SECTION 2: THREE-PHASE
POWER FUNDAMENTALS

- ESE 470 — Energy Distribution Systems



- AC Circuits & Phasors



AC Electrical Signals
e

AC electrical signals (voltages and currents) are
sinusoidal

o Generated by rotating machinery

Sinusoidal voltage (or current):
v(t) =V, cos(wt + ¢) (1)

o This is a time-domain or instantaneous form expression

Characterized by three parameters
o Amplitude

o Frequency

o Phase
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Amplitude

-0V
v(t) =V, cos(wt + ¢)

V, in the above expression is amplitude or peak voltage

We typically characterize power-system voltages and
currents in terms of their root-mean-square (rms)
values

1
1

Vims = (; fOT v(t)zdt)E (2)

A signal delivers the same power to a resistive load as a
DC signhal equal to its rms value

For sinusoids:

Vp
=7z (3)

Vrms
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Euler’s Identity
-

Euler’s identity allows us to express sinusoidal
signals as complex exponentials

e/®t = cos(wt) + j sin(wt) (4)
SO
e/ (Wt+®) = cos(wt + ¢) + jsin(wt + ¢) (5)

and
V, cos(wt + ¢) = VpRe{ej(‘””‘l’)}

V, cos(wt + ¢) = V2 VppsRef{e/ (@t} (6)
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Phasor Representation
e

Phasor representation simplifies circuit analysis when dealing with
sinusoidal signals

o Drop the time-harmonic (oscillatory) portion of the signal representation
Known and constant

o Represent with rms amplitude and phase only
For example, consider the time-domain voltage expression

v(t) = V2 Vs cos(wt + ¢)
The phasor representation, in exponential form, is
V = Vomse/?
Can also express in polar or Cartesian form
V = Vims£® = Vins cos(@P) + jVrms sin(g)

In these notes bold type will be used to distinguish phasors
We’ll always assume rms values for phasor magnitudes

K. Webb ESE 470



Phasors

Think of a phasor as a vector in v

the complex plane Ny sin(o)

o Has magnitude and angle ¢ : S Re
Vims cos(d)

Circuit analysis in the phasor domain is simplified
o Derivative and integrals become algebraic expressions

Consider the voltage across inductance and capacitance:

S T timenomain | Phasor Domain

Capacitor 1 1
= — ] V=——I
v(t) le(t)dt JoC
Inductor ) = Lﬂ V = jwLI
dt
Resistor v(t) = i(t)R V=IR
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Phasors
I

In general, in the phasor domain

V=IzZ (7)
and
V
'=7
Ohm’s law

Z is a complex impedance

o Not a phasor, but also expressed in exponential, polar,
or Cartesian form
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Phasors - Example

Determine i(t) and v, (t) for the following circuit, AN
driven by a 120 V}.,,,, 60 Hz source

At 60 Hz the inductor impedance is ]
jX; = jwL =j2n-60 Hz-5mH = j1.88 ()

The total impedance seen by the source is
Z=R+jX, =2+j1.880Q

Converting to polar form
Z=|Z|46

1Z] = VR2 + X2 = 2.74 Q
0 =tan! (X) 43°
= n —_ =
MR

Z =2.74243° Q
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Phasors — Example

-
The source voltage is

v(t) =2 -120Vcos(2m - 60HZ - t)

The source voltage phasor is

V =12040°V
The current phasor is
V 12040°V

— = = 43724 —43°A
Z 2.741£43°()

We can use the current phasor to determine the phasor for
the voltage across the resistor

V, = IR = (43.72 — 43°) - 20
V,=874s—43°V
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Phasors — Example
R

We have phasor representations for desired

guantities
I =43.74—43°A

V, =87.42 —43°V

We can now convert these to their time-domain
expressions

i(t) =v2-43.7A - cos(2m - 60Hz - t — 43°)
v(t) =V2-87.4V -cos(2m - 60HzZ - t — 43°)
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n Phasor Diagrams
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Phasor Diagrams
-~

Phasors are complex values

o Magnitude and phase

o Vectors in the complex plane

o Can represent graphically

Phasor diagram

O Graphical representation of phasors in a circuit

o KVL and Ohm’s law expressed graphically

K. Webb ESE 470



Phasor Diagram — Example 1
e

wa‘;iiﬁ Source voltage is the reference phasor
V- Ve =12040°V

+
Vs o .
QY 20cov ‘f*é 20 o Its phasor diagram:

Vs

Ohm’s law gives the current

2420

o Adding to the phasor diagram:

| = 42224 —45°A

Vs
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Phasor Diagram — Example 1
e

wal;(&o Ohm'’s law gives the inductor voltage
+ V- . V, =1 -jwL = (42.24 —45°A) - j2 Q
Vs@ 120£0° V VRé 20 V, = 85245°V

Vs

Finally, KVL gives V
Vp=Vs—V,
Ve =12040°V —85445°V
V, = 852 — 45°
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Phasor Diagram — Example 2

-
Source voltage is the

| 150 20
—— a2 reference phasor
Viiner — LineL —
' "y * Ve =2.420°kV
Vs(\))2.4 £0° kv Ve | 2+ilQ

Vs

=

~

Ohm’s law gives the current

Vs

I =
3.5+ /30

= 5214—-41°4

: o8
\ Vs
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Phasor Diagram — Example 2

Ohm’s law gives the resistor voltage

| 150 20
— \}/\/‘ 2y Viiner =1-R
T Pl Vimer = (5212 —41°A) - 1.5Q
Vs(n))2.4 £0° kv v, | 2FiQ Viiner = 7814 — 41°V
- >
X \ v
VLineR
KVL gives V,

Vo, =Vs—Viiner

V, =2420°kV — 7812 —41°V V2 N Miiner

V, = 1.88215.7° kV >

VLineR
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Phasor Diagram — Example 2
R

Drop across the inductor:

| 150 20
A, Vimer = (5212 —41° A4) - j2 O
Ve, = 1.04249° kV
Vs (A))2.4 £0° KV v, | 2+i10 Linel

KVL gives the voltage across the load
Ve =V, = Viiner
Vp =1.88415.7°kV — 1.044£49° kV
Vp=1164 —14° kV
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Phasor Diagram — Example 2

Alternatively, treat the line as a single

L 1so | qo impedance
AA 2
Pl Ve Viine =1 Zyine
V(924 207k w 2oy = (5212 —41° A) - (1.5 +j2 Q)
: Ve, = 1.3212.5°kV

VLine
Vs
>
|

KVL gives the voltage across the load
Ve =Vs—Viine
Ve =242£0°kV — 1.3£12.5° kV Vine
Vg =116£— 14°kV .
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Power — Real Power & Power Factor
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Power

The overall goal of a power distribution network is
to transfer power from a source to loads

Instantaneous power:

o Power supplied by a source or absorbed by a load or
network element as a function of time

p(t) =v(t)-i(t) (8)

The nature of this instantaneous power flow is
determined by the impedance of the load

Next, we'll look at the instantaneous power
delivered to loads of different impedances
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Instantaneous Power — Resistive Load

[
o,

The voltage across the resistive load is

vy (V) >R v(t) =V, cos(wt + 6)

Current through the resistor is
. 2
i(t) = ﬁcos(wt + §)
The instantaneous power absorbed by the resistor is

pr(t) = v(t) - i(t) =V, cos(wt + §) - Kcos((ut + §)

2

v V2
pr(t) = Fcosz(a)t +8) =

1
1%
——11+ 2wt + 2
RZ[l cos(2wt 5)]
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Instantaneous Power — Resistive Load
X

VZ
pr(t) = % [1 4+ cosRwt + 26)]

Making use of the rms voltage

(VZ Vyms)”
2R

pr(t) = [1+ cos(Rwt + 25)]

pr(t) = Vi”“ [1 4+ cosRwt + 26)] (9)

The instantaneous power absorbed by the resistor
has a non-zero average value and a double-
frequency component
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Instantaneous Power — Resistive Load
X

Power delivered to the resistive load has a non-zero
average value and a double-frequency component

Instantaneous Power - Resistive Load

3500
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Time [msec]
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Instantaneous Power — Capacitive Load

Now consider the power absorbed by a purely capacitive
load

o Again, v(t) =V, cos(wt + 6)

o,

The current flowing to the load is vty (V) —=C

i(t) = I, cos(wt + 6 +90°)

where
p XC 1/(1)6

a)CI/;9

The instantaneous power delivered to the capacitive load is

pc(t) = v(t) - i(t)
pc(t) =1, cos(wt + 6) - wCV;, cos(wt + 8 + 90°)
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Instantaneous Power — Capacitive Load
e

1
pc(t) = wCV,? =[cos(—90°) + cos(RQwt + 26 + 90°)]
P2
2

|/A
pc(t) = a)C% - cos(Zwt + 26 + 90°)

In terms of rms voltage (10)

pc(t) = wCV2y - cosQut +26 +90°) ™

400

Instantaneous Power - Capacitive Load

This is a double frequency
sinusoid, but, unlike for the
resistive load, the average value
IS zero

200 1

W]
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K. Webb ESE 470



Instantaneous Power — Inductive Load

Now consider the power absorbed by a purely inductive

load
i(t)

Now the load current lags by 90° —
i(t) = I, cos(wt + 8 —90°) o () L
where
LW
P X, ol

The instantaneous power delivered to the inductive load is

pL(t) = v(t) - i(t)

VA
p.(t) =V, cos(wt + &) - w—icos(wt + 6 —90°)
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Instantaneous Power — Inductive Load
X

[cos(90°) + cos(Rwt + 26 — 90°)]

N =

sz
t) = —
pL(¢) L

V

ol - cos(Qwt + 26 — 90°)

p(t) =

In terms of rms voltage (11)

Instantaneous Power - Inductive Load

VZ 400

pL(t) — ﬁ . COS(ZC()t + 26 — 900) 300
As for the capacitive load, this is
a double frequency sinusoid with ¢ °|

an average value of zero

W]
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Instantaneous Power — General Impedance
e

Finally, consider the instantaneous power absorbed by a
general RLC load

Phase angle of the current is determined by the angle
of the impedance "

i(t) = I, cos(wt + B)
The instantaneous power is
p(t) =V, cos(wt + 6) - I, cos(wt + )

v(t) @ UZ=R+jX

p(t) = VZI [cos(6 — B) + cosRQwt + § + B)]

p(t) = Voslrms [cos(5 —B) + Cos(Zwt + 26 — (6 — ,8))]
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Instantaneous Power — General Impedance
X
Using the following trig identity

cos(4A — B) = cos(A4) cos(B) + sin(A4) sin(B)

we get
p(t) = Vemslrms[cos(6 — B) + cos(6 — B) cos(Rwt + 20)
+ sin(6 — B) sin(2wt + 26)]

and
p(t) = Vo slms cos(6 — B) [1 + cos(2wt + 26)]
Vs lrms SIN(6 — B) sin(2wt + 29)
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Instantaneous Power — General Impedance

-
Letting

Ip = I.,ccos(6 —B) and Iy = I.,ssin(6 — )
we have

p(t) = Vo dg|1 + cosRuwt + 26)]
+VmsIlx Sin(2wt + 26) (12)
There are two components to the power:
pr(t) = Vo dp|1 + cosQwt + 26)] (13)
is the power absorbed by the resistive component of the load, and
px(t) = Vi oIy sin(2wt + 29) (14)

is the power absorbed by the reactive component of the load
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Real Power

According to (9) and (13), power delivered to a
resistance has a non-zero average value

o Purely resistive load or a load with a resistive

component
This is real power, average power, or active power
P = Vimslg
P = Vimslyms cos(6 — B) (15)

Real power has units of watts (W)

Real power is power that results in work (or heat
dissipation)
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Power Factor

The phase angle (6 — ) represents the phase difference between the
voltage and the current

o This is the power factor angle
0o The angle of the load impedance

Note that the real power is a function of the cosine of the power factor
angle

P = Vimslims cos(d — ,8)

This is the power factor

p.f.=cos(6 — B) (16)

For a purely resistive load, voltage and current are in phase
p.f.=cos(6d — ) = cos(0°) =1

P =Vinshms
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Power Factor
I

For a purely capacitive load, current leads the voltage by 90°
p.f.=cos(6 — ) = cos(—90°) =0
P=0

o This is referred to as a leading power factor
o Power factor is leading for loads with capacitive reactance

For a purely inductive load, current lags the voltage by 90°
p.f.=cos(6 — ) = cos(90°) =0
P=0

o Loads with inductive reactance have lagging power factors
Note that power factor is defined to always be positive

0<p.f.<1
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Reactive Power

The other part of instantaneous power, as given by (12),
is the power delivered to the reactive component of the
load

Px(t) = Vimslrms sin(6 — B) sin(2wt + 26)

Unlike real power, this component of power has zero
average value

The amplitude is the reactive power
Q = Vimslyms sin(é — B) var

Units are volts-amperes reactive, or var

Power that flows to and from the load reactance
o Does not result in work or heat dissipation

K. Webb ESE 470



Complex Power

Complex power is defined as the product of the rms voltage phasor

and conjugate rms current phasor

S=Vr

where the voltage has phase angle §
V="Vmstd

and the current has phase angle 8

I =1L, — I = Lmst —

The complex power is

S=VI"= (V;‘m545)(1rm54 — ,B)

S = V?*mslrm54(5 — ,8)

K. Webb
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Complex Power

Complex power has units of volts-amperes (VA)

The magnitude of complex power is apparent
power

5 = Vimslrms VA (20)

Apparent power also has units of volts-amperes

Complex power is the vector sum of real power (in

phase with V) and reactive power (+90° out of
phase with V)

S=P+jQ (21)
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Complex Power
e

Real power can be expressed in terms of complex power
P = Re{S}
or in terms of apparent power
P=S-cos(6—B)=S-p.f.
Similarly, reactive power, is the imaginary part of complex power
Q = Im{S}
and can also be related to apparent power
Q=S sin(éd — B)
And, power factor is the ratio between real power and apparent power

P

p.f.=cos(6 — B) =3
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Power Convention — Load Convention

Applying a consistent sign convention allows us to easily
determine whether network elements supply or absorb
real and reactive power

Passive sign convention or load convention
o Positive current defined to enter the positive voltage
terminal of an element
i
, —
If P > 0orQ > 0, then real or reactive

power is absorbed by the element ¥

If P < 0orQ <0, then real or reactive !

power is supplied by the element -
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Power Absorbed by Passive Elements
e

Complex power absorbed by a resistor
|74
Sp = VI = (V26) (EA _ 5)
VZ
Sp=—
R™R

o Positive and purely real
Resistors absorb real power
Reactive power is zero

Complex power absorbed by a capacitor
Sc=VI; = V4s)(—jwCVsL—-9)
Sc = —jwCV?

o Negative and purely imaginary
Capacitors supply reactive power
Real power is zero
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Power Absorbed by Passive Elements
e

Complex power absorbed by an inductor

|74
S, = VI; = (V£68) (mL — 5)
VZ
51 = wL
o Positive and purely imaginary
Inductors absorb reactive power
Real power is zero

In summary:
o Resistors absorb real power, zero reactive power
o Capacitors supply reactive power, zero real power

o Inductors absorb reactive power, zero real power
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n Power Triangle
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Power Triangle
R

Complex power is the vector sum of real power (in
phase with V) and reactive power (+90° out of phase

with V)
S=P+j0

Complex, real, and reactive powers can be represented
graphically, as a power triangle

Q = VIsin(é — B) var

P=Vicos(6 —fB) W
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Power Triangle

Q = VIsin(é — B) var

P=VIcos(6 — ) W

Quickly and graphically provides power information
o Power factor and power factor angle

o Leading or lagging power factor

o Reactive nature of the load — capacitive or inductive
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Lagging Power Factor

For loads with inductive reactance
o Impedance angle is positive

o Power factor angle is positive

o Power factor is lagging

Q = VIsin(é — B) var

P=VIicos(6 —B) W

() is positive
o The load absorbs reactive power
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Leading Power Factor

For loads with capacitive reactance
o Impedance angle is negative

o Power factor angle is negative

o Power factor is leading

P=VIicos(6 — ) W

Q = VIsin(6 — B) var

( is negative
o The load supplies reactive power
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Power Factor Correction

The overall goal of power distribution is to supply power to
do work

O Real power

Reactive power does not perform work, but
o Must be supplied by the source
o Still flows over the lines

For a given amount of real power consumed by a load, we’d
like to

O Reduce reactive power,

o Reduce S relative to P, that is
o Reduce the p.f. angle, and

O Increase the p.f.

Power factor correction
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Power Factor Correction — Example
R

Consider a source driving an inductive load

Determine:
o Real power absorbed by the load
120 V@ 30 % j20 o Reactive power absorbed by the load
o p.f. angle and p.f.
v Draw the power triangle

Current through the resistance is

120V
R=730 "
Current through the inductance is
120V ]
IL=j2—Q=6OL—90 A

The total load current is
I=Ip+1; = (40 — j60)A = 72.12 — 56.3° A
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Power Factor Correction — Example

-0V
The power factor angle is

0=(—p)=0°—-(-56.3°)
6 = 56.3°
The power factor is
p.f.= cos(0) = cos(56.3°)
p.f.= 0.55 lagging
Real power absorbed by the load is

P=VIcos(6) =120V -72.1A-0.55
P=48kW

Alternatively, recognizing that real power is power absorbed by the
resistance

P=VIpb=120V-40A4A =48 kW
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Power Factor Correction — Example
R

Reactive power absorbed by the load is
Q =VIsin(@) =120V -72.1 A-0.832
Q = 7.2 kvar

This is also the power absorbed by the load inductance
Q=VIp =120V -60A = 7.2 kvar
Apparent power is
S=VI=120V -72.1 A =8.65kVA

Or, alternatively
S = /P% + Q2
S =/ (4.8 kW)2 + (7.2 kvar)? = 8.65 kVA
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Power Factor Correction — Example

-
The power triangle:

Here, the source is supplying
4.8 kW at a power factor of
0.55 lagging

Q = 7.2 kvar

Let’s say we want to reduce
the apparent power
supplied by the source

Deliver 4.8 kW at a p.f. of 0.9 lagging
Add power factor correction

Add capacitors to supply reactive power
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Power Factor Correction — Example
R

Forp.f.= 0.9, we need a
power factor angle of 120v@) 302 sz% L ix.0

0’ = cos~1(0.9) = 25.8°

A4

Power factor correction will help flatten the power
triangle:

Q = 7.2 kvar

K. Webb ESE 470



Power Factor Correction — Example
R

Reactive power to the power-

factor-corrected load is reduced

from Q to QI Q = 7.2 kvar
Q' = Ptan(6')
Q' = 4.8 kW - tan(25.8°) @' =232 kvar

Q' = 2.32 kvar

The required reactive power absorbed (negative, so it is
supplied) by the capacitors is

Qs = Q' —Q = 2.32 kvar — 7.2 kvar
Q. = —4.88 kvar
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Power Factor Correction — Example
-

Reactive power absorbed by the capacitor is

2
Qc = X,

So the required capacitive reactance is
Xc = v’ _ (120 v)* = —2.950Q

Q. —4.88kvar

The addition of —j2.95 () provides the desired power factor
correction

120 v@ 302 20 - 2.950

v
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- Example Problems
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The source voltage in the

circuit is $
8 Q)
v(t) = vZ - 120V cos(2m - 60Hz - t). VIO (Y L o
§20 mH
Determine the complex _

power delivered to the load.
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Two three-phase load are connected in parallel:
o 50 kVA at a power factor of 0.9, leading
o 125 kW at a power factor of 0.85, lagging.

Draw the power triangle and determine the combined power factor.
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Power is delivered to a single-phase load with an impedance of Z; =
3+ j2Qat 120 V. Add power factor correction in parallel with the
load to yield a power factor of 0.95, lagging.

Determine the reactive power and impedance of the power factor
correction component.
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Draw a phasor diagram for the
following circuit.

o Draw a phasor for the voltage
across each component and for
the current

o Apply KVL graphically. That is,
add the individual component
phasors together graphically to
show that the result is equal to
the source voltage phasor.

14£0° kV @

1Q 20 4 Q
YYY VA YYY
+ Vi - + Vg — + Vy - N

Vea<Z 40Q

V, <j6Q
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Balanced Three-Phase Networks
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Balanced Three-Phase Networks

We are accustomed to single-phase power in our
homes and offices

o A single line voltage referenced to a neutral

—0 L

120 Vyme @

—oN

Electrical power is generated, transmitted, and
largely consumed (by industrial customers) as
three-phase power

o Three individual line voltages and (possibly) a neutral
o Line voltages all differ in phase by +120°
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A- and Y-Connected Networks

Two possible three-phase configurations
o Applies to both sources and loads

Y-Connected Source A-Connected Source
c . s
Vca
Vo, + a AN a
) )
+
Vcn - n - +

Y-connected network has a neutral node
A-connected network has no neutral
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Line-to-Neutral Voltages

In the Y network, voltages V.., Vy,

and V_,, are line-to-neutral voltages ‘<
. . V +
A three-phase source is balanced if A _ ;
o Line-to-neutral voltages have equal Ven — - n
magnitudes é\)vbn
O Line-to-neutral voltage are each 120° hl b _,

out of phase with one another

A three-phase network is balanced if
o Sources are balanced
o The impedances connected to each phase are equal
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Line-to-Neutral Voltages

The line-to-neutral voltages are

Van = Vin20°

Vy, = Vinz — 120°

Vey = Vinz — 240° = V y2 + 120°

This is a positive-sequence or abc-sequence
source

Positive-Sequence

o Vg, leads Vy,, which leads V,, Phasor Diagram:
Ven

Can also have a negative- or acbh-sequence
source

120°
o V., leads V., which leads V,,

W

We’ll always assume positive-sequence
sources Von
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Line-to-Line Voltages

The voltages between the three phases are line-to-
line voltages

Apply KVL to relate line-to-line voltages to line-to-
neutral voltages

Vab = Van + Vpn =0
Vab =Van —Vpn

We know that
Von =V n20°

and

Vbn == VLNL - 1200

SO
Vg, = Vin20° — Viyz — 120° =V, (120° — 12 — 120°)

1 /3 3 43
o e R A

Vab = Vin 2

Vg = V3V y230°
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Line-to-Line Voltages

Again applying KVL, we can find V.
Voe =Vibn —Ven
Vpe = Ving —120° =V y2120°

1 1

Vpe = Vin

Ve = Vin(=jV3)
Vye = V3V, yz —90°

Similarly,

Veq = V3V y2150°

K. Webb
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Line-to-Line Voltages
e

The line-to-line voltages, with V,,, as the
reference:

Vap = V3V, y230°
Vye = V3V, yz —90°
Veq = V3V y2150°

Line-to-line voltages are v/3 times the line-to-
neutral voltage c

Can also express in terms of individual line-to-neutral voltages:

Vap = V3V, 230°
Ve = V3Vp230°
Veg = V3V 230°
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Currents in Three-Phase Networks
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Line Currents in Balanced 3¢ Networks

We can use the line-to-

neutral voltages to

determine the line currents |
o Y-connected source and load ) _d\}j

o Balanced load — all

impedances are equal: Zy

|k

;

I, =

Ib=

I. =

Vav  Vin20°

Zy  Zy

Vey Vinz — 120°
Zy Iy

Ven  Vins + 120°
Zy  Zy

Line currents are balanced as long as the source and load

are balanced

K. Webb
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Neutral Current in Balanced 3¢ Networks

C

AN
Apply KCL to determine v .y
the neutral current LAY e

L,=1,+1,+1, d,)v .
+ b — B
%
I, = % [120° + 12 — 120° + 12120°]
Y
L) PR V3 + 1+'\/§
n= 7 217 2717
I, =0

The neutral conductor carries no current in a balanced
three-phase network
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Y- and A-connected Loads
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Three-Phase Load Configurations

As for sources, three-phase loads can also be connected in two
different configurations

Y-Connected Load A-Connected Load
(e C © C
A oA 7]

[s]
a,

/\JV

o B

o

The Y load has a neutral connection, but the A load does not

Currents in a Y-connected load are the line currents we just
determined

Next, we’ll look at currents in a A-connected load
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Balanced A-Connected Loads

We can use line-to-line | i

voltages to determine — A 5

the currents in A-

connected loads e\&2 /e
by

Vap  V3Vay230° 3V y230°

I1n =
AB 7 Z Z

o Vec V3Vpn£30° 3V yz—90°
PO zp T Zp - Zp

o Vea  V3Ven230° 3V y£150°
A=z, 7 Zy - Z
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Balanced A-Connected Loads

Applying KCL, we can

determine the line currents 5 s IZCEA
Io =1I4p —Icqy \ 7
lag\ < 7
3V AB lsc
I, = V3Vin [1230° — 12150°] by
Z
V3V [(V3 1 \/—VLN 3VLN
=G (7 ) (-7 i3)] - -
The other line currents can be found similarly:
3V, ny20°
= = \BI4p2 —30°
ZA
3V, n2 — 120°
1, =" = 3Igc2 — 30°
ZA
3V, y2120°
c = LNZA - \/§ICAL - 300
K. Webb
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A — Y Conversion

Analysis is often simpler when dealing with Y-
connected loads

o Would like a way to convert A loads to Y loads (and vice

versa)

—_C —> _C
Ia Ia

—_A —> A —~—
| <€ > —

—> N

o ? s

A A

— > _B — B

Fora Y load and a A load to be equivalent, they must
result in equal line currents
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A — Y Conversion

e
Line currents for a Y-connected load:

V, n20°
a = Z,
Vonz —120°
b — ZY
V,n2120°
I, = Z)
For a A-connected load:
3V, y20°
a = Z—A
3V, 2 — 120°
b — ZA

L 3Viy2120°
C ZA
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A — Y Conversion

Equating any of the three line currents, we can
determine the impedance relationship
Vin20°  3Vy20°
Zy  Zp

Zy =—| and |ZA = 3Zy

Ny’
p=d
wi
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- Per-Phase Analysis

K. Webb ESE 470



Line-to-Neutral Schematics
S —

For balanced networks, we can simplify our analysis by considering
only a single phase

o A per-phase analysis
o Other phases are simply shifted by £120°

For example, a balanced Y-Y circuit:

I
I

¢ T2 AN, C ; la

a
an + a :
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One-Line Diagrams

Power systems are often depicted using one-line
diagrams or single-line diagrams

o Not a schematic — not all wiring is shown

For example:

24 kV 150 kV 10 kV
T1 T2
10 +j40 Q

2
)

D C -
| > C I C
14MN<{> R \ji\ /H A i J/ 11 MW

Transmission

Line \'\
’\/\ Transformer Bls \\/

Load
Generator 2.9 MW
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- Example Problems
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Given the following balanced 3-¢ quantities:
Vg = 480215° and Ip = 212 — 28°

Find:

1) Vap

2) Van

3) 1,

4) I
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Find:

o Per-phase circuit

o Line current, 14

o Load voltage

K. Webb ESE 470
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Find: :

. . Ve, V!
o Per-phase circuit 2, AN
040
o Line current, 1, ., 450 20"y
o L-L and L-N load i
Wi

voltages

K. Webb ESE 470
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- Power in Balanced 3¢ Networks
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Instantaneous Power

We’ll first determine the instantaneous power supplied by the
source

o Neglecting line impedance, this is also the power absorbed by the load
The phase a line-to-neutral voltage is
Vo (t) = V2V, y cos(wt + &)
The phase a current is
i,(t) = V2I, cos(wt + B)
where [ depends on the load impedance
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Instantaneous Power
X

The instantaneous power delivered out of phase a
of the source is

pa(t) = van(t)ia(t)
py(t) = 2V, n1; cos(wt + &) cos(wt + )
e (t) =V nI cos(6 — B) + Vynl, cosQRuwt + 6 + B)

The b and ¢ phases are shifted by +120°
o Power from each of these phases is

pp(t) =VinI cos(6 — B) + Vil cosQQwt + § +  — 240°)
pe(t) =V nIl cos(6 — B) + Vinl; cosQRwt + 6 + B + 240°)
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Instantaneous Power

The total power delivered by the source is the sum of the power
from each phase

P3¢ (t) = pa(t) + pp(t) + pc(t)

P3¢ (t) = 3V yI, cos(6 — )
+VinI [cosRwt + § + )
+ cosRwt + 6§ + f — 240°)
+ cos(Qwt + § + f + 240°)]

Everything in the square brackets cancels, leaving
P3¢ (t) = 3V NI cos(§ — B) = Psq

Power in a balanced 3¢ network is constant
In terms of line-to-line voltages, the power is

P3¢ — \/§VLLIL COS(5 — B)
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Complex Power

-
The complex power delivered by phase a is

Sa =Vanlg = V26U LB)"
Sa =VinIL2(6 —B)
Sa = VLNIL COS(5 — ﬁ) +jVLNIL Sin(5 — ﬁ)
For phase b, complex power is
Sp = Vil = Vin2(8 — 120°) (I,2(B — 120°)
Sp=VinI (6 —p)
Sb = VLNIL COS(6 — ,B) +jVLNIL Sin(6 — ﬁ)

This is equal to §, and also to phase S,

K. Webb ESE 470



Complex Power
e

The total complex power is

S3p =Sa+Sp+ S,

S3¢ = 3VinI£(6 — B)

S3p = 3V nI cos(6 — B) + j3V I, sin(6 — B)

The apparent power is the magnitude of the
complex power

53¢ — 3VLNIL
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Complex Power
e

Complex power can be expressed in terms of the
real and reactive power

S3¢p = P3¢ + 03¢

The real power, as we’ve already seen is
P3¢ = 3VLNIL COS(5 — ,B)

The reactive power is
Q3¢ = 3VinlL sin(6 — f)
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Advantages of Three-Phase Power
-
Advantages of three-phase power:

o For a given amount of power, half the amount of wire
required compared to single-phase

No return current on neutral conductor

o Constant real power
Constant motor torque
Less noise and vibration of machinery
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Three-Phase Power — Example

AN €
ZA=3+j150

\/\/\fYYY\AA —

| I

¥l

/\/V

\/\/\NYY\AB

Determine

O Load voltage, V45

o Power triangle for the load
o Power factor at the load

We'll do a per-phase analysis, so first convert the A load
toaY load

Zp .
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Three-Phase Power — Example
-

The per-phase circuit: N

a A A YY) A

2,=01+j0.50Q

Van@ [ZJ Z,=1+j0.50

The line current is

_ Van  12020°V  12020°V
Z;+Zy 114j1Q 1.45242.3°Q

I, =80.72—-423°A

I

The line-to-neutral voltage at the load is
Vay =1;Zy = (80.72—42.3°A)(1+j0.5Q)
Vay = (80.74 —42.3°A)(1.12£26.6° Q)
Vav =90.2524 —15.71°V
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Three-Phase Power — Example
R

The line-to-line load voltage is

VAB — @VANLBOO

VAB —_ 156414‘30 V

Alternatively, we could calculate line-to-line voltage
from phase A and phase B line-to-neutral voltages

Vap =Van —Vpn
Vg =90.254 —15.71°V —90.252 — 135.71°V

VAB —_ 156414‘30 V
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Three-Phase Power — Example
-

The complex power absorbed by the load is
S3p = 354 = 3VanIj
S3p = 3(90.2524 — 15.71°V)(80.72 — 42.3° A)*
S3p = 21.85£26.6° kVA
S3p = 19.53 +j9.78 kVA

The apparent power:
S3¢ = 21.85kVA

Real power:
P =19.53 kW

Reactive power:
Q = 9.78 kvar
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Three-Phase Power — Example

.
The power triangle at the load:

Q = 9.78 kvar

P =19.53 kW

The power factor at the load is

- cos(266%) < = 19.53 kW
p-f.=c0s(26:6°) = = = T oc VA

p.f.= 0.89 lagging
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n Example Problems
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Find:

O Source power

o Source power factor

o Load power

o Load power factor
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Find: :
O Source power
O Load power "

o Power lost in
lines

%
: a%

040

480 £0°V

b A
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