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Introduction

 Consider the following unity-feedback system

 Assume 𝐷 𝑠 = 𝐾
 A proportional controller

 Design for 8% overshoot
 Use root locus to determine 𝐾 to 

yield required 𝜁

𝜁 = −
ln 0.08

𝜋2 + ln2 0.08
= 0.63

 Desired poles and gain:

 𝑠1,2 = −2 ± 𝑗2.5

 𝐾 = 2.4 

𝑇 𝑠 =
3𝐾

𝑠2 + 4𝑠 + 3 + 3𝐾
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Introduction

 Overshoot is 8%, as desired, but steady-state error is large:
  𝑒𝑠𝑠 = 29.4%

 Position constant:

𝐾𝑝 = lim
𝑠→0

𝐺 𝑠

𝐾𝑝 = lim
𝑠→0

3𝐾

𝑠 + 1 𝑠 + 3
= 𝐾

𝐾𝑝 = 2.4

 Steady-state error:

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
=

1

1 + 𝐾

𝑒𝑠𝑠 =
1

1 + 2.4
= 0.294
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Introduction

 Let’s say we want to reduce steady-state error to 2%

 Determine required gain

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
=

1

1 + 𝐾
= 0.02

𝐾 =
1

0.2
− 1 = 49

 Transient response is 
degraded

 𝑂𝑆 = 59.2%

 Can set overshoot or 
steady-state error via gain 
adjustment
 Not both simultaneously
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Introduction

 Now say we want OS = 8% and 𝑡𝑠 ≈ 1 𝑠𝑒𝑐, we’d need:
𝜁 = 0.63    and    𝜎 = 4.6

 Desired poles are not on the 
root locus

 Closed-loop poles can exist 
only on the locus
 If we want poles elsewhere, 

we must move the locus

 Modify the locus by adding 
dynamics (poles and zeros) 
to the controller
 A compensator
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Introduction

 We’ll learn how to use root-locus techniques to 
design compensators to do the following:

 Improve steady-state error

◼ Proportional-integral (PI) compensator

◼ Lag compensator

 Improve dynamic response

◼ Proportional-derivative (PD) compensator

◼ Lead compensator

 Improve dynamic response and steady-state error

◼ Proportional-integral-derivative (PID) compensator

◼ Lead-lag compensator
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Compensation Configurations

 Two basic compensation configurations:
 Cascade compensation

 Feedback compensation

 We will focus on cascade compensation
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Improving Steady-State Error

 We’ve seen that we can improve steady-state error by 
adding a pole at the origin
 An integrator
 System type increased by one for unity-feedback

 For example, consider the 
previous example

 Let’s say we are happy with 
8% overshoot and the 
corresponding pole locations

 But, want to reduce steady-
state error to 2% or less 
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Improving Steady-State Error

 System is type 0

 Adding an integrator to 𝐷 𝑠  will increase it to type 1

 Zero steady-state error for constant reference

 Let’s first try a very simple approach:

 Plot the root locus for this system
 How does the added pole at the origin affect the locus?
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Improving Steady-State Error

 Now have 𝑛 − 𝑚 = 3 
asymptotes to 𝐶∞

𝜃𝑎 = 60°, 180°, 300°
𝜎𝑎 = −1.33

 Locus now crosses into the 
RHP
 Integrator has had a 

destabilizing effect on the 
closed-loop system

 System is now type 1, but 

 Desired poles are no longer 
on the root locus 
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Improving Steady-State Error

 Desired poles no longer satisfy the angle 
criterion:

∠𝐷 𝑠1 𝐺 𝑠1 = − 𝜙1 + 𝜙2 + 𝜙3

∠𝐷 𝑠1 𝐺 𝑠1 = − 128.8° + 111.9° + 68.1°

∠𝐷 𝑠1 𝐺 𝑠1 = −308.8° ≠ 180°

 Excess angle from the additional pole at 
the origin, 𝜙1

 How could we modify 𝐷 𝑠  to satisfy the 
angle criterion at 𝑠1?
 A zero at the origin would do it, of course

 But, that would cancel the desired pole at the origin

 How about a zero very close to the origin?
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Improving Steady-State Error

 Now, 𝜓1 ≈ 𝜙1

 Angle contributions nearly cancel

 𝑠1 is not on the locus, but very close

 The closer the zero is to the 
origin, the closer 𝑠1 will be to the 
root locus

 Let 𝑧𝑐 = −0.1

 Controller transfer function:

𝐷 𝑠 = 𝐾
𝑠 + 0.1

𝑠

 Plot new root locus to see how 
close it comes to 𝑠1
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Improving Steady-State Error

 Now only two asymptotes to 𝐶∞

 𝜃𝑎 = 90°, 270°

 𝜎𝑎 = −1.95

 Real-axis breakaway point: 

 𝑠 = −1.99

 𝑠1 not on locus, but close

 Closed-loop poles with 𝜁 = 0.63:

𝑠1,2 = −1.96 ± 𝑗2.44

 Gain: 𝐾 = 2.37
 Determined from the MATLAB root 

locus plot
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Improving Steady-State Error

 Initial transient relatively unchanged
 Pole/zero pair near the origin nearly 

cancel

 2nd-order poles close to desired 
location

 Zero steady-state error
 Pole at origin increases system type 

to type 1

 Slow transient as error is integrated 
out

 2nd-order approximation is valid

 Poles:  𝑠 = −0.07, 

𝑠 = −1.96 ± 𝑗2.44

 Zeros:  𝑠 = −0.1
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Proportional-Integral Compensation

 The compensator we just designed is an ideal integral or 
proportional-integral (PI) compensator

 Control input to plant, 𝑈 𝑠 , has two components:
 One proportional to the error, plus

 One proportional to the integral of the error

𝑈 𝑠 = 𝐸 𝑠 𝐾
𝑠 + 𝑎

𝑠
= 𝐾𝐸 𝑠 +

𝐾𝑎

𝑠
𝐸 𝑠

 Equivalent to:
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PI Compensation – Summary 

 PI compensation

𝐷 𝑠 = 𝐾
𝑠 + 𝑎

𝑠
= 𝐾𝑝 +

𝐾𝑖

𝑠

 Controller adds a pole at the origin and a zero nearby

 Pole at origin (integrator) increases system type, 
improves steady-state error 

 Zero near the origin nearly cancels the added pole, 
leaving transient response nearly unchanged
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PI Compensation – Zero Location

 Compensator zero very close to the origin:
 Closed-loop poles moved very little from uncompensated 

location
 Relatively low integral gain, 𝐾𝑖

 Closed-loop pole close to origin – slow 
 Slow transient as error is integrated out

 Compensator zero farther from the origin:
 Closed-loop poles moved farther from uncompensated 

location
 Relatively higher integral gain, 𝐾𝑖

 Closed-loop pole farther from the origin – faster 
 Error is integrated out more quickly
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PI Compensation – Zero Location

 Root locus and step response variation with 𝑧𝑐:
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Lag Compensation

 PI compensation requires an ideal integrator
 Active circuitry (opamp) required for analog implementation
 Susceptible to integrator windup

 An alternative to PI compensation is lag compensation
 Pole placed near the origin, not at the origin
 Analog implementation realizable with passive components 

(resistors and capacitors)

 Like PI compensation, lag compensation uses a closely-
spaced pole/zero pair
 Angular contributions nearly cancel
 Transient response nearly unaffected

 System type not increased
 Error is improved, not eliminated
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Lag Compensation – Error Reduction

 Consider the following generic feedback system

 A type 0 system, assuming 𝑝𝑖 ≠ 0, ∀𝑖

 Position constant:

𝐾𝑝𝑢 = lim
𝑠→0

𝐺 𝑠 = 𝐾
𝑧1𝑧2 ⋯

𝑝1𝑝2 ⋯

 Now, add lag compensation

 The compensated position constant :

𝐾𝑝𝑐 = 𝐾
𝑧1𝑧2 ⋯

𝑝1𝑝2 ⋯

𝑧𝑐

𝑝𝑐
= 𝐾𝑝𝑢

𝑧𝑐

𝑝𝑐
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Lag Compensation – Error Reduction

 Compensator pole is closer to the origin than the 
compensator zero, so

𝑧𝑐 > 𝑝𝑐      and     𝐾𝑝𝑐 > 𝐾𝑝𝑢

 For large improvements in 𝑒𝑠𝑠, make 𝑧𝑐 ≫ 𝑝𝑐

 But, to avoid affecting the transient response, we need 
𝑧𝑐 ≈ 𝑝𝑐

 As long as both 𝑧𝑐  and 𝑝𝑐 are very small, we can satisfy 
both requirements: 𝑧𝑐 ≫ 𝑝𝑐  and 𝑧𝑐 ≈ 𝑝𝑐 ≈ 0

𝐾𝑝𝑐 = 𝐾
𝑧1𝑧2 ⋯

𝑝1𝑝2 ⋯

𝑧𝑐

𝑝𝑐
= 𝐾𝑝𝑢

𝑧𝑐

𝑝𝑐
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Lag Compensation – Example

 Apply lag compensation to our previous example
 Design for a 10x improvement of the position constant

 Want 𝑝𝑐 ≈ 0  (relative to other poles)
 Let 𝑝𝑐 = 0.01

 Want a 10x improvement in 𝐾𝑝

 𝑧𝑐 = 10𝑝𝑐 = 0.1

 Lag pole and zero differ by a factor of 10
 Static error constant improved by a factor of 10

 Lag pole/zero are very close together relative to poles at 𝑠 = −1, −3
 Angular contributions nearly cancel

 Transient response nearly unaffected
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Lag Compensation – Example

 Root locus and step response of lag-compensated system
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Lag Compensation – Example

 Now, let 𝑧𝑐 = 0.4  and  𝑝𝑐 = 0.04
 2nd-order poles moved more

 Faster low-frequency closed-loop pole

 Faster overall response
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Lag Compensation – Summary 

 Lag compensation

𝐷 𝑠 = 𝐾
𝑠+𝑧𝑐

𝑠+𝑝𝑐
 ,    where   𝑝𝑐 < 𝑧𝑐

 Controller adds a pole near the origin and a slightly-
higher-frequency zero nearby

 Steady-state error improved by 𝑧𝑐/𝑝𝑐

 Angle contributions from closely-spaced pole/zero 
nearly cancel

 Transient response is nearly unchanged
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Improving Transient Response

 Consider the following system

 Root locus:

 Three asymptotes to 𝐶∞ 
at 60°, 180°, and 300°

 Real-axis breakaway 
point: 𝑠 = −1.88

 Locus crosses into RHP
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Improving Transient Response

 Design proportional controller for 10% overshoot

 𝐾 = 1.72

 Overshoot < 10% due to third pole
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Improving Transient Response

 Now, decrease settling time to 𝑡𝑠 ≈ 1.5 𝑠𝑒𝑐
 Maintain same overshoot (𝜁 = 0.59)

𝜎 ≈
4.6

𝑡𝑠
= 3.1

 Desired poles:  

 𝑠1,2 = −3.1 ± 𝑗4.23

 Not on the locus

 Must add compensation 
to move the locus where 
we want it
 Derivative compensation
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Proportional-Derivative Compensation

 One way to improve transient response is to add the 
derivative of the error to the control input to the plant

 This is ideal derivative or proportional-derivative (PD) 
compensation

𝑈 𝑠 = 𝐸 𝑠 𝐾𝑝 + 𝐾𝑑𝑠 = 𝐾 𝑠 + 𝑧𝑐 𝐸 𝑠

 Compensator transfer function:

𝐷 𝑠 = 𝐾 𝑠 + 𝑧𝑐

 Compensator adds a single zero at 𝑠 = −𝑧𝑐
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PD Compensation

 Compensator zero will change the root locus
 Placement of the zero allows us to move the locus to place 

closed-loop poles where we want them

 One less asymptote to 𝐶∞

 𝑛 − 𝑚  decreased by one 

 Asymptote origin changes

𝜎𝑎 =
Σ𝑝𝑖 − Σ𝑧𝑖

𝑛 − 𝑚

 As 𝑧𝑐 increases (moves left), 𝜎𝑎 moves right, toward the 
origin

 As 𝑧𝑐 decreases (moves right), 𝜎𝑎 moves further into the 
LHP
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PD Compensation

 Derivative compensation allows us to speed up the 
closed-loop response

 Control signal proportional to (in part) the derivative of 
the error

 When the reference, 𝑟(𝑡), changes quickly:

 Error, 𝑒(𝑡), changes quickly

 Derivative of the error, ሶ𝑒 𝑡 , is large

 Control input, 𝑢 𝑡 , may be large

 Derivative compensation anticipates future error 
and compensates for it
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PD Compensation – Example 1 

 Now add PD compensation to our example system

 Root locus depends on 𝑧𝑐

 Let’s first assume 𝑧𝑐 < 3

 Two real-axis segments

 −6 ≤ 𝑠 ≤ −3

 Between pole at −1 and 𝑧𝑐

 Two asymptotes to 𝐶∞

 𝜃𝑎 = 90°, 270°

 𝜎𝑎 =
𝑧𝑐−10

2

 As 𝑧𝑐 varies from 0 … 3, 𝜎𝑎 varies 
from −5 … − 3.5

 Breakaway point between −6 … − 3
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PD Compensation – Example 1 

 As 𝑧𝑐  moves to the left, 𝜎𝑎 moves to the right
 Moving 𝑧𝑐 allows us to move the locus
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PD Compensation – Example 1 

 Now move the zero further to the left: 𝑧𝑐 > 3

 Still two real-axis segments

 −6 ≤ 𝑠 ≤ −𝑧𝑐

 −3 ≤ 𝑠 ≤ −1

 Two asymptotes to 𝐶∞

 𝜃𝑎 = 90°, 270°

 𝜎𝑎 =
𝑧𝑐−10

2

 As 𝑧𝑐 varies from 3 … ∞, 𝜎𝑎 
varies from −3.5 … ∞

 Breakaway point between 
− 3 … − 1
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PD Compensation – Example 1 

 Asymptote origin continues to move to the right
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PD Compensation – Calculating 𝑧𝑐

 For this particular system, we’ve seen:

 Additional zero decreased the number of asymptotes to 
𝐶∞ by one

 A stabilizing effect – locus does not cross into the RHP

 Adjusting 𝑧𝑐  allows us to move the asymptote origin 
left or right

 Next, we’ll determine exactly where to place 𝑧𝑐  to 
place the closed-loop poles where we want them
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PD Compensation – Example 2

 Desired 2nd-order poles:  𝑠1,2 = −3.1 ± 𝑗4.23

 Calculate required value for 𝑧𝑐 such that these points are on the 
locus

 Must satisfy the angle criterion
∠𝐷 𝑠1 𝐺 𝑠1 = 180°

∠𝐷 𝑠1 𝐺 𝑠1 = 𝜓𝑐 − 𝜙1 − 𝜙2 − 𝜙3

𝜓𝑐 = 180° + 𝜙1 + 𝜙2 + 𝜙3

𝜙1 = 116.4°

𝜙2 = 91.35°

𝜙3 = 55.57°

 The required angle from 𝑧𝑐:

𝜓𝑐 = 83.3°

 Next, determine 𝑧𝑐
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PD Compensation – Example 2

 Compensator zero, 𝑧𝑐, must contribute 𝜓𝑐 = 83.3° at 
𝑠1,2 = −3.1 ± 𝑗4.23

 Calculate the required value of 𝑧𝑐

𝜓𝑐 = ∠ 𝑠1 + 𝑧𝑐 = ∠ −3.1 + 𝑗4.23 + 𝑧𝑐 = 83.3°

𝜓𝑐 = tan−1
4.23

𝑧𝑐 − 3.1

tan 𝜓𝑐 =
4.23

𝑧𝑐 − 3.1

𝑧𝑐 =
4.23

tan 𝜓𝑐
+ 3.1 =

4.23

tan 83.3°
+ 3.1

 The required compensator zero:

𝑧𝑐 = 3.6
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PD Compensation – Example 2

 Locus passes through 
desired points

 Closed-loop poles at 
𝑠 = −3.1 ± 𝑗4.23 for 
𝐾 = 1.6

 Third closed-loop pole 
at 𝑠 = −3.8
 Close to zero at 𝑠 =

− 3.6

 2nd-order 
approximation likely 
justified
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PD Compensation – Example 2

 Settling time reduced, 
as desired

 Overshoot is a little 
higher than 10%

 Higher order pole and 
zero do not entirely 
cancel

 Iterate to further refine 
performance, if desired
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PD Compensation – Summary

 PD compensation

𝐷 𝑠 = 𝐾 𝑠 + 𝑧𝑐

 Controller adds a single zero

 Angular contribution from the compensator zero 
allows the root locus to be modified

 Calculate 𝑧𝑐  to satisfy the angle criterion at desired 
closed-loop pole locations

 Use magnitude criterion or plot root locus to determine 
required gain
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Sensor Noise

 Feedback control requires measurement of a 
system’s output with some type of sensor
 Inherently noisy

 Measurement noise tends to be broadband in nature
◼ I.e., includes energy at high frequencies

 High-frequency signal components change rapidly
◼ Large time derivatives

 Derivative (PD) compensation amplifies measurement 
noise

 An alternative is lead compensation
 Amplification of sensor noise is reduced
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Lead Compensation

 PD compensation utilizes an ideal differentiator
 Amplifies sensor noise

 Active circuitry (opamp) required for analog implementation

 An alternative to PD compensation is lead compensation
 Compensator adds one zero and a higher-frequency pole

𝐷 𝑠 = 𝐾
𝑠+𝑧𝑐

𝑠+𝑝𝑐
 ,    where    𝑝𝑐 > 𝑧𝑐

 Pole can be far enough removed to have little impact on 2nd-order 
dynamics

 Additional high-frequency pole reduces amplification of noise

 Analog implementation realizable with passive components 
(resistors and capacitors)
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Lead Compensation – Example 

 Apply lead compensation to our previous example system

 Desired closed-loop poles: 

𝑠1,2 = −3.1 ± 𝑗4.23

 Angle criterion must be satisfied at 𝑠1

∠𝐷 𝑠1 𝐺 𝑠1 = 180°

∠𝐷 𝑠1 + ∠𝐺 𝑠1 = 180°

∠𝐷 𝑠1 = 180° − ∠𝐺 𝑠1

∠𝐺 𝑠1 = − 𝜙1 + 𝜙2 + 𝜙3

∠𝐺 𝑠1 = −263.3°

 Required net angle contribution from 
the compensator:

∠𝐷 𝑠1 = 443.3° = 83.3°
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Lead Compensation – Example 

 For 𝑠1 to be on the locus, we need ∠𝐷 𝑠1 = 83.3°
 Zero contributes a positive angle
 Higher-frequency pole contributes a smaller negative angle
 Net angular contribution will be positive, as required:

∠𝐷 𝑠1 = ∠ 𝑠1 + 𝑧𝑐 − ∠ 𝑠1 + 𝑝𝑐 = 83.3°

 Compensator angle is the angle 
of the ray from 𝑠1 through 𝑧𝑐  
and 𝑝𝑐

∠𝐷 𝑠1 = 𝜃𝑐 = 88.3°

 Infinite combinations of 𝑧𝑐  and 
𝑝𝑐  will provide the required 𝜃𝑐
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Lead Compensation – Example 

 An infinite number of possible 𝑧𝑐/𝑝𝑐  combinations
 All provide 𝜃𝑐 = 83.3°
 Different static error 

constants
 Different required gains
 Different location of other 

closed-loop poles

 No real rule for how to 
select 𝑧𝑐  and 𝑝𝑐  

 Some options:
 Set 𝑝𝑐 as high as acceptable 

given noise requirements
 Place 𝑧𝑐 below or slightly left 

of the desired poles
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 0.5, 𝑝𝑐 = 8.5
 Lower-frequency pole/zero do not adequately cancel
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 1.5, 𝑝𝑐 = 11.3
 Effect of lower-frequency pole/zero reduced
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 2.5, 𝑝𝑐 = 19.2
 Lower-frequency pole/zero very nearly cancel
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Lead Compensation – Example 

 Root locus and Step response for 𝑧𝑐 = 3.2, 𝑝𝑐 = 33.1
 Higher-frequency pole/zero almost completely cancel
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Lead Compensation – Example 

 Here, 𝑧𝑐 = 2.5 or 
𝑧𝑐 = 3.2 are good 
choices

 Steady-state error 
varies

 Error depends on 
gain required for 
each lead 
implementation
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Lead Compensation – Summary

 Lead compensation

𝐷 𝑠 = 𝐾
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
 , where 𝑝𝑐 > 𝑧𝑐

 Controller adds a lower-frequency zero and a higher-
frequency pole

 Net angular contribution from the compensator 
zero and pole allows the root locus to be modified
 Allows for transient response improvement

 Infinite number of possible 𝑧𝑐/𝑝𝑐  combinations to 
satisfy the angle criterion at the design point
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Improving Error and Transient Response

 PI (or lag) control improves steady-state error

 PD (or lead) control can improve transient response

 Using both together can improve both error and 
dynamic performance

 PD or lead compensation to achieve desired transient 
response

 PI or lag compensation to achieve desired steady-state error

 Next, we’ll look at two types of compensators:

 Proportional-integral-derivative (PID) compensator

 Lead-lag compensator
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Improving Error and Transient Response

 Two possible approaches to the design procedure:

1. First design for transient response, then design for 
steady-state error
 Response may be slowed slightly in the process of 

improving steady-state error

2. First design for steady-state error, then design for 
transient response
 Steady-state error may be affected 

 In either case, iteration is typically necessary

 We’ll follow the first approach, as does the text
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Proportional-Integral-Derivative Compensation

 Proportional-integral-
derivative (PID) compensation
 Combines PI and PD 

compensation
 PD compensation adjusts 

transient response
 PI compensation improves 

steady-state error

 Controller transfer function:

𝐷 𝑠 = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 =

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

 Two zeros and a pole at the origin
 Pole/zero at/near the origin determined through PI compensator 

design
 Second zero location determined through PD compensator design
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PID Design Procedure

 PID compensator design procedure:

1. Determine closed-loop pole location to provide desired 
transient response

2. Design PD controller (zero location and gain) to place 
closed-loop poles as desired

3. Simulate the PD-compensated system, iterate if necessary

4. Design a PI controller, add to the PD-compensated system, 
and determine the gain required to maintain desired 
dominant pole locations

5. Determine PID parameters: 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑

6. Simulate the PID-compensated system and iterate, if 
necessary
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PID Compensation – Example 

 Design PID compensation to satisfy the following 
specifications:

◼ 𝑡𝑠 ≈ 2 𝑠𝑒𝑐

◼ %𝑂𝑆 ≈ 20%

◼ Zero steady-state error to a constant reference

 First, design PD compensator to satisfy dynamic 
specifications
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PID Compensation – Example 

 Calculate desired closed-loop pole locations

𝜎 ≈
4.6

𝑡𝑠
= 2.3

𝜁 = −
ln 0.2

𝜋2 + ln2 0.2
= 0.46

𝜔𝑑 =
𝜎

𝜁
1 − 𝜁2 =

2.3

0.46
1 − 0.462

𝜔𝑑 = 4.49

  Desired 2nd-order poles:
𝑠1,2 = −2.3 ± 𝑗4.49

 Uncompensated root locus does 
not pass through the desired poles
 Gain adjustment not sufficient
 Compensation required
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PID Compensation – Example 

 PD compensator design
 Determine the required angular contribution of the 

compensator zero to satisfy the angle criterion at 𝑠1

∠𝐷𝑝𝑑 𝑠1 𝐺 𝑠1 = 180°

∠𝐷𝑝𝑑 𝑠1 = 180° − ∠𝐺 𝑠1

∠𝐺 𝑠1 = −𝜙1 − 𝜙2 − 𝜙3

𝜙1 = ∠ 𝑠1 + 1 = 106.15°

𝜙2 = ∠ 𝑠1 + 3 = 81.14°

𝜙3 = ∠ 𝑠1 + 6 = 50.51°

∠𝐺 𝑠1 = −237.8°

∠𝐷𝑝𝑑 𝑠1 = 180° + 237.8° = 417.8°

 Required angle from PD zero
𝜓𝑝𝑑 = 57.8°
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PID Compensation – Example 

 Use required compensator angle to place the PD zero, 𝑧𝑝𝑑

∠𝐷𝑝𝑑 𝑠1 = ∠ 𝑠1 + 𝑧𝑝𝑑

∠𝐷𝑝𝑑 𝑠1 = ∠ −2.3 + 𝑧𝑝𝑑 + 𝑗4.49

tan 𝜓𝑝𝑑 =
4.49

𝑧𝑝𝑑 − 2.3

𝑧𝑝𝑑 =
4.49

tan 57.8°
+ 2.3 = 5.13

 PD compensator transfer 
function:

𝐷𝑝𝑑 𝑠 = 𝐾 𝑠 + 5.13
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PID Compensation – Example 

 PD-compensated root locus

 Determine required gain 
from MATLAB plot, or

 Apply the magnitude 
criterion:

𝐾 =
1

𝐷𝑝𝑑 𝑠1 𝐺 𝑠1

𝐾 =
𝑠1 + 1 𝑠1 + 3 𝑠1 + 6

15 𝑠1 + 5.13
𝐾 = 1.55

 PD compensator:

𝐷𝑝𝑑 𝑠 = 1.55 𝑠 + 5.13
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PID Compensation – Example 

 Performance 
specifications not 
met exactly

 Higher-frequency 
pole/zero do not 
entirely cancel

 Close enough for 
now – may need to 
iterate when PI 
compensation is 
added
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PID Compensation – Example 

 Next, add PI compensation to the PD-compensated system
 Add a pole at the origin and a zero close by

𝐷𝑝𝑖 𝑠 =
𝑠 + 𝑧𝑝𝑖

𝑠

 Where should we put the zero, 𝑧𝑝𝑖?

 In this case, open-loop pole at the origin will become a closed-
loop pole near −𝑧𝑝𝑖

 Very small 𝑧𝑝𝑖  yields very slow closed-loop pole

◼ Error integrates out very slowly

 Small 𝑧𝑝𝑖  means PI compensator will have less effect on the PD-
compensated root locus

 Simulate and iterate
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PID Compensation – Example 

 Step response for various 𝑧𝑝𝑖 values:

 Here, 𝑧𝑝𝑖 = 0.8 works well

 Moving 𝑧𝑝𝑖 away from the 

open-loop pole at the 
origin moves the 2nd-order 
poles significantly:

𝑠1,2 = −1.86 ± 𝑗3.63

 Faster low-frequency 
closed-loop pole means 
error is integrated out more 
quickly
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PID Compensation – Example 

 The resulting PID compensator:

𝐷 𝑠 = 𝐾
𝑠 + 0.8

𝑠
𝑠 + 5.13

 Required gain:  𝐾 = 1.15

𝐷 𝑠 =
1.15𝑠2 + 6.817𝑠 + 4.718

𝑠

𝐷 𝑠 =
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

 The PID gains:

𝐾𝑝 = 6.817,  𝐾𝑖 = 3.718,  𝐾𝑑 = 1.15
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PID Compensation – Example 

 Step response of the PID-compensated system:

 Settling time is a little 
slow

 A bit of margin on the 
overshoot

 Iterate

 First, try adjusting gain 
alone

 If necessary, revisit the 
PD compensator
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PID Compensation – Example 

 Increasing gain to 𝐾 = 1.25 speed things up a bit, while 
increasing overshoot

 Recall, however that root 
locus asymptotes are 
vertical

 Increasing gain will have 
little effect on settling 
time

 If further refinement is 
required, must revisit the 
PD compensator
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PID Compensation – Example 

 How valid was the second-order approximation we used for design 
of this PID-compensated system?

 Pole at 𝑠 = −0.78 
 Nearly canceled by the zero at 𝑠 =

− 0.8

 Pole at s = −5.5
 Not high enough in frequency to be 

negligible, but

 Partially canceled by zero at 𝑠 =
− 5.13

 But, validity of the assumption is not 
really important
 Used as starting point to locate poles

 Iteration typically required anyway
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PID Compensation – Summary 

 PID compensation

𝐷 𝑠 = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 =

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

 Two zeros and a pole at the origin

 Cascade of PI and PD compensators

 PD compensator
 Added zero allows for transient response improvement

 PI compensator
 Pole at the origin increases system type

 Nearby zero nearly cancels angular contribution of the pole, 
limiting its effect on the root locus
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Lead-Lag Compensation

 Just as we combined derivative and integral compensation, we can 
combine lead and lag as well
 Lead-lag compensation 

 Lead compensator improves transient response 

 Lag compensator improves steady-state error

 Compensator transfer function:

𝐷 𝑠 = 𝐾
𝑠 + 𝑧𝑙𝑒𝑎𝑑

𝑠 + 𝑝𝑙𝑒𝑎𝑑

𝑠 + 𝑧𝑙𝑎𝑔

𝑠 + 𝑝𝑙𝑎𝑔

 

 Lead compensator adds a pole and zero - 𝑧𝑙𝑒𝑎𝑑 < 𝑝𝑙𝑒𝑎𝑑 

 Lag pole/zero close to the origin - 𝑧𝑙𝑎𝑔 > 𝑝𝑙𝑎𝑔 ≈ 0
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Lead-Lag Design Procedure

 Lead-lag compensator design procedure:

1. Determine closed-loop pole location to provide desired transient 
response

2. Design the lead compensator (zero, pole, and gain) to place closed-
loop poles as desired

3. Simulate the lead-compensated system, iterate if necessary

4. Evaluate the steady-state error performance of the lead-
compensated system to determine how much of an improvement 
is required to meet the error specification

5. Design the lag compensator to yield the required steady-state error 
performance

6. Simulate the lead-lag-compensated system and iterate, if necessary
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Lead-Lag Compensation – Example 

 Design lead-lag compensation to satisfy the following 
specifications:

◼ 𝑡𝑠 ≈ 2 𝑠𝑒𝑐

◼ %𝑂𝑆 ≈ 20%
◼ 2% steady-state error to a constant reference

 First, design the lead compensator to satisfy the 
dynamic specifications

 Then, design the lag compensator to meet the steady-
state error requirement
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Lead-Lag Compensation – Example 

 Design the lead compensator to achieve the same 
desired dominant 2nd-order pole locations:

𝑠1,2 = −2.3 ± 𝑗4.49

 Again, an infinite number of possibilities

 Let’s assume we want to limit the lead pole to 𝑠 =
− 100 due to noise considerations

 Lower pole frequency results in amplification of less noise

𝐷𝑙𝑒𝑎𝑑 𝑠 = 𝐾
𝑠 + 𝑧𝑙𝑒𝑎𝑑

𝑠 + 100

 Apply the angle criterion to determine 𝑧𝑙𝑒𝑎𝑑
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Lead-Lag Compensation – Example 

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 𝐺 𝑠1 = 180° →  ∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 180° − ∠𝐺 𝑠1

∠𝐺 𝑠1 = −𝜙1 − 𝜙2 − 𝜙3

𝜙1 = ∠ 𝑠1 + 1 = 106.15°

𝜙2 = ∠ 𝑠1 + 3 = 81.14°

𝜙3 = ∠ 𝑠1 + 6 = 50.51°

∠𝐺 𝑠1 = −237.8°

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 180° + 237.8°

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 417.8° = 57.8°

∠𝐷𝑙𝑒𝑎𝑑 𝑠1 = 𝜓𝑙𝑒𝑎𝑑 − 𝜙𝑙𝑒𝑎𝑑

𝜙𝑙𝑒𝑎𝑑 = ∠ 𝑠1 + 100 = 2.63°

𝜓𝑙𝑒𝑎𝑑 = ∠𝐷𝑙𝑒𝑎𝑑 𝑠1 + 𝜙𝑙𝑒𝑎𝑑

𝜓𝑙𝑒𝑎𝑑 = 60.43°
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Lead-Lag Compensation – Example 

 Next, calculate 𝑧𝑙𝑒𝑎𝑑 from 𝜓𝑙𝑒𝑎𝑑

𝜓𝑙𝑒𝑎𝑑 = ∠ 𝑠1 + 𝑧𝑙𝑒𝑎𝑑

𝜓𝑙𝑒𝑎𝑑 = tan−1
𝐼𝑚 𝑠1

𝑅𝑒 𝑠1 + 𝑧𝑙𝑒𝑎𝑑

tan 𝜓𝑙𝑒𝑎𝑑 =
𝐼𝑚 𝑠1

𝑅𝑒 𝑠1 + 𝑧𝑙𝑒𝑎𝑑

𝑧𝑙𝑒𝑎𝑑 =
𝐼𝑚 𝑠1

tan 𝜓𝑙𝑒𝑎𝑑
− 𝑅𝑒 𝑠1

𝑧𝑙𝑒𝑎𝑑 =
4.49

tan 60.43°
+ 2.3

𝑧𝑙𝑒𝑎𝑑 = 4.85
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Lead-Lag Compensation – Example 

 Lead compensator:

𝐷𝑙𝑒𝑎𝑑 𝑠 = 𝐾
𝑠 + 4.85

𝑠 + 100

 From magnitude 
criterion or MATLAB 
plot,  K = 156

 Lead compensator 
transfer function:

𝐷𝑙𝑒𝑎𝑑 𝑠 = 156
𝑠 + 4.85

𝑠 + 100

 Next, simulate the lead-compensated system to verify 
dynamic performance and to evaluate steady-state error 
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Lead-Lag Compensation – Example 

 Performance 
specifications not met 
exactly
 Higher-frequency 

pole/zero do not entirely 
cancel

 Close enough for now – 
may need to iterate when 
lag compensation is 
added, anyway

 Steady-state error is 
13.8%
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Lead-Lag Compensation – Example 

 Desired position constant:

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
= 0.02

𝐾𝑝 =
1

𝑒𝑠𝑠
− 1 = 49

 𝐾𝑝 for lead-compensated system

𝐾𝑝,𝑙𝑒𝑎𝑑 =
1

0.138
− 1 = 6.26

 Required error constant 
improvement

𝑧𝑙𝑎𝑔

𝑝𝑙𝑎𝑔
=

𝐾𝑝

𝐾𝑝,𝑙𝑒𝑎𝑑
= 7.83
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Lead-Lag Compensation – Example 

 Arbitrarily set 𝑝𝑙𝑎𝑔 = 0.01

 To achieve desired error, we need

𝑧𝑙𝑎𝑔 = 8 ⋅ 𝑝𝑙𝑎𝑔 = 0.08

 The lag compensator transfer function:

𝐷𝑙𝑎𝑔 𝑠 =
𝑠 + 0.08

𝑠 + 0.01

 Magnitudes from lag pole/zero effectively cancel, so required gain is 
unchanged:

𝐾 = 156

 Lead-lag compensator transfer function:

𝐷 𝑠 = 156
𝑠 + 4.85

𝑠 + 100

𝑠 + 0.08

𝑠 + 0.01
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Lead-Lag Compensation – Example 

 Root locus and closed-loop poles/zeros for the lead-lag-
compensated system:

 Second-order poles:

𝑠1,2 = −2.27 ± 𝑗4.46

 Other closed-loop poles:

𝑠 = −100.2

𝑠 = −5.2

𝑠 = −0.07

 Closed-loop zeros:

𝑠 = −0.08

𝑠 = −4.85
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Lead-Lag Compensation – Example 

 Step response for the lead-lag-compensated system:

 Steady-state error 
requirement is satisfied

 Slow closed-loop pole at 
𝑠 = −0.07 results in very 
slow tail as error is 
eliminated

 Can speed this up by 
moving the lag pole/zero 
away from the origin

 Dominant poles will move
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Lead-Lag Compensation – Example 

 Increase the lag pole/zero frequency by 8x

𝑝𝑙𝑎𝑔 = 0.08  and  𝑧𝑙𝑎𝑔 = 0.64

 Lag pole/zero now affect the 
root locus significantly
 Dominant poles move:

𝑠1,2 = −1.9 ± 𝑗3.8

 Required gain for 𝜁 = 0.46 
changes:

𝐾 = 123

 Reduced gain will reduce 𝐾𝑝

 𝑧𝑙𝑎𝑔/𝑝𝑙𝑎𝑔 ratio must increase
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Lead-Lag Compensation – Example 

 Some iteration shows 
reasonable transient 
and error performance 
for:

𝑝𝑙𝑎𝑔 = 0.08

𝑧𝑙𝑎𝑔 = 0.8

𝐾 = 130

 Lead-lag compensator:

𝐷 𝑠 = 130
𝑠 + 4.85

𝑠 + 100

𝑠 + 0.8

𝑠 + 0.08
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Lead-Lag Compensation – Summary 

 Lead-lag compensation

𝐷 𝑠 = 𝐾
𝑠+𝑧𝑙𝑒𝑎𝑑

𝑠+𝑝𝑙𝑒𝑎𝑑

𝑠+𝑧𝑙𝑎𝑔

𝑠+𝑝𝑙𝑎𝑔
 ,     𝑝𝑙𝑒𝑎𝑑 > 𝑧𝑙𝑒𝑎𝑑   and   𝑝𝑙𝑎𝑔 < 𝑧𝑙𝑎𝑔

 Two zeros and two poles
 Cascade of lead and lag compensators

 Lead compensator
 Added pole/zero improves transient response

 Lag compensator
 Steady-state error improved by 𝑧𝑙𝑎𝑔/𝑝𝑙𝑎𝑔

 Nearby zero partially cancels angular contribution of the pole, 
limiting its effect on the root locus

 May introduce a slow transient
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Compensator Summary

Type Transfer function Improves Comments

PI
𝐾

𝑠 + 𝑧𝑐

𝑠

Error • Pole at origin
• Zero near origin
• Increases system type
• May introduce a slow transient
• Active circuitry required
• Susceptible to integrator windup

Lag
𝐾

𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐

Error • Pole near the origin
• Small negative zero
• 𝑧𝑐 > 𝑝𝑐

• Error constant improved by 𝑧𝑐/𝑝𝑐

• May introduce a slow transient
• Passive circuitry implementation 

possible
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Compensator Summary

Type Transfer function Improves Comments

PD 𝐾 𝑠 + 𝑧𝑐 Transient response • Zero at −𝑧𝑐  contributes angle to 
satisfy angle criterion at desired 
closed-loop pole location

• Active circuitry required
• Amplifies sensor noise

Lead
𝐾

𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐

Transient response • Lower-frequency zero
• Higher-frequency pole
• Net angle contribution satisfies 

angle criterion at design point
• Added pole helps reduce 

amplification of higher-frequency 
sensor noise

• Passive circuitry implementation 
possible
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Compensator Summary

Type Transfer function Improves Comments

PID
𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑𝑠

Error & transient 
response

• PD compensation improves 
transient response

• PI compensation improves 
steady-state error

• Active circuitry
• Amplifies noise

Lead-lag
𝐾

𝑠 + 𝑧𝑙𝑒𝑎𝑑

𝑠 + 𝑝𝑙𝑒𝑎𝑑

𝑠 + 𝑧𝑙𝑎𝑔

𝑠 + 𝑝𝑙𝑎𝑔

Error & transient 
response

• Lead compensation 
improves transient 
response

• Lag compensation improves 
steady-state error

• Passive circuitry 
implementation possible

• Amplification of high-
frequency noise reduced
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