SECTION 8: FREQUENCY-RESPONSE DESIGN

ESE 430 – Feedback Control Systems

Introduction

- In a previous section of notes, we saw how we can use root-locus techniques to design compensators
- \Box Two primary objectives of compensation
	- Improve steady-state error
		- Proportional-integral (PI) compensation
		- Lag compensation
	- **□** Improve dynamic response
		- Proportional-derivative (PD) compensation
		- Lead compensation
- \Box In this section of notes, we'll learn to design compensators using a system's *open-loop frequency response*
	- We'll focus on lag and lead compensation

- Consider the system above with a desired phase margin of $PM \approx 50^{\circ}$
- □ According to the Bode plot:
	- $\Box \phi = -130^{\circ}$ at $\omega_{PM} = 3.46$ rad/sec
	- **□** Gain is $K_{PM} = -12.1$ dB at ω_{PM}
	- Set $K = -K_{PM} = 12.1 dB = 4$ for desired phase margin

5

- **6**
- \Box Can read the position constant directly from the Bode plot: $K_p = 14.8$ dB \rightarrow 5.5
- \Box Note that $PM \approx$ 50°, as desired
- **□ Gain margin is** $GM = 17.9 dB$

7

 \Box Steady-state error to a constant reference is

$$
e_{ss} = \frac{1}{1 + K_p} = 0.154 \rightarrow 15.4\%
$$

- **8**
- Let's say we want to reduce steady-state error to e_{ss} < 5%
- Required position constant

$$
K_p > \frac{1}{0.05} - 1 = 19
$$

- Increase gain by 4x
	- Bode plot shows desired position constant
	- \blacksquare But, phase margin has been degraded significantly

- Step response shows that error goal has been met
	- **□** But, reduced phase margin results in significant overshoot and ringing **Closed-Loop Step Response**
- Error improvement came at the cost of degraded phase margin
- Would like to be able to improve steady-state error without affecting phase margin
	- **□** Integral compensation
	- \blacksquare Lag compensation

¹⁰ Integral Compensation

PI Compensation

□ Proportional-integral (PI) compensator:

$$
D(s) = \frac{1}{T_I} \frac{(T_I s + 1)}{s}
$$

- \Box Low-frequency gain increase \blacksquare Infinite at DC
	- \Box System type increase
- \Box For $\omega \gg 1/T_I$
	- Gain unaffected
	- Phase affected little
	- PM unaffected
- \square Susceptible to integrator overflow
	- \blacksquare Lag compensation is often preferable

Lag Compensation

13

Lag compensator

$$
D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}, \qquad \alpha > 1
$$

- \Box Objective: add a gain of α at low frequencies without affecting phase margin
- \Box Lower-frequency pole: $s = -1/\alpha T$
- \Box Higher-frequency zero: $s = -1/T$
- \Box Pole/zero spacing determined by α
- \Box For $\omega \ll 1/\alpha T$
	- Gain: \sim 20 log(α) dB \Box Phase: $\sim 0^{\circ}$
- \Box For $\omega \gg 1/T$
	- \Box Gain: \sim 0 dB
	- \Box Phase: $\sim 0^{\circ}$

Lag Compensation vs. α

- Gain increased at low frequency only \Box Dependent on α \Box DC gain: $20log(\alpha)$ dB
- □ Phase lag added between compensator pole and zero
	- \Box 0° $\leq \phi_{max} \leq 90^{\circ}$ \Box Dependent on α
- \Box Lag pole/zero well below crossover frequency \Box Phase margin unaffected

Lag Compensator Design Procedure

- Lag compensator adds gain at low frequencies without affecting phase margin
- *Basic design procedure*:
	- **□** Adjust gain to achieve the desired phase margin
	- Add compensation, increasing low-frequency gain to achieve desired error performance
- Same as adjusting gain to place poles at the desired damping on the root locus, then adding compensation
	- *Root locus is not changed*
	- Here, the *frequency response near the crossover frequency is not changed*

Lag Compensator Design Procedure

- **16**
- **1. Adjust gain**, K, of the *uncompensated* system to provide the *desired phase margin* plus 5° … 10° (to account for small phase lag added by compensator)
- 2. Use the open-loop Bode plot for the uncompensated system with the value of gain set in the previous step to *determine the static error constant*
- 3. Calculate α as the low-frequency gain increase required to provide the desired error performance
- *4. Set the upper corner frequency* (the zero) to be one decade below the crossover frequency: $1/T = \omega_{PM}/10$
	- Minimizes the added phase lag at the crossover frequency
- *5. Calculate the lag pole:* $1/\alpha T$
- *6. Simulate* and *iterate*, if necessary

- \Box Design a lag compensator for the above system to satisfy the following requirements
	- e_{ss} < 2% for a step input
	- \Box %0S \approx 12%
- \Box First, determine the required phase margin to satisfy the overshoot requirement

$$
\zeta = -\frac{\ln(0S)}{\sqrt{\pi^2 + \ln^2(0S)}} = 0.559
$$

$$
PM \approx 100\zeta = 55.9^{\circ}
$$

 \Box Add ~10° to account for compensator phase at ω_{PM}

$$
PM=65.9^{\circ}
$$

17

- **18**
- Plot the open-loop Bode plot of the uncompensated system for $K=1$
- \Box Locate frequency where phase is
	- $-180^\circ + PM = -114.1^\circ$
	- \blacksquare This is ω_{PM} , the desired crossover frequency
	- $\omega_{PM} = 2.5$ rad/sec
- Gain at ω_{PM} is K_{PM} $K_{PM} = -8.4 \ dB \to 0.38$
- Increase the gain by $1/K_{PM}$
	- $K = 8.4$ dB \rightarrow 2.63

- **19**
- Gain has now been set to yield the desired phase margin of $PM = 65.9^{\circ}$
- Use the new open-loop bode plot to determine the static error constant
- Position constant of the uncompensated system given by the DC gain:

 $K_{\text{nu}} = 11.14 \text{ dB} \rightarrow 3.6$

- Calculate α to yield desired steady-state error improvement
- Steady-state error:

$$
e_{ss} = \frac{1}{1 + K_p} < 0.02
$$

 \Box The required position constant:

$$
K_p > \frac{1}{e_{ss}} - 1 = 49 \rightarrow K_p = 50
$$

Calculate α as the required position constant improvement

$$
\alpha = \frac{K_p}{K_{pu}} = 13.9 \rightarrow \alpha = 14
$$

Lag Example – Steps 4 & 5

- **21**
- \Box Place the compensator zero one decade below the crossover frequency, $\omega_{PM} = 2.5 \ rad/sec$
	- $1/T = 0.25$ rad/sec $T = 4 \text{ sec}$
- \Box The compensator pole:

$$
1/\alpha T = \frac{0.25}{14}
$$

$$
1/\alpha T = 0.018 \, rad/sec
$$

 \Box Lag compensator transfer function

$$
D(s) = \alpha \frac{(Ts + 1)}{(\alpha Ts + 1)}
$$

$$
D(s) = 14 \frac{(4s + 1)}{(56s + 1)}
$$

22

 Bode plot of compensated system shows:

$$
\blacksquare PM = 60.5^{\circ}
$$

$$
\blacksquare K_p = 50.5
$$

- Lag compensator adds gain at low frequencies only
- Phase near the crossover frequency is nearly unchanged

- Steady-state error requirement has been satisfied
- Overshoot spec has been met
	- \blacksquare Though slow tail makes overshoot assessment unclear

Lag Compensator – Summary

$$
D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}
$$

- \Box Higher-frequency zero: $s = -1/T$ \blacksquare Place one decade below crossover frequency, ω_{PM}
- \Box Lower-frequency pole: $s = -1/\alpha T$ α sets pole/zero spacing
- DC gain: $\alpha \rightarrow 20 \log_{10}(\alpha) dB$
- Compensator adds *low-frequency* gain **□** Static error constant improvement Phase margin unchanged

26 **Improving Dynamic Response**

Improving Dynamic Response

 \Box We've already seen two types of compensators to *improve dynamic response*

- Proportional derivative (PD) compensation
- **□ Lead compensation**
- \Box Unlike with the lag compensator we just looked at, here, the objective is to *alter the open-loop phase*
- \Box We'll look briefly at PD compensation, but will focus on *lead compensation*

²⁸ Derivative Compensation

PD Compensation

Proportional-Derivative (PD) compensator:

 $D(s) = (T_{D}s + 1)$

- Phase added near (and above) the crossover frequency
	- \blacksquare Increased phase margin
	- \blacksquare Stabilizing effect
- Gain continues to rise at high frequencies
	- **□** Sensor noise is amplified
	- \blacksquare Lead compensation is usually preferable

Lead Compensation

 With lead compensation, we have three design parameters:

\blacksquare Crossover frequency, ω_{PM}

- **•** Determines closed-loop bandwidth, ω_{BW} ; risetime, t_r ; peak time, t_n ; and settling time, t_s
- *Phase margin*, PM
	- **Determines damping,** ζ **, and overshoot**

Low-frequency gain

- Determines steady-state error performance
- We'll look at the design of lead compensators for two common scenarios, *either*
	- Designing for *steady-state error* and *phase margin*, *or*
	- Designing for *bandwidth* and *phase margin*

Lead Compensation

32

 \Box Lead compensator

$$
D(s) = \frac{(Ts+1)}{(BTs+1)}, \qquad \beta < 1
$$

- □ Objectives: add phase lead near the crossover frequency and/or alter the crossover frequency
- \Box Lower-frequency zero: $s = -1/T$
- \Box Higher-frequency pole: $s = -1/\beta T$
- Zero/pole spacing determined by β
- \Box For $\omega \ll 1/T$
	- \Box Gain: \sim 0 dB
	- \Box Phase: $\sim 0^{\circ}$
- \Box For $\omega \gg 1/\beta T$ Gain: \sim 20 log(1/ β) dB \Box Phase: $\sim 0^{\circ}$

Lead Compensation vs. β

33

$$
D(s) = \frac{(Ts+1)}{(\beta Ts+1)}, \qquad \beta < 1
$$

- \Box β determines:
	- \Box Zero/pole spacing
	- \blacksquare Maximum compensator phase lead, ϕ_{max}
	- \blacksquare High-frequency compensator gain

Lead Compensation – ϕ_{max}

 \Box β , zero/pole spacing, determines maximum phase lead

$$
\phi_{max} = \sin^{-1}\left(\frac{1-\beta}{1+\beta}\right)
$$

 \Box Can use a desired ϕ_{max} to determine β

> $\beta =$ $1 - \sin(\phi_{max})$ $1 + \sin(\phi_{max})$

 \Box ϕ_{max} occurs at ω_{max}

$$
\omega_{max} = \frac{1}{T\sqrt{\beta}}
$$

$$
T = \frac{1}{\omega_{max}\sqrt{\beta}}
$$

Lead Compensation – Design Procedure

35

- 1. Determine loop gain, K, to satisfy *either* steady-state error requirements *or* bandwidth requirements:
	- a) Set K to provide the required static error constant, or
	- b) Set K to place the crossover frequency an octave below the desired closed-loop bandwidth
- 2. Evaluate the phase margin of the uncompensated system, using the value of K just determined
- 3. If necessary, determine the required PM from ζ or overshoot specifications. Evaluate the PM of the uncompensated system and determine the required phase lead at the crossover frequency to achieve this PM. Add \sim 10° additional phase – this is ϕ_{max}
- 4. Calculate β from ϕ_{max}
- 5. Set $\omega_{max} = \omega_{PM}$. Calculate T from ω_{max} and β
- 6. Simulate and iterate, if necessary

Double-Lead Compensation

- A lead compensator can add, at most, 90° of phase lead
- \Box If more phase is required, use a double-lead compensator

$$
D(s) = \left[\frac{(Ts+1)}{(BTs+1)}\right]^2
$$

For phase lead over $\sim 60^{\circ}$... 70°, $1/\beta$ must be very large, so typically use double-lead compensation

Lead Compensation – Example 1

Consider the following system

 Design a compensator to satisfy the following $\blacksquare e_{ss}$ < 0.1 for a ramp input

$$
\mathbf{u} \mathbf{e}_{SS} \sim 0.1 \text{ for a family in}
$$

 \Box % $OS < 15\%$

 Here, we'll design a lead compensator to simultaneously adjust *low-frequency gain* and *phase margin*

Lead Example 1 – Steps 1 & 2

The velocity constant for the uncompensated system is

$$
K_v = \lim_{s \to 0} sKG(s)
$$

$$
K_v = \lim_{s \to 0} \frac{K}{s + 1} = K
$$

 \Box Steady-state error is

$$
e_{ss} = \frac{1}{K_v} < 0.1
$$
\n
$$
K_v = K > 10
$$

- \Box Adding a bit of margin $K = 12$
- \Box Bode plot shows the resulting phase margin is $PM = 16.4^{\circ}$

- **39**
- Approximate required phase margin for $\%OS < 15\%$ \Box Design for 13%
- First calculate the required damping ratio

$$
\zeta = -\frac{\ln(0S)}{\sqrt{\pi^2 + \ln^2(0S)}} = 0.545
$$

 Approximate corresponding PM, and add 10° correction factor

$$
PM \approx 100\zeta + 10^{\circ} = 64.5^{\circ}
$$

Calculate the required phase lead

$$
\phi_{max} = 64.5^{\circ} - 16.4^{\circ} = 48^{\circ}
$$

Lead Example 1 – Steps 4 & 5

 \Box Calculate β from ϕ_{max}

$$
\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.147
$$

 \Box Set $\omega_{max} = \omega_{PM}$, as determined from Bode plot, and calculate T

$$
\omega_{max} = \omega_{PM} = 3.4 \text{ rad/sec}
$$

$$
T = \frac{1}{\omega_{max}\sqrt{\beta}} = \frac{1}{3.4\sqrt{0.169}} = 0.7687
$$

 \Box The resulting lead compensator transfer function is

$$
KD(s) = K \frac{(Ts+1)}{(BTs+1)} = 12 \frac{(0.7687s+1)}{(0.1130s+1)}
$$

 $D(s) = 12$ $0.7687s + 1$ $0.1130s + 1$

\Box The lead compensator Bode plot

41

- \Box Lead-compensated system:
	- $PM = 48.5^{\circ}$
	- $\omega_{PM} = 7.2 \ rad/sec$
- \Box High-frequency compensator gain increased the crossover frequency
	- \Box Phase was added at the *previous* crossover frequency
	- PM is below target
- □ Move lead zero/pole to higher frequencies
	- \blacksquare Reduce the crossover frequency increase
	- \Box Improve phase margin

- **43**
- As predicted by the insufficient phase margin, overshoot exceeds the target \Box %0S = 20.9% > 15%
- Redesign compensator for higher ω_{max} \blacksquare Improve phase margin Reduce overshoot

 The steady-state error requirement has been satisfied

 $e_{ss} = 0.08 < 0.1$

- □ Will not change with compensator redesign
	- **□ Low-frequency gain** will not be changed

- **45**
- Iteration yields acceptable value for ω_{max}
	- $\omega_{max} = 5.5$ rad/sec
	- \blacksquare Maintain same zero/pole spacing, β , and, therefore, same ϕ_{max}
- Recalculate zero/pole time constants:

$$
T = \frac{1}{\omega_{max}\sqrt{\beta}} = \frac{1}{5.5\sqrt{0.147}} = 0.4742
$$

$$
\beta T = 0.147 \cdot 0.4742 = 0.0697
$$

The updated lead compensator transfer function:

$$
D(s) = 12 \frac{(0.4742s + 1)}{(0.0697s + 1)}
$$

 Crossover frequency has been reduced

 $\Box \omega_{PM} = 5.58 \ rad/sec$

- \Box Phase margin is close to the target $PM = 58.2^{\circ}$
- Dip in phase is apparent, because ω_{max} is now placed at point of lower open-loop phase

- Overshoot requirement now satisfied
	- \Box % $\dot{OS} = 14.7\% \le 15\%$
- \Box Low-frequency gain has not been changed, so error requirement is still satisfied
- Design is complete

Lead Compensation – Example 2

48

Again, consider the same system

 Design a compensator to satisfy the following $\blacksquare t_s \approx 1.2 \text{ sec } (\pm 1\%)$ \Box %0S $\approx 10\%$

 Now, we'll design a lead compensator to simultaneously adjust *closed-loop bandwidth* and *phase margin*

49

 \Box The required damping ratio for 10% overshoot is

$$
\zeta = -\frac{\ln(0S)}{\sqrt{\pi^2 + \ln^2(0S)}} = 0.5912
$$

 \Box Given the required damping ratio, calculate the required closed-loop bandwidth to yield the desired settling time

$$
\omega_{BW} = \frac{4.6}{t_s\zeta}\sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}
$$

$$
\omega_{BW}=7.52\ rad/sec
$$

 \Box We'll initially set the gain, K, to place the crossover frequency, ω_{PM} , one octave below the desired closed-loop bandwidth

$$
\omega_{PM} = \omega_{BW}/2 = 3.8 \, rad/sec
$$

Plot the Bode plot for $K = 1$

■ Determine the loop gain at the desired crossover frequency

 $K_{PM} = -23.3 dB$

Adjust K so that the loop gain at the desired crossover frequency is 0 dB

$$
K = \frac{1}{K_{PM}} = 23.3 \text{ } dB = 14.7
$$

Lead Example 2 – Steps 2 & 3

- Generate a Bode plot using the gain value just determined
- \Box Phase margin for the uncompensated system:

 $PM_{\nu} = 14.9^{\circ}$

 \Box Required phase margin to satisfy overshoot requirement:

 $PM \approx 100\zeta = 59.1^\circ$

 \Box Add 10 \degree to account for crossover frequency increase

 $PM = 69.1^{\circ}$

 \Box Required phase lead from the compensator

$$
\phi_{max} = PM - PM_u = 54.2^{\circ}
$$

Lead Example 2 – Steps 4 & 5

52

Calculate zero/pole spacing, β , from required phase lead, ϕ_{max}

$$
\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.1040
$$

 \Box Calculate zero and pole time constants

$$
T = \frac{1}{\omega_{max}\sqrt{\beta}} = 0.8228 \text{ sec}
$$

$$
\beta T = 0.0855 \text{ sec}
$$

 \Box The resulting lead compensator transfer function:

$$
KD(s) = K \frac{(Ts + 1)}{(\beta Ts + 1)}
$$

$$
KD(s) = 14.7 \frac{(0.8228s + 1)}{(0.0855s + 1)}
$$

- Bode plot of the compensated system
	- $PM = 49.9^{\circ}$
	- Substantially below target
- Crossover frequency is well above the desired value

 $\Box \omega_{PM} = 9.44 \ rad/sec$

 Iteration will likely be required

- Overshoot exceeds the specified limit \Box %0S = 19.1% > 10%
- Settling time is faster than required $t_s = 0.98 \text{ sec} < 1.2 \text{ sec}$
- Iteration is required \blacksquare Start by reducing the target ω_{PM}

- **55**
- Must redesign the compensator to meet specifications ■ Must *increase PM* to reduce overshoot \blacksquare Can afford to *reduce crossover*, ω_{PM} , to improve PM
- \Box Try various combinations of the following **E** Reduce crossover frequency, ω_{PM} \blacksquare Increase compensator zero/pole frequencies, ω_{max} \blacksquare Increase added phase lead, ϕ_{max} , by reducing β
- \Box Iteration shows acceptable results for:

■
$$
\omega_{PM} = 2.4 \text{ rad/sec}
$$

\n■ $\omega_{max} = 3.4 \text{ rad/sec}$
\n■ $\phi_{max} = 52^{\circ}$

Redesigned lead compensator:

$$
KD(s) = 6.27 \frac{(0.8542s + 1)}{(0.1013s + 1)}
$$

- Phase margin: $PM = 62^{\circ}$
- Crossover frequency: $\omega_{PM} = 4.84$ rad/sec

Dynamic response requirements are now satisfied

Lead-Compensated Step Response Overshoot: \cdots $r(t)$ y(t) 1.2 $\%OS = 8\%$ $\mathbf{1}$ $%OS = 8.0%$ Settling time: $t = 1.09$ sec 0.8 $t_s = 1.09 \text{ sec}$ $r(t), y(t)$
0.6 0.4 0.2 $^{0}_{-0.5}$ 0.5 1.5 $\overline{\mathbf{c}}$ 2.5 3 3.5 4.5 5 $\mathbf{1}$ 4 [sec] Time

Lead Compensation – Example 2

- Lead compensator adds gain at higher frequencies
	- Increased crossover frequency
	- \blacksquare Faster response time
- Phase added near the crossover frequency
	- \blacksquare Improved phase margin
	- Reduced overshoot

58

Lead Compensation – Example 2

- Step response improvements:
	- \blacksquare Faster settling time
	- \blacksquare Faster risetime
	- **□** Significantly less overshoot and ringing

59

Lead-Lag Compensation

- If performance specifications require adjustment of: **□** Bandwidth
	- **□** Phase margin
	- Steady-state error
- Lead-lag compensation may be used

$$
KD(s) = \alpha \frac{(T_{lag}s + 1)}{(\alpha T_{lag}s + 1)} \frac{(T_{lead}s + 1)}{(\beta T_{lead}s + 1)}
$$

- Many possible design procedures one possibility:
	- 1. Design lag compensation to satisfy steady-state error and phase margin
	- 2. Add lead compensation to increase bandwidth, while maintaining phase margin