SECTION 7: FREQUENCY-
RESPONSE ANALYSIS

- ESE 430 — Feedback Control Systems



- Introduction
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Introduction
e

We have seen how to design feedback control systems
using the root locus

In the final two sections of the course, we’ll learn how
to do the same using the open-loop frequency response

Objectives:

o Review the relationship between a system’s frequency
response and its transient response

o Determine static error constants from the open-loop
frequency response

o Determine closed-loop stability from the open-loop
frequency response
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Relationship between Frequency

Response and Transient Response
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Transient/Frequency Response Relationship

We have relationships — some exact, some approximate
— between closed-loop pole locations and closed-loop
transient response

Also have relationships between closed-loop frequency
response and closed-loop transient responses

Applicable to second-order systems:

wp

T(s) =
() s2 4+ 2{w,s + w2

Also applicable to higher-order systems that are
reasonably approximated as second-order

o Systems with a pair of dominant second-order poles

K. Webb ESE 430



Transient/Frequency Response Relationship
e

Qualitative 2"d-order time/freq. response/pole relationships

o Damping ratio vs. overshoot Gain Response
vs. peaking , 1L
O Natural frequency vs. risetime _ | nh N
vs. bandwidth =
g “ \\ \\.,
Pole/Zero Plot o,
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Frequency Response Peaking

For systems with { < 0.707, the gain response will
exhibit peaking

Peak Magnitude and Frequency
15 T T

Can relate peak magnitude - o

10 P
to the damping ratio "

1 il
A4p == 0

20,1 - (2

o Relative to low-frequency
gain

5+

10+

Gain [dB]

And the peak frequency to
the damping ratio and
natural frequency

— — 2
Wy, = wpy1—27
Frequency [rad/sec]
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Transient/Frequency Response Relationship

Can also relate a system’s bandwidth (i.e., -3dB frequency,
wgy ) to the speed of its step response

Bandwidth as a function of w,, and ¢

Wpw = wnJ (1—202) +/4¢* — 432 + 2

Bandwidth as a function of 1% settling time and {

Wgy = S(\/(1—2(2)+J4c4 402 42

Bandwidth as a function of peak time and ¢

ww = _{2\/(1 — 202) + /40" — 402 + 2
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-State Error from Bode Plots
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Static Error Constants
e

For unity-feedback systems, open-loop transfer
function gives static error constants

o Use static error constants to calculate steady-state

error
K, =1lim G(s)

s—0
K, = limsG(s)
s—0
K, =1lims?G(s)
s—0
We can also determine static error constants from a
system’s open-loop Bode plot

K. Webb ESE 430



Static Error Constant — Type O
e

For a type O System | Position Consta‘nt ofalT3‘/peOSystleml|
Kp = £1_I)I(l) G(S) ? K, =14.0 dB - 5.0
. 10 “ \\\
At low frequency, i.e. \
below any open-loop o \\
poles or zeros j N
& -10 \\
G(s) = K, fooy L 100(s +30) \\
ol &) = GT 3G+ 2000 \
Read K, directly from
the open-loop Bode plot \
. \
O Low-frequency gain i R .

Frequency [rad/sec]
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Static Error Constant — Type 1

-
For a type 1 system

K, = Ll_r)ré sG(s)

At low frequencies, i.e. below any other open-loop
poles or zeros

G(s) ~-2 and |G(jw)| ~ =2

S

A straight line with a slope of —20 dB/dec

Evaluating this low-frequency asymptoteat w = 1
yields the velocity constant, K,

On the Bode plot, extend the low-frequency asymptote
tow =1
O Gain of thislineat w = 1is K,
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Static Error Constant — Type 1

Velocity Constant of a Type 1 System

T T T T | T T T T T 1T T T T T T 1T
85(s + 0.1)(s + 50)
G(S) = (o2 1.0 192.E)
' S(s*“+10s+125)
;\ I
E‘ 20_ : \“‘ —
=} .
£ ™~
© heN -
S ol W K, =106dB >34 i
0 B \\“‘ \ 1
10+ “\“
_20 1 I ! i L1 I 1 I | I i I I I | | ! “I‘\ I T N N | 1 ! i I \I
10” 107 10° 10’ 10° 10°
Frequency [rad/sec]
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Static Error Constant — Type 2

-
For a type 2 system

K, = gm s?G(s)

-0

At low frequencies, i.e. below any other open-loop
poles or zeros

Kq . K,
G(S)zs—2 and IG(]a))IzE

A straight line with a slope of —40 dB/dec

Evaluating this low-frequency asymptoteat w = 1
yields the acceleration constant, K,

On the Bode plot, extend the low-frequency asymptote
tow=1
O Gain of thislineat w = 1is K,
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Static Error Constant — Type 2

Acceleration Constant of a Type 2 System

100 T T T T T T T T T T T L T T T T T
6(s) 1600(s + 0.1)(s + 5)
S) =
s?2(s +100)
o
S,
£
O
, \ ¢ , ,
\‘\
30 ~ \
’\ ~—
\\ B
20 | % K =181dB >80
Y, a
Q\’
10 : : ‘Q\ \
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Stability

e
Consider the following system

R(s) @ ¢ 1 Y(s)

_\l/ s(s+1)(s+2)

We already have a couple of tools for assessing
stability as a function of loop gain, K

o Routh Hurwitz :

2k

o Root locus

)

nds’

1.

Root locus:

0

Imaginary Axis (secol

'
-
T

o Stable for some values of K

o Unstable for others
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Stability
-

In this case gain is stable
below some value

Other systems may be il
stable for gain above
some value

Marginal stability point:

Imaginary Axis (seconds’1)
o

o Closed-loop poles on the
imaginary axis at +jwq

o For gain K = K,

Real Axis (seconds'1)
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Open-Loop Frequency Response & Stability
e

Marginal stability point occurs when closed-loop
poles are on the imaginary axis

O Angle criterion satisfied at +jw4
IKG(w{)|=1 and 4KG(jw;) = —180°
o Note that —180° = 180°

KG(jw) is the open-loop frequency response

Marginal stability occurs when:
o Open-loop gainis: KG(jw) = 0dB
o Open-loop phaseis: £ZKG(jw) = —180°
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Stability from Bode Plots

.00
Varying K simply shifts gain response up or down
Here, stable for smaller

Open-Loop Frequency Response

gain values N ' TS
o |KG(jw)| < 0 dB when T 'l Unsablo
2KG(jw) = —180° T
Often, stable for larger
gain values " " o
o |KG(jw)| > 0 dB when
¢KG(jw) = —180°
Root locus provides this .
information
O Bode plot does not R

Frquency [rad/sec]
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Open-Loop Frequency Response & Stability
-
A method does exist for determining stability from
the open-loop frequency response:
Nyquist stability criterion
o Graphical technique
o Uses open-loop frequency response
o Determine system stability
o Determine gain ranges for stability
Before introducing the Nyquist criterion, we must
first introduce the concept of complex functional
mapping
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Complex Functional Mapping

.
Consider a complex function

(s —2z1)(s —2zp) -
(s —p)(s—p2)

Takes one complex value, s, and yields a second
complex value, F(s)

O In other words, it maps s to F(s)

F(s) =

Im s-plane fs) M F-plane
S1 S2 .
F(s) ks
Re Re
Sa S3 F(Sl)
° ° F(s2)
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Mapping of Contours

F (s) provides a mapping of individual points in the
s-plane to corresponding points in the F-plane

Can also map all points around a contour in the s-
plane to another contour in the F-plane

Im s-plane Im,  FE-plane

e N
u |

F(s1)
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Mapping of Contours
-

Recall how we approached the application of the
angle criterion

o Vector approach to the evaluation of a transfer function
at a particular point in the s-plane

[Ilvectors from zeros to s4|

G =
| (Sl)l Hlvecto’r‘S f’]"OTn pOleS to S]_l

£G(sy) =Z4(from zeros tos;) —X4( from poles to s;)

Can take the same approach to evaluating complex
functions around contours in the s-plane
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Mapping Contours — Example 1

Map contour A by F(s) = (s — z;) in a clockwise direction
o Contour A does not enclose the zero

Here, R =V,so |R| = |V| and 4R = 2V

35 T T 35

s-plane

st 1 F(S) = (S — Zl) g 15

0 o} 0

-05 . - -0.5 . -
-1 0 1 2 3 -1 0 1 2 3

Real Real

As F(s) is evaluated around A, 2V never exceeds 0° or 180°

R does the same:
o Does not rotate through a full 360°
o Contour B does not encircle the origin
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Mapping Contours — Example 2

Map contour A by F(s) in a clockwise direction
o Contour A does not enclose the pole

Here, R = 1/V,so |R| = 1/|V| and 2R = —2V

3.5 T T 1

al s-plane osk F-plane

o
8-t X

N

(4,

£V oscillates over some range well within 0° and 180°
O R rotates through the negative of the same range
o Contour B does not encircle the origin
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Mapping Contours — Example 3

Now, contour A encloses a single zero

R=V,so |R|=1|V| and 2R = 2V

s-plane F-plane

F()=(s—z) &

I rotates through a full 360° in a clockwise direction

R does the same:
o Contour B encircles the origin in a clockwise direction
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Mapping Contours — Example 4

Now, contour A encloses a single pole

R=1/V,so |R| =1/|V| and 4R = —4V

F-plane
15}¢ 1 5k ]
s-plane 1
1t : 1t :
05 ] F (S) 1 05¢ 1
\// % 0

I rotates through a full 360° in a clockwise direction
O R rotates in the opposite direction
o Contour B encircles the origin in a CCW direction
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Mapping Contours — Example 5

Now, contour A encloses two poles

1 1
R=—, so |R|=
A% V11| Va|

and 4R = —(4V; + £V,)

s-plane F-plane

1 05|
=G 1 >

I'; and V, each rotate through a full 360° in a clockwise direction
O R rotates in the opposite direction
o Contour B encircles the origin twice in a CCW direction
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Mapping Contours — Example 6

Now, contour A encloses one pole and one zero

V. v
R=2 5o |R| =1l

v il and 4R =4V, — £V,

s-plane F-plane

£V; and4V, rotate through 360° in a CW direction
o Their contributions rotate in opposite directions

0 4R does not rotate through a full 360°

o Contour B does not encircle the origin

K. Webb
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Complex Functional Mapping of Contours

Some observations regarding complex mapping of
contour A in a CW direction to contour B:

o If A does not enclose any poles or zeros, B does not encircle
the origin

o If A encloses a single pole, B will encircle the origin once in
a CCW direction

o If A encloses two poles, B will make two CCW encirclements
of the origin

o If A encloses a pole and a zero, B will not encircle the origin

Next, we’ll use these observations to help derive the
Nyquist stability criterion
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Nyquist Stability Criterion

Our goal is to assess closed-loop stability
o Determine if there are any closed-loop poles in the RHP

Consider a generic feedback system:

R(s) Y(s)
KNG G(s) N

1 H(S)

Closed-loop transfer function

G(s)

TS) = T5 6 HG)

Closed-loop poles are roots (zeros) of the closed-loop
characteristic polynomial:

14+ G(s)H(s)
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Nyquist Stability Criterion

Can represent the individual transfer functions as

N N
G(s) = D_z and H(s) = i

The closed-loop characteristic polynomial becomes

N; Ny DDy + NgNy
14 G(s)H(s) =1+ ——2 =
(s)H(s) D. Dy DD,

From this, we can see that:

O The poles of 1 + G(s)H(s) are the poles of G(s)H(s), the
open-loop poles

O The zeros of 1 + G(s)H (s) are the poles of T(s), the
closed-loop poles
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Nyquist Stability Criterion

To determine stability, look for RHP closed-loop poles

Evaluate 1 + G(s)H(s) CW around a contour that encircles
the entire right half-plane

o Evaluate 1 + G(s)H(s) along entire

Jjw-axis ma
o Encircle the entire RHP with an A

infinite-radius arc
If 1 + G(s)H(s) has one RHP pole, Re
resulting contour will encircle the g
origin once CCW )\
If 1+ G(s)H(s) has one RHP zero,
resulting contour will encircle the

origin once CW
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Nyquist Stability Criterion

Total number of CW encirclements of the origin, N, by the
resulting contour will be

N=7Z-P
o P =#of RHP polesof 1 + G(s)H(s)

o Z =#of RHP zerosof 1 + G(s)H(s) .

Want to detect RHP poles of T'(s), t

zeros of 1 + G(s)H(s), so re
Z=N+P ?

o Z = # of closed-loop RHP poles A

o P = # of open-loop RHP poles

o N = # of CW encirclements of the origin
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Nyquist Stability Criterion

-
Basis for detecting closed-loop RHP poles

o Map contour encircling the entire RHP through closed-
loop characteristic polynomial

o Count number of CW encirclements of the origin by
resulting contour

o Calculate the number of closed-loop RHP poles:
/=N+P
Need to know:

o Closed-loop characteristic polynomial

o Number of RHP poles of closed-loop characteristic
polynomial
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Nyquist Stability Criterion

Instead, map through G(s)H(s)

o Open-loop transfer function

O Easy to use for mapping — we g
know poles and zeros A
O Resulting contour shifts left by Re
1 —that’s all >
Now, count encirclements of A
the points = —1
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Nyquist Stability Criterion
R
Nyquist stability criterion

o If a contour that encloses the entire RHP is mapped
through the open-loop transfer function, G(s)H(s),
then the number of closed-loop RHP poles, Z, is given
by

/=N+P

where

N = # of CW encirclements of —1
P = # of open-loop RHP poles
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Nyquist Stability Criterion

Want to detect net clockwise encirclements

N = # CW encirclements - # CCW encirclements

o Draw a line from
s = —1inany
direction

o Count number of
times contour

crosses the line in
each direction

K. Webb
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n Nyquist Diagrams
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Nyquist Diagram

The contour that results from mapping the perimeter of the
entire RHP is a Nyquist diagram

Consider four segments of the contour:

1) Along positive jw-axis, we're Im A
evaluating G (jw)H (jw)
Open-loop frequency response A
2) Here,s - C™ O @ o
Maps to zero for any physical system / R\e
V4
3) Here, evaluating G(—jw)H(—jw)
Complex conjugate of segment (1) @A
Mirror (1) about the real axis
4) The origin

Sometimes a special case — more later
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Nyquist Criterion — Example 1

Apply the Nyquist criterion to determine stability for
the following system

R Y
(s) @ 150 1 (s)

_&r (s+1)(s+2)(s+3)

First evaluate along g ° i
segment (D, +jw-axis T
O This is the frequency \?03
response N
O Read values off of the 7 % TN
Bode plot ;23 | \\

Frequency [rad/sec]
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Nyquist Criterion — Example 1

Segment @ is a polar plot of the frequency response

All of segment @), arc at C*°, maps to the origin

Segments 1 and 2
20 T T T

151

101

5_

0

Imag.

5+

10

151

_20 1 1 1 1 1 1
-10 -5 0 5 10 15 20 25 30
Real
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Nyquist Criterion — Example 1
e

Segment @) is the complex conjugate of segment @
o Mirror about the real axis

Segment 3
20 .

151
101
5_

2 o

)
E

5+

-10

-15F

20 I I I I I I
-10 -5 0 5 10 15 20 25 30
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Nyquist Criterion — Example 1
R

Count CW encirclements of s = —1

o Draw a line from s = —1 in any direction

Here’ N — 2 Nyquist Diagram
Closed-loop RHP poles | + o
given by: ‘

101

Z=N+P

No open-loop RHP
poles,so P =0

/=24+0=2 107

15+

Imag.

Two RHP poles, so
system is unstable o s o s 10 15 2 25 a0
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Nyquist Criterion — Example 2

R(s) ‘JEE\ ” 1 Yﬁl

:}1</ (s+1)(s+2)(s+3)

This system is open-loop stable

o Stable for low enough K
o Nyquist plot will not encircle s = —1

Three poles and no zeros
o Unstable for K above some value
o Nyquist plot will encircle s = —1
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Nyquist Criterion — Example 2
e

For K = 30, N = 0, and the system is stable
Modifying K simply scales the magnitude of the

Nyquist plot

Nyquist Diagram

Imag.

ESE 430
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Nyquist Criterion — Example 2
R

Here, the Nyquist plot crosses the negative real axis at
s =—0.5

As gain increases real- Nyquist Diagram

axis crossing moves
to the left 0

Increasing K by 2x or
more results in two

0.5

Imag
-+

encirclements of s = 02f
— 1 0.4
06
o Unstable for K > 60 08}
o More later ... b5 -1' 05 0 05

Real
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Poles at the Origin
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Nyquist Diagram — Poles at the Origin

We evaluate the open-loop transfer function along a
contour including the jw-axis

G (jw) is undefined at the pole
o Must detour around the pole

Consider the common case of a pole at the origin

This is the
special case for
segment (4)

Im,

Re
N
Vd

G(s)

- s(s+2)
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Nyquist Diagram — Poles at the Origin
e
Segment (@) contour: s = pel? for 0°< 6 <90°

Evaluate G (s) around segment @ as p = 0

1

G =
(s) s=pel® pefe(pefe + 2)
Magnitude:
. 1 1
G jo = - =
6(ee™)] plpel® +2|  2p
Re
Asp — 0 ?

lim|6 (pe’?)] = o

Maps to an arc at C*
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Nyquist Diagram — Poles at the Origin

Segment (4) traversed in a CCW direction

o 6 varies from 0° ... 4+ 90°

Phase of the resulting contour: m

£G(pel?) = -0

o Negative because it is angle
from a pole

o Extra phase from additional pole

X
V&

G (s) maps segment (4) to:
o Anarcat C®
o Rotating CW from 0° to —90°*
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Nyquist Criterion — Example 3

.
Apply the Nyquist criterion to determine stability for

the following system

R(s) 1 Y(s)
_{? s(s+2) .
20 5\ ode [o]
Use Bode plot to map g —
£ ~—
segment @ B
~—
o Infinite DC gain S
o Starts at —90° at C*° R
forw =0 | N
§ -160 \‘\~ i
1801 ‘ D ‘
0 Fr;qouency [rad/sec] " 0
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Nyquist Criterion — Example 3
.
Segment (@) starts at C® at —90°
Heads to the origin at —180°
All of segment @), arc at C*, maps to the origin

Segments 1 & 2

o
+

Imag.
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Nyquist Criterion — Example 3
-

Segment @) is the complex conjugate of segment @
o Mirror about the real axis

Segment 3
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Nyquist Criterion — Example 3
R

Segment 4 mapstoa CW arcat C*™
o CW, so it does not encircle —1
n Ca n’t dl"aW to Scale Nyquist Diallgram-PoIealtthe Origin |

Here, N = 0 7

No open-loop RHP
poles,so P =0

7 =0

101

Imag.

-10

No RHP poles, so
system is stable

-15F
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Stability Margins

Recall a previous example

R Y
(s) @ ¢ 1 (Sl

;\)r (s+1)(s+2)(s+3)

According to the Nyquist plot, the system is stable
o How stable? Nyauist Disgram

Two stability metrics

O Both are measures of how close
the Nyquist plot is to encircling £
the point s = —1 i

O Gain margin and phase margin

-2 0 2 4 6
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Crossover Frequencies
e

Two important frequencies when assessing stability:

Gain crossover L Nyaustigam

frequency

o The frequency at which i
the open-loop gain 05l VoSl
crosses 0 dB f

Imag.
o

Phase crossover

05} &;\ gain crossover

f r e qu en Cy frequency B
o The frequency at which At S
the open-loop phase age— L L
crosses —180° - s 0o _
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Gain Margin

An open-loop-stable system will be closed-loop
stable as long as its gain is less than unity at the
phase crossover frequency

Nyquist Diagram
15 . .

Gain margin, GM

o The change in open-
loop gain at the phase
crossover frequency £ o
required to make the sl
closed-loop system
unstable

1 1.5
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Phase Margin

An open-loop-stable system will be closed-loop stable
as long as its phase has not fallen below —180° at the
gain crossover frequency

Nyquist Diagram

1.5

Phase margin, PM

o The change in open-
loop phase at the gain
crossover frequency
required to make the
closed-loop system
unstable

0.5 1 1.5
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Gain and Phase Margins from Bode Plots
e

GM and PM from Bode Plots

0 T

N
o
|

R

o

S
[

)
o
)
T
|

L f L ! 1 L i L L E L M T SR |
10 10° 10
Frequency [rad/sec]
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Phase Margin and Damping Ratio, ¢

-0V
PM can be expressed as a function of damping ratio, {, as

PM = tan~! 2¢
-2 Teag

For PM < 65° or so, we can approximate:

PM ~ 100{ or {~—
Phase Margin vs. Damping Ratio Damping Ratio vs. Phase Margin
90 . T T T T T T T
£ - exact
80 PM—exact [{ || ¢~ PM/100
......... PM ~ 100 1+ :
70 b
60 . . 8 o 0.8
— o
k=) > 06
E 40 E.
4 a
301 4 . 04r
20
02r
10
0 1 1 1 L L 0 L 1 1 1 1 L 1
0 0.5 1 1.5 2 25 3 0 10 20 30 40 50 60 70 80
Damping Ratio, £ PM [deg]
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Frequency Response Analysis in MATLAB
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bode.m
I

mag, phase] =bode (sys, w)

O sys: system model — state-space, transfer function, or other
O w: optional frequency vector — in rad/sec

O mag: system gain response vector

O phase: system phase response vector — in degrees

If no outputs are specified, bode response is automatically
plotted — preferable to plot yourself

Frequency vector input is optional
o If not specified, MATLAB will generate automatically

May need to do: squeeze (mag) and squeeze (phase)
to eliminate singleton dimensions of output matrices
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nyquist.m
e

nyquist (sys, w)

O sys: system model — state-space, transfer function, or other
O w: optional frequency vector — in rad/sec

MATLAB generates a Nyquist plot automatically

Can also specify outputs, if desired:
[Re, Im] =nygquist (sys,w)

o Plot is not be generated in this case
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margin.m
-

[GM, PM, wgm, wpm] =margln (sys)

O sys: system model — state-space, transfer function, or other
O GM: gain margin
O PM: phase margin —in degrees

0o wgm: frequency at which GM is measured, the phase crossover
frequency —in rad/sec

o wpm: frequency at which PM is measured, the gain crossover
frequency

If no outputs are specified, a Bode plot with GM and
PM indicated is automatically generated
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