SECTION 8: FREQUENCY-RESPONSE DESIGN

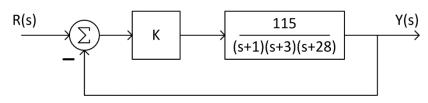
ESE 430 – Feedback Control Systems

² Introduction

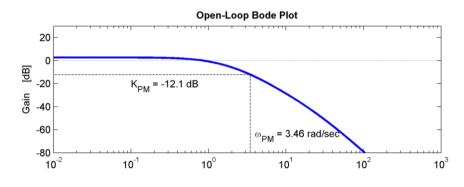
K. Webb **ESE 430**

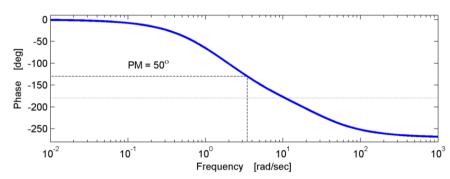
- In a previous section of notes, we saw how we can use root-locus techniques to design compensators
- Two primary objectives of compensation
 - Improve steady-state error
 - Proportional-integral (PI) compensation
 - Lag compensation
 - Improve dynamic response
 - Proportional-derivative (PD) compensation
 - Lead compensation
- In this section of notes, we'll learn to design compensators using a system's open-loop frequency response
 - We'll focus on lag and lead compensation

5



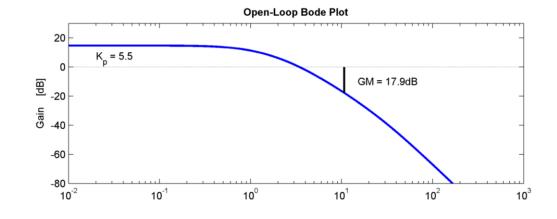
- □ Consider the system above with a desired phase margin of $PM \approx 50^{\circ}$
- According to the Bode plot:
 - $\phi = -130^{\circ}$ at $\omega_{PM} = 3.46 \ rad/sec$
 - Gain is $K_{PM} = -12.1 \ dB$ at ω_{PM}
 - Set $K = -K_{PM} = 12.1dB = 4$ for desired phase margin

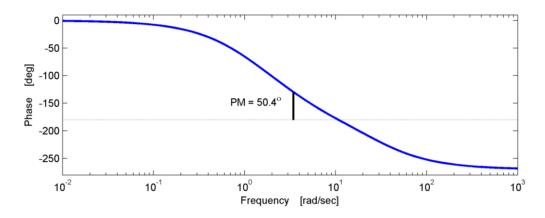




6

- □ Can read the position constant directly from the Bode plot: $K_p = 14.8 \ dB \rightarrow 5.5$
- □ Note that $PM \approx 50^{\circ}$, as desired
- □ Gain margin is $GM = 17.9 \ dB$

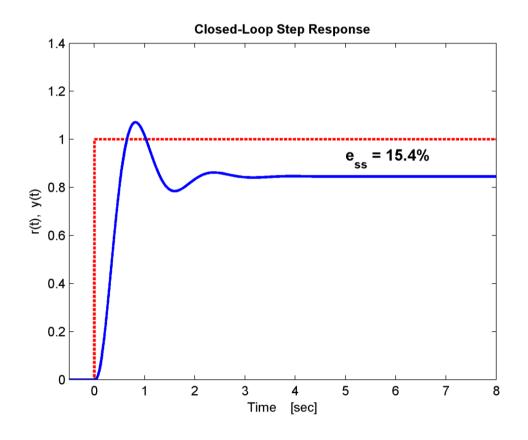




_

Steady-state error to a constant reference is

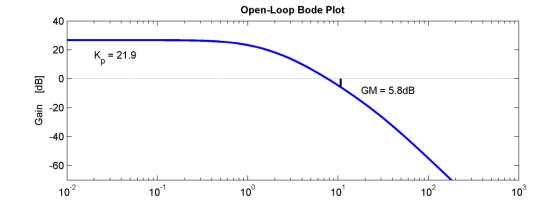
$$e_{ss} = \frac{1}{1 + K_p} = 0.154 \rightarrow 15.4\%$$

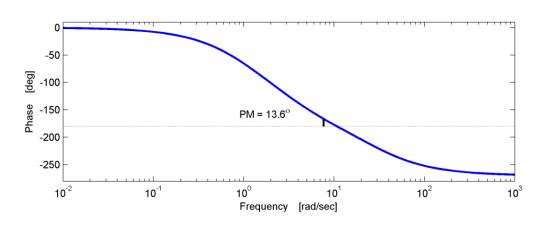


- $\,\Box\,$ Let's say we want to reduce steady-state error to $e_{ss} < 5\%$
- Required position constant

$$K_p > \frac{1}{0.05} - 1 = 19$$

- □ Increase gain by 4x
 - Bode plot shows desired position constant
 - But, phase margin has been degraded significantly





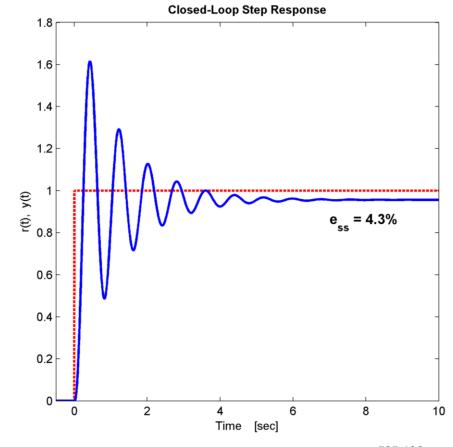
Step response shows that error goal has been met

■ But, reduced phase margin results in significant overshoot

and ringing

Error improvement came at the cost of degraded phase margin

- Would like to be able to improve steady-state error without affecting phase margin
 - Integral compensation
 - Lag compensation



10 Integral Compensation

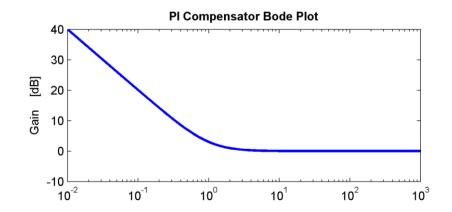
K. Webb **ESE 430**

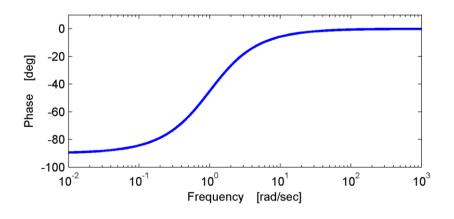
PI Compensation

Proportional-integral (PI) compensator:

$$D(s) = \frac{1}{T_I} \frac{(T_I s + 1)}{s}$$

- Low-frequency gain increase
 - Infinite at DC
 - System type increase
- \Box For $\omega \gg 1/T_I$
 - Gain unaffected
 - Phase affected little
 - PM unaffected
- Susceptible to integrator overflow
 - Lag compensation is often preferable





Lag Compensation

K. Webb **ESE 430**

Lag Compensation

Lag compensator

$$D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}$$
, $\alpha > 1$

 $\,\square\,$ Objective: add a gain of lpha at low frequencies without affecting phase

margin

□ Lower-frequency pole: $s = -1/\alpha T$

 \Box Higher-frequency zero: s = -1/T

 $\ \square$ Pole/zero spacing determined by lpha

 \Box For $\omega \ll 1/\alpha T$

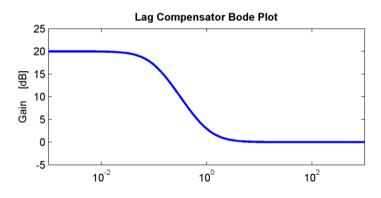
■ Gain: $\sim 20 \log(\alpha) dB$

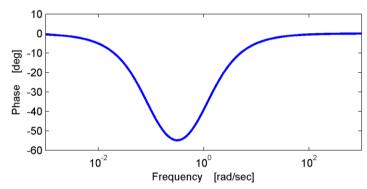
■ Phase: $\sim 0^{\circ}$

 \Box For $\omega \gg 1/T$

■ Gain: $\sim 0 dB$

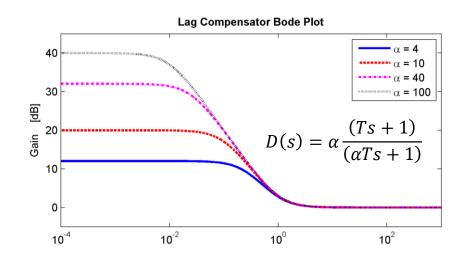
■ Phase: $\sim 0^{\circ}$

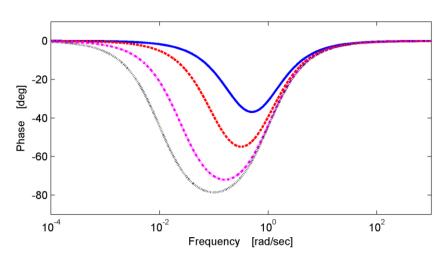




Lag Compensation vs. α

- Gain increased at low frequency only
 - $lue{}$ Dependent on lpha
 - DC gain: $20\log(\alpha) dB$
- Phase lag added between compensator pole and zero
 - **□** $0^{\circ} \le \phi_{max} \le 90^{\circ}$
 - $lue{}$ Dependent on lpha
- Lag pole/zero well below crossover frequency
 - Phase margin unaffected





Lag Compensator Design Procedure

- Lag compensator adds gain at low frequencies without affecting phase margin
- □ Basic design procedure:
 - Adjust gain to achieve the desired phase margin
 - Add compensation, increasing low-frequency gain to achieve desired error performance
- Same as adjusting gain to place poles at the desired damping on the root locus, then adding compensation
 - Root locus is not changed
 - Here, the *frequency response near the crossover frequency* is not changed

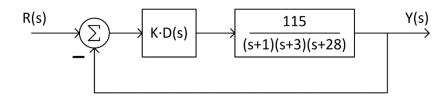
K. Webb ESE 430

Lag Compensator Design Procedure

- **1.** Adjust gain, K, of the uncompensated system to provide the desired phase margin plus 5° ... 10° (to account for small phase lag added by compensator)
- Use the open-loop Bode plot for the uncompensated system with the value of gain set in the previous step to determine the static error constant
- 3. Calculate α as the low-frequency gain increase required to provide the desired error performance
- 4. Set the upper corner frequency (the zero) to be one decade below the crossover frequency: $1/T = \omega_{PM}/10$
 - Minimizes the added phase lag at the crossover frequency
- 5. Calculate the lag pole: $1/\alpha T$
- 6. Simulate and iterate, if necessary

17

Lag Example – Step 1



- Design a lag compensator for the above system to satisfy the following requirements
 - $\mathbf{e}_{ss} < 2\%$ for a step input
 - $\%OS \approx 12\%$
- First, determine the required phase margin to satisfy the overshoot requirement

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.559$$

$$PM \approx 100\zeta = 55.9^{\circ}$$

 $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ Add $\sim\!10^\circ$ to account for compensator phase at ω_{PM}

$$PM = 65.9^{\circ}$$

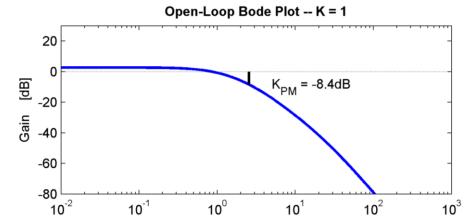
- Plot the open-loop Bode plot of the uncompensated system for K=1
- Locate frequency where phase is

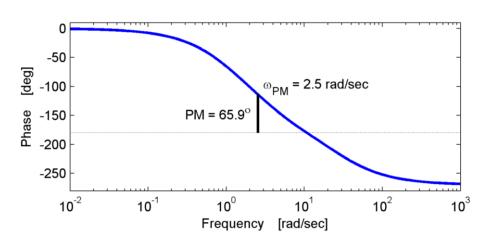
$$-180^{\circ} + PM = -114.1^{\circ}$$

- This is ω_{PM} , the desired crossover frequency
- $\omega_{PM} = 2.5 \, rad/sec$
- $\ \square$ Gain at ω_{PM} is K_{PM}

$$K_{PM} = -8.4 \ dB \rightarrow 0.38$$

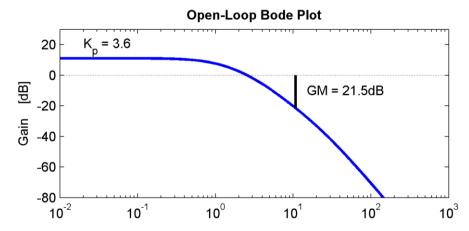
- □ Increase the gain by $1/K_{PM}$
 - $K = 8.4 dB \rightarrow 2.63$

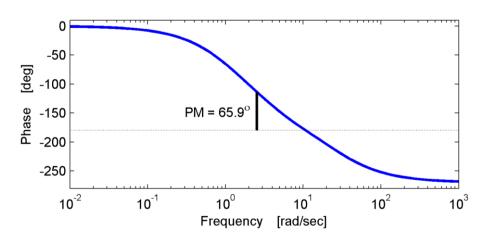




- □ Gain has now been set to yield the desired phase margin of $PM = 65.9^{\circ}$
- Use the new open-loop bode plot to determine the static error constant
- Position constant of the uncompensated system given by the DC gain:

$$K_{pu} = 11.14 \ dB \rightarrow 3.6$$





- \Box Calculate α to yield desired steady-state error improvement
- Steady-state error:

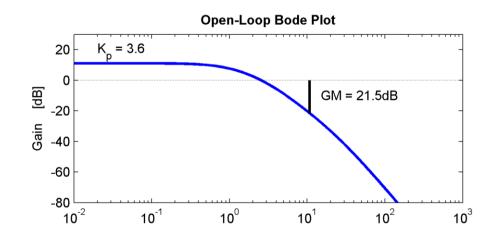
$$e_{ss} = \frac{1}{1 + K_p} < 0.02$$

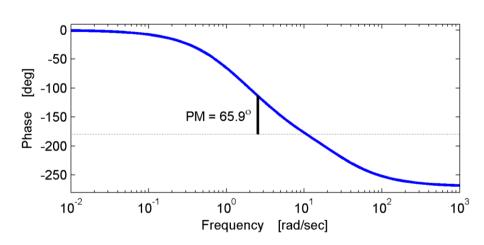
The required position constant:

$$K_p > \frac{1}{e_{ss}} - 1 = 49 \rightarrow K_p = 50$$

Calculate α as the required position constant improvement

$$\alpha = \frac{K_p}{K_{pu}} = 13.9 \rightarrow \alpha = 14$$





Lag Example – Steps 4 & 5

Place the compensator zero one decade below the crossover frequency, $\omega_{PM}=2.5~rad/sec$

$$1/T = 0.25 \ rad/sec$$

 $T = 4 \ sec$

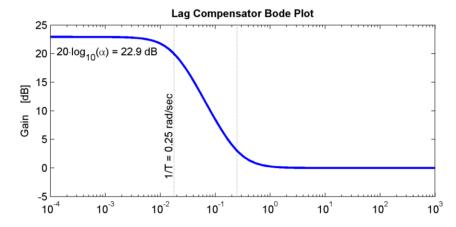
The compensator pole:

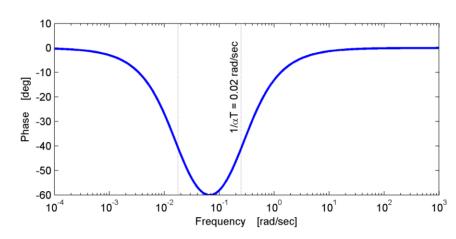
$$1/\alpha T = \frac{0.25}{14}$$
$$1/\alpha T = 0.018 \ rad/sec$$

Lag compensator transfer function

$$D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}$$

$$D(s) = 14 \frac{(4s+1)}{(56s+1)}$$

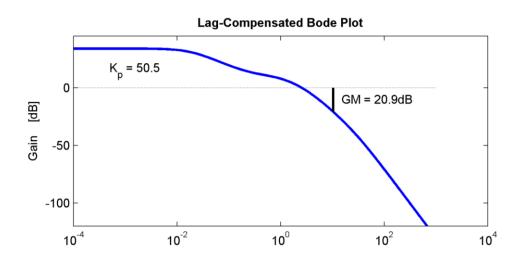


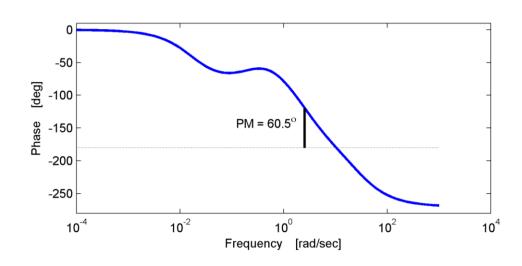


Bode plot of compensated system shows:

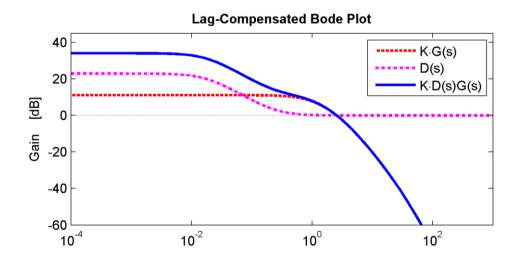
$$PM = 60.5^{\circ}$$

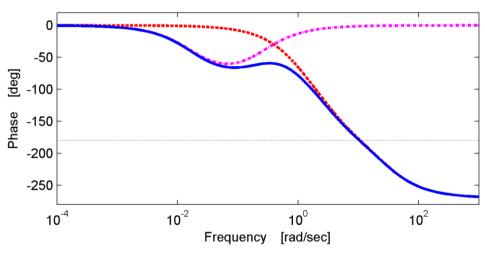
$$\Box K_p = 50.5$$





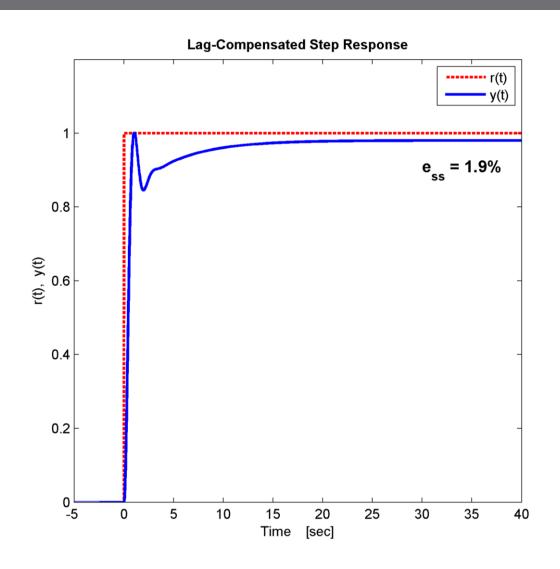
- Lag compensator adds gain at low frequencies only
- Phase near the crossover frequency is nearly unchanged





K. Webb ESE 430

- Steady-state error requirement has been satisfied
- Overshoot spec has been met
 - Though slow tail makes overshoot assessment unclear



Lag Compensator – Summary

$$D(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}$$

- □ Higher-frequency zero: s = -1/T
 - lacktriangle Place one decade below crossover frequency, ω_{PM}
- □ Lower-frequency pole: $s = -1/\alpha T$
 - $\blacksquare \alpha$ sets pole/zero spacing
- \square DC gain: $\alpha \rightarrow 20 \log_{10}(\alpha) dB$
- Compensator adds low-frequency gain
 - Static error constant improvement
 - Phase margin unchanged

Improving Dynamic Response

Improving Dynamic Response

- We've already seen two types of compensators to improve dynamic response
 - Proportional derivative (PD) compensation
 - Lead compensation
- Unlike with the lag compensator we just looked at, here, the objective is to alter the open-loop phase
- We'll look briefly at PD compensation, but will focus on *lead compensation*

K. Webb ESE 430

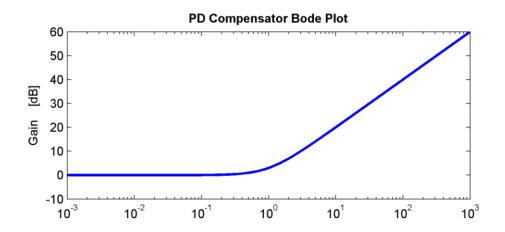
Derivative Compensation

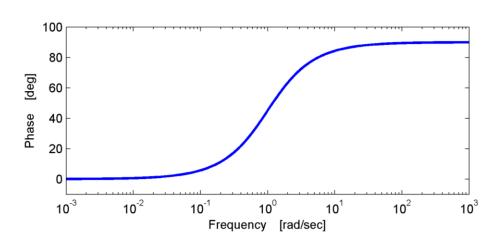
PD Compensation

Proportional-Derivative (PD) compensator:

$$D(s) = (T_D s + 1)$$

- Phase added near (and above) the crossover frequency
 - Increased phase margin
 - Stabilizing effect
- Gain continues to rise at high frequencies
 - Sensor noise is amplified
 - Lead compensation is usually preferable





Lead Compensation

K. Webb **ESE 430**

Lead Compensation

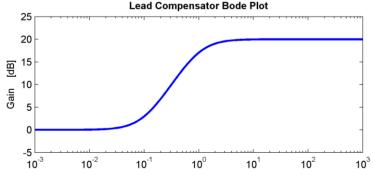
- With lead compensation, we have three design parameters:
 - $lue{}$ Crossover frequency, ω_{PM}
 - Determines closed-loop bandwidth, ω_{BW} ; risetime, t_r ; peak time, t_p ; and settling time, t_s
 - **□ Phase margin**, PM
 - \blacksquare Determines damping, ζ , and overshoot
 - Low-frequency gain
 - Determines steady-state error performance
- We'll look at the design of lead compensators for two common scenarios, either
 - Designing for steady-state error and phase margin, or
 - Designing for bandwidth and phase margin

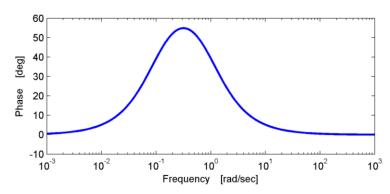
Lead Compensation

Lead compensator

$$D(s) = \frac{(Ts+1)}{(\beta Ts+1)} , \qquad \beta < 1$$

- Objectives: add phase lead near the crossover frequency and/or alter the crossover frequency
- □ Lower-frequency zero: s = -1/T
- □ Higher-frequency pole: $s = -1/\beta T$
- \square Zero/pole spacing determined by eta
- \Box For $\omega \ll 1/T$
 - Gain: $\sim 0 dB$
 - Phase: $\sim 0^{\circ}$
- \Box For $\omega \gg 1/\beta T$
 - Gain: $\sim 20 \log(1/\beta) dB$
 - Phase: $\sim 0^{\circ}$

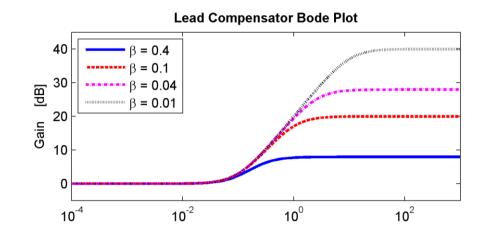


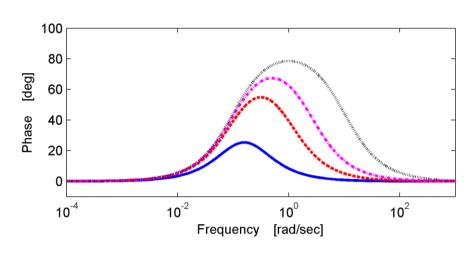


Lead Compensation vs. β

$$D(s) = \frac{(Ts+1)}{(\beta Ts+1)} , \qquad \beta < 1$$

- $\square \beta$ determines:
 - Zero/pole spacing
 - Maximum compensator phase lead, ϕ_{max}
 - High-frequency compensator gain





Lead Compensation – ϕ_{max}

$$\phi_{max} = \sin^{-1}\left(\frac{1-\beta}{1+\beta}\right)$$

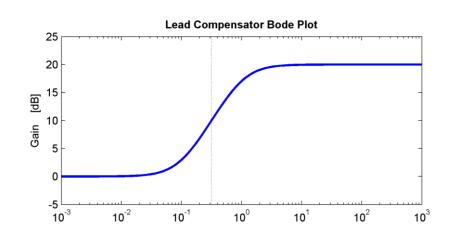
 $exttt{ iny Can use a desired } \phi_{max} ext{ to determine } \beta$

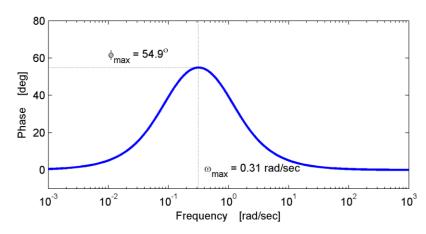
$$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})}$$

 $\ \ \ \phi_{max}$ occurs at ω_{max}

$$\omega_{max} = \frac{1}{T\sqrt{\beta}}$$

$$T = \frac{1}{\omega_{max}\sqrt{\beta}}$$





Lead Compensation – Design Procedure

- 1. Determine loop gain, K, to satisfy *either* steady-state error requirements *or* bandwidth requirements:
 - a) Set *K* to provide the required static error constant, or
 - b) Set *K* to place the crossover frequency an octave below the desired closed-loop bandwidth
- 2. Evaluate the phase margin of the uncompensated system, using the value of K just determined
- 3. If necessary, determine the required PM from ζ or overshoot specifications. Evaluate the PM of the uncompensated system and determine the required phase lead at the crossover frequency to achieve this PM. Add $\sim \! 10^\circ$ additional phase this is ϕ_{max}
- 4. Calculate β from ϕ_{max}
- 5. Set $\omega_{max} = \omega_{PM}$. Calculate T from ω_{max} and β
- 6. Simulate and iterate, if necessary

Double-Lead Compensation

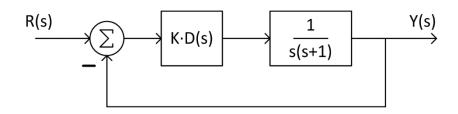
- □ A lead compensator can add, at most, 90° of phase lead
- If more phase is required, use a double-lead compensator

$$D(s) = \left[\frac{(Ts+1)}{(\beta Ts+1)} \right]^2$$

 \square For phase lead over $\sim 60^\circ$... 70° , $1/\beta$ must be very large, so typically use double-lead compensation

Lead Compensation – Example 1

Consider the following system



- Design a compensator to satisfy the following
 - $\blacksquare e_{ss} < 0.1$ for a ramp input
 - **□** %*OS* < 15%
- Here, we'll design a lead compensator to simultaneously adjust low-frequency gain and phase margin

Lead Example 1 – Steps 1 & 2

The velocity constant for the uncompensated system is

$$K_v = \lim_{s \to 0} sKG(s)$$

$$K_v = \lim_{s \to 0} \frac{K}{s+1} = K$$

Steady-state error is

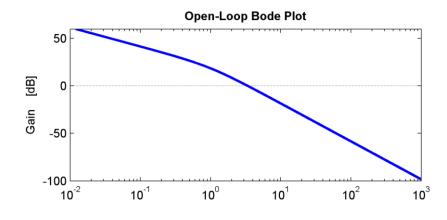
$$e_{ss} = \frac{1}{K_v} < 0.1$$

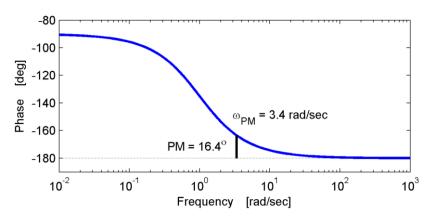
$$K_v = K > 10$$

Adding a bit of margin

$$K = 12$$

Bode plot shows the resulting phase margin is $PM = 16.4^{\circ}$





- □ Approximate required phase margin for %OS < 15%
 Design for 13%
- □ First calculate the required damping ratio

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.545$$

 $\hfill\Box$ Approximate corresponding PM, and add 10° correction factor

$$PM \approx 100\zeta + 10^{\circ} = 64.5^{\circ}$$

Calculate the required phase lead

$$\phi_{max} = 64.5^{\circ} - 16.4^{\circ} = 48^{\circ}$$

K. Webb

Lead Example 1 – Steps 4 & 5

 $_{\square}$ Calculate eta from ϕ_{max}

$$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.147$$

 \square Set $\omega_{max} = \omega_{PM}$, as determined from Bode plot, and calculate T

$$\omega_{max} = \omega_{PM} = 3.4 \ rad/sec$$

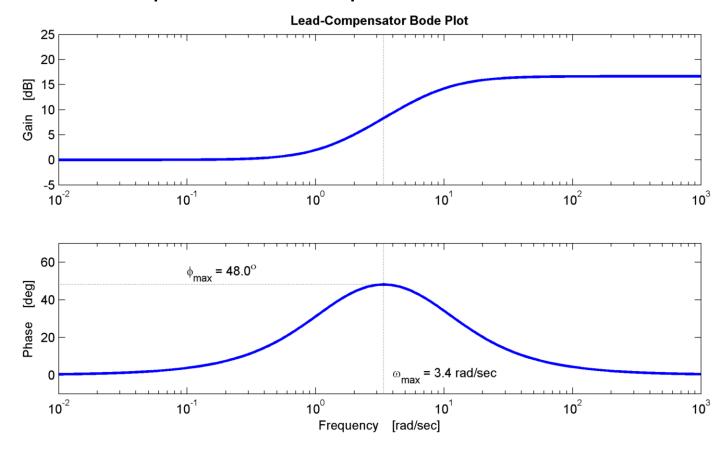
$$T = \frac{1}{\omega_{PM}} = \frac{1}{3.4\sqrt{0.169}} = 0.7687$$

The resulting lead compensator transfer function is

$$KD(s) = K \frac{(Ts+1)}{(\beta Ts+1)} = 12 \frac{(0.7687s+1)}{(0.1130s+1)}$$

$$D(s) = 12 \frac{(0.7687s + 1)}{(0.1130s + 1)}$$

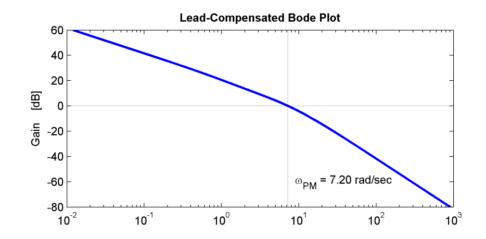
The lead compensator Bode plot

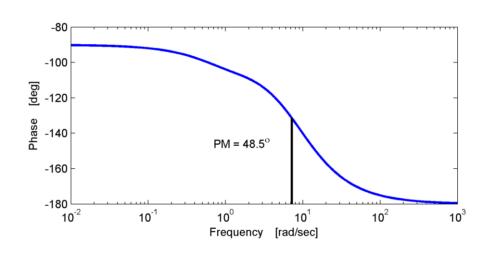


K. Webb

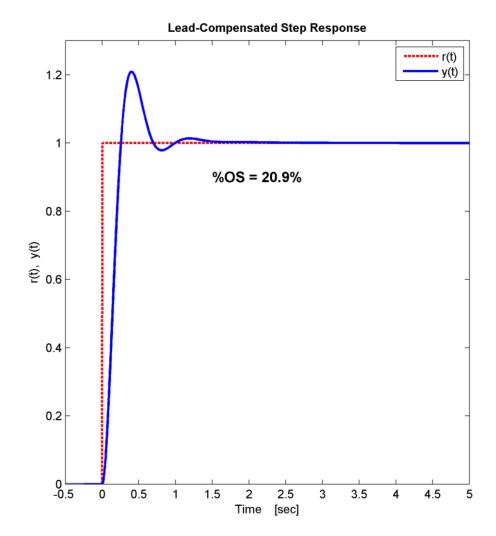
Lead-compensated system:

- $PM = 48.5^{\circ}$
- $\omega_{PM} = 7.2 \ rad/sec$
- High-frequency compensator gain increased the crossover frequency
 - Phase was added at the previous crossover frequency
 - PM is below target
- Move lead zero/pole to higher frequencies
 - Reduce the crossover frequency increase
 - Improve phase margin





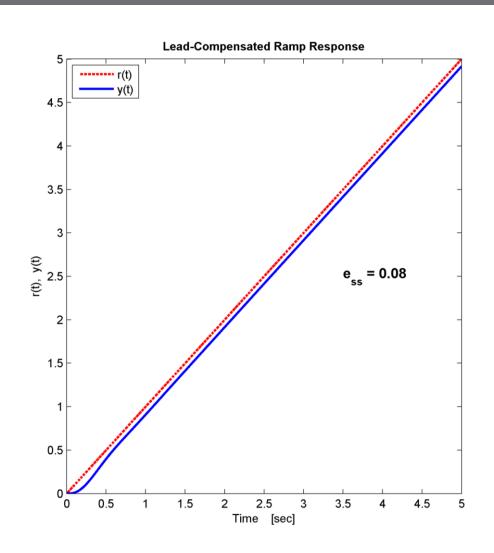
- As predicted by the insufficient phase margin, overshoot exceeds the target
- Redesign compensator
 for higher ω_{max}
 - Improve phase margin
 - Reduce overshoot



 The steady-state error requirement has been satisfied

$$e_{ss} = 0.08 < 0.1$$

- Will not change with compensator redesign
 - Low-frequency gain will not be changed



45

Lead Example 1 – Step 6

- $_{\square}$ Iteration yields acceptable value for ω_{max}
 - $\bullet \omega_{max} = 5.5 \text{ rad/sec}$
 - \blacksquare Maintain same zero/pole spacing, β , and, therefore, same ϕ_{max}
- □ Recalculate zero/pole time constants:

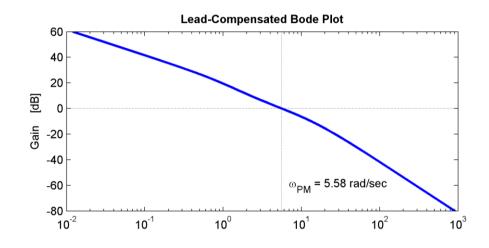
$$T = \frac{1}{\omega_{max}\sqrt{\beta}} = \frac{1}{5.5\sqrt{0.147}} = 0.4742$$

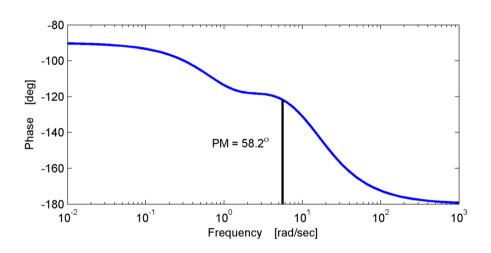
$$\beta T = 0.147 \cdot 0.4742 = 0.0697$$

□ The updated lead compensator transfer function:

$$D(s) = 12 \frac{(0.4742s + 1)}{(0.0697s + 1)}$$

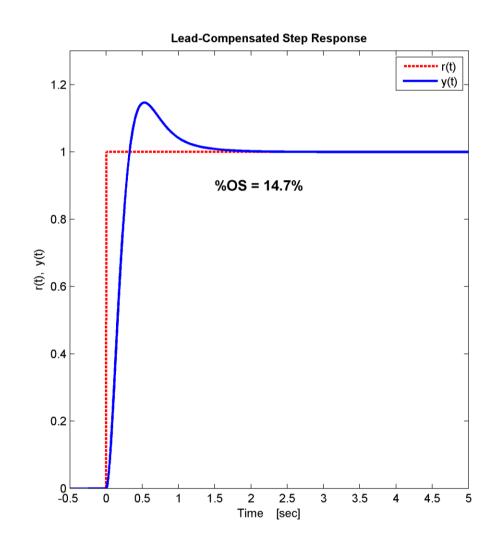
- Crossover frequency has been reduced
 - \bullet $\omega_{PM} = 5.58 \, rad/sec$
- Phase margin is close to the target
 - $PM = 58.2^{\circ}$
- Dip in phase is apparent, because ω_{max} is now placed at point of lower open-loop phase





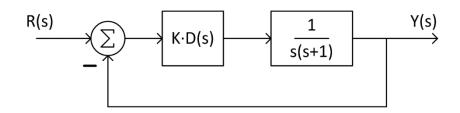
Overshoot requirement now satisfied

- Low-frequency gain has not been changed, so error requirement is still satisfied
- Design is complete



Lead Compensation – Example 2

Again, consider the same system



- Design a compensator to satisfy the following
 - $\blacksquare t_s \approx 1.2 \ sec \ (\pm 1\%)$
 - □ % OS ≈ 10%
- Now, we'll design a lead compensator to simultaneously adjust closed-loop bandwidth and phase margin

 \Box The required damping ratio for 10% overshoot is

$$\zeta = -\frac{\ln(OS)}{\sqrt{\pi^2 + \ln^2(OS)}} = 0.5912$$

 Given the required damping ratio, calculate the required closed-loop bandwidth to yield the desired settling time

$$\omega_{BW} = \frac{4.6}{t_s \zeta} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

$$\omega_{BW} = 7.52 \, rad/sec$$

 \square We'll initially set the gain, K, to place the crossover frequency, ω_{PM} , one octave below the desired closed-loop bandwidth

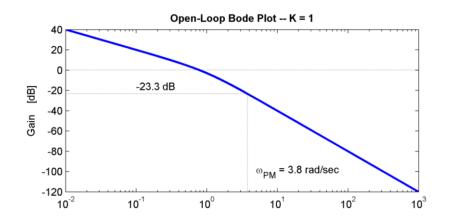
$$\omega_{PM} = \omega_{BW}/2 = 3.8 \, rad/sec$$

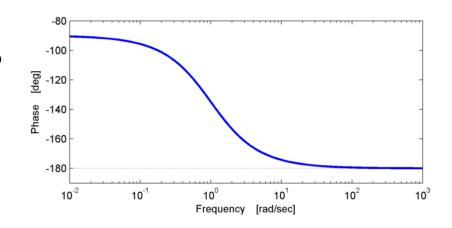
- $\ \square$ Plot the Bode plot for K=1
 - Determine the loop gain at the desired crossover frequency

$$K_{PM} = -23.3 \ dB$$

 Adjust K so that the loop gain at the desired crossover frequency is 0 dB

$$K = \frac{1}{K_{PM}} = 23.3 \ dB = 14.7$$





Lead Example 2 – Steps 2 & 3

- Generate a Bode plot using the gain value just determined
- Phase margin for the uncompensated system:

$$PM_u = 14.9^{\circ}$$

Required phase margin to satisfy overshoot requirement:

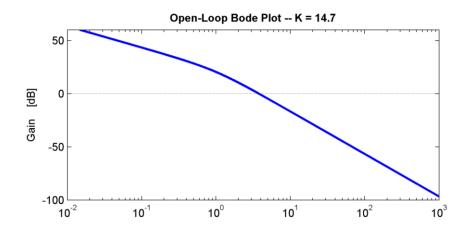
$$PM \approx 100\zeta = 59.1^{\circ}$$

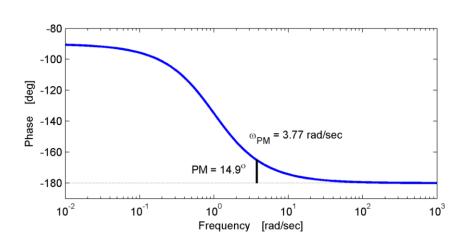
 Add 10° to account for crossover frequency increase

$$PM = 69.1^{\circ}$$

 Required phase lead from the compensator

$$\phi_{max} = PM - PM_u = 54.2^{\circ}$$





Lead Example 2 – Steps 4 & 5

 $_{\Box}$ Calculate zero/pole spacing, eta , from required phase lead, ϕ_{max}

$$\beta = \frac{1 - \sin(\phi_{max})}{1 + \sin(\phi_{max})} = 0.1040$$

Calculate zero and pole time constants

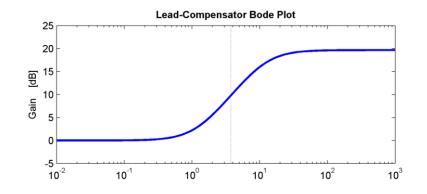
$$T = \frac{1}{\omega_{max}\sqrt{\beta}} = 0.8228 \ sec$$

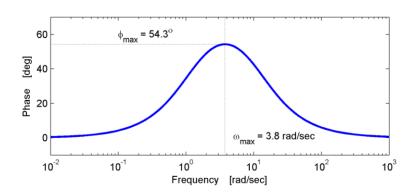
$$\beta T = 0.0855 \, sec$$

The resulting lead compensator transfer function:

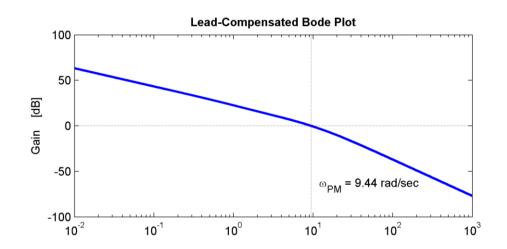
$$KD(s) = K \frac{(Ts+1)}{(\beta Ts+1)}$$

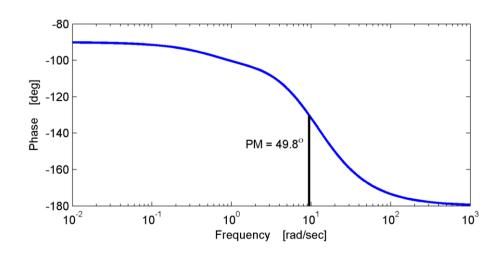
$$KD(s) = 14.7 \frac{(0.8228s + 1)}{(0.0855s + 1)}$$





- Bode plot of the compensated system
 - $PM = 49.9^{\circ}$
 - Substantially below target
- Crossover frequency is well above the desired value
 - $\square \omega_{PM} = 9.44 \ rad/sec$
- Iteration will likely be required

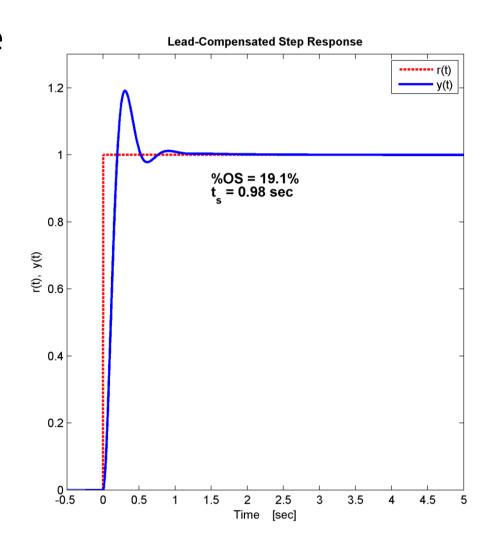




Overshoot exceeds the specified limit

$$00S = 19.1\% > 10\%$$

- Settling time is faster than required
 - $t_s = 0.98 \, sec < 1.2 \, sec$
- Iteration is required
 - Start by reducing the target ω_{PM}



- Must redesign the compensator to meet specifications
 - Must *increase PM* to reduce overshoot
 - \blacksquare Can afford to **reduce crossover**, ω_{PM} , to improve PM
- Try various combinations of the following
 - $lue{}$ Reduce crossover frequency, ω_{PM}
 - lacktriangle Increase compensator zero/pole frequencies, ω_{max}
 - lacktriangle Increase added phase lead, ϕ_{max} , by reducing eta
- □ Iteration shows acceptable results for:
 - $\square \omega_{PM} = 2.4 \, rad/sec$
 - $\bullet \omega_{max} = 3.4 \, rad/sec$

Redesigned lead compensator:

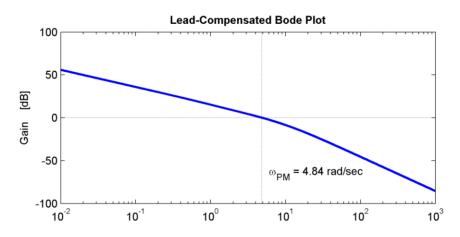
$$KD(s) = 6.27 \frac{(0.8542s + 1)}{(0.1013s + 1)}$$

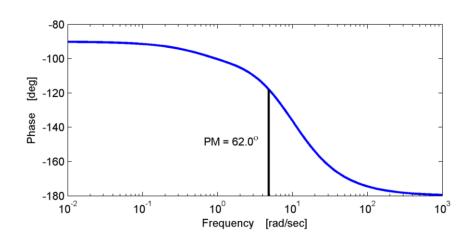
□ Phase margin:

$$PM = 62^{\circ}$$

Crossover frequency:

$$\omega_{PM} = 4.84 \, rad/sec$$



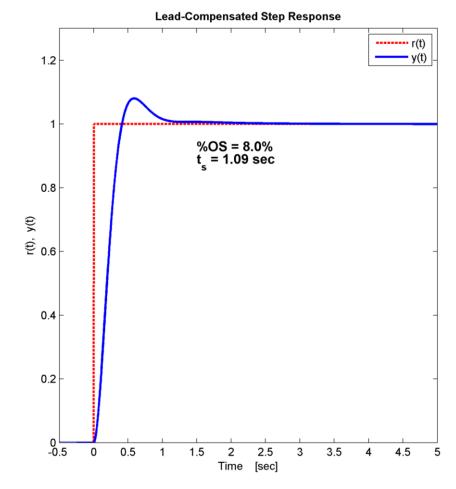


- Dynamic response requirements are now satisfied
- Overshoot:

$$\%OS = 8\%$$

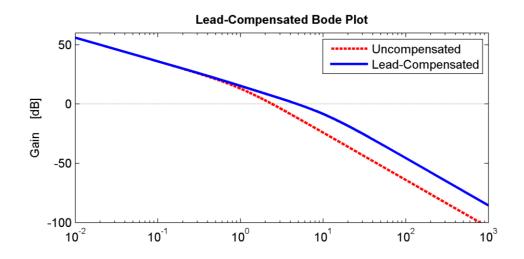
Settling time:

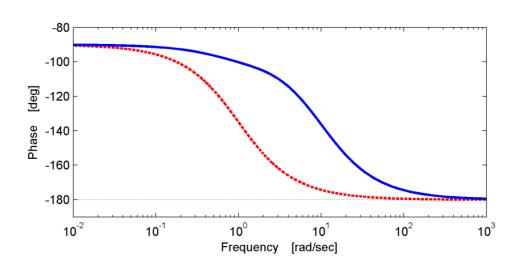
$$t_{s} = 1.09 \, sec$$



Lead Compensation – Example 2

- Lead compensator adds gain at higher frequencies
 - Increased crossover frequency
 - Faster response time
- Phase added near the crossover frequency
 - Improved phase margin
 - Reduced overshoot

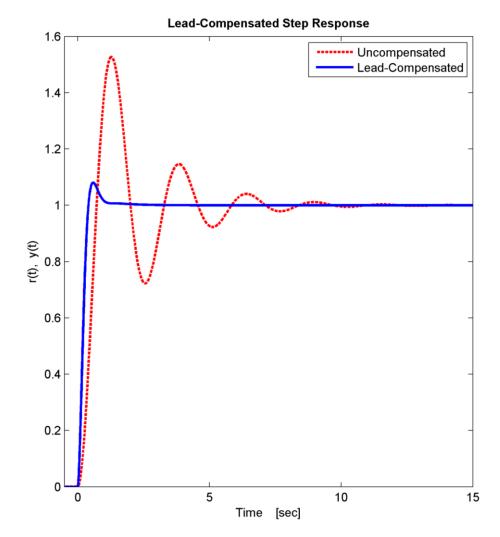




K. Webb ESE 430

Lead Compensation – Example 2

- Step response improvements:
 - Faster settling time
 - Faster risetime
 - Significantly less overshoot and ringing



K. Webb ESE 430

Lead-Lag Compensation

- If performance specifications require adjustment of:
 - Bandwidth
 - Phase margin
 - Steady-state error
- Lead-lag compensation may be used

$$KD(s) = \alpha \frac{\left(T_{lag}s + 1\right)}{\left(\alpha T_{lag}s + 1\right)} \frac{\left(T_{lead}s + 1\right)}{\left(\beta T_{lead}s + 1\right)}$$

- Many possible design procedures one possibility:
 - 1. Design lag compensation to satisfy steady-state error and phase margin
 - 2. Add lead compensation to increase bandwidth, while maintaining phase margin