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AC Electrical Signals

 AC electrical signals (voltages and currents) are 
sinusoidal
 Generated by rotating machinery

 Sinusoidal voltage (or current):

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 (1)

 This is a time-domain or instantaneous form expression

 Characterized by three parameters
 Amplitude
 Frequency
 Phase
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Amplitude

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

 𝑉𝑉𝑝𝑝 in the above expression is amplitude or peak voltage
 We typically characterize power-system voltages and 

currents in terms of their root-mean-square (rms) 
values

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑇𝑇 ∫0

𝑇𝑇 𝑣𝑣 𝑡𝑡 2𝑑𝑑𝑡𝑡
1
2 (2)

 A signal delivers the same power to a resistive load as a 
DC signal equal to its rms value

 For sinusoids:
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑉𝑉𝑝𝑝

2
(3)
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Euler’s Identity

 Euler’s identity allows us to express sinusoidal 
signals as complex exponentials

𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 = cos 𝜔𝜔𝑡𝑡 + 𝑗𝑗 sin 𝜔𝜔𝑡𝑡 (4)

so
𝑒𝑒𝑗𝑗 𝑗𝑗𝑗𝑗+𝜙𝜙 = cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 + 𝑗𝑗 sin 𝜔𝜔𝑡𝑡 + 𝜙𝜙 (5)

and 
𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 = 𝑉𝑉𝑝𝑝𝑅𝑅𝑒𝑒 𝑒𝑒𝑗𝑗 𝑗𝑗𝑗𝑗+𝜙𝜙

𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙 = 2 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑒𝑒 𝑒𝑒𝑗𝑗 𝑗𝑗𝑗𝑗+𝜙𝜙 (6)
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Phasor Representation

 Phasor representation simplifies circuit analysis when dealing with 
sinusoidal signals
 Drop the time-harmonic (oscillatory) portion of the signal representation

 Known and constant
 Represent with rms amplitude and phase only

 For example, consider the time-domain voltage expression

𝑣𝑣 𝑡𝑡 = 2 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 cos 𝜔𝜔𝑡𝑡 + 𝜙𝜙

 The phasor representation, in exponential form, is

𝑽𝑽 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑗𝑗𝜙𝜙

 Can also express in polar or Cartesian form 

𝑽𝑽 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟∠𝜙𝜙 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 cos 𝜙𝜙 + 𝑗𝑗𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 sin 𝜙𝜙

 In these notes bold type will be used to distinguish phasors
 We’ll always assume rms values for phasor magnitudes
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Phasors

 Circuit analysis in the phasor domain is simplified
 Derivative and integrals become algebraic expressions

 Consider the voltage across inductance and capacitance:

 Think of a phasor as a vector in 
the complex plane
 Has magnitude and angle

Time Domain Phasor Domain

Capacitor
𝑣𝑣 𝑡𝑡 =

1
𝑐𝑐 � 𝑖𝑖 𝑡𝑡 𝑑𝑑𝑡𝑡 𝑽𝑽 =

1
𝑗𝑗𝜔𝜔𝑗𝑗 𝑰𝑰

Inductor 𝑣𝑣 𝑡𝑡 = 𝐿𝐿
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡

𝑽𝑽 = 𝑗𝑗𝜔𝜔𝐿𝐿𝑰𝑰

Resistor 𝑣𝑣 𝑡𝑡 = 𝑖𝑖 𝑡𝑡 𝑅𝑅 𝑽𝑽 = 𝑰𝑰𝑅𝑅



K. Webb ESE 470

8

Phasors

 In general, in the phasor domain

𝑽𝑽 = 𝑰𝑰𝑍𝑍 (7)

and

𝑰𝑰 =
𝑽𝑽
𝑍𝑍

 Ohm’s law
 𝑍𝑍 is a complex impedance

 Not a phasor, but also expressed in exponential, polar, 
or Cartesian form
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Phasors - Example

 Determine 𝑖𝑖 𝑡𝑡 and 𝑣𝑣𝐿𝐿 𝑡𝑡 for the following circuit, 
driven by a 120 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟, 60 𝐻𝐻𝐻𝐻 source

 At 60 𝐻𝐻𝐻𝐻 the inductor impedance is
𝑗𝑗𝑋𝑋𝐿𝐿 = 𝑗𝑗𝜔𝜔𝐿𝐿 = 𝑗𝑗𝑗𝑗𝑗 ⋅ 60 𝐻𝐻𝐻𝐻 ⋅ 5 𝑚𝑚𝐻𝐻 = 𝑗𝑗𝑗.88 Ω

 The total impedance seen by the source is
𝑍𝑍 = 𝑅𝑅 + 𝑗𝑗𝑋𝑋𝐿𝐿 = 2 + 𝑗𝑗𝑗.88 Ω

 Converting to polar form
𝑍𝑍 = 𝑍𝑍 ∠𝜃𝜃

𝑍𝑍 = 𝑅𝑅2 + 𝑋𝑋2 = 2.74 Ω

𝜃𝜃 = tan−1
𝑋𝑋
𝑅𝑅

= 43°

𝑍𝑍 = 2.74∠43° Ω
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Phasors – Example 

 The source voltage is
𝑣𝑣 𝑡𝑡 = 2 ⋅ 𝑗𝑗0𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉 𝑗𝑗𝑗 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡

 The source voltage phasor is
𝑽𝑽 = 𝑗𝑗0∠0° 𝑉𝑉

 The current phasor is

𝑰𝑰 =
𝑽𝑽
𝑍𝑍

=
𝑗𝑗0∠0° 𝑉𝑉

2.74∠43° Ω
= 43.7∠ − 43° 𝐴𝐴

 We can use the current phasor to determine the phasor for 
the voltage across the resistor

𝑽𝑽𝑳𝑳 = 𝑰𝑰𝑅𝑅 = 43.7∠ − 43° ⋅ 2Ω

𝑽𝑽𝑳𝑳 = 87.4∠ − 43° 𝑉𝑉
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Phasors – Example 

 We have phasor representations for desired 
quantities

𝑰𝑰 = 43.7∠ − 43° 𝐴𝐴
𝑽𝑽𝑳𝑳 = 87.4∠ − 43° 𝑉𝑉

 We can now convert these to their time-domain 
expressions

𝑖𝑖 𝑡𝑡 = 2 ⋅ 43.7 𝐴𝐴 ⋅ cos 𝑗𝑗𝑗 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 − 43°

𝑣𝑣 𝑡𝑡 = 2 ⋅ 87.4 𝑉𝑉 ⋅ cos 𝑗𝑗𝑗 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 − 43°
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Phasor Diagrams

 Phasors are complex values
 Magnitude and phase
 Vectors in the complex plane
 Can represent graphically

 Phasor diagram
 Graphical representation of phasors in a circuit
 KVL and Ohm’s law expressed graphically
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Phasor Diagram – Example 1

 Source voltage is the reference phasor
𝑽𝑽𝑆𝑆 = 𝑗𝑗0∠0° 𝑉𝑉

 Its phasor diagram:

 Ohm’s law gives the current 

𝑰𝑰 =
𝑽𝑽𝑆𝑆

2 + 𝑗𝑗𝑗 Ω = 42.𝑗∠ − 45° 𝐴𝐴

 Adding to the phasor diagram:
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Phasor Diagram – Example 1

 Ohm’s law gives the inductor voltage
𝑽𝑽𝐿𝐿 = 𝑰𝑰 ⋅ 𝑗𝑗𝜔𝜔𝐿𝐿 = 42.𝑗∠ − 45° 𝐴𝐴 ⋅ 𝑗𝑗𝑗 Ω
𝑽𝑽𝐿𝐿 = 85∠45° 𝑉𝑉

 Finally, KVL gives 𝑽𝑽𝑅𝑅
𝑽𝑽𝑅𝑅 = 𝑽𝑽𝑆𝑆 − 𝑽𝑽𝐿𝐿
𝑽𝑽𝑅𝑅 = 𝑗𝑗0∠0° 𝑉𝑉 − 85∠45° 𝑉𝑉
𝑽𝑽𝑅𝑅 = 85∠ − 45°
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Phasor Diagram – Example 2

 Source voltage is the 
reference phasor

𝑽𝑽𝑆𝑆 = 2.4∠0° 𝑘𝑘𝑉𝑉

 Ohm’s law gives the current 

𝑰𝑰 =
𝑽𝑽𝑆𝑆

3.5 + 𝑗𝑗3 Ω
= 5𝑗𝑗∠ − 41° 𝐴𝐴
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Phasor Diagram – Example 2

 Ohm’s law gives the resistor voltage
𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅 = 𝑰𝑰 ⋅ 𝑅𝑅
𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅 = 521∠ − 41° 𝐴𝐴 ⋅ 1.5 Ω
𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅 = 78𝑗∠ − 41° 𝑉𝑉

 KVL gives 𝑽𝑽2
𝑽𝑽2 = 𝑽𝑽𝑆𝑆 − 𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅
𝑽𝑽2 = 2.4∠0° 𝑘𝑘𝑉𝑉 − 78𝑗∠ − 41° 𝑉𝑉
𝑽𝑽2 = 1.88∠𝑗5.7° 𝑘𝑘𝑉𝑉
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Phasor Diagram – Example 2

 Drop across the inductor:
𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 521∠ − 41° 𝐴𝐴 ⋅ 𝑗𝑗𝑗 Ω
𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1.04∠49° 𝑘𝑘𝑉𝑉

 KVL gives the voltage across the load
𝑽𝑽𝑅𝑅 = 𝑽𝑽2 − 𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑽𝑽𝑅𝑅 = 1.88∠𝑗5.7°𝑘𝑘𝑉𝑉 − 1.04∠49° 𝑘𝑘𝑉𝑉
𝑽𝑽𝑅𝑅 = 1.𝑗6∠ − 14° 𝑘𝑘𝑉𝑉
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Phasor Diagram – Example 2

 Alternatively, treat the line as a single 
impedance

𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑰𝑰 ⋅ 𝑍𝑍𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 521∠ − 41° 𝐴𝐴 ⋅ 1.5 + 𝑗𝑗𝑗 Ω
𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1.3∠𝑗𝑗.5° 𝑘𝑘𝑉𝑉

 KVL gives the voltage across the load
𝑽𝑽𝑅𝑅 = 𝑽𝑽𝑆𝑆 − 𝑽𝑽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑽𝑽𝑅𝑅 = 2.4∠0°𝑘𝑘𝑉𝑉 − 1.3∠𝑗𝑗.5° 𝑘𝑘𝑉𝑉
𝑽𝑽𝑅𝑅 = 1.𝑗6∠ − 14° 𝑘𝑘𝑉𝑉
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Power

 The overall goal of a power distribution network is 
to transfer power from a source to loads

 Instantaneous power:
 Power supplied by a source or absorbed by a load or 

network element as a function of time

𝑝𝑝 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 ⋅ 𝑖𝑖 𝑡𝑡 (8)

 The nature of this instantaneous power flow is 
determined by the impedance of the load

 Next, we’ll look at the instantaneous power 
delivered to loads of different impedances
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Instantaneous Power – Resistive Load

 The voltage across the resistive load is

𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿

 Current through the resistor is

𝑖𝑖 𝑡𝑡 =
𝑉𝑉𝑝𝑝
𝑅𝑅

cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿

 The instantaneous power absorbed by the resistor is

𝑝𝑝𝑅𝑅 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 ⋅ 𝑖𝑖 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 ⋅
𝑉𝑉𝑝𝑝
𝑅𝑅

cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿

𝑝𝑝𝑅𝑅 𝑡𝑡 =
𝑉𝑉𝑝𝑝2

𝑅𝑅 cos2 𝜔𝜔𝑡𝑡 + 𝛿𝛿 =
𝑉𝑉𝑝𝑝2

𝑅𝑅
1
2 1 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿
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Instantaneous Power – Resistive Load

𝑝𝑝𝑅𝑅 𝑡𝑡 =
𝑉𝑉𝑝𝑝2

𝑗𝑅𝑅
1 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿

 Making use of the rms voltage

𝑝𝑝𝑅𝑅 𝑡𝑡 =
2 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

2

𝑗𝑅𝑅
1 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿

𝑝𝑝𝑅𝑅 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
2

𝑅𝑅
1 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 (9)

 The instantaneous power absorbed by the resistor 
has a non-zero average value and a double-
frequency component
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Instantaneous Power – Resistive Load

 Power delivered to the resistive load has a non-zero 
average value and a double-frequency component
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Instantaneous Power – Capacitive Load

 Now consider the power absorbed by a purely capacitive 
load
 Again, 𝑣𝑣 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿

 The current flowing to the load is

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 90°
where

𝐼𝐼𝑝𝑝 =
𝑉𝑉𝑝𝑝
𝑋𝑋𝐶𝐶

=
𝑉𝑉𝑝𝑝

1/𝜔𝜔𝑗𝑗
= 𝜔𝜔𝑗𝑗𝑉𝑉𝑝𝑝

 The instantaneous power delivered to the capacitive load is

𝑝𝑝𝐶𝐶 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 ⋅ 𝑖𝑖 𝑡𝑡
𝑝𝑝𝐶𝐶 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 ⋅ 𝜔𝜔𝑗𝑗𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 90°
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Instantaneous Power – Capacitive Load

𝑝𝑝𝐶𝐶 𝑡𝑡 = 𝜔𝜔𝑗𝑗𝑉𝑉𝑝𝑝2
1
2

cos −90° + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 + 90°

𝑝𝑝𝐶𝐶 𝑡𝑡 = 𝜔𝜔𝑗𝑗
𝑉𝑉𝑝𝑝2

2
⋅ cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 + 90°

 In terms of rms voltage
𝑝𝑝𝐶𝐶 𝑡𝑡 = 𝜔𝜔𝑗𝑗𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟2 ⋅ cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 + 90°

 This is a double frequency 
sinusoid, but, unlike for the 
resistive load, the average value 
is zero

(10)
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Instantaneous Power – Inductive Load

 Now consider the power absorbed by a purely inductive 
load

 Now the load current lags by 90°

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 − 90°
where

𝐼𝐼𝑝𝑝 =
𝑉𝑉𝑝𝑝
𝑋𝑋𝐿𝐿

=
𝑉𝑉𝑝𝑝
𝜔𝜔𝐿𝐿

 The instantaneous power delivered to the inductive load is

𝑝𝑝𝐿𝐿 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 ⋅ 𝑖𝑖 𝑡𝑡

𝑝𝑝𝐿𝐿 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 ⋅
𝑉𝑉𝑝𝑝
𝜔𝜔𝐿𝐿

cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 − 90°
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Instantaneous Power – Inductive Load

𝑝𝑝𝐿𝐿 𝑡𝑡 =
𝑉𝑉𝑝𝑝2

𝜔𝜔𝐿𝐿
1
2

cos 90° + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 − 90°

𝑝𝑝𝐿𝐿 𝑡𝑡 =
𝑉𝑉𝑝𝑝2

2𝜔𝜔𝐿𝐿
⋅ cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 − 90°

 In terms of rms voltage

𝑝𝑝𝐿𝐿 𝑡𝑡 =
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
2

𝜔𝜔𝐿𝐿 ⋅ cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 − 90°

 As for the capacitive load, this is 
a double frequency sinusoid with 
an average value of zero

(11)
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Instantaneous Power – General Impedance

 Finally, consider the instantaneous power absorbed by a 
general RLC load

 Phase angle of the current is determined by the angle 
of the impedance

𝑖𝑖 𝑡𝑡 = 𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛽𝛽
 The instantaneous power is

𝑝𝑝 𝑡𝑡 = 𝑉𝑉𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 ⋅ 𝐼𝐼𝑝𝑝 cos 𝜔𝜔𝑡𝑡 + 𝛽𝛽

𝑝𝑝 𝑡𝑡 =
𝑉𝑉𝑝𝑝𝐼𝐼𝑝𝑝

2 cos 𝛿𝛿 − 𝛽𝛽 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 𝛽𝛽

𝑝𝑝 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 cos 𝛿𝛿 − 𝛽𝛽 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 − 𝛿𝛿 − 𝛽𝛽
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Instantaneous Power – General Impedance

 Using the following trig identity

cos 𝐴𝐴 − 𝐵𝐵 = cos 𝐴𝐴 cos 𝐵𝐵 + sin 𝐴𝐴 sin 𝐵𝐵

we get
𝑝𝑝 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟[cos 𝛿𝛿 − 𝛽𝛽 + cos 𝛿𝛿 − 𝛽𝛽 cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿

+ sin 𝛿𝛿 − 𝛽𝛽 sin 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 ]

and
𝑝𝑝 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 cos 𝛿𝛿 − 𝛽𝛽 1 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿

+𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 sin 𝛿𝛿 − 𝛽𝛽 sin 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿
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Instantaneous Power – General Impedance

 Letting
𝐼𝐼𝑅𝑅 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 cos 𝛿𝛿 − 𝛽𝛽 and   𝐼𝐼𝑋𝑋 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 sin 𝛿𝛿 − 𝛽𝛽

we have
𝑝𝑝 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑅𝑅 1 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿

+𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑋𝑋 sin 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 (12)

 There are two components to the power:

𝑝𝑝𝑅𝑅 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑅𝑅 1 + cos 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 (13)

is the power absorbed by the resistive component of the load, and

𝑝𝑝𝑋𝑋 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑋𝑋 sin 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿 (14)

is the power absorbed by the reactive component of the load
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Real Power

 According to (9) and (13), power delivered to a 
resistance has a non-zero average value
 Purely resistive load or a load with a resistive 

component
 This is real power, average power, or active power

𝑃𝑃 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑅𝑅

𝑃𝑃 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 cos 𝛿𝛿 − 𝛽𝛽 (15)

 Real power has units of watts (W)
 Real power is power that results in work (or heat 

dissipation)
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Power Factor

 The phase angle 𝛿𝛿 − 𝛽𝛽 represents the phase difference between the 
voltage and the current
 This is the power factor angle
 The angle of the load impedance

 Note that the real power is a function of the cosine of the power factor 
angle

𝑃𝑃 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 cos 𝛿𝛿 − 𝛽𝛽

 This is the power factor 

𝑝𝑝. 𝑓𝑓. = cos 𝛿𝛿 − 𝛽𝛽 (16)

 For a purely resistive load, voltage and current are in phase

𝑝𝑝. 𝑓𝑓. = cos 𝛿𝛿 − 𝛽𝛽 = cos 0° = 1

𝑃𝑃 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟
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Power Factor

 For a purely capacitive load, current leads the voltage by 90°

𝑝𝑝. 𝑓𝑓. = cos 𝛿𝛿 − 𝛽𝛽 = cos −90° = 0

𝑃𝑃 = 0

 This is referred to as a leading power factor
 Power factor is leading for loads with capacitive reactance

 For a purely inductive load, current lags the voltage by 90°

𝑝𝑝. 𝑓𝑓. = cos 𝛿𝛿 − 𝛽𝛽 = cos 90° = 0

𝑃𝑃 = 0

 Loads with inductive reactance have lagging power factors
 Note that power factor is defined to always be positive

0 ≤ 𝑝𝑝. 𝑓𝑓.≤ 1
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Reactive Power

 The other part of instantaneous power, as given by (12), 
is the power delivered to the reactive component of the 
load

𝑝𝑝𝑋𝑋 𝑡𝑡 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 sin 𝛿𝛿 − 𝛽𝛽 sin 𝑗𝜔𝜔𝑡𝑡 + 𝑗𝛿𝛿

 Unlike real power, this component of power has zero 
average value

 The amplitude is the reactive power

𝑄𝑄 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 sin 𝛿𝛿 − 𝛽𝛽 𝑣𝑣𝑣𝑣𝑣𝑣

 Units are volts-amperes reactive, or var
 Power that flows to and from the load reactance

 Does not result in work or heat dissipation
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Complex Power

 Complex power is defined as the product of the rms voltage phasor 
and conjugate rms current phasor

𝑺𝑺 = 𝑽𝑽𝑰𝑰∗ (18)

where the voltage has phase angle 𝛿𝛿

𝑽𝑽 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟∠𝛿𝛿

and the current has phase angle 𝛽𝛽

𝑰𝑰 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟∠𝛽𝛽 → 𝑰𝑰∗ = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟∠ − 𝛽𝛽

 The complex power is

𝑺𝑺 = 𝑽𝑽𝑰𝑰∗ = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟∠𝛿𝛿 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟∠ − 𝛽𝛽

𝑺𝑺 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟∠ 𝛿𝛿 − 𝛽𝛽 (19)



K. Webb ESE 470

38

Complex Power

 Complex power has units of volts-amperes (VA)
 The magnitude of complex power is apparent 

power 
𝑆𝑆 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 𝑉𝑉𝐴𝐴 (20)

 Apparent power also has units of volts-amperes
 Complex power is the vector sum of real power (in 

phase with 𝑽𝑽) and reactive power (±90° out of 
phase with 𝑽𝑽)

𝑺𝑺 = 𝑃𝑃 + 𝑗𝑗𝑄𝑄 (21)
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Complex Power

 Real power can be expressed in terms of complex power

𝑃𝑃 = 𝑅𝑅𝑒𝑒 𝑺𝑺

or in terms of apparent power

𝑃𝑃 = 𝑆𝑆 ⋅ cos 𝛿𝛿 − 𝛽𝛽 = 𝑆𝑆 ⋅ 𝑝𝑝. 𝑓𝑓.

 Similarly, reactive power, is the imaginary part of complex power

𝑄𝑄 = 𝐼𝐼𝑚𝑚 𝑺𝑺

and can also be related to apparent power 

𝑄𝑄 = 𝑆𝑆 ⋅ sin 𝛿𝛿 − 𝛽𝛽

 And, power factor is the ratio between real power and apparent power

𝑝𝑝. 𝑓𝑓. = cos 𝛿𝛿 − 𝛽𝛽 =
𝑃𝑃
𝑆𝑆
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Passive Sign Convention40
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Power Convention – Load Convention

 Applying a consistent sign convention allows us to easily 
determine whether network elements supply or absorb 
real and reactive power

 Passive sign convention or load convention
 Positive current defined to enter the positive voltage 

terminal of an element

 If 𝑃𝑃 > 0 or 𝑄𝑄 > 0, then real or reactive 
power is absorbed by the element

 If 𝑃𝑃 < 0 or 𝑄𝑄 < 0, then real or reactive 
power is supplied by the element
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Power Absorbed by Passive Elements

 Complex power absorbed by a resistor

𝑺𝑺𝑹𝑹 = 𝑽𝑽𝑰𝑰𝑹𝑹∗ = 𝑉𝑉∠𝛿𝛿
𝑉𝑉
𝑅𝑅 ∠ − 𝛿𝛿

𝑺𝑺𝑹𝑹 =
𝑉𝑉2

𝑅𝑅
 Positive and purely real

 Resistors absorb real power
 Reactive power is zero

 Complex power absorbed by a capacitor 
𝑺𝑺𝑪𝑪 = 𝑽𝑽𝑰𝑰𝑪𝑪∗ = 𝑉𝑉∠𝛿𝛿 −𝑗𝑗𝜔𝜔𝑗𝑗𝑉𝑉∠ − 𝛿𝛿
𝑺𝑺𝑪𝑪 = −𝑗𝑗𝜔𝜔𝑗𝑗𝑉𝑉2

 Negative and purely imaginary 
 Capacitors supply reactive power
 Real power is zero
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Power Absorbed by Passive Elements

 Complex power absorbed by an inductor

𝑺𝑺𝑳𝑳 = 𝑽𝑽𝑰𝑰𝑳𝑳∗ = 𝑉𝑉∠𝛿𝛿
𝑉𝑉

−𝑗𝑗𝜔𝜔𝐿𝐿∠ − 𝛿𝛿

𝑺𝑺𝑳𝑳 = 𝑗𝑗
𝑉𝑉2

𝜔𝜔𝐿𝐿
 Positive and purely imaginary 

 Inductors absorb reactive power
 Real power is zero

 In summary:
 Resistors absorb real power, zero reactive power
 Capacitors supply reactive power, zero real power
 Inductors absorb reactive power, zero real power
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Power Triangle

 Complex power is the vector sum of real power (in 
phase with 𝑽𝑽) and reactive power (±90° out of phase 
with 𝑽𝑽) 

𝑺𝑺 = 𝑃𝑃 + 𝑗𝑗𝑄𝑄

 Complex, real, and reactive powers can be represented 
graphically, as a power triangle 

𝑄𝑄 = 𝑉𝑉𝐼𝐼 sin 𝛿𝛿 − 𝛽𝛽 var

𝑃𝑃 = 𝑉𝑉𝐼𝐼 cos 𝛿𝛿 − 𝛽𝛽 W

𝛿𝛿 − 𝛽𝛽
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Power Triangle

 Quickly and graphically provides power information
 Power factor and power factor angle
 Leading or lagging power factor
 Reactive nature of the load – capacitive or inductive

𝑄𝑄 = 𝑉𝑉𝐼𝐼 sin 𝛿𝛿 − 𝛽𝛽 var

𝑃𝑃 = 𝑉𝑉𝐼𝐼 cos 𝛿𝛿 − 𝛽𝛽 W

𝛿𝛿 − 𝛽𝛽
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Lagging Power Factor

 For loads with inductive reactance
 Impedance angle is positive
 Power factor angle is positive
 Power factor is lagging

𝑄𝑄 = 𝑉𝑉𝐼𝐼 sin 𝛿𝛿 − 𝛽𝛽 var

𝑃𝑃 = 𝑉𝑉𝐼𝐼 cos 𝛿𝛿 − 𝛽𝛽 W

𝛿𝛿 − 𝛽𝛽

 𝑄𝑄 is positive
 The load absorbs reactive power
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Leading Power Factor

 For loads with capacitive reactance
 Impedance angle is negative
 Power factor angle is negative
 Power factor is leading

𝑄𝑄 = 𝑉𝑉𝐼𝐼 sin 𝛿𝛿 − 𝛽𝛽 var

𝑃𝑃 = 𝑉𝑉𝐼𝐼 cos 𝛿𝛿 − 𝛽𝛽 W

𝛿𝛿 − 𝛽𝛽

 𝑄𝑄 is negative
 The load supplies reactive power
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Power Factor Correction

 The overall goal of power distribution is to supply power to 
do work
 Real power

 Reactive power does not perform work, but
 Must be supplied by the source
 Still flows over the lines

 For a given amount of real power consumed by a load, we’d 
like to 
 Reduce reactive power, 𝑄𝑄
 Reduce 𝑆𝑆 relative to 𝑃𝑃, that is
 Reduce the p.f. angle, and
 Increase the p.f.

 Power factor correction
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Power Factor Correction – Example 

 Consider a source driving an inductive load
 Determine:

 Real power absorbed by the load
 Reactive power absorbed by the load
 p.f. angle and p.f.

 Draw the power triangle

 Current through the resistance is

𝑰𝑰𝑹𝑹 =
120 𝑉𝑉

3 Ω
= 40 𝐴𝐴

 Current through the inductance is

𝑰𝑰𝑳𝑳 =
120 𝑉𝑉
𝑗𝑗𝑗 Ω

= 60∠ − 90° 𝐴𝐴

 The total load current is
𝑰𝑰 = 𝑰𝑰𝑹𝑹 + 𝑰𝑰𝑳𝑳 = 40 − 𝑗𝑗60 𝐴𝐴 = 72.𝑗∠ − 56.3° 𝐴𝐴
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Power Factor Correction – Example 

 The power factor angle is
𝜃𝜃 = 𝛿𝛿 − 𝛽𝛽 = 0° − −56.3°
𝜃𝜃 = 56.3°

 The power factor is
𝑝𝑝. 𝑓𝑓. = cos 𝜃𝜃 = cos 56.3°
𝑝𝑝. 𝑓𝑓. = 0.55 lagging

 Real power absorbed by the load is
𝑃𝑃 = 𝑉𝑉𝐼𝐼 cos 𝜃𝜃 = 120 𝑉𝑉 ⋅ 72.1 𝐴𝐴 ⋅ 0.55
𝑃𝑃 = 4.8 𝑘𝑘𝑘𝑘

 Alternatively, recognizing that real power is power absorbed by the 
resistance

𝑃𝑃 = 𝑉𝑉𝐼𝐼𝑅𝑅 = 120 𝑉𝑉 ⋅ 40 𝐴𝐴 = 4.8 𝑘𝑘𝑘𝑘
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Power Factor Correction – Example 

 Reactive power absorbed by the load is

𝑄𝑄 = 𝑉𝑉𝐼𝐼 sin 𝜃𝜃 = 120 𝑉𝑉 ⋅ 72.1 𝐴𝐴 ⋅ 0.832
𝑄𝑄 = 7.2 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣

 This is also the power absorbed by the load inductance

𝑄𝑄 = 𝑉𝑉𝐼𝐼𝐿𝐿 = 120 𝑉𝑉 ⋅ 60 𝐴𝐴 = 7.2 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣

 Apparent power is 

𝑆𝑆 = 𝑉𝑉𝐼𝐼 = 120 𝑉𝑉 ⋅ 72.1 𝐴𝐴 = 8.65 𝑘𝑘𝑉𝑉𝐴𝐴

 Or, alternatively

𝑆𝑆 = 𝑃𝑃2 + 𝑄𝑄2

𝑆𝑆 = 4.8 𝑘𝑘𝑘𝑘 2 + 7.2 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣 2 = 8.65 𝑘𝑘𝑉𝑉𝐴𝐴
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Power Factor Correction – Example 

 The power triangle:
 Here, the source is supplying 

4.8 kW at a power factor of 
0.55 lagging 

 Let’s say we want to reduce 
the apparent power 
supplied by the source

𝑄𝑄 = 7.2 kvar

𝑃𝑃 = 4.8 kW

𝛿𝛿 − 𝛽𝛽

 Deliver 4.8 kW at a p.f. of 0.9 lagging

 Add power factor correction

 Add capacitors to supply reactive power
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Power Factor Correction – Example 

 For 𝑝𝑝.𝑓𝑓. = 0.9, we need a 
power factor angle of 

𝜃𝜃′ = cos−1 0.9 = 25.8°

 Power factor correction will help flatten the power 
triangle:

𝑄𝑄 = 7.2 kvar

𝑃𝑃 = 4.8 kW

𝜃𝜃
𝜃𝜃′

𝑄𝑄′
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Power Factor Correction – Example 

 The required reactive power absorbed (negative, so it is 
supplied) by the capacitors is

𝑄𝑄𝐶𝐶 = 𝑄𝑄′ − 𝑄𝑄 = 2.32 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣 − 7.2 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣

𝑄𝑄𝐶𝐶 = −4.88 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣

𝑄𝑄 = 7.2 kvar

𝑃𝑃 = 4.8 kW

𝜃𝜃
𝜃𝜃′

𝑄𝑄′ = 2.32 kvar

 Reactive power to the power-
factor-corrected load is reduced 
from 𝑄𝑄 to 𝑄𝑄′

𝑄𝑄′ = 𝑃𝑃 tan 𝜃𝜃′

𝑄𝑄′ = 4.8 𝑘𝑘𝑘𝑘 ⋅ tan 25.8°

𝑄𝑄′ = 2.32 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣
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Power Factor Correction – Example 

 Reactive power absorbed by the capacitor is

𝑄𝑄𝐶𝐶 =
𝑉𝑉2

𝑋𝑋𝐶𝐶
 So the required capacitive reactance is 

𝑋𝑋𝐶𝐶 =
𝑉𝑉2

𝑄𝑄𝐶𝐶
=

120 𝑉𝑉 2

−4.88 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣
= −2.95 Ω

 The addition of −𝑗𝑗𝑗.95 Ω provides the desired power factor 
correction
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Example Problems58
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The source voltage in the 
circuit is 

𝑣𝑣 𝑡𝑡 = 2 ⋅ 𝑗𝑗0𝑉𝑉 cos 𝑗𝑗𝑗 ⋅ 60𝐻𝐻𝐻𝐻 ⋅ 𝑡𝑡 . 

Determine the complex 
power delivered to the load.
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Two three-phase load are connected in parallel:
 50 kVA at a power factor of 0.9, leading
 125 kW at a power factor of 0.85, lagging. 

Draw the power triangle and determine the combined power factor.
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Power is delivered to a single-phase load with an impedance of 𝑍𝑍𝐿𝐿 =
3 + 𝑗𝑗𝑗 Ω at 120 V. Add power factor correction in parallel with the 
load to yield a power factor of 0.95, lagging.
Determine the reactive power and impedance of the power factor 
correction component.
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Draw a phasor diagram for the 
following circuit.
 Draw a phasor for the voltage 

across each component and for 
the current

 Apply KVL graphically. That is, 
add the individual component 
phasors together graphically to 
show that the result is equal to 
the source voltage phasor.
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Balanced Three-Phase Networks67
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Balanced Three-Phase Networks

 We are accustomed to single-phase power in our 
homes and offices
 A single line voltage referenced to a neutral

 Electrical power is generated, transmitted, and 
largely consumed (by industrial customers) as 
three-phase power
 Three individual line voltages and (possibly) a neutral
 Line voltages all differ in phase by ±120°
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Δ- and Y-Connected Networks

 Two possible three-phase configurations
 Applies to both sources and loads

Y-Connected Source 𝚫𝚫-Connected Source

 Y-connected network has a neutral node
 Δ-connected network has no neutral
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Line-to-Neutral Voltages

 A three-phase network is balanced if 
 Sources are balanced
 The impedances connected to each phase are equal

 In the Y network, voltages 𝑉𝑉𝑎𝑎𝐿𝐿, 𝑉𝑉𝑏𝑏𝐿𝐿, 
and 𝑉𝑉𝑐𝑐𝐿𝐿 are line-to-neutral voltages

 A three-phase source is balanced if 
 Line-to-neutral voltages have equal 

magnitudes 
 Line-to-neutral voltage are each 120°

out of phase with one another
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Line-to-Neutral Voltages

 The line-to-neutral voltages are

𝑽𝑽𝒂𝒂𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿∠0°

𝑽𝑽𝒃𝒃𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120°

𝑽𝑽𝒄𝒄𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿∠ − 240° = 𝑉𝑉𝐿𝐿𝐿𝐿∠ + 120°

 This is a positive-sequence or abc-sequence
source

 𝑽𝑽𝒂𝒂𝒂𝒂 leads 𝑽𝑽𝒃𝒃𝒂𝒂, which leads 𝑽𝑽𝒄𝒄𝒂𝒂

 Can also have a negative- or acb-sequence
source

 𝑽𝑽𝒂𝒂𝒂𝒂 leads 𝑽𝑽𝒄𝒄𝒂𝒂, which leads 𝑽𝑽𝒃𝒃𝒂𝒂

 We’ll always assume positive-sequence 
sources

Positive-Sequence 
Phasor Diagram:
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Line-to-Line Voltages
 The voltages between the three phases are line-to-

line voltages
 Apply KVL to relate line-to-line voltages to line-to-

neutral voltages
𝑽𝑽𝒂𝒂𝒃𝒃 − 𝑽𝑽𝒂𝒂𝒂𝒂 + 𝑽𝑽𝒃𝒃𝒂𝒂 = 𝟎𝟎
𝑽𝑽𝒂𝒂𝒃𝒃 = 𝑽𝑽𝒂𝒂𝒂𝒂 − 𝑽𝑽𝒃𝒃𝒂𝒂

 We know that
𝑽𝑽𝒂𝒂𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿∠0°

and
𝑽𝑽𝒃𝒃𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120°

so 
𝑽𝑽𝒂𝒂𝒃𝒃 = 𝑉𝑉𝐿𝐿𝐿𝐿∠0° − 𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120° = 𝑉𝑉𝐿𝐿𝐿𝐿 𝑗∠0° − 𝑗∠ − 120°

𝑽𝑽𝒂𝒂𝒃𝒃 = 𝑉𝑉𝐿𝐿𝐿𝐿 1 − −
1
2 − 𝑗𝑗

3
2 = 𝑉𝑉𝐿𝐿𝐿𝐿

3
2 + 𝑗𝑗

3
2

𝑽𝑽𝒂𝒂𝒃𝒃 = 3𝑉𝑉𝐿𝐿𝐿𝐿∠30°
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Line-to-Line Voltages

 Again applying KVL, we can find 𝑽𝑽𝒃𝒃𝒄𝒄
𝑽𝑽𝒃𝒃𝒄𝒄 = 𝑽𝑽𝒃𝒃𝒂𝒂 − 𝑽𝑽𝒄𝒄𝒂𝒂
𝑽𝑽𝒃𝒃𝒄𝒄 = 𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120° − 𝑉𝑉𝐿𝐿𝐿𝐿∠𝑗𝑗0°

𝑽𝑽𝒃𝒃𝒄𝒄 = 𝑉𝑉𝐿𝐿𝐿𝐿 −
1
2
− 𝑗𝑗

3
2

− −
1
2

+ 𝑗𝑗
3

2

𝑽𝑽𝒃𝒃𝒄𝒄 = 𝑉𝑉𝐿𝐿𝐿𝐿 −𝑗𝑗 3

𝑽𝑽𝒃𝒃𝒄𝒄 = 3𝑉𝑉𝐿𝐿𝐿𝐿∠ − 90°

 Similarly,

𝑽𝑽𝒄𝒄𝒂𝒂 = 3𝑉𝑉𝐿𝐿𝐿𝐿∠𝑗50°
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Line-to-Line Voltages

 The line-to-line voltages, with 𝑉𝑉𝑎𝑎𝐿𝐿 as the 
reference:

𝑽𝑽𝒂𝒂𝒃𝒃 = 3𝑉𝑉𝐿𝐿𝐿𝐿∠30°
𝑽𝑽𝒃𝒃𝒄𝒄 = 3𝑉𝑉𝐿𝐿𝐿𝐿∠ − 90°
𝑽𝑽𝒄𝒄𝒂𝒂 = 3𝑉𝑉𝐿𝐿𝐿𝐿∠𝑗50°

 Line-to-line voltages are 3 times the line-to-
neutral voltage

 Can also express in terms of individual line-to-neutral voltages:

𝑽𝑽𝒂𝒂𝒃𝒃 = 3𝑽𝑽𝒂𝒂𝒂𝒂∠30°

𝑽𝑽𝒃𝒃𝒄𝒄 = 3𝑽𝑽𝒃𝒃𝒂𝒂∠30°

𝑽𝑽𝒄𝒄𝒂𝒂 = 3𝑽𝑽𝒄𝒄𝒂𝒂∠30°
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Currents in Three-Phase Networks75
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Line Currents in Balanced 3𝜙𝜙 Networks

𝑰𝑰𝒂𝒂 =
𝑽𝑽𝑨𝑨𝑨𝑨
𝑍𝑍𝑌𝑌

=
𝑉𝑉𝐿𝐿𝐿𝐿∠0°
𝑍𝑍𝑌𝑌

𝑰𝑰𝒃𝒃 =
𝑽𝑽𝑩𝑩𝑨𝑨
𝑍𝑍𝑌𝑌

=
𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120°

𝑍𝑍𝑌𝑌

𝑰𝑰𝒄𝒄 =
𝑽𝑽𝑪𝑪𝑨𝑨
𝑍𝑍𝑌𝑌

=
𝑉𝑉𝐿𝐿𝐿𝐿∠+ 120°

𝑍𝑍𝑌𝑌

 Line currents are balanced as long as the source and load 
are balanced

 We can use the line-to-
neutral voltages to 
determine the line currents
 Y-connected source and load
 Balanced load – all 

impedances are equal: 𝑍𝑍𝑌𝑌
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Neutral Current in Balanced 3𝜙𝜙 Networks

 Apply KCL to determine 
the neutral current

𝑰𝑰𝒂𝒂 = 𝑰𝑰𝒂𝒂 + 𝑰𝑰𝒃𝒃 + 𝑰𝑰𝒄𝒄

𝑰𝑰𝒂𝒂 =
𝑉𝑉𝐿𝐿𝐿𝐿
𝑍𝑍𝑌𝑌

𝑗∠0° + 𝑗∠ − 120° + 𝑗∠𝑗𝑗0°

𝑰𝑰𝒂𝒂 =
𝑉𝑉𝐿𝐿𝐿𝐿
𝑍𝑍𝑌𝑌

1 + −
1
2 − 𝑗𝑗

3
2 + −

1
2 + 𝑗𝑗

3
2

𝑰𝑰𝒂𝒂 = 0

 The neutral conductor carries no current in a balanced 
three-phase network
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Y- and Δ-connected Loads78
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Three-Phase Load Configurations

 As for sources, three-phase loads can also be connected in two 
different configurations

Y-Connected Load 𝚫𝚫-Connected Load

 The Y load has a neutral connection, but the Δ load does not
 Currents in a Y-connected load are the line currents we just 

determined
 Next, we’ll look at currents in a Δ-connected load
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Balanced Δ-Connected Loads

 We can use line-to-line 
voltages to determine 
the currents in Δ-
connected loads

𝑰𝑰𝑨𝑨𝑩𝑩 =
𝑽𝑽𝑨𝑨𝑩𝑩
𝑍𝑍Δ

=
3𝑽𝑽𝑨𝑨𝑨𝑨∠30°

𝑍𝑍Δ
=

3𝑉𝑉𝐿𝐿𝐿𝐿∠30°
𝑍𝑍Δ

𝑰𝑰𝑩𝑩𝑪𝑪 =
𝑽𝑽𝑩𝑩𝑪𝑪
𝑍𝑍Δ

=
3𝑽𝑽𝑩𝑩𝑨𝑨∠30°

𝑍𝑍Δ
=

3𝑉𝑉𝐿𝐿𝐿𝐿∠ − 90°
𝑍𝑍Δ

𝑰𝑰𝑪𝑪𝑨𝑨 =
𝑽𝑽𝑪𝑪𝑨𝑨
𝑍𝑍Δ

=
3𝑽𝑽𝑪𝑪𝑨𝑨∠30°

𝑍𝑍Δ
=

3𝑉𝑉𝐿𝐿𝐿𝐿∠150°
𝑍𝑍Δ
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Balanced Δ-Connected Loads

 Applying KCL, we can 
determine the line currents
𝑰𝑰𝒂𝒂 = 𝑰𝑰𝑨𝑨𝑩𝑩 − 𝑰𝑰𝑪𝑪𝑨𝑨

𝑰𝑰𝒂𝒂 =
3𝑉𝑉𝐿𝐿𝐿𝐿
𝑍𝑍Δ

𝑗∠30° − 𝑗∠𝑗50°

𝑰𝑰𝒂𝒂 =
3𝑉𝑉𝐿𝐿𝐿𝐿
𝑍𝑍Δ

3
2 + 𝑗𝑗

1
2 − −

3
2 + 𝑗𝑗

1
2 =

3𝑉𝑉𝐿𝐿𝐿𝐿
𝑍𝑍Δ

3 =
3𝑉𝑉𝐿𝐿𝐿𝐿
𝑍𝑍Δ

 The other line currents can be found similarly:

𝑰𝑰𝒂𝒂 =
3𝑉𝑉𝐿𝐿𝐿𝐿∠0°

𝑍𝑍Δ
= 3𝑰𝑰𝑨𝑨𝑩𝑩∠ − 30°

𝑰𝑰𝒃𝒃 =
3𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120°

𝑍𝑍Δ
= 3𝑰𝑰𝑩𝑩𝑪𝑪∠ − 30°

𝑰𝑰𝒄𝒄 =
3𝑉𝑉𝐿𝐿𝐿𝐿∠𝑗𝑗0°

𝑍𝑍Δ
= 3𝑰𝑰𝑪𝑪𝑨𝑨∠ − 30°
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Δ-Y Conversion82
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Δ − 𝑌𝑌 Conversion

 Analysis is often simpler when dealing with 𝑌𝑌-
connected loads 
 Would like a way to convert Δ loads to 𝑌𝑌 loads (and vice 

versa)

 For a 𝑌𝑌 load and a Δ load to be equivalent, they must 
result in equal line currents
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Δ − 𝑌𝑌 Conversion

 Line currents for a 𝑌𝑌-connected load:

𝑰𝑰𝒂𝒂 =
𝑉𝑉𝐿𝐿𝐿𝐿∠0°
𝑍𝑍𝑌𝑌

𝑰𝑰𝒃𝒃 =
𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120°

𝑍𝑍𝑌𝑌

𝑰𝑰𝒄𝒄 =
𝑉𝑉𝐿𝐿𝐿𝐿∠𝑗𝑗0°

𝑍𝑍𝑌𝑌

 For a  Δ-connected load:

𝑰𝑰𝒂𝒂 =
3𝑉𝑉𝐿𝐿𝐿𝐿∠0°

𝑍𝑍Δ

𝑰𝑰𝒃𝒃 =
3𝑉𝑉𝐿𝐿𝐿𝐿∠ − 120°

𝑍𝑍Δ

𝑰𝑰𝒄𝒄 =
3𝑉𝑉𝐿𝐿𝐿𝐿∠𝑗𝑗0°

𝑍𝑍Δ
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Δ − 𝑌𝑌 Conversion

 Equating any of the three line currents, we can 
determine the impedance relationship

𝑉𝑉𝐿𝐿𝐿𝐿∠0°
𝑍𝑍𝑌𝑌

=
3𝑉𝑉𝐿𝐿𝐿𝐿∠0°

𝑍𝑍Δ

𝑍𝑍𝑌𝑌 = 𝑍𝑍Δ
3

and       𝑍𝑍Δ = 3𝑍𝑍𝑌𝑌
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Line-to-Neutral Schematics

 For balanced networks, we can simplify our analysis by considering 
only a single phase
 A per-phase analysis
 Other phases are simply shifted by ±120°

 For example, a balanced 𝑌𝑌-𝑌𝑌 circuit:
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One-Line Diagrams

 Power systems are often depicted using one-line 
diagrams or single-line diagrams
 Not a schematic – not all wiring is shown

 For example:
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Example Problems89
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 Given the following balanced 3-𝜙𝜙 quantities:
𝐕𝐕𝐵𝐵𝐶𝐶 = 480∠𝑗5° and   𝐈𝐈𝐵𝐵 = 𝑗𝑗∠ − 28°

 Find:
1) 𝐕𝐕𝐴𝐴𝐵𝐵
2) 𝐕𝐕𝐴𝐴𝐿𝐿
3) 𝐈𝐈𝐴𝐴
4) 𝐈𝐈𝐶𝐶
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Find:
 Per-phase circuit

 Line current, 𝐈𝐈𝐴𝐴
 Load voltage
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Find:
 Per-phase circuit
 Line current, 𝐈𝐈𝐴𝐴
 L-L and L-N load 

voltages
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Power in Balanced 3𝜙𝜙 Networks95
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Instantaneous Power

 We’ll first determine the instantaneous power supplied by the 
source
 Neglecting line impedance, this is also the power absorbed by the load

 The phase 𝑣𝑣 line-to-neutral voltage is

𝑣𝑣𝑎𝑎𝐿𝐿 𝑡𝑡 = 2𝑉𝑉𝐿𝐿𝐿𝐿 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿
 The phase 𝑣𝑣 current is

𝑖𝑖𝑎𝑎 𝑡𝑡 = 2𝐼𝐼𝐿𝐿 cos 𝜔𝜔𝑡𝑡 + 𝛽𝛽
where 𝛽𝛽 depends on the load impedance
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Instantaneous Power

 The instantaneous power delivered out of phase 𝑣𝑣
of the source is

𝑝𝑝𝑎𝑎 𝑡𝑡 = 𝑣𝑣𝑎𝑎𝐿𝐿 𝑡𝑡 𝑖𝑖𝑎𝑎 𝑡𝑡

𝑝𝑝𝑎𝑎 𝑡𝑡 = 2𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝜔𝜔𝑡𝑡 + 𝛿𝛿 cos 𝜔𝜔𝑡𝑡 + 𝛽𝛽

𝑝𝑝𝑎𝑎 𝑡𝑡 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝑗𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 𝛽𝛽

 The 𝑏𝑏 and 𝑐𝑐 phases are shifted by ±120°
 Power from each of these phases is

𝑝𝑝𝑏𝑏 𝑡𝑡 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝑗𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 𝛽𝛽 − 240°

𝑝𝑝𝑐𝑐 𝑡𝑡 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝑗𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 𝛽𝛽 + 240°
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Instantaneous Power

 The total power delivered by the source is the sum of the power 
from each phase

𝑝𝑝3𝜙𝜙 𝑡𝑡 = 𝑝𝑝𝑎𝑎 𝑡𝑡 + 𝑝𝑝𝑏𝑏 𝑡𝑡 + 𝑝𝑝𝑐𝑐 𝑡𝑡

𝑝𝑝3𝜙𝜙 𝑡𝑡 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽
+𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿[cos 𝑗𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 𝛽𝛽
+ cos 𝑗𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 𝛽𝛽 − 240°
+ cos 𝑗𝜔𝜔𝑡𝑡 + 𝛿𝛿 + 𝛽𝛽 + 240° ]

 Everything in the square brackets cancels, leaving

𝑝𝑝3𝜙𝜙 𝑡𝑡 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽 = 𝑃𝑃3𝜙𝜙

 Power in a balanced 𝟑𝟑𝟑𝟑 network is constant
 In terms of line-to-line voltages, the power is

𝑃𝑃3𝜙𝜙 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽
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Complex Power

 The complex power delivered by phase 𝑣𝑣 is

𝑺𝑺𝒂𝒂 = 𝑽𝑽𝒂𝒂𝒂𝒂𝑰𝑰𝒂𝒂∗ = 𝑉𝑉𝐿𝐿𝐿𝐿∠𝛿𝛿 𝐼𝐼𝐿𝐿∠𝛽𝛽 ∗

𝑺𝑺𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿∠ 𝛿𝛿 − 𝛽𝛽
𝑺𝑺𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽 + 𝑗𝑗𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 − 𝛽𝛽

 For phase 𝑏𝑏, complex power is

𝑺𝑺𝒃𝒃 = 𝑽𝑽𝒃𝒃𝒂𝒂𝑰𝑰𝒃𝒃∗ = 𝑉𝑉𝐿𝐿𝐿𝐿∠ 𝛿𝛿 − 120° 𝐼𝐼𝐿𝐿∠ 𝛽𝛽 − 120° ∗

𝑺𝑺𝒃𝒃 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿∠ 𝛿𝛿 − 𝛽𝛽
𝑺𝑺𝒃𝒃 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽 + 𝑗𝑗𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 − 𝛽𝛽

 This is equal to 𝑺𝑺𝒂𝒂 and also to phase 𝑺𝑺𝒄𝒄
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Complex Power

 The total complex power is
𝑺𝑺𝟑𝟑𝟑𝟑 = 𝑺𝑺𝒂𝒂 + 𝑺𝑺𝒃𝒃 + 𝑺𝑺𝒄𝒄
𝑺𝑺𝟑𝟑𝟑𝟑 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿∠ 𝛿𝛿 − 𝛽𝛽

𝑺𝑺𝟑𝟑𝟑𝟑 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽 + 𝑗𝑗3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 − 𝛽𝛽

 The apparent power is the magnitude of the 
complex power

𝑆𝑆3𝜙𝜙 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿
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Complex Power

 Complex power can be expressed in terms of the 
real and reactive power

𝑺𝑺𝟑𝟑𝟑𝟑 = 𝑃𝑃3𝜙𝜙 + 𝑗𝑗𝑄𝑄3𝜙𝜙

 The real power, as we’ve already seen is

𝑃𝑃3𝜙𝜙 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 − 𝛽𝛽

 The reactive power is

𝑄𝑄3𝜙𝜙 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 − 𝛽𝛽
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Advantages of Three-Phase Power

 Advantages of three-phase power:
 For a given amount of power, half the amount of wire 

required compared to single-phase
 No return current on neutral conductor

 Constant real power
 Constant motor torque
 Less noise and vibration of machinery
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Three-Phase Power – Example 

 Determine
 Load voltage, 𝑽𝑽𝑨𝑨𝑩𝑩
 Power triangle for the load
 Power factor at the load

 We’ll do a per-phase analysis, so first convert the Δ load 
to a 𝑌𝑌 load

𝑍𝑍𝑌𝑌 =
𝑍𝑍Δ
3

= 1 + 𝑗𝑗0.5 Ω
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Three-Phase Power – Example 

 The per-phase circuit:

 The line current is

𝑰𝑰𝑳𝑳 =
𝑽𝑽𝒂𝒂𝒂𝒂

𝑍𝑍𝐿𝐿 + 𝑍𝑍𝑌𝑌
=
𝑗𝑗0∠0° 𝑉𝑉
1.1 + 𝑗𝑗𝑗 Ω

=
𝑗𝑗0∠0° 𝑉𝑉

1.45∠4𝑗.3° Ω

𝑰𝑰𝑳𝑳 = 80.7∠ − 42.3° 𝐴𝐴

 The line-to-neutral voltage at the load is 

𝑽𝑽𝑨𝑨𝑨𝑨 = 𝑰𝑰𝑳𝑳𝑍𝑍𝑌𝑌 = 80.7∠ − 42.3° 𝐴𝐴 1 + 𝑗𝑗0.5 Ω

𝑽𝑽𝑨𝑨𝑨𝑨 = 80.7∠ − 42.3° 𝐴𝐴 1.𝑗𝑗∠𝑗6.6° Ω

𝑽𝑽𝑨𝑨𝑨𝑨 = 90.25∠ − 15.71° V
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Three-Phase Power – Example 

 The line-to-line load voltage is
𝑽𝑽𝑨𝑨𝑩𝑩 = 3𝑽𝑽𝑨𝑨𝑨𝑨∠30°

𝑽𝑽𝑨𝑨𝑩𝑩 = 𝑗56∠𝑗4.3° 𝑉𝑉

 Alternatively, we could calculate line-to-line voltage 
from phase 𝐴𝐴 and phase 𝐵𝐵 line-to-neutral voltages

𝑽𝑽𝑨𝑨𝑩𝑩 = 𝑽𝑽𝑨𝑨𝑨𝑨 − 𝑽𝑽𝑩𝑩𝑨𝑨

𝑽𝑽𝑨𝑨𝑩𝑩 = 90.25∠ − 15.71° V − 90.25∠ − 135.71° V

𝑽𝑽𝑨𝑨𝑩𝑩 = 𝑗56∠𝑗4.3° 𝑉𝑉
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Three-Phase Power – Example 

 The complex power absorbed by the load is

𝑺𝑺𝟑𝟑𝟑𝟑 = 3𝑺𝑺𝑨𝑨 = 3𝑽𝑽𝑨𝑨𝑨𝑨𝑰𝑰𝑳𝑳∗

𝑺𝑺𝟑𝟑𝟑𝟑 = 3 90.𝑗5∠ − 15.71° 𝑉𝑉 80.7∠ − 42.3° 𝐴𝐴 ∗

𝑺𝑺𝟑𝟑𝟑𝟑 = 21.85 ∠𝑗6.6° 𝑘𝑘𝑉𝑉𝐴𝐴

𝑺𝑺𝟑𝟑𝟑𝟑 = 𝑗9.53 + 𝑗𝑗9.78 𝑘𝑘𝑉𝑉𝐴𝐴

 The apparent power:
𝑆𝑆3𝜙𝜙 = 21.85 𝑘𝑘𝑉𝑉𝐴𝐴

 Real power:
𝑃𝑃 = 𝑗9.53 𝑘𝑘𝑘𝑘

 Reactive power:
𝑄𝑄 = 9.78 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣
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Three-Phase Power – Example 

 The power triangle at the load:

𝑄𝑄 = 9.78 kvar

𝑃𝑃 = 𝑗9.53 kW

26.6°

 The power factor at the load is

𝑝𝑝.𝑓𝑓. = cos 26.6° =
𝑃𝑃
𝑆𝑆

=
𝑗9.53 𝑘𝑘𝑘𝑘
21.85 𝑘𝑘𝑉𝑉𝐴𝐴

𝑝𝑝. 𝑓𝑓. = 0.89 𝑙𝑙𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙
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Find:
 Source power
 Source power factor
 Load power
 Load power factor
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Find:
 Source power
 Load power
 Power lost in 

lines
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