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Introduction

 In a previous section of notes, we saw how we can use 
root-locus techniques to design compensators

 Two primary objectives of compensation
 Improve steady-state error

◼ Proportional-integral (PI) compensation
◼ Lag compensation

 Improve dynamic response
◼ Proportional-derivative (PD) compensation
◼ Lead compensation

 In this section of notes, we’ll learn to design 
compensators using a system’s open-loop frequency 
response
 We’ll focus on lag and lead compensation
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Improving Steady-State Error

 Consider the system above with a desired phase margin of 
𝑃𝑀 ≈ 50°

 According to the Bode plot:
 𝜙 = −130° at                  

𝜔𝑃𝑀 = 3.46 𝑟𝑎𝑑/𝑠𝑒𝑐

 Gain is 𝐾𝑃𝑀 = −12.1 𝑑𝐵        
at 𝜔𝑃𝑀

 Set 𝐾 = −𝐾𝑃𝑀 = 12.1𝑑𝐵 = 4 
for desired phase margin
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Improving Steady-State Error

 Can read the position constant directly from the Bode 
plot: 𝐾𝑝 = 14.8 𝑑𝐵 →  5.5

 Note that 𝑃𝑀 ≈
50°, as desired

 Gain margin is 
𝐺𝑀 = 17.9 𝑑𝐵
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Improving Steady-State Error

 Steady-state error to a constant reference is

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
= 0.154 →  15.4%
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Improving Steady-State Error

 Let’s say we want to reduce steady-state error to 𝑒𝑠𝑠 <
5%

 Required position 
constant

𝐾𝑝 >
1

0.05
− 1 = 19

 Increase gain by 4x
 Bode plot shows 

desired position 
constant

 But, phase margin 
has been degraded 
significantly
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Improving Steady-State Error

 Step response shows that error goal has been met
 But, reduced phase margin results in significant overshoot 

and ringing 

 Error improvement came 
at the cost of degraded 
phase margin

 Would like to be able to 
improve steady-state 
error without affecting 
phase margin
 Integral compensation

 Lag compensation
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PI Compensation

 Proportional-integral (PI) compensator:

𝐷 𝑠 =
1

𝑇𝐼

𝑇𝐼𝑠 + 1

𝑠

 Low-frequency gain increase
 Infinite at DC

 System type increase

 For 𝜔 ≫ 1/𝑇𝐼

 Gain unaffected

 Phase affected little

 PM unaffected

 Susceptible to integrator overflow
 Lag compensation is often 

preferable 



K. Webb              ESE 430

Lag Compensation12



K. Webb              ESE 430

13

Lag Compensation

 Lag compensator

𝐷 𝑠 = 𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
 , 𝛼 > 1

 Objective: add a gain of 𝛼 at low frequencies without affecting phase 
margin

 Lower-frequency pole: 𝑠 = −1/𝛼𝑇

 Higher-frequency zero: 𝑠 = −1/𝑇

 Pole/zero spacing determined by 𝛼

 For 𝜔 ≪ 1/𝛼𝑇
 Gain: ~20 log 𝛼  𝑑𝐵

 Phase: ~0°

 For 𝜔 ≫ 1/𝑇
 Gain: ~0 𝑑𝐵

 Phase: ~0°
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Lag Compensation vs. 𝛼

 Gain increased at low 
frequency only
 Dependent on 𝛼
 DC gain: 20log 𝛼  𝑑𝐵

 Phase lag added between 
compensator pole and 
zero

 0° ≤ 𝜙𝑚𝑎𝑥 ≤ 90°
 Dependent on 𝛼

 Lag pole/zero well below 
crossover frequency
 Phase margin unaffected

𝐷 𝑠 = 𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
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Lag Compensator Design Procedure

 Lag compensator adds gain at low frequencies without 
affecting phase margin

 Basic design procedure:
 Adjust gain to achieve the desired phase margin

 Add compensation, increasing low-frequency gain to 
achieve desired error performance

 Same as adjusting gain to place poles at the desired 
damping on the root locus, then adding compensation
 Root locus is not changed

 Here, the frequency response near the crossover frequency 
is not changed 
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Lag Compensator Design Procedure

1. Adjust gain, 𝐾, of the uncompensated system to provide the 
desired phase margin plus 5° … 10° (to account for small 
phase lag added by compensator)

2. Use the open-loop Bode plot for the uncompensated system 
with the value of gain set in the previous step to determine 
the static error constant 

3. Calculate 𝜶 as the low-frequency gain increase required to 
provide the desired error performance

4. Set the upper corner frequency (the zero) to be one decade 
below the crossover frequency: 1/𝑇 = 𝜔𝑃𝑀/10
 Minimizes the added phase lag at the crossover frequency

5. Calculate the lag pole: 1/𝛼𝑇

6. Simulate and iterate, if necessary
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Lag Example – Step 1

 Design a lag compensator for the above system to satisfy the following 
requirements
 𝑒𝑠𝑠 < 2% for a step input

 %𝑂𝑆 ≈ 12%

 First, determine the required phase margin to satisfy the overshoot 
requirement

𝜁 = −
ln 𝑂𝑆

𝜋2 + ln2 𝑂𝑆
= 0.559

𝑃𝑀 ≈ 100𝜁 = 55.9°

 Add ~10° to account for compensator phase at 𝜔𝑃𝑀

𝑃𝑀 = 65.9°
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Lag Example – Step 1

 Plot the open-loop Bode plot of the uncompensated system 
for 𝐾 = 1

 Locate frequency where 
phase is
−180° + 𝑃𝑀 = −114.1°
 This is 𝜔𝑃𝑀, the desired 

crossover frequency
 𝜔𝑃𝑀 = 2.5 𝑟𝑎𝑑/𝑠𝑒𝑐

 Gain at 𝜔𝑃𝑀 is 𝐾𝑃𝑀

 𝐾𝑃𝑀 = −8.4 𝑑𝐵 → 0.38

 Increase the gain by 
1/𝐾𝑃𝑀

 𝐾 = 8.4 𝑑𝐵 → 2.63
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Lag Example – Step 2

 Gain has now been set to yield the desired phase margin of 
𝑃𝑀 = 65.9°

 Use the new open-loop 
bode plot to determine 
the static error constant

 Position constant of the 
uncompensated system 
given by the DC gain:

𝐾𝑝𝑢 = 11.14 𝑑𝐵 → 3.6
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Lag Example – Step 3

 Calculate 𝛼 to yield desired steady-state error improvement

 Steady-state error:

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
< 0.02

 The required position 
constant:

𝐾𝑝 >
1

𝑒𝑠𝑠
− 1 = 49 → 𝐾𝑝 = 50

 Calculate 𝛼 as the required 
position constant 
improvement

𝛼 =
𝐾𝑝

𝐾𝑝𝑢
= 13.9 → 𝛼 = 14
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Lag Example – Steps 4 & 5

 Place the compensator zero one decade below the crossover 
frequency, 𝜔𝑃𝑀 = 2.5 𝑟𝑎𝑑/𝑠𝑒𝑐

1/𝑇 = 0.25 𝑟𝑎𝑑/𝑠𝑒𝑐

𝑇 = 4 𝑠𝑒𝑐

 The compensator pole:

1/𝛼𝑇 =
0.25

14

1/𝛼𝑇 = 0.018 𝑟𝑎𝑑/𝑠𝑒𝑐

 Lag compensator transfer 
function

𝐷 𝑠 = 𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1

𝐷 𝑠 = 14
4𝑠 + 1

56𝑠 + 1
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Lag Example – Step 6

 Bode plot of 
compensated 
system shows:

 𝑃𝑀 = 60.5°

 𝐾𝑝 = 50.5
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Lag Example – Step 6

 Lag compensator 
adds gain at low 
frequencies only

 Phase near the 
crossover frequency 
is nearly unchanged
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Lag Example – Step 6

 Steady-state error 
requirement has 
been satisfied

 Overshoot spec has 
been met

 Though slow tail 
makes overshoot 
assessment unclear



K. Webb              ESE 430

25

Lag Compensator – Summary

𝐷 𝑠 = 𝛼
𝑇𝑠 + 1

𝛼𝑇𝑠 + 1

 Higher-frequency zero:  𝑠 = −1/𝑇
 Place one decade below crossover frequency, 𝜔𝑃𝑀

 Lower-frequency pole:  𝑠 = −1/𝛼𝑇
 𝛼 sets pole/zero spacing

 DC gain: 𝛼  →  20 log10 𝛼  𝑑𝐵

 Compensator adds low-frequency gain
 Static error constant improvement

 Phase margin unchanged
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Improving Dynamic Response

 We’ve already seen two types of compensators to 
improve dynamic response

 Proportional derivative (PD) compensation 

 Lead compensation

 Unlike with the lag compensator we just looked at, 
here, the objective is to alter the open-loop phase

 We’ll look briefly at PD compensation, but will focus 
on lead compensation
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PD Compensation

 Proportional-Derivative (PD) compensator:

𝐷 𝑠 = 𝑇𝐷𝑠 + 1

 Phase added near (and 
above) the crossover 
frequency
 Increased phase margin
 Stabilizing effect

 Gain continues to rise at 
high frequencies
 Sensor noise is amplified
 Lead compensation is 

usually preferable 
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Lead Compensation

 With lead compensation, we have three design 
parameters:
 Crossover frequency, 𝜔𝑃𝑀

◼ Determines closed-loop bandwidth, 𝜔𝐵𝑊; risetime, 𝑡𝑟; peak time, 
𝑡𝑝; and settling time, 𝑡𝑠

 Phase margin, PM
◼ Determines damping, 𝜁, and overshoot

 Low-frequency gain
◼ Determines steady-state error performance

 We’ll look at the design of lead compensators for two 
common scenarios, either
 Designing for steady-state error and phase margin, or
 Designing for bandwidth and phase margin
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Lead Compensation

 Lead compensator

𝐷 𝑠 =
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
 , 𝛽 < 1

 Objectives: add phase lead near the crossover frequency and/or 
alter the crossover frequency

 Lower-frequency zero: 𝑠 = −1/𝑇

 Higher-frequency pole: 𝑠 = −1/𝛽𝑇

 Zero/pole spacing determined by 𝛽

 For 𝜔 ≪ 1/𝑇
 Gain: ~0 𝑑𝐵

 Phase: ~0°

 For 𝜔 ≫ 1/𝛽𝑇
 Gain: ~20 log 1/𝛽  𝑑𝐵

 Phase: ~0°
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Lead Compensation vs. 𝛽

𝐷 𝑠 =
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
 ,  𝛽 < 1

 𝛽 determines:

 Zero/pole spacing

 Maximum 
compensator phase 
lead, 𝜙𝑚𝑎𝑥

 High-frequency 
compensator gain
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Lead Compensation – 𝜙𝑚𝑎𝑥

 𝛽, zero/pole spacing, determines maximum phase lead

𝜙𝑚𝑎𝑥 = sin−1
1 − 𝛽

1 + 𝛽

 Can use a desired 𝜙𝑚𝑎𝑥 to 
determine 𝛽

𝛽 =
1 − sin 𝜙𝑚𝑎𝑥

1 + sin 𝜙𝑚𝑎𝑥

 𝜙𝑚𝑎𝑥 occurs at 𝜔𝑚𝑎𝑥

𝜔𝑚𝑎𝑥 =
1

𝑇 𝛽

𝑇 =
1

𝜔𝑚𝑎𝑥 𝛽
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Lead Compensation – Design Procedure

1. Determine loop gain, 𝐾, to satisfy either steady-state error 
requirements or bandwidth requirements:
a) Set 𝐾 to provide the required static error constant, or

b) Set 𝐾 to place the crossover frequency an octave below the desired 
closed-loop bandwidth

2. Evaluate the phase margin of the uncompensated system, using the 
value of 𝐾 just determined

3. If necessary, determine the required PM from 𝜁 or overshoot 
specifications. Evaluate the PM of the uncompensated system and 
determine the required phase lead at the crossover frequency to 
achieve this PM. Add ~10° additional phase – this is 𝜙𝑚𝑎𝑥

4. Calculate 𝛽 from 𝜙𝑚𝑎𝑥

5. Set 𝜔𝑚𝑎𝑥 = 𝜔𝑃𝑀. Calculate 𝑇 from 𝜔𝑚𝑎𝑥 and 𝛽 

6. Simulate and iterate, if necessary
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Double-Lead Compensation

 A lead compensator can add, at most, 90° of phase 
lead

 If more phase is required, use a double-lead 
compensator

𝐷 𝑠 =
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1

2

 For phase lead over ~60° … 70°, 1/𝛽 must be very 
large, so typically use double-lead compensation
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Lead Compensation – Example 1

 Consider the following system

 Design a compensator to satisfy the following

 𝑒𝑠𝑠 < 0.1 for a ramp input

 %𝑂𝑆 < 15%

 Here, we’ll design a lead compensator to 
simultaneously adjust low-frequency gain and 
phase margin
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Lead Example 1 – Steps 1 & 2

 The velocity constant for the uncompensated system is
𝐾𝑣 = lim

𝑠→0
𝑠𝐾𝐺 𝑠

𝐾𝑣 = lim
𝑠→0

𝐾

𝑠 + 1
= 𝐾

 Steady-state error is

𝑒𝑠𝑠 =
1

𝐾𝑣
< 0.1

𝐾𝑣 = 𝐾 > 10

 Adding a bit of margin

𝐾 = 12

 Bode plot shows the resulting 
phase margin is 𝑃𝑀 = 16.4°
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Lead Example 1 – Step 3

 Approximate required phase margin for %𝑂𝑆 < 15%
 Design for 13%

 First calculate the required damping ratio

𝜁 = −
ln 𝑂𝑆

𝜋2 + ln2 𝑂𝑆
= 0.545

 Approximate corresponding PM, and add 10° correction 
factor

𝑃𝑀 ≈ 100𝜁 + 10° = 64.5°

 Calculate the required phase lead

𝜙𝑚𝑎𝑥 = 64.5° − 16.4° = 48°
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Lead Example 1 – Steps 4 & 5

 Calculate 𝛽 from 𝜙𝑚𝑎𝑥

𝛽 =
1 − sin 𝜙𝑚𝑎𝑥

1 + sin 𝜙𝑚𝑎𝑥
= 0.147

 Set 𝜔𝑚𝑎𝑥 = 𝜔𝑃𝑀, as determined from Bode plot, and 
calculate 𝑇

𝜔𝑚𝑎𝑥 = 𝜔𝑃𝑀 = 3.4 𝑟𝑎𝑑/𝑠𝑒𝑐

𝑇 =
1

𝜔𝑚𝑎𝑥 𝛽
=

1

3.4 0.169
= 0.7687

 The resulting lead compensator transfer function is

𝐾𝐷 𝑠 = 𝐾
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
= 12

0.7687𝑠 + 1

0.1130𝑠 + 1
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Lead Example 1 – Step 6

𝐷 𝑠 = 12
0.7687𝑠 + 1

0.1130𝑠 + 1

 The lead compensator Bode plot
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Lead Example 1 – Step 6

 Lead-compensated system:

 𝑃𝑀 = 48.5°

 𝜔𝑃𝑀 = 7.2 𝑟𝑎𝑑/𝑠𝑒𝑐

 High-frequency compensator gain 
increased the crossover frequency

 Phase was added at the 
previous crossover frequency

 PM is below target

 Move lead zero/pole to higher 
frequencies
 Reduce the crossover 

frequency increase

 Improve phase margin
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Lead Example 1 – Step 6

 As predicted by the 
insufficient phase 
margin, overshoot 
exceeds the target

 %𝑂𝑆 = 20.9% > 15%

 Redesign compensator 
for higher 𝜔𝑚𝑎𝑥

 Improve phase margin

 Reduce overshoot



K. Webb              ESE 430

44

Lead Example 1 – Step 6

 The steady-state error 
requirement has been 
satisfied

 𝑒𝑠𝑠 = 0.08 < 0.1

 Will not change with 
compensator redesign

 Low-frequency gain 
will not be changed
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Lead Example 1 – Step 6

 Iteration yields acceptable value for 𝜔𝑚𝑎𝑥
 𝜔𝑚𝑎𝑥 = 5.5 rad/sec 
 Maintain same zero/pole spacing, 𝛽, and, therefore, same 

𝜙𝑚𝑎𝑥

 Recalculate zero/pole time constants:

𝑇 =
1

𝜔𝑚𝑎𝑥 𝛽
=

1

5.5 0.147
= 0.4742

𝛽𝑇 = 0.147 ⋅ 0.4742 = 0.0697

 The updated lead compensator transfer function:

𝐷 𝑠 = 12
0.4742𝑠 + 1

0.0697𝑠 + 1



K. Webb              ESE 430

46

Lead Example 1 – Step 6

 Crossover frequency has 
been reduced

 𝜔𝑃𝑀 = 5.58 𝑟𝑎𝑑/𝑠𝑒𝑐

 Phase margin is close to 
the target

 𝑃𝑀 = 58.2°

 Dip in phase is apparent, 
because 𝜔𝑚𝑎𝑥 is now 
placed at point of lower 
open-loop phase
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Lead Example 1 – Step 6

 Overshoot requirement 
now satisfied

 %𝑂𝑆 = 14.7% < 15%

 Low-frequency gain has 
not been changed, so 
error requirement is 
still satisfied

 Design is complete
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Lead Compensation – Example 2

 Again, consider the same system

 Design a compensator to satisfy the following

 𝑡𝑠 ≈ 1.2 𝑠𝑒𝑐   (±1%)

 %𝑂𝑆 ≈ 10%

 Now, we’ll design a lead compensator to 
simultaneously adjust closed-loop bandwidth and 
phase margin
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Lead Example 2 – Step 1

 The required damping ratio for 10% overshoot is

𝜁 = −
ln 𝑂𝑆

𝜋2+ln2 𝑂𝑆
= 0.5912 

 Given the required damping ratio, calculate the required closed-loop 
bandwidth to yield the desired settling time

𝜔𝐵𝑊 =
4.6

𝑡𝑠𝜁
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2  

𝜔𝐵𝑊 = 7.52 𝑟𝑎𝑑/𝑠𝑒𝑐

 We’ll initially set the gain, 𝐾, to place the crossover frequency, 𝜔𝑃𝑀, 
one octave below the desired closed-loop bandwidth

𝜔𝑃𝑀 = 𝜔𝐵𝑊/2 = 3.8 𝑟𝑎𝑑/𝑠𝑒𝑐
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Lead Example 2 – Step 1

 Plot the Bode plot for 𝐾 = 1

 Determine the loop gain at 
the desired crossover 
frequency 

𝐾𝑃𝑀 = −23.3 𝑑𝐵

 Adjust 𝐾 so that the loop 
gain at the desired 
crossover frequency is 0 𝑑𝐵

𝐾 =
1

𝐾𝑃𝑀
= 23.3 𝑑𝐵 = 14.7
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Lead Example 2 – Steps 2 & 3

 Phase margin for the 
uncompensated system:

𝑃𝑀𝑢 = 14.9°

 Required phase margin to satisfy 
overshoot requirement:

𝑃𝑀 ≈ 100𝜁 = 59.1°

 Add 10° to account for 
crossover frequency increase

𝑃𝑀 = 69.1°

 Required phase lead from the 
compensator

𝜙𝑚𝑎𝑥 = 𝑃𝑀 − 𝑃𝑀𝑢 = 54.2°

 Generate a Bode plot using the gain value just determined
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Lead Example 2 – Steps 4 & 5

 Calculate zero/pole spacing, 𝛽, from required phase lead, 𝜙𝑚𝑎𝑥

𝛽 =
1 − sin 𝜙𝑚𝑎𝑥

1 + sin 𝜙𝑚𝑎𝑥
= 0.1040

 Calculate zero and pole time constants

𝑇 =
1

𝜔𝑚𝑎𝑥 𝛽
= 0.8228 𝑠𝑒𝑐 

𝛽𝑇 = 0.0855 𝑠𝑒𝑐

 The resulting lead compensator transfer 
function:

𝐾𝐷 𝑠 = 𝐾
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1

𝐾𝐷 𝑠 = 14.7
0.8228𝑠 + 1

0.0855𝑠 + 1
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Lead Example 2 – Step 6

 Bode plot of the 
compensated system

 𝑃𝑀 = 49.9°

 Substantially below 
target

 Crossover frequency is 
well above the desired 
value
 𝜔𝑃𝑀 = 9.44 𝑟𝑎𝑑/𝑠𝑒𝑐

 Iteration will likely be 
required
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Lead Example 2 – Step 6

 Overshoot exceeds the 
specified limit
 %𝑂𝑆 = 19.1% > 10%

 Settling time is faster 
than required
 𝑡𝑠 = 0.98 𝑠𝑒𝑐 < 1.2 𝑠𝑒𝑐

 Iteration is required

 Start by reducing the 
target 𝜔𝑃𝑀
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Lead Example 2 – Step 6

 Must redesign the compensator to meet specifications
 Must increase PM to reduce overshoot
 Can afford to reduce crossover, 𝜔𝑃𝑀, to improve PM

 Try various combinations of the following
 Reduce crossover frequency, 𝜔𝑃𝑀

 Increase compensator zero/pole frequencies, 𝜔𝑚𝑎𝑥

 Increase added phase lead, 𝜙𝑚𝑎𝑥, by reducing 𝛽

 Iteration shows acceptable results for:

 𝜔𝑃𝑀 = 2.4 𝑟𝑎𝑑/𝑠𝑒𝑐

 𝜔𝑚𝑎𝑥 = 3.4 𝑟𝑎𝑑/𝑠𝑒𝑐

 𝜙𝑚𝑎𝑥 = 52°
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Lead Example 2 – Step 6

 Redesigned lead compensator:

𝐾𝐷 𝑠 = 6.27
0.8542𝑠 + 1

0.1013𝑠 + 1

 Phase margin:
𝑃𝑀 = 62°

 Crossover frequency:
𝜔𝑃𝑀 = 4.84 𝑟𝑎𝑑/𝑠𝑒𝑐
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Lead Example 2 – Step 6

 Dynamic response requirements are now satisfied

 Overshoot:

%𝑂𝑆 = 8%

 Settling time:

𝑡𝑠 = 1.09 𝑠𝑒𝑐
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Lead Compensation – Example 2

 Lead compensator 
adds gain at higher 
frequencies

 Increased crossover 
frequency

 Faster response time

 Phase added near the 
crossover frequency

 Improved phase 
margin

 Reduced overshoot
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Lead Compensation – Example 2

 Step response 
improvements:

 Faster settling time

 Faster risetime

 Significantly less 
overshoot and ringing
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Lead-Lag Compensation

 If performance specifications require adjustment of:
 Bandwidth
 Phase margin
 Steady-state error

 Lead-lag compensation may be used

𝐾𝐷 𝑠 = 𝛼
𝑇𝑙𝑎𝑔𝑠 + 1

𝛼𝑇𝑙𝑎𝑔𝑠 + 1

𝑇𝑙𝑒𝑎𝑑𝑠 + 1

𝛽𝑇𝑙𝑒𝑎𝑑𝑠 + 1

 Many possible design procedures – one possibility:

1. Design lag compensation to satisfy steady-state error and 
phase margin

2. Add lead compensation to increase bandwidth, while 
maintaining phase margin
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