
ESE 430 – Feedback Control Systems

SECTION 7: FREQUENCY-
RESPONSE ANALYSIS
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Introduction

 We have seen how to design feedback control systems 
using the root locus

 In the final two sections of the course, we’ll learn how 
to do the same using the open-loop frequency response

 Objectives:
 Review the relationship between a system’s frequency 

response and its transient response
 Determine static error constants from the open-loop 

frequency response
 Determine closed-loop stability from the open-loop 

frequency response



K. Webb ESE 430

Relationship between Frequency 
Response and Transient Response

4



K. Webb ESE 430

5

Transient/Frequency Response Relationship

 We have relationships – some exact, some approximate 
– between closed-loop pole locations and closed-loop 
transient response

 Also have relationships between closed-loop frequency 
response and closed-loop transient responses

 Applicable to second-order systems:

𝑇𝑇 𝑠𝑠 =
𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

 Also applicable to higher-order systems that are 
reasonably approximated as second-order
 Systems with a pair of dominant second-order poles
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Transient/Frequency Response Relationship

 Damping ratio vs. overshoot 
vs. peaking

 Natural frequency vs. risetime 
vs. bandwidth

 Qualitative 2nd-order time/freq. response/pole relationships
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Frequency Response Peaking

 For systems with 𝜁𝜁 < 0.707, the gain response will 
exhibit peaking

 Can relate peak magnitude
to the damping ratio

𝑀𝑀𝑝𝑝 =
1

2𝜁𝜁 1 − 𝜁𝜁2

 Relative to low-frequency 
gain

 And the peak frequency to 
the damping ratio and 
natural frequency

𝜔𝜔𝑝𝑝 = 𝜔𝜔𝑛𝑛 1 − 2𝜁𝜁2
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Transient/Frequency Response Relationship

 Can also relate a system’s bandwidth (i.e., -3dB frequency, 
𝜔𝜔𝐵𝐵𝐵𝐵) to the speed of its step response

 Bandwidth as a function of 𝝎𝝎𝒏𝒏 and 𝜻𝜻

𝜔𝜔𝐵𝐵𝐵𝐵 = 𝜔𝜔𝑛𝑛 1 − 2𝜁𝜁2 + 4𝜁𝜁4 − 4𝜁𝜁2 + 2

 Bandwidth as a function of 1% settling time and 𝜻𝜻

𝜔𝜔𝐵𝐵𝐵𝐵 =
4.6
𝑡𝑡𝑠𝑠𝜁𝜁

1 − 2𝜁𝜁2 + 4𝜁𝜁4 − 4𝜁𝜁2 + 2

 Bandwidth as a function of peak time and 𝜻𝜻

𝜔𝜔𝐵𝐵𝐵𝐵 =
𝜋𝜋

𝑇𝑇𝑝𝑝 1 − 𝜁𝜁2
1 − 2𝜁𝜁2 + 4𝜁𝜁4 − 4𝜁𝜁2 + 2
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Static Error Constants

 For unity-feedback systems, open-loop transfer 
function gives static error constants
 Use static error constants to calculate steady-state 

error
𝐾𝐾𝑝𝑝 = lim

𝑠𝑠→0
𝐺𝐺 𝑠𝑠

𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝑠𝑠𝐺𝐺 𝑠𝑠

𝐾𝐾𝑎𝑎 = lim
𝑠𝑠→0

𝑠𝑠2𝐺𝐺 𝑠𝑠

 We can also determine static error constants from a 
system’s open-loop Bode plot
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Static Error Constant – Type 0

 For a type 0 system

𝐾𝐾𝑝𝑝 = lim
𝑠𝑠→0

𝐺𝐺 𝑠𝑠

 At low frequency, i.e. 
below any open-loop 
poles or zeros

𝐺𝐺 𝑠𝑠 ≈ 𝐾𝐾𝑝𝑝

 Read 𝐾𝐾𝑝𝑝 directly from 
the open-loop Bode plot 
 Low-frequency gain

𝐺𝐺 𝑠𝑠 =
100 𝑠𝑠 + 30
𝑠𝑠 + 3 𝑠𝑠 + 200
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Static Error Constant – Type 1

 For a type 1 system
𝐾𝐾𝑣𝑣 = lim

𝑠𝑠→0
𝑠𝑠𝑠𝑠 𝑠𝑠

 At low frequencies, i.e. below any other open-loop 
poles or zeros

𝐺𝐺 𝑠𝑠 ≈ 𝐾𝐾𝑣𝑣
𝑠𝑠

and    𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝐾𝐾𝑣𝑣
𝜔𝜔

 A straight line with a slope of −20 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑
 Evaluating this low-frequency asymptote at 𝜔𝜔 = 1

yields the velocity constant, 𝐾𝐾𝑣𝑣
 On the Bode plot, extend the low-frequency asymptote 

to 𝜔𝜔 = 1
 Gain of this line at 𝜔𝜔 = 1 is 𝐾𝐾𝑣𝑣
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Static Error Constant – Type 1

𝐺𝐺 𝑠𝑠 =
85 𝑠𝑠 + 0.1 𝑠𝑠 + 50
𝑠𝑠 𝑠𝑠2 + 10𝑠𝑠 + 125
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Static Error Constant – Type 2

 For a type 2 system
𝐾𝐾𝑎𝑎 = lim

𝑠𝑠→0
𝑠𝑠2𝐺𝐺 𝑠𝑠

 At low frequencies, i.e. below any other open-loop 
poles or zeros

𝐺𝐺 𝑠𝑠 ≈ 𝐾𝐾𝑎𝑎
𝑠𝑠2

and    𝐺𝐺 𝑗𝑗𝑗𝑗 ≈ 𝐾𝐾𝑎𝑎
𝜔𝜔2

 A straight line with a slope of −40 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑
 Evaluating this low-frequency asymptote at 𝜔𝜔 = 1

yields the acceleration constant, 𝐾𝐾𝑎𝑎
 On the Bode plot, extend the low-frequency asymptote 

to 𝜔𝜔 = 1
 Gain of this line at 𝜔𝜔 = 1 is 𝐾𝐾𝑎𝑎
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Static Error Constant – Type 2

𝐺𝐺 𝑠𝑠 =
1600 𝑠𝑠 + 0.1 𝑠𝑠 + 5

𝑠𝑠2 𝑠𝑠 + 100
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Stability

 Consider the following system

 We already have a couple of tools for assessing 
stability as a function of loop gain, 𝐾𝐾
 Routh Hurwitz
 Root locus

 Root locus:
 Stable for some values of 𝐾𝐾
 Unstable for others
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Stability

 In this case gain is stable 
below some value

 Other systems may be 
stable for gain above
some value

 Marginal stability point:
 Closed-loop poles on the 

imaginary axis at ±𝑗𝑗𝜔𝜔1
 For gain 𝐾𝐾 = 𝐾𝐾1
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Open-Loop Frequency Response & Stability

 Marginal stability point occurs when closed-loop 
poles are on the imaginary axis
 Angle criterion satisfied at ±𝑗𝑗𝜔𝜔1

𝐾𝐾𝐾𝐾 𝑗𝑗𝜔𝜔1 = 1 and    ∠𝐾𝐾𝐾𝐾 𝑗𝑗𝜔𝜔1 = −180°

 Note that −180° = 180°

 𝐾𝐾𝐾𝐾 𝑗𝑗𝑗𝑗 is the open-loop frequency response
 Marginal stability occurs when:

 Open-loop gain is:  𝐾𝐾𝐾𝐾 𝑗𝑗𝑗𝑗 = 0 𝑑𝑑𝑑𝑑
 Open-loop phase is:   ∠𝐾𝐾𝐾𝐾 𝑗𝑗𝑗𝑗 = −180°
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Stability from Bode Plots

 Here, stable for smaller 
gain values
 𝐾𝐾𝐾𝐾 𝑗𝑗𝑗𝑗 < 0 𝑑𝑑𝑑𝑑 when
∠𝐾𝐾𝐾𝐾 𝑗𝑗𝑗𝑗 = −180°

 Often, stable for larger 
gain values
 𝐾𝐾𝐾𝐾 𝑗𝑗𝑗𝑗 > 0 𝑑𝑑𝑑𝑑 when
∠𝐾𝐾𝐾𝐾 𝑗𝑗𝑗𝑗 = −180°

 Root locus provides this 
information 
 Bode plot does not

 Varying 𝐾𝐾 simply shifts gain response up or down
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Open-Loop Frequency Response & Stability

 A method does exist for determining stability from 
the open-loop frequency response:

 Nyquist stability criterion
 Graphical technique
 Uses open-loop frequency response
 Determine system stability
 Determine gain ranges for stability

 Before introducing the Nyquist criterion, we must 
first introduce the concept of complex functional 
mapping
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Complex Functional Mapping

 Consider a complex function

𝐹𝐹 𝑠𝑠 =
𝑠𝑠 − 𝑧𝑧1 𝑠𝑠 − 𝑧𝑧2 ⋯
𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2 ⋯

 Takes one complex value, 𝑠𝑠, and yields a second 
complex value, 𝐹𝐹 𝑠𝑠
 In other words, it maps 𝑠𝑠 to 𝐹𝐹 𝑠𝑠
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Mapping of Contours

 𝐹𝐹 𝑠𝑠 provides a mapping of individual points in the 
s-plane to corresponding points in the F-plane

 Can also map all points around a contour in the s-
plane to another contour in the F-plane
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Mapping of Contours

 Recall how we approached the application of the 
angle criterion
 Vector approach to the evaluation of a transfer function 

at a particular point in the s-plane

𝐺𝐺 𝑠𝑠1 =
∏ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑡𝑡𝑡𝑡 𝑠𝑠1
∏ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑠𝑠1

∠𝐺𝐺 𝑠𝑠1 = Σ∠ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑡𝑡𝑡𝑡 𝑠𝑠1 − Σ∠ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑠𝑠1

 Can take the same approach to evaluating complex 
functions around contours in the s-plane
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Mapping Contours – Example 1

 Map contour 𝐴𝐴 by 𝐹𝐹 𝑠𝑠 = 𝑠𝑠 − 𝑧𝑧1 in a clockwise direction
 Contour 𝐴𝐴 does not enclose the zero

 Here, 𝑅𝑅 = 𝑉𝑉, so  𝑅𝑅 = 𝑉𝑉 and  ∠𝑅𝑅 = ∠𝑉𝑉

𝐹𝐹 𝑠𝑠 = 𝑠𝑠 − 𝑧𝑧1

 As 𝐹𝐹 𝑠𝑠 is evaluated around 𝐴𝐴, ∠𝑉𝑉 never exceeds 0° or 180°
 𝑅𝑅 does the same: 

 Does not rotate through a full 360°
 Contour 𝑩𝑩 does not encircle the origin

𝐴𝐴
𝐵𝐵
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Mapping Contours – Example 2

 Map contour 𝐴𝐴 by 𝐹𝐹 𝑠𝑠 in a clockwise direction
 Contour 𝐴𝐴 does not enclose the pole

 Here, 𝑅𝑅 = 1/𝑉𝑉, so  𝑅𝑅 = 1/ 𝑉𝑉 and  ∠𝑅𝑅 = −∠𝑉𝑉

 ∠𝑉𝑉 oscillates over some range well within 0° and 180°
 𝑅𝑅 rotates through the negative of the same range 
 Contour 𝑩𝑩 does not encircle the origin

𝐹𝐹 𝑠𝑠 =
1

𝑠𝑠 − 𝑝𝑝1

𝐴𝐴
𝐵𝐵
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Mapping Contours – Example 3

 Now, contour 𝑨𝑨 encloses a single zero

 𝑅𝑅 = 𝑉𝑉, so  𝑅𝑅 = 𝑉𝑉 and  ∠𝑅𝑅 = ∠𝑉𝑉

 𝑉𝑉 rotates through a full 360° in a clockwise direction
 𝑅𝑅 does the same: 

 Contour 𝑩𝑩 encircles the origin in a clockwise direction

𝐹𝐹 𝑠𝑠 = 𝑠𝑠 − 𝑧𝑧1

𝐴𝐴 𝐵𝐵
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Mapping Contours – Example 4

 Now, contour 𝑨𝑨 encloses a single pole

 𝑅𝑅 = 1/𝑉𝑉, so  𝑅𝑅 = 1/ 𝑉𝑉 and  ∠𝑅𝑅 = −∠𝑉𝑉

 𝑉𝑉 rotates through a full 360° in a clockwise direction
 𝑅𝑅 rotates in the opposite direction
 Contour 𝑩𝑩 encircles the origin in a CCW direction

𝐹𝐹 𝑠𝑠 =
1

𝑠𝑠 − 𝑝𝑝1

𝐴𝐴

𝐵𝐵
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Mapping Contours – Example 5

 Now, contour 𝑨𝑨 encloses two poles

 𝑅𝑅 = 1
𝑉𝑉1𝑉𝑉2

, so   𝑅𝑅 = 1
𝑉𝑉1 𝑉𝑉2

and    ∠𝑅𝑅 = − ∠𝑉𝑉1 + ∠𝑉𝑉2

 𝑉𝑉1 and 𝑉𝑉2 each rotate through a full 360° in a clockwise direction
 𝑅𝑅 rotates in the opposite direction
 Contour 𝑩𝑩 encircles the origin twice in a CCW direction

𝐹𝐹 𝑠𝑠 =
1

𝑠𝑠 − 𝑝𝑝1 𝑠𝑠 − 𝑝𝑝2

𝐴𝐴

𝐵𝐵
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Mapping Contours – Example 6

 ∠𝑉𝑉1 and∠𝑉𝑉2 rotate through 360° in a CW direction
 Their contributions rotate in opposite directions
 ∠𝑅𝑅 does not rotate through a full 360°
 Contour 𝑩𝑩 does not encircle the origin

𝐹𝐹 𝑠𝑠 =
𝑠𝑠 − 𝑧𝑧1
𝑠𝑠 − 𝑝𝑝1

𝐴𝐴 𝐵𝐵

 Now, contour 𝑨𝑨 encloses one pole and one zero

 𝑅𝑅 = 𝑉𝑉1
𝑉𝑉2

, so   𝑅𝑅 = 𝑉𝑉1
𝑉𝑉2

and    ∠𝑅𝑅 = ∠𝑉𝑉1 − ∠𝑉𝑉2
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Complex Functional Mapping of Contours

 Some observations regarding complex mapping of 
contour 𝐴𝐴 in a CW direction to contour 𝐵𝐵:
 If 𝐴𝐴 does not enclose any poles or zeros, 𝐵𝐵 does not encircle 

the origin

 If 𝐴𝐴 encloses a single pole, 𝐵𝐵 will encircle the origin once in 
a CCW direction

 If 𝐴𝐴 encloses two poles, 𝐵𝐵 will make two CCW encirclements 
of the origin

 If 𝐴𝐴 encloses a pole and a zero, 𝐵𝐵 will not encircle the origin

 Next, we’ll use these observations to help derive the 
Nyquist stability criterion
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Nyquist Stability Criterion

 Our goal is to assess closed-loop stability
 Determine if there are any closed-loop poles in the RHP

 Consider a generic feedback system:

 Closed-loop transfer function

𝑇𝑇 𝑠𝑠 =
𝐺𝐺 𝑠𝑠

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠

 Closed-loop poles are roots (zeros) of the closed-loop 
characteristic polynomial:

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Nyquist Stability Criterion

 Can represent the individual transfer functions as

𝐺𝐺 𝑠𝑠 = 𝑁𝑁𝐺𝐺
𝐷𝐷𝐺𝐺

and    𝐻𝐻 𝑠𝑠 = 𝑁𝑁𝐻𝐻
𝐷𝐷𝐻𝐻

 The closed-loop characteristic polynomial becomes

1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 = 1 +
𝑁𝑁𝐺𝐺
𝐷𝐷𝐺𝐺

𝑁𝑁𝐻𝐻
𝐷𝐷𝐻𝐻

=
𝐷𝐷𝐺𝐺𝐷𝐷𝐻𝐻 + 𝑁𝑁𝐺𝐺𝑁𝑁𝐻𝐻

𝐷𝐷𝐺𝐺𝐷𝐷𝐻𝐻

 From this, we can see that:
 The poles of 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 are the poles of 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 , the 

open-loop poles
 The zeros of 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 are the poles of 𝑇𝑇 𝑠𝑠 , the 

closed-loop poles
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Nyquist Stability Criterion

 To determine stability, look for RHP closed-loop poles
 Evaluate 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 CW around a contour that encircles 

the entire right half-plane
 Evaluate 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 along entire 
𝒋𝒋𝒋𝒋-axis

 Encircle the entire RHP with an 
infinite-radius arc

 If 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 has one RHP pole, 
resulting contour will encircle the 
origin once CCW

 If 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 has one RHP zero, 
resulting contour will encircle the 
origin once CW



K. Webb ESE 430

37

Nyquist Stability Criterion

 Total number of CW encirclements of the origin, 𝑁𝑁, by the 
resulting contour will be

𝑁𝑁 = 𝑍𝑍 − 𝑃𝑃
 𝑃𝑃 = # of RHP poles of 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
 𝑍𝑍 = # of RHP zeros of 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠

 Want to detect RHP poles of 𝑇𝑇 𝑠𝑠 , 
zeros of 1 + 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 , so

𝑍𝑍 = 𝑁𝑁 + 𝑃𝑃

 𝑍𝑍 = # of closed-loop RHP poles

 𝑃𝑃 = # of open-loop RHP poles

 𝑁𝑁 = # of CW encirclements of the origin
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Nyquist Stability Criterion

 Basis for detecting closed-loop RHP poles
 Map contour encircling the entire RHP through closed-

loop characteristic polynomial
 Count number of CW encirclements of the origin by 

resulting contour
 Calculate the number of closed-loop RHP poles:

𝑍𝑍 = 𝑁𝑁 + 𝑃𝑃
 Need to know:

 Closed-loop characteristic polynomial
 Number of RHP poles of closed-loop characteristic 

polynomial 
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Nyquist Stability Criterion

 Open-loop transfer function
 Easy to use for mapping – we 

know poles and zeros
 Resulting contour shifts left by 

1 – that’s all

 Now, count encirclements of 
the point 𝑠𝑠 = −1

 Instead, map through 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠
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Nyquist Stability Criterion

 Nyquist stability criterion
 If a contour that encloses the entire RHP is mapped 

through the open-loop transfer function, 𝐺𝐺 𝑠𝑠 𝐻𝐻 𝑠𝑠 , 
then the number of closed-loop RHP poles, 𝑍𝑍, is given 
by

𝑍𝑍 = 𝑁𝑁 + 𝑃𝑃
where

𝑁𝑁 = # of CW encirclements of −1
𝑃𝑃 = # of open-loop RHP poles
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Nyquist Stability Criterion

 Want to detect net clockwise encirclements
𝑁𝑁 = # CW encirclements - # CCW encirclements

 Draw a line from 
𝑠𝑠 = −1 in any 
direction

 Count number of 
times contour 
crosses the line in 
each direction

𝑁𝑁 = 2
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Nyquist Diagram

 The contour that results from mapping the perimeter of the 
entire RHP is a Nyquist diagram

 Consider four segments of the contour:

①
②

③

④

1) Along positive 𝑗𝑗𝑗𝑗-axis, we’re 
evaluating 𝐺𝐺 𝑗𝑗𝑗𝑗 𝐻𝐻(𝑗𝑗𝑗𝑗) 
 Open-loop frequency response

2) Here, 𝑠𝑠 → 𝐶𝐶∞
 Maps to zero for any physical system

3) Here, evaluating 𝐺𝐺 −𝑗𝑗𝑗𝑗 𝐻𝐻(−𝑗𝑗𝑗𝑗)
 Complex conjugate of segment ①
 Mirror ① about the real axis

4) The origin 
 Sometimes a special case – more later
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Nyquist Criterion – Example 1

 Apply the Nyquist criterion to determine stability for 
the following system

 First evaluate along 
segment ①, +𝑗𝑗𝑗𝑗-axis
 This is the frequency 

response
 Read values off of the 

Bode plot
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Nyquist Criterion – Example 1

 Segment ① is a polar plot of the frequency response

 All of segment ②, arc at 𝐶𝐶∞, maps to the origin
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Nyquist Criterion – Example 1

 Segment ③ is the complex conjugate of segment ①
 Mirror about the real axis
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Nyquist Criterion – Example 1

 Count CW encirclements of 𝑠𝑠 = −1
 Draw a line from 𝑠𝑠 = −1 in any direction

 Here, 𝑁𝑁 = 2
 Closed-loop RHP poles 

given by:
𝑍𝑍 = 𝑁𝑁 + 𝑃𝑃

 No open-loop RHP 
poles, so 𝑃𝑃 = 0

𝑍𝑍 = 2 + 0 = 2

 Two RHP poles, so 
system is unstable
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Nyquist Criterion – Example 2

 This system is open-loop stable
 Stable for low enough 𝐾𝐾
 Nyquist plot will not encircle 𝑠𝑠 = −1

 Three poles and no zeros 
 Unstable for 𝐾𝐾 above some value
 Nyquist plot will encircle 𝑠𝑠 = −1
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Nyquist Criterion – Example 2

 For 𝐾𝐾 = 30, 𝑁𝑁 = 0, and the system is stable
 Modifying 𝐾𝐾 simply scales the magnitude of the 

Nyquist plot
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Nyquist Criterion – Example 2

 Here, the Nyquist plot crosses the negative real axis at 
𝑠𝑠 = −0.5

 As gain increases real-
axis crossing moves 
to the left

 Increasing 𝐾𝐾 by 2x or 
more results in two 
encirclements of 𝑠𝑠 =
− 1
 Unstable for 𝐾𝐾 > 60
 More later …
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Nyquist Diagram – Poles at the Origin

 We evaluate the open-loop transfer function along a 
contour including the 𝑗𝑗𝑗𝑗-axis

 𝐺𝐺 𝑗𝑗𝑗𝑗 is undefined at the pole
 Must detour around the pole

 Consider the common case of a pole at the origin

④

 This is the 
special case for 
segment ④

𝐺𝐺 𝑠𝑠 =
1

𝑠𝑠 𝑠𝑠 + 2



K. Webb ESE 430

④

53

Nyquist Diagram – Poles at the Origin

 Segment ④ contour:   𝑠𝑠 = 𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗 for     0° ≤ 𝜃𝜃 ≤ 90°
 Evaluate 𝐺𝐺 𝑠𝑠 around segment ④ as 𝜌𝜌 → 0

𝐺𝐺 𝑠𝑠 �
𝑠𝑠=𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗

=
1

𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗 𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗 + 2

 Magnitude:

𝐺𝐺 𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗 =
1

𝜌𝜌 𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗 + 2
=

1
2𝜌𝜌

 As 𝜌𝜌 → 0
lim
𝜌𝜌→0

𝐺𝐺 𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗 = ∞

 Maps to an arc at 𝐶𝐶∞
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Nyquist Diagram – Poles at the Origin

 Segment ④ traversed in a CCW direction
 𝜃𝜃 varies from 0° … + 90°

 Phase of the resulting contour:

∠𝐺𝐺 𝜌𝜌𝑒𝑒𝑗𝑗𝑗𝑗 = −𝜃𝜃+

 Negative because it is angle 
from a pole

 Extra phase from additional pole

 𝐺𝐺 𝑠𝑠 maps segment ④ to:
 An arc at 𝐶𝐶∞

 Rotating CW from 0° to −90°+
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Nyquist Criterion – Example 3

 Apply the Nyquist criterion to determine stability for 
the following system

 Use Bode plot to map 
segment ①
 Infinite DC gain
 Starts at −90° at 𝐶𝐶∞

for 𝜔𝜔 = 0
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Nyquist Criterion – Example 3

 Segment ① starts at 𝐶𝐶∞ at −90°
 Heads to the origin at −180°
 All of segment ②, arc at 𝐶𝐶∞, maps to the origin



K. Webb ESE 430

57

Nyquist Criterion – Example 3

 Segment ③ is the complex conjugate of segment ①
 Mirror about the real axis
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Nyquist Criterion – Example 3

 Segment 4 maps to a CW arc at 𝐶𝐶∞

 CW, so it does not encircle −1
 Can’t draw to scale

 Here, 𝑁𝑁 = 0
 No open-loop RHP 

poles, so 𝑃𝑃 = 0
𝑍𝑍 = 0

 No RHP poles, so 
system is stable
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Stability Margins

 Recall a previous example

 According to the Nyquist plot, the system is stable
 How stable?

 Two stability metrics
 Both are measures of how close 

the Nyquist plot is to encircling 
the point 𝑠𝑠 = −1

 Gain margin and phase margin
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Crossover Frequencies

 Two important frequencies when assessing stability:

 Gain crossover 
frequency
 The frequency at which 

the open-loop gain 
crosses 0 𝑑𝑑𝑑𝑑

 Phase crossover 
frequency
 The frequency at which 

the open-loop phase 
crosses −180°
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Gain Margin

 An open-loop-stable system will be closed-loop 
stable as long as its gain is less than unity at the 
phase crossover frequency

 Gain margin, GM
 The change in open-

loop gain at the phase 
crossover frequency 
required to make the 
closed-loop system 
unstable
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Phase Margin

 An open-loop-stable system will be closed-loop stable 
as long as its phase has not fallen below −180° at the 
gain crossover frequency

 Phase margin, PM
 The change in open-

loop phase at the gain 
crossover frequency 
required to make the 
closed-loop system 
unstable
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Gain and Phase Margins from Bode Plots



K. Webb ESE 430

65

Phase Margin and Damping Ratio, 𝜁𝜁
 PM can be expressed as a function of damping ratio, 𝜁𝜁, as

𝑃𝑃𝑃𝑃 = tan−1 2𝜁𝜁

−2𝜁𝜁2+ 1+4𝜁𝜁4

 For 𝑃𝑃𝑃𝑃 ≤ 65° or so, we can approximate:

𝑃𝑃𝑃𝑃 ≈ 100𝜁𝜁 or    𝜁𝜁 ≈ 𝑃𝑃𝑃𝑃
100
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bode.m

[mag,phase] = bode(sys,w)

 sys: system model – state-space, transfer function, or other
 w: optional frequency vector – in rad/sec 
 mag: system gain response vector
 phase: system phase response vector – in degrees

 If no outputs are specified, bode response is automatically 
plotted – preferable to plot yourself

 Frequency vector input is optional
 If not specified, MATLAB will generate automatically

 May need to do: squeeze(mag) and squeeze(phase)
to eliminate singleton dimensions of output matrices
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nyquist.m

nyquist(sys,w)
 sys: system model – state-space, transfer function, or other
 w: optional frequency vector – in rad/sec 

 MATLAB generates a Nyquist plot automatically
 Can also specify outputs, if desired:

[Re,Im] = nyquist(sys,w)

 Plot is not be generated in this case
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margin.m

[GM,PM,wgm,wpm] = margin(sys)

 sys: system model – state-space, transfer function, or other
 GM: gain margin
 PM: phase margin – in degrees
 wgm: frequency at which GM is measured, the phase crossover 

frequency – in rad/sec
 wpm: frequency at which PM is measured, the gain crossover 

frequency

 If no outputs are specified, a Bode plot with GM and 
PM indicated is automatically generated
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