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Introduction

 Consider the following unity-feedback system

 Assume 𝐷 𝑠 = 𝐾
 A proportional controller

 Design for 8% overshoot
 Use root locus to determine 𝐾 to 

yield required 𝜁

𝜁 = −
ln 0.08

𝜋2 + ln2 0.08
= 0.63

 Desired poles and gain:

 𝑠1,2 = −2 ± 𝑗2.5

 𝐾 = 2.4 

𝑇 𝑠 =
3𝐾

𝑠2 + 4𝑠 + 3 + 3𝐾
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Introduction

 Overshoot is 8%, as desired, but steady-state error is large:
  𝑒𝑠𝑠 = 29.4%

 Position constant:

𝐾𝑝 = lim
𝑠→0

𝐺 𝑠

𝐾𝑝 = lim
𝑠→0

3𝐾

𝑠 + 1 𝑠 + 3
= 𝐾

𝐾𝑝 = 2.4

 Steady-state error:

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
=

1

1 + 𝐾

𝑒𝑠𝑠 =
1

1 + 2.4
= 0.294
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Introduction

 Let’s say we want to reduce steady-state error to 2%

 Determine required gain

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
=

1

1 + 𝐾
= 0.02

𝐾 =
1

0.2
− 1 = 49

 Transient response is 
degraded

 𝑂𝑆 = 59.2%

 Can set overshoot or 
steady-state error via gain 
adjustment
 Not both simultaneously
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Introduction

 Now say we want OS = 8% and 𝑡𝑠 ≈ 1 𝑠𝑒𝑐, we’d need:
𝜁 = 0.63    and    𝜎 = 4.6

 Desired poles are not on the 
root locus

 Closed-loop poles can exist 
only on the locus
 If we want poles elsewhere, 

we must move the locus

 Modify the locus by adding 
dynamics (poles and zeros) 
to the controller
 A compensator
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Introduction

 We’ll learn how to use root-locus techniques to 
design compensators to do the following:

 Improve steady-state error

◼ Proportional-integral (PI) compensator

◼ Lag compensator

 Improve dynamic response

◼ Proportional-derivative (PD) compensator

◼ Lead compensator

 Improve dynamic response and steady-state error

◼ Proportional-integral-derivative (PID) compensator

◼ Lead-lag compensator
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Compensation Configurations

 Two basic compensation configurations:
 Cascade compensation

 Feedback compensation

 We will focus on cascade compensation
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Improving Steady-State Error

 We’ve seen that we can improve steady-state error by 
adding a pole at the origin
 An integrator
 System type increased by one for unity-feedback

 For example, consider the 
previous example

 Let’s say we are happy with 
8% overshoot and the 
corresponding pole locations

 But, want to reduce steady-
state error to 2% or less 
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Improving Steady-State Error

 System is type 0

 Adding an integrator to 𝐷 𝑠  will increase it to type 1

 Zero steady-state error for constant reference

 Let’s first try a very simple approach:

 Plot the root locus for this system
 How does the added pole at the origin affect the locus?
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Improving Steady-State Error

 Now have 𝑛 − 𝑚 = 3 
asymptotes to 𝐶∞

𝜃𝑎 = 60°, 180°, 300°
𝜎𝑎 = −1.33

 Locus now crosses into the 
RHP
 Integrator has had a 

destabilizing effect on the 
closed-loop system

 System is now type 1, but 

 Desired poles are no longer 
on the root locus 
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Improving Steady-State Error

 Desired poles no longer satisfy the angle 
criterion:

∠𝐷 𝑠1 𝐺 𝑠1 = − 𝜙1 + 𝜙2 + 𝜙3

∠𝐷 𝑠1 𝐺 𝑠1 = − 128.8° + 111.9° + 68.1°

∠𝐷 𝑠1 𝐺 𝑠1 = −308.8° ≠ 180°

 Excess angle from the additional pole at 
the origin, 𝜙1

 How could we modify 𝐷 𝑠  to satisfy the 
angle criterion at 𝑠1?
 A zero at the origin would do it, of course

 But, that would cancel the desired pole at the origin

 How about a zero very close to the origin?
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Improving Steady-State Error

 Now, 𝜓1 ≈ 𝜙1

 Angle contributions nearly cancel

 𝑠1 is not on the locus, but very close

 The closer the zero is to the 
origin, the closer 𝑠1 will be to the 
root locus

 Let 𝑧𝑐 = −0.1

 Controller transfer function:

𝐷 𝑠 = 𝐾
𝑠 + 0.1

𝑠

 Plot new root locus to see how 
close it comes to 𝑠1
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Improving Steady-State Error

 Now only two asymptotes to 𝐶∞

 𝜃𝑎 = 90°, 270°

 𝜎𝑎 = −1.95

 Real-axis breakaway point: 

 𝑠 = −1.99

 𝑠1 not on locus, but close

 Closed-loop poles with 𝜁 = 0.63:

𝑠1,2 = −1.96 ± 𝑗2.44

 Gain: 𝐾 = 2.37
 Determined from the MATLAB root 

locus plot
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Improving Steady-State Error

 Initial transient relatively unchanged
 Pole/zero pair near the origin nearly 

cancel

 2nd-order poles close to desired 
location

 Zero steady-state error
 Pole at origin increases system type 

to type 1

 Slow transient as error is integrated 
out

 2nd-order approximation is valid

 Poles:  𝑠 = −0.07, 

𝑠 = −1.96 ± 𝑗2.44

 Zeros:  𝑠 = −0.1
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Proportional-Integral Compensation

 The compensator we just designed is an ideal integral or 
proportional-integral (PI) compensator

 Control input to plant, 𝑈 𝑠 , has two components:
 One proportional to the error, plus

 One proportional to the integral of the error

𝑈 𝑠 = 𝐸 𝑠 𝐾
𝑠 + 𝑎

𝑠
= 𝐾𝐸 𝑠 +

𝐾𝑎

𝑠
𝐸 𝑠

 Equivalent to:
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PI Compensation – Summary 

 PI compensation

𝐷 𝑠 = 𝐾
𝑠 + 𝑎

𝑠
= 𝐾𝑝 +

𝐾𝑖

𝑠

 Controller adds a pole at the origin and a zero nearby

 Pole at origin (integrator) increases system type, 
improves steady-state error 

 Zero near the origin nearly cancels the added pole, 
leaving transient response nearly unchanged
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PI Compensation – Zero Location

 Compensator zero very close to the origin:
 Closed-loop poles moved very little from uncompensated 

location
 Relatively low integral gain, 𝐾𝑖

 Closed-loop pole close to origin – slow 
 Slow transient as error is integrated out

 Compensator zero farther from the origin:
 Closed-loop poles moved farther from uncompensated 

location
 Relatively higher integral gain, 𝐾𝑖

 Closed-loop pole farther from the origin – faster 
 Error is integrated out more quickly
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PI Compensation – Zero Location

 Root locus and step response variation with 𝑧𝑐:



K. Webb              ESE 430

Lag Compensation22



K. Webb              ESE 430

23

Lag Compensation

 PI compensation requires an ideal integrator
 Active circuitry (opamp) required for analog implementation
 Susceptible to integrator windup

 An alternative to PI compensation is lag compensation
 Pole placed near the origin, not at the origin
 Analog implementation realizable with passive components 

(resistors and capacitors)

 Like PI compensation, lag compensation uses a closely-
spaced pole/zero pair
 Angular contributions nearly cancel
 Transient response nearly unaffected

 System type not increased
 Error is improved, not eliminated
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Lag Compensation – Error Reduction

 Consider the following generic feedback system

 A type 0 system, assuming 𝑝𝑖 ≠ 0, ∀𝑖

 Position constant:

𝐾𝑝𝑢 = lim
𝑠→0

𝐺 𝑠 = 𝐾
𝑧1𝑧2 ⋯

𝑝1𝑝2 ⋯

 Now, add lag compensation

 The compensated position constant :

𝐾𝑝𝑐 = 𝐾
𝑧1𝑧2 ⋯

𝑝1𝑝2 ⋯

𝑧𝑐

𝑝𝑐
= 𝐾𝑝𝑢

𝑧𝑐

𝑝𝑐
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Lag Compensation – Error Reduction

 Compensator pole is closer to the origin than the 
compensator zero, so

𝑧𝑐 > 𝑝𝑐      and     𝐾𝑝𝑐 > 𝐾𝑝𝑢

 For large improvements in 𝑒𝑠𝑠, make 𝑧𝑐 ≫ 𝑝𝑐

 But, to avoid affecting the transient response, we need 
𝑧𝑐 ≈ 𝑝𝑐

 As long as both 𝑧𝑐  and 𝑝𝑐 are very small, we can satisfy 
both requirements: 𝑧𝑐 ≫ 𝑝𝑐  and 𝑧𝑐 ≈ 𝑝𝑐 ≈ 0

𝐾𝑝𝑐 = 𝐾
𝑧1𝑧2 ⋯

𝑝1𝑝2 ⋯

𝑧𝑐

𝑝𝑐
= 𝐾𝑝𝑢

𝑧𝑐

𝑝𝑐
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Lag Compensation – Example

 Apply lag compensation to our previous example
 Design for a 10x improvement of the position constant

 Want 𝑝𝑐 ≈ 0  (relative to other poles)
 Let 𝑝𝑐 = 0.01

 Want a 10x improvement in 𝐾𝑝

 𝑧𝑐 = 10𝑝𝑐 = 0.1

 Lag pole and zero differ by a factor of 10
 Static error constant improved by a factor of 10

 Lag pole/zero are very close together relative to poles at 𝑠 = −1, −3
 Angular contributions nearly cancel

 Transient response nearly unaffected
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Lag Compensation – Example

 Root locus and step response of lag-compensated system
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Lag Compensation – Example

 Now, let 𝑧𝑐 = 0.4  and  𝑝𝑐 = 0.04
 2nd-order poles moved more

 Faster low-frequency closed-loop pole

 Faster overall response
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Lag Compensation – Summary 

 Lag compensation

𝐷 𝑠 = 𝐾
𝑠+𝑧𝑐

𝑠+𝑝𝑐
 ,    where   𝑝𝑐 < 𝑧𝑐

 Controller adds a pole near the origin and a slightly-
higher-frequency zero nearby

 Steady-state error improved by 𝑧𝑐/𝑝𝑐

 Angle contributions from closely-spaced pole/zero 
nearly cancel

 Transient response is nearly unchanged
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Improving Transient Response

 Consider the following system

 Root locus:

 Three asymptotes to 𝐶∞ 
at 60°, 180°, and 300°

 Real-axis breakaway 
point: 𝑠 = −1.88

 Locus crosses into RHP
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Improving Transient Response

 Design proportional controller for 10% overshoot

 𝐾 = 1.72

 Overshoot < 10% due to third pole
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Improving Transient Response

 Now, decrease settling time to 𝑡𝑠 ≈ 1.5 𝑠𝑒𝑐
 Maintain same overshoot (𝜁 = 0.59)

𝜎 ≈
4.6

𝑡𝑠
= 3.1

 Desired poles:  

 𝑠1,2 = −3.1 ± 𝑗4.23

 Not on the locus

 Must add compensation 
to move the locus where 
we want it
 Derivative compensation
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Proportional-Derivative Compensation

 One way to improve transient response is to add the 
derivative of the error to the control input to the plant

 This is ideal derivative or proportional-derivative (PD) 
compensation

𝑈 𝑠 = 𝐸 𝑠 𝐾𝑝 + 𝐾𝑑𝑠 = 𝐾 𝑠 + 𝑧𝑐 𝐸 𝑠

 Compensator transfer function:

𝐷 𝑠 = 𝐾 𝑠 + 𝑧𝑐

 Compensator adds a single zero at 𝑠 = −𝑧𝑐
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PD Compensation

 Compensator zero will change the root locus
 Placement of the zero allows us to move the locus to place 

closed-loop poles where we want them

 One less asymptote to 𝐶∞

 𝑛 − 𝑚  decreased by one 

 Asymptote origin changes

𝜎𝑎 =
Σ𝑝𝑖 − Σ𝑧𝑖

𝑛 − 𝑚

 As 𝑧𝑐 increases (moves left), 𝜎𝑎 moves right, toward the 
origin

 As 𝑧𝑐 decreases (moves right), 𝜎𝑎 moves further into the 
LHP
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PD Compensation

 Derivative compensation allows us to speed up the 
closed-loop response

 Control signal proportional to (in part) the derivative of 
the error

 When the reference, 𝑟(𝑡), changes quickly:

 Error, 𝑒(𝑡), changes quickly

 Derivative of the error, ሶ𝑒 𝑡 , is large

 Control input, 𝑢 𝑡 , may be large

 Derivative compensation anticipates future error 
and compensates for it
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PD Compensation – Example 1 

 Now add PD compensation to our example system

 Root locus depends on 𝑧𝑐

 Let’s first assume 𝑧𝑐 < 3

 Two real-axis segments

 −6 ≤ 𝑠 ≤ −3

 Between pole at −1 and 𝑧𝑐

 Two asymptotes to 𝐶∞

 𝜃𝑎 = 90°, 270°

 𝜎𝑎 =
𝑧𝑐−10

2

 As 𝑧𝑐 varies from 0 … 3, 𝜎𝑎 varies 
from −5 … − 3.5

 Breakaway point between −6 … − 3
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PD Compensation – Example 1 

 As 𝑧𝑐  moves to the left, 𝜎𝑎 moves to the right
 Moving 𝑧𝑐 allows us to move the locus
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PD Compensation – Example 1 

 Now move the zero further to the left: 𝑧𝑐 > 3

 Still two real-axis segments

 −6 ≤ 𝑠 ≤ −𝑧𝑐

 −3 ≤ 𝑠 ≤ −1

 Two asymptotes to 𝐶∞

 𝜃𝑎 = 90°, 270°

 𝜎𝑎 =
𝑧𝑐−10

2

 As 𝑧𝑐 varies from 3 … ∞, 𝜎𝑎 
varies from −3.5 … ∞

 Breakaway point between 
− 3 … − 1
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PD Compensation – Example 1 

 Asymptote origin continues to move to the right
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PD Compensation – Calculating 𝑧𝑐

 For this particular system, we’ve seen:

 Additional zero decreased the number of asymptotes to 
𝐶∞ by one

 A stabilizing effect – locus does not cross into the RHP

 Adjusting 𝑧𝑐  allows us to move the asymptote origin 
left or right

 Next, we’ll determine exactly where to place 𝑧𝑐  to 
place the closed-loop poles where we want them
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PD Compensation – Example 2

 Desired 2nd-order poles:  𝑠1,2 = −3.1 ± 𝑗4.23

 Calculate required value for 𝑧𝑐 such that these points are on the 
locus

 Must satisfy the angle criterion
∠𝐷 𝑠1 𝐺 𝑠1 = 180°

∠𝐷 𝑠1 𝐺 𝑠1 = 𝜓𝑐 − 𝜙1 − 𝜙2 − 𝜙3

𝜓𝑐 = 180° + 𝜙1 + 𝜙2 + 𝜙3

𝜙1 = 116.4°

𝜙2 = 91.35°

𝜙3 = 55.57°

 The required angle from 𝑧𝑐:

𝜓𝑐 = 83.3°

 Next, determine 𝑧𝑐



K. Webb              ESE 430

44

PD Compensation – Example 2

 Compensator zero, 𝑧𝑐, must contribute 𝜓𝑐 = 83.3° at 
𝑠1,2 = −3.1 ± 𝑗4.23

 Calculate the required value of 𝑧𝑐

𝜓𝑐 = ∠ 𝑠1 + 𝑧𝑐 = ∠ −3.1 + 𝑗4.23 + 𝑧𝑐 = 83.3°

𝜓𝑐 = tan−1
4.23

𝑧𝑐 − 3.1

tan 𝜓𝑐 =
4.23

𝑧𝑐 − 3.1

𝑧𝑐 =
4.23

tan 𝜓𝑐
+ 3.1 =

4.23

tan 83.3°
+ 3.1

 The required compensator zero:

𝑧𝑐 = 3.6
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PD Compensation – Example 2

 Locus passes through 
desired points

 Closed-loop poles at 
𝑠 = −3.1 ± 𝑗4.23 for 
𝐾 = 1.6

 Third closed-loop pole 
at 𝑠 = −3.8
 Close to zero at 𝑠 =

− 3.6

 2nd-order 
approximation likely 
justified
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PD Compensation – Example 2

 Settling time reduced, 
as desired

 Overshoot is a little 
higher than 10%

 Higher order pole and 
zero do not entirely 
cancel

 Iterate to further refine 
performance, if desired
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PD Compensation – Summary

 PD compensation

𝐷 𝑠 = 𝐾 𝑠 + 𝑧𝑐

 Controller adds a single zero

 Angular contribution from the compensator zero 
allows the root locus to be modified

 Calculate 𝑧𝑐  to satisfy the angle criterion at desired 
closed-loop pole locations

 Use magnitude criterion or plot root locus to determine 
required gain
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Sensor Noise

 Feedback control requires measurement of a 
system’s output with some type of sensor
 Inherently noisy

 Measurement noise tends to be broadband in nature
◼ I.e., includes energy at high frequencies

 High-frequency signal components change rapidly
◼ Large time derivatives

 Derivative (PD) compensation amplifies measurement 
noise

 An alternative is lead compensation
 Amplification of sensor noise is reduced



K. Webb              ESE 430

50

Lead Compensation

 PD compensation utilizes an ideal differentiator
 Amplifies sensor noise

 Active circuitry (opamp) required for analog implementation

 An alternative to PD compensation is lead compensation
 Compensator adds one zero and a higher-frequency pole

𝐷 𝑠 = 𝐾
𝑠+𝑧𝑐

𝑠+𝑝𝑐
 ,    where    𝑝𝑐 > 𝑧𝑐

 Pole can be far enough removed to have little impact on 2nd-order 
dynamics

 Additional high-frequency pole reduces amplification of noise

 Analog implementation realizable with passive components 
(resistors and capacitors)



K. Webb              ESE 430

51

Lead Compensation – Example 

 Apply lead compensation to our previous example system

 Desired closed-loop poles: 

𝑠1,2 = −3.1 ± 𝑗4.23

 Angle criterion must be satisfied at 𝑠1

∠𝐷 𝑠1 𝐺 𝑠1 = 180°

∠𝐷 𝑠1 + ∠𝐺 𝑠1 = 180°

∠𝐷 𝑠1 = 180° − ∠𝐺 𝑠1

∠𝐺 𝑠1 = − 𝜙1 + 𝜙2 + 𝜙3

∠𝐺 𝑠1 = −263.3°

 Required net angle contribution from 
the compensator:

∠𝐷 𝑠1 = 443.3° = 83.3°
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Lead Compensation – Example 

 For 𝑠1 to be on the locus, we need ∠𝐷 𝑠1 = 83.3°
 Zero contributes a positive angle
 Higher-frequency pole contributes a smaller negative angle
 Net angular contribution will be positive, as required:

∠𝐷 𝑠1 = ∠ 𝑠1 + 𝑧𝑐 − ∠ 𝑠1 + 𝑝𝑐 = 83.3°

 Compensator angle is the angle 
of the ray from 𝑠1 through 𝑧𝑐  
and 𝑝𝑐

∠𝐷 𝑠1 = 𝜃𝑐 = 88.3°

 Infinite combinations of 𝑧𝑐  and 
𝑝𝑐  will provide the required 𝜃𝑐
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Lead Compensation – Example 

 An infinite number of possible 𝑧𝑐/𝑝𝑐  combinations
 All provide 𝜃𝑐 = 83.3°
 Different static error 

constants
 Different required gains
 Different location of other 

closed-loop poles

 No real rule for how to 
select 𝑧𝑐  and 𝑝𝑐  

 Some options:
 Set 𝑝𝑐 as high as acceptable 

given noise requirements
 Place 𝑧𝑐 below or slightly left 

of the desired poles
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 0.5, 𝑝𝑐 = 8.5
 Lower-frequency pole/zero do not adequately cancel
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 1.5, 𝑝𝑐 = 11.3
 Effect of lower-frequency pole/zero reduced
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 2.5, 𝑝𝑐 = 19.2
 Lower-frequency pole/zero very nearly cancel
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 3.2, 𝑝𝑐 = 33.1
 Higher-frequency pole/zero almost completely cancel
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Lead Compensation – Example 

 Here, 𝑧𝑐 = 2.5 or 
𝑧𝑐 = 3.2 are good 
choices

 Steady-state error 
varies

 Error depends on 
gain required for 
each lead 
implementation
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Lead Compensation – Summary

 Lead compensation

𝐷 𝑠 = 𝐾
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
 , where 𝑝𝑐 > 𝑧𝑐

 Controller adds a lower-frequency zero and a higher-
frequency pole

 Net angular contribution from the compensator 
zero and pole allows the root locus to be modified
 Allows for transient response improvement

 Infinite number of possible 𝑧𝑐/𝑝𝑐  combinations to 
satisfy the angle criterion at the design point
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Improving Error and Transient Response

 PI (or lag) control improves steady-state error

 PD (or lead) control can improve transient response

 Using both together can improve both error and 
dynamic performance

 PD or lead compensation to achieve desired transient 
response

 PI or lag compensation to achieve desired steady-state error

 Next, we’ll look at two types of compensators:

 Proportional-integral-derivative (PID) compensator

 Lead-lag compensator
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Improving Error and Transient Response

 Two possible approaches to the design procedure:

1. First design for transient response, then design for 
steady-state error
 Response may be slowed slightly in the process of 

improving steady-state error

2. First design for steady-state error, then design for 
transient response
 Steady-state error may be affected 

 In either case, iteration is typically necessary

 We’ll follow the first approach, as does the text
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Proportional-Integral-Derivative Compensation

 Proportional-integral-
derivative (PID) compensation
 Combines PI and PD 

compensation
 PD compensation adjusts 

transient response
 PI compensation improves 

steady-state error

 Controller transfer function:

𝐷 𝑠 = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 =

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

 Two zeros and a pole at the origin
 Pole/zero at/near the origin determined through PI compensator 

design
 Second zero location determined through PD compensator design
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PID Design Procedure

 PID compensator design procedure:

1. Determine closed-loop pole location to provide desired 
transient response

2. Design PD controller (zero location and gain) to place 
closed-loop poles as desired

3. Simulate the PD-compensated system, iterate if necessary

4. Design a PI controller, add to the PD-compensated system, 
and determine the gain required to maintain desired 
dominant pole locations

5. Determine PID parameters: 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑

6. Simulate the PID-compensated system and iterate, if 
necessary
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PID Compensation – Example 

 Design PID compensation to satisfy the following 
specifications:

◼ 𝑡𝑠 ≈ 2 𝑠𝑒𝑐

◼ %𝑂𝑆 ≈ 20%

◼ Zero steady-state error to a constant reference

 First, design PD compensator to satisfy dynamic 
specifications
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PID Compensation – Example 

 Calculate desired closed-loop pole locations

𝜎 ≈
4.6

𝑡𝑠
= 2.3

𝜁 = −
ln 0.2

𝜋2 + ln2 0.2
= 0.46

𝜔𝑑 =
𝜎

𝜁
1 − 𝜁2 =

2.3

0.46
1 − 0.462

𝜔𝑑 = 4.49

  Desired 2nd-order poles:
𝑠1,2 = −2.3 ± 𝑗4.49

 Uncompensated root locus does 
not pass through the desired poles
 Gain adjustment not sufficient
 Compensation required
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PID Compensation – Example 

 PD compensator design
 Determine the required angular contribution of the 

compensator zero to satisfy the angle criterion at 𝑠1

∠𝐷𝑝𝑑 𝑠1 𝐺 𝑠1 = 180°

∠𝐷𝑝𝑑 𝑠1 = 180° − ∠𝐺 𝑠1

∠𝐺 𝑠1 = −𝜙1 − 𝜙2 − 𝜙3

𝜙1 = ∠ 𝑠1 + 1 = 106.15°

𝜙2 = ∠ 𝑠1 + 3 = 81.14°

𝜙3 = ∠ 𝑠1 + 6 = 50.51°

∠𝐺 𝑠1 = −237.8°

∠𝐷𝑝𝑑 𝑠1 = 180° + 237.8° = 417.8°

 Required angle from PD zero
𝜓𝑝𝑑 = 57.8°
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PID Compensation – Example 

 Use required compensator angle to place the PD zero, 𝑧𝑝𝑑

∠𝐷𝑝𝑑 𝑠1 = ∠ 𝑠1 + 𝑧𝑝𝑑

∠𝐷𝑝𝑑 𝑠1 = ∠ −2.3 + 𝑧𝑝𝑑 + 𝑗4.49

tan 𝜓𝑝𝑑 =
4.49

𝑧𝑝𝑑 − 2.3

𝑧𝑝𝑑 =
4.49

tan 57.8°
+ 2.3 = 5.13

 PD compensator transfer 
function:

𝐷𝑝𝑑 𝑠 = 𝐾 𝑠 + 5.13
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PID Compensation – Example 

 PD-compensated root locus

 Determine required gain 
from MATLAB plot, or

 Apply the magnitude 
criterion:

𝐾 =
1

𝐷𝑝𝑑 𝑠1 𝐺 𝑠1

𝐾 =
𝑠1 + 1 𝑠1 + 3 𝑠1 + 6

15 𝑠1 + 5.13
𝐾 = 1.55

 PD compensator:

𝐷𝑝𝑑 𝑠 = 1.55 𝑠 + 5.13
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PID Compensation – Example 

 Performance 
specifications not 
met exactly

 Higher-frequency 
pole/zero do not 
entirely cancel

 Close enough for 
now – may need to 
iterate when PI 
compensation is 
added
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PID Compensation – Example 

 Next, add PI compensation to the PD-compensated system
 Add a pole at the origin and a zero close by

𝐷𝑝𝑖 𝑠 =
𝑠 + 𝑧𝑝𝑖

𝑠

 Where should we put the zero, 𝑧𝑝𝑖?

 In this case, open-loop pole at the origin will become a closed-
loop pole near −𝑧𝑝𝑖

 Very small 𝑧𝑝𝑖  yields very slow closed-loop pole

◼ Error integrates out very slowly

 Small 𝑧𝑝𝑖  means PI compensator will have less effect on the PD-
compensated root locus

 Simulate and iterate
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PID Compensation – Example 

 Step response for various 𝑧𝑝𝑖 values:

 Here, 𝑧𝑝𝑖 = 0.8 works well

 Moving 𝑧𝑝𝑖 away from the 

open-loop pole at the 
origin moves the 2nd-order 
poles significantly:

𝑠1,2 = −1.86 ± 𝑗3.63

 Faster low-frequency 
closed-loop pole means 
error is integrated out more 
quickly
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PID Compensation – Example 

 The resulting PID compensator:

𝐷 𝑠 = 𝐾
𝑠 + 0.8

𝑠
𝑠 + 5.13

 Required gain:  𝐾 = 1.15

𝐷 𝑠 =
1.15𝑠2 + 6.817𝑠 + 4.718

𝑠

𝐷 𝑠 =
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

 The PID gains:

𝐾𝑝 = 6.817,  𝐾𝑖 = 3.718,  𝐾𝑑 = 1.15
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PID Compensation – Example 

 Step response of the PID-compensated system:

 Settling time is a little 
slow

 A bit of margin on the 
overshoot

 Iterate

 First, try adjusting gain 
alone

 If necessary, revisit the 
PD compensator
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PID Compensation – Example 

 Increasing gain to 𝐾 = 1.25 speed things up a bit, while 
increasing overshoot

 Recall, however that root 
locus asymptotes are 
vertical

 Increasing gain will have 
little effect on settling 
time

 If further refinement is 
required, must revisit the 
PD compensator
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PID Compensation – Example 

 How valid was the second-order approximation we used for design 
of this PID-compensated system?

 Pole at 𝑠 = −0.78 
 Nearly canceled by the zero at 𝑠 =

− 0.8

 Pole at s = −5.5
 Not high enough in frequency to be 

negligible, but

 Partially canceled by zero at 𝑠 =
− 5.13

 But, validity of the assumption is not 
really important
 Used as starting point to locate poles

 Iteration typically required anyway
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PID Compensation – Summary 

 PID compensation

𝐷 𝑠 = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 =

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

 Two zeros and a pole at the origin

 Cascade of PI and PD compensators

 PD compensator
 Added zero allows for transient response improvement

 PI compensator
 Pole at the origin increases system type

 Nearby zero nearly cancels angular contribution of the pole, 
limiting its effect on the root locus
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Lead-Lag Compensation

 Just as we combined derivative and integral compensation, we can 
combine lead and lag as well
 Lead-lag compensation 

 Lead compensator improves transient response 

 Lag compensator improves steady-state error

 Compensator transfer function:

𝐷 𝑠 = 𝐾
𝑠 + 𝑧𝑙𝑒𝑎𝑑

𝑠 + 𝑝𝑙𝑒𝑎𝑑

𝑠 + 𝑧𝑙𝑎𝑔

𝑠 + 𝑝𝑙𝑎𝑔

 

 Lead compensator adds a pole and zero - 𝑧𝑙𝑒𝑎𝑑 < 𝑝𝑙𝑒𝑎𝑑 

 Lag pole/zero close to the origin - 𝑧𝑙𝑎𝑔 > 𝑝𝑙𝑎𝑔 ≈ 0
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Lead-Lag Design Procedure

 Lead-lag compensator design procedure:

1. Determine closed-loop pole location to provide desired transient 
response

2. Design the lead compensator (zero, pole, and gain) to place closed-
loop poles as desired

3. Simulate the lead-compensated system, iterate if necessary

4. Evaluate the steady-state error performance of the lead-
compensated system to determine how much of an improvement 
is required to meet the error specification

5. Design the lag compensator to yield the required steady-state error 
performance

6. Simulate the lead-lag-compensated system and iterate, if necessary
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Lead-Lag Compensation – Example 

 Design lead-lag compensation to satisfy the following 
specifications:

◼ 𝑡𝑠 ≈ 2 𝑠𝑒𝑐

◼ %𝑂𝑆 ≈ 20%
◼ 2% steady-state error to a constant reference

 First, design the lead compensator to satisfy the 
dynamic specifications

 Then, design the lag compensator to meet the steady-
state error requirement
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Lead-Lag Compensation – Example 

 Design the lead compensator to achieve the same 
desired dominant 2nd-order pole locations:

𝑠1,2 = −2.3 ± 𝑗4.49

 Again, an infinite number of possibilities

 Let’s assume we want to limit the lead pole to 𝑠 =
− 100 due to noise considerations

 Lower pole frequency results in amplification of less noise

𝐷𝑙𝑒𝑎𝑑 𝑠 = 𝐾
𝑠 + 𝑧𝑙𝑒𝑎𝑑

𝑠 + 100

 Apply the angle criterion to determine 𝑧𝑙𝑒𝑎𝑑
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Lead-Lag Compensation – Example 

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 𝐺 𝑠1 = 180° →  ∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 180° − ∠𝐺 𝑠1

∠𝐺 𝑠1 = −𝜙1 − 𝜙2 − 𝜙3

𝜙1 = ∠ 𝑠1 + 1 = 106.15°

𝜙2 = ∠ 𝑠1 + 3 = 81.14°

𝜙3 = ∠ 𝑠1 + 6 = 50.51°

∠𝐺 𝑠1 = −237.8°

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 180° + 237.8°

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 417.8° = 57.8°

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 𝜓𝑙𝑒𝑎𝑑 − 𝜙𝑙𝑒𝑎𝑑

𝜙𝑙𝑒𝑎𝑑 = ∠ 𝑠1 + 100 = 2.63°

𝜓𝑙𝑒𝑎𝑑 = ∠𝐷𝑙𝑒𝑎𝑑 𝑠1 + 𝜙𝑙𝑒𝑎𝑑

𝜓𝑙𝑒𝑎𝑑 = 60.43°
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Lead-Lag Compensation – Example 

 Next, calculate 𝑧𝑙𝑒𝑎𝑑 from 𝜓𝑙𝑒𝑎𝑑

𝜓𝑙𝑒𝑎𝑑 = ∠ 𝑠1 + 𝑧𝑙𝑒𝑎𝑑

𝜓𝑙𝑒𝑎𝑑 = tan−1
𝐼𝑚 𝑠1

𝑅𝑒 𝑠1 + 𝑧𝑙𝑒𝑎𝑑

tan 𝜓𝑙𝑒𝑎𝑑 =
𝐼𝑚 𝑠1

𝑅𝑒 𝑠1 + 𝑧𝑙𝑒𝑎𝑑

𝑧𝑙𝑒𝑎𝑑 =
𝐼𝑚 𝑠1

tan 𝜓𝑙𝑒𝑎𝑑
− 𝑅𝑒 𝑠1

𝑧𝑙𝑒𝑎𝑑 =
4.49

tan 60.43°
+ 2.3

𝑧𝑙𝑒𝑎𝑑 = 4.85
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Lead-Lag Compensation – Example 

 Lead compensator:

𝐷𝑙𝑒𝑎𝑑 𝑠 = 𝐾
𝑠 + 4.85

𝑠 + 100

 From magnitude 
criterion or MATLAB 
plot,  K = 156

 Lead compensator 
transfer function:

𝐷𝑙𝑒𝑎𝑑 𝑠 = 156
𝑠 + 4.85

𝑠 + 100

 Next, simulate the lead-compensated system to verify 
dynamic performance and to evaluate steady-state error 
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Lead-Lag Compensation – Example 

 Performance 
specifications not met 
exactly
 Higher-frequency 

pole/zero do not entirely 
cancel

 Close enough for now – 
may need to iterate when 
lag compensation is 
added, anyway

 Steady-state error is 
13.8%
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Lead-Lag Compensation – Example 

 Desired position constant:

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
= 0.02

𝐾𝑝 =
1

𝑒𝑠𝑠
− 1 = 49

 𝐾𝑝 for lead-compensated system

𝐾𝑝,𝑙𝑒𝑎𝑑 =
1

0.138
− 1 = 6.26

 Required error constant 
improvement

𝑧𝑙𝑎𝑔

𝑝𝑙𝑎𝑔
=

𝐾𝑝

𝐾𝑝,𝑙𝑒𝑎𝑑
= 7.83
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Lead-Lag Compensation – Example 

 Arbitrarily set 𝑝𝑙𝑎𝑔 = 0.01

 To achieve desired error, we need

𝑧𝑙𝑎𝑔 = 8 ⋅ 𝑝𝑙𝑎𝑔 = 0.08

 The lag compensator transfer function:

𝐷𝑙𝑎𝑔 𝑠 =
𝑠 + 0.08

𝑠 + 0.01

 Magnitudes from lag pole/zero effectively cancel, so required gain is 
unchanged:

𝐾 = 156

 Lead-lag compensator transfer function:

𝐷 𝑠 = 156
𝑠 + 4.85

𝑠 + 100

𝑠 + 0.08

𝑠 + 0.01
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Lead-Lag Compensation – Example 

 Root locus and closed-loop poles/zeros for the lead-lag-
compensated system:

 Second-order poles:

𝑠1,2 = −2.27 ± 𝑗4.46

 Other closed-loop poles:

𝑠 = −100.2

𝑠 = −5.2

𝑠 = −0.07

 Closed-loop zeros:

𝑠 = −0.08

𝑠 = −4.85
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Lead-Lag Compensation – Example 

 Step response for the lead-lag-compensated system:

 Steady-state error 
requirement is satisfied

 Slow closed-loop pole at 
𝑠 = −0.07 results in very 
slow tail as error is 
eliminated

 Can speed this up by 
moving the lag pole/zero 
away from the origin

 Dominant poles will move
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Lead-Lag Compensation – Example 

 Increase the lag pole/zero frequency by 8x

𝑝𝑙𝑎𝑔 = 0.08  and  𝑧𝑙𝑎𝑔 = 0.64

 Lag pole/zero now affect the 
root locus significantly
 Dominant poles move:

𝑠1,2 = −1.9 ± 𝑗3.8

 Required gain for 𝜁 = 0.46 
changes:

𝐾 = 123

 Reduced gain will reduce 𝐾𝑝

 𝑧𝑙𝑎𝑔/𝑝𝑙𝑎𝑔 ratio must increase
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Lead-Lag Compensation – Example 

 Some iteration shows 
reasonable transient 
and error performance 
for:

𝑝𝑙𝑎𝑔 = 0.08

𝑧𝑙𝑎𝑔 = 0.8

𝐾 = 130

 Lead-lag compensator:

𝐷 𝑠 = 130
𝑠 + 4.85

𝑠 + 100

𝑠 + 0.8

𝑠 + 0.08



K. Webb              ESE 430

94

Lead-Lag Compensation – Summary 

 Lead-lag compensation

𝐷 𝑠 = 𝐾
𝑠+𝑧𝑙𝑒𝑎𝑑

𝑠+𝑝𝑙𝑒𝑎𝑑

𝑠+𝑧𝑙𝑎𝑔

𝑠+𝑝𝑙𝑎𝑔
 ,     𝑝𝑙𝑒𝑎𝑑 > 𝑧𝑙𝑒𝑎𝑑   and   𝑝𝑙𝑎𝑔 < 𝑧𝑙𝑎𝑔

 Two zeros and two poles
 Cascade of lead and lag compensators

 Lead compensator
 Added pole/zero improves transient response

 Lag compensator
 Steady-state error improved by 𝑧𝑙𝑎𝑔/𝑝𝑙𝑎𝑔

 Nearby zero partially cancels angular contribution of the pole, 
limiting its effect on the root locus

 May introduce a slow transient
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Compensator Summary

Type Transfer function Improves Comments

PI
𝐾

𝑠 + 𝑧𝑐

𝑠

Error • Pole at origin
• Zero near origin
• Increases system type
• May introduce a slow transient
• Active circuitry required
• Susceptible to integrator windup

Lag
𝐾

𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐

Error • Pole near the origin
• Small negative zero
• 𝑧𝑐 > 𝑝𝑐

• Error constant improved by 𝑧𝑐/𝑝𝑐

• May introduce a slow transient
• Passive circuitry implementation 

possible
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Compensator Summary

Type Transfer function Improves Comments

PD 𝐾 𝑠 + 𝑧𝑐 Transient response • Zero at −𝑧𝑐  contributes angle to 
satisfy angle criterion at desired 
closed-loop pole location

• Active circuitry required
• Amplifies sensor noise

Lead
𝐾

𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐

Transient response • Lower-frequency zero
• Higher-frequency pole
• Net angle contribution satisfies 

angle criterion at design point
• Added pole helps reduce 

amplification of higher-frequency 
sensor noise

• Passive circuitry implementation 
possible
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Compensator Summary

Type Transfer function Improves Comments

PID
𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑𝑠

Error & transient 
response

• PD compensation improves 
transient response

• PI compensation improves 
steady-state error

• Active circuitry
• Amplifies noise

Lead-lag
𝐾

𝑠 + 𝑧𝑙𝑒𝑎𝑑

𝑠 + 𝑝𝑙𝑒𝑎𝑑

𝑠 + 𝑧𝑙𝑎𝑔

𝑠 + 𝑝𝑙𝑎𝑔

Error & transient 
response

• Lead compensation 
improves transient 
response

• Lag compensation improves 
steady-state error

• Passive circuitry 
implementation possible

• Amplification of high-
frequency noise reduced
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