As 𝐾𝐾 → ∞:

 One pole approaches the open-loop zero
 Four poles go to 𝐶𝐶∞ along asymptotes at angles of:

𝑀𝑀𝑎𝑎,0 = 180°
4

= 45°,        𝑀𝑀𝑎𝑎,1 = 540°
4

= 135°

𝑀𝑀𝑎𝑎,2 = 900°
4

= 225°,      𝑀𝑀𝑎𝑎,3 = 1260°
4

= 315°
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Root Locus Asymptotes – Example 

 The origin of the asymptotes is

𝜎𝜎𝑎𝑎 =
Σ 𝑝𝑝𝑖𝑖 − Σ 𝑧𝑧𝑖𝑖
𝑛𝑛 − 𝑚𝑚

𝜎𝜎𝑎𝑎 =
−1 + −4 + −5 + −2 + 𝑗𝑗 + −2 − 𝑗𝑗 − −3

5 − 1

𝜎𝜎𝑎𝑎 =
−14 + 3

4
= −2.75

 As 𝐾𝐾 → ∞, four poles approach 𝐶𝐶∞ along four 
asymptotes emanating from 𝑠𝑠 = −2.75 at angles of 
45°, 135°, 225°, and 315°
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Root Locus Asymptotes – Example 
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Refining the Root Locus39
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Refining the Root Locus

 So far we’ve learned how to accurately sketch:
 Real-axis root locus segments
 Root locus segments heading toward 𝐶𝐶∞, but only far from 𝜎𝜎𝑎𝑎

 Root locus from previous 
example illustrates 
additional characteristics 
we must address:
 Real-axis 

breakaway/break-in 
points

 Angles of 
departure/arrival at 
complex poles/zeros

 𝑗𝑗𝑗𝑗-axis crossing locations
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Real-Axis Breakaway/Break-In Points41
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Real-Axis Breakaway/Break-In Points

 Consider the following system and its root locus

 Two finite poles approach 
two finite zeros as 𝐾𝐾 → ∞
 Where do they leave the 

real axis?
 Breakaway point

 Where do they re-join the 
real axis?
 Break-in point
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Real-Axis Breakaway Points

 Breakaway point occurs somewhere 
between 𝑠𝑠 = −1 and 𝑠𝑠 = −2
 Breakaway angle: 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
180°
𝑛𝑛

where 𝑛𝑛 is the number of poles that 
come together – here, ±90°

 As gain increases, poles come together 
then leave the real axis

 Along the real-axis segment, maximum gain occurs at the breakaway 
point

 To calculate the breakaway point:
 Determine an expression for gain, 𝐾𝐾, as a function of 𝑠𝑠
 Differentiate w.r.t. 𝑠𝑠
 Find 𝑠𝑠 for 𝑑𝑑𝐾𝐾/𝑑𝑑𝑠𝑠 = 0 to locate the maximum gain point
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Real-Axis Breakaway Points

 All points on the root locus satisfy

𝐾𝐾 = −
1

𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠

 On the segment containing the breakaway point, 𝑠𝑠 = 𝜎𝜎, 
so

𝐾𝐾 = −
1

𝐾𝐾 𝜎𝜎 𝐻𝐻 𝜎𝜎

 The breakaway point is a maximum gain point, so
𝑑𝑑𝐾𝐾
𝑑𝑑𝜎𝜎

=
𝑑𝑑
𝑑𝑑𝜎𝜎

−
1

𝐾𝐾 𝜎𝜎 𝐻𝐻 𝜎𝜎
= 0

 Solving for 𝜎𝜎 yields the breakaway point
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Real-Axis Breakaway Points

 For our example, along the real axis

𝐾𝐾 = −
1

𝐾𝐾 𝜎𝜎
= −

𝜎𝜎 + 1 𝜎𝜎 + 2
𝜎𝜎 + 3 𝜎𝜎 + 4

= −
𝜎𝜎2 + 3𝜎𝜎 + 2
𝜎𝜎2 + 7𝜎𝜎 + 12

 Differentiating w.r.t. 𝜎𝜎
𝑑𝑑𝐾𝐾
𝑑𝑑𝜎𝜎

= −
𝜎𝜎2 + 7𝜎𝜎 + 12 2𝜎𝜎 + 3 − 𝜎𝜎2 + 3𝜎𝜎 + 2 2𝜎𝜎 + 7

𝜎𝜎2 + 7𝜎𝜎 + 12 2 = 0

 Setting the derivative to zero
𝜎𝜎2 + 7𝜎𝜎 + 12 2𝜎𝜎 + 3 − 𝜎𝜎2 + 3𝜎𝜎 + 2 2𝜎𝜎 + 7 = 0

4𝜎𝜎2 + 20𝜎𝜎 + 22 = 0
𝜎𝜎 = −1.63,−3.37

 The breakaway point occurs at 𝑠𝑠 = −1.63
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Real-Axis Break-In Points

 The poles re-join the real axis at a break-in point
 A minimum gain point
 As gain increases, poles move apart
 Break-in angles are the same as breakaway angles

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏−𝑖𝑖𝑛𝑛 =
180°
𝑛𝑛

 As for the breakaway point, the break-in point satisfies 
𝑑𝑑𝐾𝐾
𝑑𝑑𝜎𝜎

=
𝑑𝑑
𝑑𝑑𝜎𝜎

−
1

𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠
= 0

 In fact, this yields both breakaway and break-in points
 For our example, we had 𝜎𝜎 = −1.63, −3.37

 Breakaway point: 𝑠𝑠 = −1.63
 Break-in point: 𝑠𝑠 = −3.37
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Real-Axis Breakaway/Break-In Points

𝑠𝑠 = −1.63𝑠𝑠 = −3.37
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Angles of Departure/Arrival48
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Angles of Departure/Arrival

 Consider the following two systems

𝐾𝐾1 𝑠𝑠 = 𝑠𝑠2+0.2𝑠𝑠+2.26
𝑠𝑠2+0.2𝑠𝑠+4.01

𝐾𝐾2 𝑠𝑠 = 𝑠𝑠2+0.2𝑠𝑠+4.01
𝑠𝑠2+0.2𝑠𝑠+2.26

 Similar systems, with very different stability behavior
 Understanding how to determine angles of departure from complex 

poles and angles of arrival at complex zeros will allow us to predict this
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Angle of Departure

 To find the angle of departure from a pole, 𝑝𝑝1:
 Consider a test point, 𝑠𝑠0, very close to 𝑝𝑝1
 The angle from 𝑝𝑝1 to 𝑠𝑠0 is 𝜙𝜙1
 The angle from all other poles/zeros, 𝜙𝜙𝑖𝑖/𝜓𝜓𝑖𝑖, to 𝑠𝑠0 are approximated as the angle 

from 𝑝𝑝𝑖𝑖 or 𝑧𝑧𝑖𝑖 to 𝑝𝑝1
 Apply the angle criterion to find 𝜙𝜙1

�
𝑖𝑖=1

𝑚𝑚
𝜓𝜓𝑖𝑖 − 𝜙𝜙1 −�

𝑖𝑖=2

𝑛𝑛
𝜙𝜙𝑖𝑖 = 2𝑖𝑖 + 1 180°

 Solving for the departure angle, 𝜙𝜙1:

𝜙𝜙1 = �
𝑖𝑖=1

𝑚𝑚
𝜓𝜓𝑖𝑖 −�

𝑖𝑖=2

𝑛𝑛
𝜙𝜙𝑖𝑖 − 180°

 In words:

𝜙𝜙𝑑𝑑𝑏𝑏𝑑𝑑𝑎𝑎𝑏𝑏𝑑𝑑 = Σ𝑀 𝑧𝑧𝑧𝑧𝑟𝑟𝑧𝑧𝑠𝑠 − Σ𝑀 𝑧𝑧𝑜𝑜𝑜𝑧𝑧𝑟𝑟 𝑝𝑝𝑧𝑧𝑝𝑝𝑧𝑧𝑠𝑠 − 180°
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Angle of Departure

 If we have complex-conjugate open-loop poles with 
multiplicity 𝑞𝑞, then

�
𝑖𝑖=1

𝑚𝑚
𝜓𝜓𝑖𝑖 − 𝑞𝑞𝜙𝜙1 −�

𝑖𝑖=𝑞𝑞+1

𝑛𝑛
𝜙𝜙𝑖𝑖 = 2𝑖𝑖 + 1 180°

 The 𝑞𝑞 different angles of departure from the 
multiple poles are

𝜙𝜙1,𝑖𝑖 =
∑𝑖𝑖=1𝑚𝑚 𝜓𝜓𝑖𝑖 − ∑𝑖𝑖=𝑞𝑞+1𝑛𝑛 𝜙𝜙𝑖𝑖 − 2𝑖𝑖 + 1 180°

𝑞𝑞

where 𝑖𝑖 = 1, 2, … 𝑞𝑞
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Angle of Arrival

 Following the same procedure, we can derive an 
expression for the angle of arrival at a complex zero 
of multiplicity 𝑞𝑞

𝜓𝜓1,𝑖𝑖 =
∑𝑖𝑖=1𝑛𝑛 𝜙𝜙𝑖𝑖 − ∑𝑖𝑖=𝑞𝑞+1𝑚𝑚 𝜓𝜓𝑖𝑖 + 2𝑖𝑖 + 1 180°

𝑞𝑞

 In summary

𝜙𝜙𝑑𝑑𝑏𝑏𝑑𝑑𝑎𝑎𝑏𝑏𝑑𝑑,𝑖𝑖 =
Σ𝑀 𝑧𝑧𝑧𝑧𝑟𝑟𝑧𝑧𝑠𝑠 − Σ𝑀 𝑧𝑧𝑜𝑜𝑜𝑧𝑧𝑟𝑟 𝑝𝑝𝑧𝑧𝑝𝑝𝑧𝑧𝑠𝑠 − 2𝑖𝑖 + 1 180°

𝑚𝑚𝑚𝑚𝑝𝑝𝑜𝑜𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜𝑚𝑚

𝜓𝜓𝑎𝑎𝑏𝑏𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏,𝑖𝑖 =
Σ𝑀 𝑝𝑝𝑧𝑧𝑝𝑝𝑧𝑧𝑠𝑠 − Σ𝑀 𝑧𝑧𝑜𝑜𝑜𝑧𝑧𝑟𝑟 𝑧𝑧𝑧𝑧𝑟𝑟𝑧𝑧𝑠𝑠 + 2𝑖𝑖 + 1 180°

𝑚𝑚𝑚𝑚𝑝𝑝𝑜𝑜𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜𝑚𝑚
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𝑝𝑝1

𝑧𝑧1

𝑝𝑝2

𝑧𝑧2

𝑝𝑝3
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Departure/Arrival Angles – Example 

 Angle of departure from 𝑝𝑝1

𝜙𝜙1 = �
𝑖𝑖=1

𝑚𝑚
𝜓𝜓𝑖𝑖 −�

𝑖𝑖=2

𝑛𝑛
𝜙𝜙𝑖𝑖 − 180°

𝜙𝜙1 = 90° + 90° − 90° + 92.9° − 180°

𝜙𝜙1 = −182.9°

 Due to symmetry:
𝜙𝜙2 = −𝜙𝜙1 = 182.9°

 Angle of arrival at 𝑧𝑧1

𝜓𝜓1 = �
𝑖𝑖=1

𝑚𝑚
𝜙𝜙𝑖𝑖 −�

𝑖𝑖=2

𝑛𝑛
𝜓𝜓𝑖𝑖 + 180°

𝜓𝜓1 = −90° + 90° + 93.8° − 90° + 180°

𝜓𝜓1 = 183.8°, 𝜓𝜓2 = −183.8°
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Departure/Arrival Angles – Example 
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𝑧𝑧1

𝑝𝑝1

𝑧𝑧2

𝑝𝑝2

𝑝𝑝3
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Departure/Arrival Angles – Example 

 Next, consider the other system
 Angle of departure from 𝑝𝑝1

𝜙𝜙1
= −90° + 90° − 90° + 93.8°
− 180°

𝜙𝜙1 = −363.8° → −3.8°

𝜙𝜙2 = 3.8°

 Angle of arrival at 𝑧𝑧1
𝜓𝜓1
= 90° + 90° + 92.9° − 90°
+ 180°

𝜓𝜓1 = 362.9° → 2.9°
𝜓𝜓2 = −2.9°
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Departure/Arrival Angles – Example 
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𝑗𝑗𝑗𝑗-Axis Crossing Points57
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𝑗𝑗𝑗𝑗-Axis Crossing Points

 To determine the location of a 
𝑗𝑗𝑗𝑗-axis crossing
 Apply Routh-Hurwitz 
 Find value of 𝐾𝐾 that results in a 

row of zeros 
 Marginal stability
 𝑗𝑗𝑗𝑗-axis poles

 Roots of row preceding the 
zero row are 𝑗𝑗𝑗𝑗-axis crossing 
points

 Or, plot in MATLAB
 More on this later
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Sketching the Root Locus - Summary59
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Root Locus Sketching Procedure – Summary 

1. Plot open-loop poles and zeros in the s-plane

2. Plot locus segments on the real axis to the left of an odd 
number of poles and/or zeros

3. For the 𝑛𝑛 −𝑚𝑚 poles going to 𝐶𝐶∞, sketch asymptotes at 
angles 𝑀𝑀𝑎𝑎,𝑖𝑖, centered at 𝜎𝜎𝑎𝑎, where

𝑀𝑀𝑎𝑎,𝑖𝑖 =
2𝑖𝑖 + 1 180°
𝑛𝑛 −𝑚𝑚

𝜎𝜎𝑎𝑎 =
∑𝑖𝑖=1𝑛𝑛 𝑝𝑝𝑖𝑖 − ∑𝑖𝑖=1𝑚𝑚 𝑧𝑧𝑖𝑖

𝑛𝑛 − 𝑚𝑚
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Root Locus Sketching Procedure – Summary 

4. Calculate departure angles from complex poles of multiplicity 𝑞𝑞 ≥ 1

𝜙𝜙𝑖𝑖 =
Σ𝑀 𝑧𝑧𝑧𝑧𝑟𝑟𝑧𝑧𝑠𝑠 − Σ𝑀 𝑧𝑧𝑜𝑜𝑜𝑧𝑧𝑟𝑟 𝑝𝑝𝑧𝑧𝑝𝑝𝑧𝑧𝑠𝑠 − 2𝑖𝑖 + 1 180°

𝑞𝑞

and arrival angles at complex zeros of multiplicity 𝑞𝑞 ≥ 1

𝜓𝜓𝑖𝑖 =
Σ𝑀 𝑝𝑝𝑧𝑧𝑝𝑝𝑧𝑧𝑠𝑠 − Σ𝑀 𝑧𝑧𝑜𝑜𝑜𝑧𝑧𝑟𝑟 𝑧𝑧𝑧𝑧𝑟𝑟𝑧𝑧𝑠𝑠 + 2𝑖𝑖 + 1 180°

𝑞𝑞

5. Determine real-axis breakaway/break-in points as the solutions to

𝑑𝑑
𝑑𝑑𝜎𝜎

1
𝐾𝐾 𝜎𝜎 𝐻𝐻 𝜎𝜎

= 0

Breakaway/break-in angles are 180°/𝑛𝑛 to the real axis

6. If desired, apply Routh-Hurwitz to determine 𝑗𝑗𝑗𝑗-axis crossings
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Sketching the Root Locus – Example 1

 Consider a satellite, controlled by a proportional-
derivative (PD) controller

 A example of a double-integrator plant
 We’ll learn about PD controllers in the next section
 Closed-loop transfer function

𝑇𝑇 𝑠𝑠 =
𝐾𝐾 𝑠𝑠 + 1

𝑠𝑠2 + 𝐾𝐾𝑠𝑠 + 𝐾𝐾
 Sketch the root locus

 Two open-loop poles at the origin
 One open-loop zero at 𝑠𝑠 = −1
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Sketching the Root Locus – Example 1

1. Plot open-loop poles and 
zeros
 Two poles, one zero

2. Plot real-axis segments
 To the left of the zero

3. Asymptotes to 𝐶𝐶∞

 One pole goes to the finite 
zero

 One pole goes to ∞ at 180° -
along the real axis
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Sketching the Root Locus – Example 1

4. Departure/arrival angles
 No complex poles or zeros

5. Breakaway/break-in points
 Breakaway occurs at multiple 

roots – at 𝑠𝑠 = 0
 Break-in point:

𝑑𝑑
𝑑𝑑𝑠𝑠

𝑠𝑠2

𝑠𝑠 + 1
= 0

𝑠𝑠 + 1 2𝑠𝑠 − 𝑠𝑠2

𝑠𝑠 + 1 2 = 0

𝑠𝑠2 + 2𝑠𝑠 = 0 → 𝑠𝑠 = −2, 0

𝑠𝑠 = −2
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Sketching the Root Locus – Example 2

 Now consider the same satellite with a different 
controller

 A lead compensator – more in the next section
 Closed-loop transfer function

𝑇𝑇 𝑠𝑠 =
𝐾𝐾 𝑠𝑠 + 1

𝑠𝑠3 + 12𝑠𝑠2 + 𝐾𝐾𝑠𝑠 + 𝐾𝐾

 Sketch the root locus
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𝑠𝑠 = −5.5
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Sketching the Root Locus – Example 2

1. Plot open-loop poles and zeros
 Now three open-loop poles and 

one zero

2. Plot real-axis segments
 Between the zero and the pole at 

𝑠𝑠 = −12

3. Asymptotes to 𝐶𝐶∞

𝑀𝑀𝑎𝑎,1 =
180°

2
= 90°

𝑀𝑀𝑎𝑎,2 =
540°

2
= 270°

𝜎𝜎𝑎𝑎 =
−12 − −1

2
= −5.5
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Sketching the Root Locus – Example 2

4. Departure/arrival angles
 No complex open-loop poles or zeros

5. Breakaway/break-in points
𝑑𝑑
𝑑𝑑𝑠𝑠

𝑠𝑠2(𝑠𝑠 + 12)
𝑠𝑠 + 1

= 0

𝑠𝑠 + 1 3𝑠𝑠2 + 24𝑠𝑠 − 𝑠𝑠3 + 12𝑠𝑠2

𝑠𝑠 + 1 2 = 0

2𝑠𝑠3 + 15𝑠𝑠2 + 24𝑠𝑠 = 0
𝑠𝑠 = 0,−2.31,−5.19
 Breakaway:  𝑠𝑠 = 0, 𝑠𝑠 = −5.19
 Break-in:  𝑠𝑠 = −2.31

𝑠𝑠 = −2.31

𝑠𝑠 = −5.19
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Sketching the Root Locus – Example 3

 Now move the controller’s pole to 𝑠𝑠 = −9

 Closed-loop transfer function

𝑇𝑇 𝑠𝑠 =
𝐾𝐾 𝑠𝑠 + 1

𝑠𝑠3 + 9𝑠𝑠2 + 𝐾𝐾𝑠𝑠 + 𝐾𝐾

 Sketch the root locus
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Sketching the Root Locus – Example 3

1. Plot open-loop poles and zeros
 Again, three open-loop poles and one 

zero

2. Plot real-axis segments
 Between the zero and the pole at 𝑠𝑠 =

− 9

3. Asymptotes to 𝐶𝐶∞

𝑀𝑀𝑎𝑎,1 = 90°

𝑀𝑀𝑎𝑎,2 = 270°

 𝜎𝜎𝑎𝑎 = −9− −1
2

= −4

4. Departure/arrival angles
 No complex open-loop poles or zeros
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Sketching the Root Locus – Example 3

4. Breakaway/break-in points
𝑑𝑑
𝑑𝑑𝑠𝑠

𝑠𝑠2(𝑠𝑠 + 9)
𝑠𝑠 + 1

= 0

𝑠𝑠 + 1 3𝑠𝑠2 + 18𝑠𝑠 − 𝑠𝑠3 + 9𝑠𝑠2

𝑠𝑠 + 1 2 = 0

2𝑠𝑠3 + 12𝑠𝑠2 + 18𝑠𝑠 = 0
𝑠𝑠 = 0,−3,−3
 Breakaway:  𝑠𝑠 = 0, 𝑠𝑠 = −3
 Break-in:  𝑠𝑠 = −3

 Three poles converge/diverge at 𝑠𝑠 =
− 3
 Breakaway angles: 0°, 120°, 240°
 Break-in angles:  60°, 180°, 300°

𝑠𝑠 = −3
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feedback.m

sys = feedback(G,H,sign)

 G: forward-path model – tf, ss, zpk, etc.
 H: feedback-path model
 sign: -1 for neg. feedback, +1 for pos. feedback –

optional – default is -1
 sys: closed-loop system model object of the same 

type as G and H

 Generates a closed-loop system model from 
forward-path and feedback-path models

 For unity feedback, H=1



K. Webb ESE 430

73

feedback.m

 For example:

T=feedback(G,H);

T=feedback(G,1);

T=feedback(G1*G2,H);
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rlocus.m

[r,K] = rlocus(G,K)

 G: open-loop model – tf, ss, zpk, etc.
 K: vector of gains at which to calculate the locus – optional –

MATLAB will choose gains by default
 r: vector of closed-loop pole locations 
 K: gains corresponding to pole locations in r

 If no outputs are specified a root locus is plotted in the 
current (or new) figure window
 This is the most common use model, e.g.:

rlocus(G,K)
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Generalized Root Locus

 We’ve seen that we can plot the root locus as a function of 
controller gain, 𝐾𝐾

 Can also plot the locus as a function of other parameters
 For example, open-loop pole locations

 Consider the following system:

 Plot the root locus as a function of pole location, 𝛼𝛼
 Closed-loop transfer function is

𝑇𝑇 𝑠𝑠 =

1
𝑠𝑠 𝑠𝑠 + 𝛼𝛼

1 + 1
𝑠𝑠 𝑠𝑠 + 𝛼𝛼

=
1

𝑠𝑠2 + 𝛼𝛼𝑠𝑠 + 1
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Generalized Root Locus

𝑇𝑇 𝑠𝑠 =
1

𝑠𝑠2 + 𝛼𝛼𝑠𝑠 + 1
 Want the denominator to be in the root-locus form:

1 + 𝛼𝛼𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠
 First, isolate 𝛼𝛼 in the denominator

𝑇𝑇 𝑠𝑠 =
1

𝑠𝑠2 + 1 + 𝛼𝛼𝑠𝑠
 Next, divide through by the remaining denominator terms

𝑇𝑇 𝑠𝑠 =
1

𝑠𝑠2 + 1
1 + 𝛼𝛼 𝑠𝑠

𝑠𝑠2 + 1
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Generalized Root Locus

𝑇𝑇 𝑠𝑠 =
1

𝑠𝑠2 + 1
1 + 𝛼𝛼 𝑠𝑠

𝑠𝑠2 + 1

 The open-loop transfer function term in this form is

𝐾𝐾 𝑠𝑠 𝐻𝐻 𝑠𝑠 =
𝑠𝑠

𝑠𝑠2 + 1
 Sketch the root locus:

1. Plot poles and zeros
 A zero at the origin and poles at 𝑠𝑠 = ±𝑗𝑗

2. Plot real-axis segments
 Entire negative real axis is left of a single zero
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Generalized Root Locus

3. Asymptote to 𝐶𝐶∞
 Single asymptote along negative 

real axis

4. Departure angles
𝜙𝜙1 = 90° − 90° − 180°
𝜙𝜙1 = −180° = −𝜙𝜙2

5. Break-in point
𝑑𝑑
𝑑𝑑𝜎𝜎

1
𝐾𝐾 𝜎𝜎 𝐻𝐻 𝜎𝜎

=
𝑑𝑑
𝑑𝑑𝜎𝜎

𝜎𝜎2 + 1
𝜎𝜎

= 0

𝜎𝜎 2𝜎𝜎 − 𝜎𝜎2 + 1
𝜎𝜎2

= 0

𝜎𝜎2 − 1 = 0 → 𝜎𝜎 = +1,−1
 𝑠𝑠 = +1 is not on the locus
 Break-in point: 𝑠𝑠 = −1
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Design via Gain Adjustment

 Root locus provides a graphical representation of 
closed-loop pole locations vs. gain

 We have known relationships (some approx.) between 
pole locations and transient response
 These apply to 2nd-order systems with no zeros

 Often, we don’t have a 2nd-order system with no zeros
 Would still like a link between pole locations and transient 

response
 Can sometimes approximate higher-order systems as 

2nd-order 
 Valid only under certain conditions
 Always verify response through simulation
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Second-Order Approximation

 A higher-order system with a pair of second-order poles 
can reasonably be approximated as second-order if:

1) Any higher-order closed-loop poles are either:
a) at much higher frequency (> ~5 ×) than the dominant 

2nd-order pair of poles, or
b) nearly canceled by closed-loop zeros

2) Closed-loop zeros are either:
a) at much higher frequency (> ~5 ×) than the dominant 

2nd-order pair of poles, or
b) nearly canceled by closed-loop poles
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Design via Gain Adjustment – Example 

 Determine 𝐾𝐾 for 10% overshoot
 Assuming a 2nd-order approximation applies:

𝜁𝜁 =
− ln 𝑂𝑂𝑂𝑂

𝜋𝜋2 + ln2 𝑂𝑂𝑂𝑂
= 0.59

 Next, plot root locus in MATLAB
 Find gain corresponding to 2nd-order poles with 𝜁𝜁 = 0.59

 If possible – often it is not 

 Determine if a 2nd-order approximation is justified
 Verify transient response through simulation
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Design via Gain Adjustment – Example 

 Root locus shows that 
a pair of closed-loop 
poles with 𝜁𝜁 = 0.59
exist for 𝐾𝐾 = 5.23:

𝑠𝑠1,2 = −1.25 ± 𝑗𝑗1.71

 Where is the third 
closed-loop pole? 
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Design via Gain Adjustment – Example 

 Third pole is at
𝑠𝑠 = −3.5

 Not high enough in 
frequency for its effect to 
be negligible

 But, it is in close 
proximity to a closed-
loop zero

 Is a 2nd-order 
approximation justified?
 Simulate 
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Design via Gain Adjustment – Example 

 Step response 
compared to a true 2nd-
order system
 No third pole, no zero

 Very similar response
 11.14% overshoot

 2nd-order 
approximation is valid 

 Slight reduction in gain 
would yield 10% overshoot
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Design via Gain Adjustment – Example 

 Step response 
compared to systems 
with: 
 No zero
 No third pole

 Quite different 
responses

 Partial pole/zero 
cancellation makes 2nd-
order approximation 
valid, in this example
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When Gain Adjustment Fails

 Root loci do not go through every point in the s-plane
 Can’t always satisfy a single performance specification, e.g. 

overshoot or settling time
 Can satisfy two specifications, e.g. overshoot and settling 

time, even less often

 Also, gain adjustment affects steady-state error 
performance
 In general, cannot simultaneously satisfy dynamic 

requirements and error requirements

 In those cases, we must add dynamics to the controller
 A compensator
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