SECTION 7: FREQUENCY-RESPONSE ANALYSIS

ESE 430 – Feedback Control Systems

Introduction

- 3
- We have seen how to design feedback control systems using the *root locus*
- In the final two sections of the course, we'll learn how to do the same using the open-loop *frequency response*

Objectives:

- Review the relationship between a system's frequency response and its transient response
- Determine static error constants from the open-loop frequency response
- Determine closed-loop stability from the open-loop frequency response

4

Relationship between Frequency Response and Transient Response

Transient/Frequency Response Relationship

- 5
- We have relationships some exact, some approximate
 between closed-loop pole locations and closed-loop transient response
- Also have relationships between *closed-loop frequency response* and *closed-loop transient responses*
- □ Applicable to *second-order systems*:

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Also applicable to higher-order systems that are reasonably *approximated as second-order* Systems with a pair of dominant second-order poles

Transient/Frequency Response Relationship

- Qualitative 2nd-order time/freq. response/pole relationships
 - Damping ratio vs. overshoot vs. peaking
 - Natural frequency vs. risetime vs. bandwidth

Frequency Response Peaking

- 7
- For systems with $\zeta < 0.707$, the gain response will exhibit *peaking*
- Can relate *peak magnitude* to the damping ratio

$$M_p = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$

- Relative to low-frequency gain
- And the *peak frequency* to the damping ratio and natural frequency

$$\omega_p = \omega_n \sqrt{1 - 2\zeta^2}$$

Transient/Frequency Response Relationship

- 3
- □ Can also relate a system's **bandwidth** (i.e., -3dB frequency, ω_{BW}) to the speed of its step response
- Bandwidth as a function of ω_n and ζ

$$\omega_{BW} = \omega_n \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Bandwidth as a function of 1% settling time and ζ

$$\omega_{BW} = \frac{4.6}{t_s \zeta} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Bandwidth as a function of *peak time* and ζ

$$\omega_{BW} = \frac{\pi}{T_p \sqrt{1 - \zeta^2}} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Static Error Constants

- For unity-feedback systems, open-loop transfer function gives static error constants
 - Use static error constants to calculate steady-state error

$$K_{p} = \lim_{s \to 0} G(s)$$
$$K_{v} = \lim_{s \to 0} sG(s)$$
$$K_{a} = \lim_{s \to 0} s^{2}G(s)$$

We can also determine static error constants from a system's open-loop Bode plot

11

For a type 0 system

- $K_p = \lim_{s \to 0} G(s)$
- At low frequency, i.e.
 below any open-loop
 poles or zeros

 $G(s) \approx K_p$

Read K_p directly from
 the open-loop Bode plot
 Low-frequency gain

12

For a type 1 system

$$K_{v} = \lim_{s \to 0} sG(s)$$

At low frequencies, i.e. below any other open-loop poles or zeros

$$G(s) \approx \frac{K_v}{s}$$
 and $|G(j\omega)| \approx \frac{K_v}{\omega}$

- \Box A straight line with a slope of $-20 \ dB/dec$
- Evaluating this low-frequency asymptote at $\omega = 1$ yields the velocity constant, K_v
- On the Bode plot, extend the low-frequency asymptote to $\omega = 1$

• Gain of this line at $\omega = 1$ is K_v

14

For a type 2 system

$$K_a = \lim_{s \to 0} s^2 G(s)$$

At low frequencies, i.e. below any other open-loop poles or zeros

$$G(s) \approx \frac{K_a}{s^2}$$
 and $|G(j\omega)| \approx \frac{K_a}{\omega^2}$

- \Box A straight line with a slope of $-40 \ dB/dec$
- Evaluating this low-frequency asymptote at $\omega = 1$ yields the acceleration constant, K_a
- On the Bode plot, extend the low-frequency asymptote to $\omega = 1$
 - **Gain of this line at** $\omega = 1$ is K_a

¹⁶ Frequency Response & Stability

Stability

Consider the following system

- We already have a couple of tools for assessing stability as a function of loop gain, K
 - Routh Hurwitz
 - Root locus
- Root locus:

Stable for some values of KUnstable for others

Stability

- In this case gain is stable
 below some value
- Other systems may be stable for gain *above* some value
- Marginal stability point:
 Closed-loop poles on the imaginary axis at ±jω₁
 For gain K = K₁

Open-Loop Frequency Response & Stability

- 19
- Marginal stability point occurs when closed-loop poles are on the imaginary axis
 - **\square** Angle criterion satisfied at $\pm j\omega_1$

 $|KG(j\omega_1)| = 1$ and $\angle KG(j\omega_1) = -180^{\circ}$

• Note that $-180^\circ = 180^\circ$

KG(*j*ω) is the *open-loop frequency response Marginal stability* occurs when:
 Open-loop gain is: *KG*(*j*ω) = 0 *dB* Open-loop phase is: ∠*KG*(*j*ω) = -180°

Stability from Bode Plots

- Varying K simply shifts gain response up or down
- Here, stable for smaller gain values
 - $|KG(j\omega)| < 0 \ dB$ when $\angle KG(j\omega) = -180^{\circ}$
- Often, stable for larger gain values
 - $\square |KG(j\omega)| > 0 \, dB \text{ when}$
 - $\angle KG(j\omega) = -180^{\circ}$
- Root locus provides this information
 Bode plot does not

Open-Loop Frequency Response & Stability

A method does exist for determining stability from the open-loop frequency response:

Nyquist stability criterion

- Graphical technique
- Uses open-loop frequency response
- Determine system stability
- Determine gain ranges for stability
- Before introducing the Nyquist criterion, we must first introduce the concept of *complex functional mapping*

Complex Functional Mapping

23

Consider a complex function

$$F(s) = \frac{(s - z_1)(s - z_2) \cdots}{(s - p_1)(s - p_2) \cdots}$$

Takes one complex value, s, and yields a second complex value, F(s)

I In other words, it **maps** s to F(s)

Mapping of Contours

- 24
- □ *F*(*s*) provides a mapping of individual points in the s-plane to corresponding points in the F-plane
- Can also map all points around a *contour* in the splane to another contour in the F-plane

Mapping of Contours

- 25
- Recall how we approached the application of the angle criterion
 - Vector approach to the evaluation of a transfer function at a particular point in the s-plane

$$|G(s_1)| = \frac{\prod |vectors\ from\ zeros\ to\ s_1|}{\prod |vectors\ from\ poles\ to\ s_1|}$$

 $\angle G(s_1) = \Sigma \angle (from \ zeros \ to \ s_1) - \Sigma \angle (from \ poles \ to \ s_1)$

 Can take the same approach to evaluating complex functions around *contours* in the s-plane

26

- □ Map contour A by F(s) = (s z₁) in a *clockwise* direction
 □ Contour A does not enclose the zero
- \Box Here, R = V, so |R| = |V| and $\angle R = \angle V$

- □ As F(s) is evaluated around A, $\angle V$ never exceeds 0° or 180°
- \square *R* does the same:
 - Does not rotate through a full 360°
 - **Contour B does not encircle the origin**

- 27
- Map contour A by F(s) in a *clockwise* direction
 Contour A does not enclose the pole
- □ Here, R = 1/V, so |R| = 1/|V| and $\angle R = -\angle V$

- ∠V oscillates over some range well within 0° and 180°
 R rotates through the *negative* of the same range
 - Contour B does not encircle the origin

28

Now, contour A encloses a single zero

$$R = V, \text{ so } |R| = |V| \text{ and } \angle R = \angle V$$

- \Box V rotates through a full 360° in a clockwise direction
- \square *R* does the same:
 - **Contour B encircles the origin in a** *clockwise direction*

- 29
- Now, contour A encloses a single pole
- \square R = 1/V, so |R| = 1/|V| and $\angle R = -\angle V$

- \Box V rotates through a full 360° in a clockwise direction
 - **R** rotates in the *opposite direction*
 - **Contour B encircles the origin in a** <u>CCW</u> direction

30

Now, contour A encloses two poles

$$\square R = \frac{1}{V_1 V_2}, \text{ so } |R| = \frac{1}{|V_1||V_2|} \text{ and } \angle R = -(\angle V_1 + \angle V_2)$$

V₁ and V₂ each rotate through a full 360° in a clockwise direction
 R rotates in the opposite direction

Contour B encircles the origin twice in a <u>CCW</u> direction

31

Now, contour A encloses one pole and one zero

$$\square R = \frac{V_1}{V_2}, \text{ so } |R| = \frac{|V_1|}{|V_2|} \text{ and } \angle R = \angle V_1 - \angle V_2$$

- $\Box \ \angle V_1$ and $\angle V_2$ rotate through 360° in a CW direction
 - Their contributions rotate in opposite directions
 - $\angle R$ does not rotate through a full 360°
 - **Contour B does not encircle the origin**

Complex Functional Mapping of Contours

- 32
- Some observations regarding complex mapping of contour A in a CW direction to contour B:
 - If A does not enclose any poles or zeros, B does not encircle the origin
 - If A encloses a single pole, B will encircle the origin once in a CCW direction
 - If A encloses two poles, B will make two CCW encirclements of the origin
 - If A encloses a pole and a zero, B will not encircle the origin

Next, we'll use these observations to help derive the *Nyquist stability criterion*

³³ Nyquist Stability Criterion

- 34
- Our goal is to assess closed-loop stability
 Determine if there are any closed-loop poles in the RHP
- Consider a generic feedback system:

Closed-loop transfer function

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$

Closed-loop poles are roots (zeros) of the closed-loop characteristic polynomial:

$$1 + G(s)H(s)$$

35

Can represent the individual transfer functions as

$$G(s) = \frac{N_G}{D_G}$$
 and $H(s) = \frac{N_H}{D_H}$

The closed-loop characteristic polynomial becomes

$$1 + G(s)H(s) = 1 + \frac{N_G}{D_G}\frac{N_H}{D_H} = \frac{D_G D_H + N_G N_H}{D_G D_H}$$

From this, we can see that:

- The **poles** of 1 + G(s)H(s) are the poles of G(s)H(s), the **open-loop poles**
- The *zeros* of 1 + G(s)H(s) are the poles of T(s), the *closed-loop poles*

- To determine stability, look for RHP closed-loop poles
- □ Evaluate 1 + G(s)H(s) CW around a contour that encircles the *entire right half-plane*
 - Evaluate 1 + G(s)H(s) along entire *jω-axis*
 - Encircle the entire RHP with an infinite-radius arc
- If 1 + G(s)H(s) has one RHP pole, resulting contour will encircle the origin once CCW
- If 1 + G(s)H(s) has one RHP zero, resulting contour will encircle the origin once CW

37

Total number of CW encirclements of the origin, N, by the resulting contour will be

$$N = Z - P$$

- P = # of RHP poles of 1 + G(s)H(s)■ Z = # of RHP zeros of 1 + G(s)H(s)
- □ Want to detect RHP **poles** of T(s), **zeros** of 1 + G(s)H(s), so

$$Z = N + P$$

- **\Box** Z = # of closed-loop RHP poles
- P = # of open-loop RHP poles
- N = # of CW encirclements of the origin

- Basis for detecting closed-loop RHP poles
 - Map contour encircling the entire RHP through closedloop characteristic polynomial
 - Count number of CW encirclements of the origin by resulting contour
 - Calculate the number of closed-loop RHP poles:

$$Z = N + P$$

- Need to know:
 - Closed-loop characteristic polynomial
 - Number of RHP poles of closed-loop characteristic polynomial

39

- Instead, map through G(s)H(s)
 - Open-loop transfer function
 - Easy to use for mapping we know poles and zeros
 - Resulting contour shifts left by 1 – that's all
- □ Now, count encirclements of the point s = -1

Nyquist stability criterion

If a contour that encloses the entire RHP is mapped through the open-loop transfer function, G(s)H(s), then the number of closed-loop RHP poles, Z, is given by

$$Z = N + P$$

where

N = # of CW encirclements of -1P = # of open-loop RHP poles

Want to detect *net clockwise encirclements*

N =# CW encirclements - # CCW encirclements

- Draw a line from
 s = -1 in any
 direction
- Count number of times contour crosses the line in each direction

42 Nyquist Diagrams

Nyquist Diagram

- 43
- The contour that results from mapping the perimeter of the entire RHP is a Nyquist diagram
- Consider four segments of the contour:
 - 1) Along positive $j\omega$ -axis, we're evaluating $G(j\omega)H(j\omega)$
 - Open-loop frequency response
 - 2) Here, $s \rightarrow C^{\infty}$
 - Maps to zero for any physical system
 - 3) Here, evaluating $G(-j\omega)H(-j\omega)$
 - Complex conjugate of segment ①
 - Mirror ① about the real axis
 - 4) The origin
 - Sometimes a special case more later

- 44
- Apply the Nyquist criterion to determine stability for the following system

- First evaluate along segment ①, +jω-axis
 - This is the frequency response
 - Read values off of the Bode plot

45

- Segment ① is a polar plot of the frequency response
- \square All of segment (2), arc at C^{∞} , maps to the origin

46

Segment ③ is the complex conjugate of segment ①
 Mirror about the real axis

- 47
- □ Count CW encirclements of s = −1
 □ Draw a line from s = −1 in any direction
- \Box Here, N = 2
- Closed-loop RHP poles given by:

$$Z = N + P$$

- □ No open-loop RHP poles, so P = 0
 - Z = 2 + 0 = 2
- Two RHP poles, so system is unstable

- This system is open-loop stable
 - Stable for low enough *K*
 - **D** Nyquist plot will not encircle s = -1
- □ Three poles and no zeros
 □ Unstable for *K* above some value
 □ Nyquist plot will encircle s = -1

49

- □ For K = 30, N = 0, and the system is stable
- Modifying K simply scales the magnitude of the Nyquist plot

- Here, the Nyquist plot crosses the negative real axis at s = -0.5
- As gain increases realaxis crossing moves to the left
- Increasing K by 2x or more results in two encirclements of s =- 1
 - Unstable for K > 60More later ...
- mag. -0.2 -0.4 -0.6 -0.8

⁵¹ Poles at the Origin

Nyquist Diagram – Poles at the Origin

- We evaluate the open-loop transfer function along a contour including the *jω*-axis
- G(jω) is undefined at the pole
 Must detour around the pole
- Consider the common case of a pole at the origin

Nyquist Diagram – Poles at the Origin

53

- Segment (4) contour: $s = \rho e^{j\theta}$ for $0^{\circ} \le \theta \le 90^{\circ}$
- Evaluate G(s) around segment (4) as $\rho \rightarrow 0$

$$G(s)\Big|_{s=\rho e^{j\theta}} = \frac{1}{\rho e^{j\theta}(\rho e^{j\theta} + 2)}$$

Magnitude:

$$\left|G\left(\rho e^{j\theta}\right)\right| = \frac{1}{\rho |\rho e^{j\theta} + 2|} = \frac{1}{2\rho}$$

 $\square \operatorname{As} \rho \to 0$ $\lim_{\rho \to 0} |G(\rho e^{j\theta})| = \infty$

 \square Maps to an arc at C^{∞}

Nyquist Diagram – Poles at the Origin

Segment ④ traversed in a CCW direction

- $\Box \theta$ varies from 0° ... + 90°
- Phase of the resulting contour:

 $\angle G\left(\rho e^{j\theta}\right) = -\theta^+$

- Negative because it is angle from a pole
- Extra phase from additional pole
- \Box G(s) maps segment (4) to:
 - An arc at C^{∞}
 - **\square** Rotating CW from 0° to $-90^{\circ+}$

- 55
- Apply the Nyquist criterion to determine stability for the following system

- Use Bode plot to map segment ①
 - Infinite DC gain
 - Starts at -90° at C^{∞} for $\omega = 0$

- \Box Segment (1) starts at C^{∞} at -90°
- □ Heads to the origin at −180°
- \square All of segment (2), arc at C^{∞} , maps to the origin

57

Segment ③ is the complex conjugate of segment ① Mirror about the real axis

- o Segment 4 maps to a CW arc at \mathcal{C}^{∞}
 - **\square** *CW*, so it does not encircle -1
 - Can't draw to scale
- \Box Here, N = 0
- □ No open-loop RHP poles, so P = 0

Z = 0

No RHP poles, so system is stable

59 Stability Margins

Stability Margins

Recall a previous example

- According to the Nyquist plot, the system is stable
 How stable?
- Two stability metrics
 - Both are measures of how close the Nyquist plot is to encircling the point s = -1
 - **Gain margin** and **phase margin**

Crossover Frequencies

Two important frequencies when assessing stability:

Gain crossover frequency

The frequency at which the open-loop gain crosses 0 dB

Phase crossover frequency

■ The frequency at which the open-loop phase crosses −180°

Gain Margin

- An open-loop-stable system will be closed-loop stable as long as its gain is less than unity at the phase crossover frequency
- Gain margin, GM
 - The change in openloop gain at the phase crossover frequency required to make the closed-loop system unstable

Phase Margin

An open-loop-stable system will be closed-loop stable as long as its phase has not fallen below —180° at the gain crossover frequency

Phase margin, PM

The change in openloop phase at the gain crossover frequency required to make the closed-loop system unstable

Gain and Phase Margins from Bode Plots

Phase Margin and Damping Ratio, ζ

55

□ PM can be expressed as a function of damping ratio, ζ , as

$$PM = \tan^{-1}\left(\frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}}\right)$$

□ For $PM \le 65^\circ$ or so, we can approximate:

$$PM \approx 100\zeta$$
 or $\zeta \approx \frac{PM}{100}$

bode.m

[mag,phase] = bode(sys,w)

- sys: system model state-space, transfer function, or other
- w: *optional* frequency vector in rad/sec
- mag: system gain response vector
- phase: system phase response vector in degrees
- If no outputs are specified, bode response is automatically plotted – preferable to plot yourself
- Frequency vector input is optional
 If not specified, MATLAB will generate automatically
- May need to do: squeeze (mag) and squeeze (phase) to eliminate singleton dimensions of output matrices

nyquist.m

- sys: system model state-space, transfer function, or other
 w: optional frequency vector in rad/sec
- MATLAB generates a Nyquist plot automatically
 Can also specify outputs, if desired:

[Re,Im] = nyquist(sys,w)

Plot is not be generated in this case

margin.m

[GM, PM, wgm, wpm] = margin(sys)

- sys: system model state-space, transfer function, or other
- **G**M: gain margin
- PM: phase margin in degrees
- wgm: frequency at which GM is measured, the phase crossover frequency – in rad/sec
- wpm: frequency at which PM is measured, the gain crossover frequency
- If no outputs are specified, a Bode plot with GM and PM indicated is automatically generated