SECTION 2: THREE-PHASE POWER FUNDAMENTALS

ESE 470 – Energy Distribution Systems

AC Electrical Signals

AC electrical signals (voltages and currents) are sinusoidal

Generated by rotating machinery

□ Sinusoidal voltage (or current):

$$v(t) = V_p \cos(\omega t + \phi) \tag{1}$$

This is a time-domain or instantaneous form expression

Characterized by three parameters

Amplitude

Frequency

Phase

Amplitude

$$v(t) = V_p \cos(\omega t + \phi)$$

- \Box V_p in the above expression is *amplitude* or *peak voltage*
- We typically characterize power-system voltages and currents in terms of their *root-mean-square* (rms) values

$$V_{rms} = \left(\frac{1}{T} \int_0^T v(t)^2 dt\right)^{\frac{1}{2}}$$
(2)

 A signal delivers the same power to a resistive load as a DC signal equal to its rms value

□ For *sinusoids*:

$$V_{rms} = \frac{V_p}{\sqrt{2}} \tag{3}$$

Euler's Identity

Euler's identity allows us to express sinusoidal signals as complex exponentials

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t) \tag{4}$$

SO

$$e^{j(\omega t + \phi)} = \cos(\omega t + \phi) + j\sin(\omega t + \phi)$$
(5)

and

$$V_p \cos(\omega t + \phi) = V_p Re\{e^{j(\omega t + \phi)}\}$$
$$V_p \cos(\omega t + \phi) = \sqrt{2} V_{rms} Re\{e^{j(\omega t + \phi)}\}$$

(6)

Phasor Representation

- Phasor representation simplifies circuit analysis when dealing with sinusoidal signals
 - Drop the time-harmonic (oscillatory) portion of the signal representation
 - Known and constant
 - Represent with *rms amplitude* and *phase* only
- □ For example, consider the time-domain voltage expression

$$v(t) = \sqrt{2} V_{rms} \cos(\omega t + \phi)$$

The phasor representation, in *exponential* form, is

$$V = V_{rms} e^{j\phi}$$

Can also express in *polar* or *Cartesian* form

$$\mathbf{V} = V_{rms} \angle \phi = V_{rms} \cos(\phi) + j V_{rms} \sin(\phi)$$

- □ In these notes **bold** type will be used to distinguish phasors
- We'll always assume rms values for phasor magnitudes

Phasors

 Think of a phasor as a vector in the complex plane
 Has *magnitude* and *angle*

- Circuit analysis in the phasor domain is simplified
 Derivative and integrals become algebraic expressions
- Consider the voltage across inductance and capacitance:

	Time Domain	Phasor Domain
Capacitor	$v(t) = \frac{1}{c} \int i(t) dt$	$\boldsymbol{V} = \frac{1}{j\omega C} \boldsymbol{I}$
Inductor	$v(t) = L \frac{di}{dt}$	$V = j\omega L I$
Resistor	v(t) = i(t)R	V = IR

In general, in the phasor domain

$$\boldsymbol{V} = \boldsymbol{I}\boldsymbol{Z} \tag{7}$$

and

$$I = \frac{V}{Z}$$

Ohm's law

\Box Z is a complex impedance

Not a phasor, but also expressed in exponential, polar, or Cartesian form

Phasors - Example

- Determine i(t) and $v_L(t)$ for the following circuit, driven by a 120 V_{rms} , 60 Hz source
- \Box At 60 *Hz* the inductor impedance is

$$jX_L = j\omega L = j2\pi \cdot 60 Hz \cdot 5 mH = j1.88 \Omega$$

The total impedance seen by the source is

 $Z = R + jX_L = 2 + j1.88 \,\Omega$

Converting to polar form

$$Z = |Z| \angle \theta$$
$$|Z| = \sqrt{R^2 + X^2} = 2.74 \Omega$$
$$\theta = \tan^{-1} \left(\frac{X}{R}\right) = 43^\circ$$
$$Z = 2.74 \angle 43^\circ \Omega$$

Phasors – Example

□ The source voltage is

$$v(t) = \sqrt{2} \cdot 120V cos(2\pi \cdot 60Hz \cdot t)$$

The source voltage phasor is

 $V = 120 \angle 0^{\circ} V$

□ The current phasor is

$$I = \frac{V}{Z} = \frac{120\angle 0^{\circ} V}{2.74\angle 43^{\circ} \Omega} = 43.7\angle -43^{\circ} A$$

 We can use the current phasor to determine the phasor for the voltage across the resistor

$$V_L = IR = (43.7 \angle -43^\circ) \cdot 2\Omega$$
$$V_L = 87.4 \angle -43^\circ V$$

Phasors – Example

 We have *phasor* representations for desired quantities

$$I = 43.7 \angle -43^{\circ} A$$

 $V_L = 87.4 \angle -43^{\circ} V$

We can now convert these to their time-domain expressions

$$i(t) = \sqrt{2} \cdot 43.7 A \cdot \cos(2\pi \cdot 60Hz \cdot t - 43^\circ)$$
$$v(t) = \sqrt{2} \cdot 87.4 V \cdot \cos(2\pi \cdot 60Hz \cdot t - 43^\circ)$$

¹² Phasor Diagrams

Phasor Diagrams

Phasors are complex values

- Magnitude and phase
- Vectors in the complex plane
- Can represent graphically

Phasor diagram

- Graphical representation of phasors in a circuit
- KVL and Ohm's law expressed graphically

Source voltage is the reference phasor
 V_S = 120∠0° V
 Its phasor diagram:

Ohm's law gives the current

$$I = \frac{V_S}{2 + j2 \ \Omega} = 42.2 \angle -45^\circ A$$

• Adding to the phasor diagram:

Vs

15

 $V_R = V_S - V_L$

 $V_{R} = 85 \angle -45^{\circ}$

Source voltage is the reference phasor

$$V_S = 2.4 \angle 0^\circ kV$$

 V_{S}

Ohm's law gives the current

$$I = \frac{V_S}{3.5 + j3 \Omega} = 521 \angle -41^\circ A$$

Ohm's law gives the resistor voltage

$$V_{LineR} = I \cdot R$$
$$V_{LineR} = (521 \angle -41^{\circ} A) \cdot 1.5 \Omega$$
$$V_{LineR} = (701 \land -41^{\circ} A) \cdot 1.5 \Omega$$

$$V_{LineR} = 781 \angle -41^{\circ} V$$

• KVL gives V_2

$$V_2 = V_S - V_{LineR}$$

 $V_2 = 2.4 \angle 0^\circ kV - 781 \angle -41^\circ V$
 $V_2 = 1.88 \angle 15.7^\circ kV$

17

Drop across the inductor: $V_{LineL} = (521 \angle -41^{\circ} A) \cdot j2 \Omega$

$$V_{LineL} = 1.04 \angle 49^{\circ} kV$$

KVL gives the voltage across the load

$$V_R = V_2 - V_{LineL}$$
$$V_R = 1.88 \angle 15.7^{\circ} kV - 1.04 \angle 49^{\circ} kV$$
$$V_R = 1.16 \angle -14^{\circ} kV$$

18

Alternatively, treat the line as a single impedance

$$V_{Line} = I \cdot Z_{Line}$$
$$V_{Line} = (521 \angle -41^{\circ} A) \cdot (1.5 + j2 \Omega)$$
$$V_{LineL} = 1.3 \angle 12.5^{\circ} kV$$

KVL gives the voltage across the load

$$V_R = V_S - V_{Line}$$
$$V_R = 2.4 \angle 0^\circ kV - 1.3 \angle 12.5^\circ kV$$
$$V_R = 1.16 \angle -14^\circ kV$$

Power

- The overall goal of a power distribution network is to transfer power from a source to loads
- Instantaneous power:
 - Power supplied by a source or absorbed by a load or network element as a function of time

$$p(t) = v(t) \cdot i(t) \tag{8}$$

- The nature of this instantaneous power flow is determined by the impedance of the load
- Next, we'll look at the instantaneous power delivered to loads of different impedances

Instantaneous Power – Resistive Load

The voltage across the resistive load is

$$v(t) = V_p \cos(\omega t + \delta)$$

Current through the resistor is

$$i(t) = \frac{V_p}{R}\cos(\omega t + \delta)$$

□ The instantaneous power absorbed by the resistor is

$$p_R(t) = v(t) \cdot i(t) = V_p \cos(\omega t + \delta) \cdot \frac{V_p}{R} \cos(\omega t + \delta)$$
$$p_R(t) = \frac{V_p^2}{R} \cos^2(\omega t + \delta) = \frac{V_p^2}{R} \frac{1}{2} [1 + \cos(2\omega t + 2\delta)]$$

Instantaneous Power – Resistive Load

$$p_R(t) = \frac{V_p^2}{2R} [1 + \cos(2\omega t + 2\delta)]$$

Making use of the rms voltage

$$p_{R}(t) = \frac{\left(\sqrt{2} V_{rms}\right)^{2}}{2R} [1 + \cos(2\omega t + 2\delta)]$$

$$p_{R}(t) = \frac{V_{rms}^{2}}{R} [1 + \cos(2\omega t + 2\delta)]$$
(9)

 The instantaneous power absorbed by the resistor has a non-zero average value and a doublefrequency component

Instantaneous Power – Resistive Load

Power delivered to the resistive load has a non-zero average value and a double-frequency component

24

Instantaneous Power – Capacitive Load

- 25
- Now consider the power absorbed by a purely capacitive load

• Again, $v(t) = V_p \cos(\omega t + \delta)$

The current flowing to the load is

$$i(t) = I_p \cos(\omega t + \delta + 90^\circ)$$

where

$$I_p = \frac{V_p}{X_C} = \frac{V_p}{1/\omega C} = \omega C V_p$$

□ The instantaneous power delivered to the capacitive load is

$$p_{C}(t) = v(t) \cdot i(t)$$

$$p_{C}(t) = V_{p} \cos(\omega t + \delta) \cdot \omega C V_{p} \cos(\omega t + \delta + 90^{\circ})$$

Instantaneous Power – Capacitive Load

$$p_C(t) = \omega C V_p^2 \frac{1}{2} [\cos(-90^\circ) + \cos(2\omega t + 2\delta + 90^\circ)]$$
$$p_C(t) = \omega C \frac{V_p^2}{2} \cdot \cos(2\omega t + 2\delta + 90^\circ)$$

In terms of rms voltage

$$p_C(t) = \omega C V_{rms}^2 \cdot \cos(2\omega t + 2\delta + 90^\circ)$$

 This is a double frequency sinusoid, but, unlike for the resistive load, the average value is zero

Instantaneous Power – Inductive Load

- 27
- Now consider the power absorbed by a purely inductive load
- □ Now the load current *lags* by 90°

$$i(t) = I_p \cos(\omega t + \delta - 90^\circ)$$

where

$$I_p = \frac{V_p}{X_L} = \frac{V_p}{\omega L}$$

The instantaneous power delivered to the inductive load is

$$p_L(t) = v(t) \cdot i(t)$$
$$p_L(t) = V_p \cos(\omega t + \delta) \cdot \frac{V_p}{\omega L} \cos(\omega t + \delta - 90^\circ)$$

Instantaneous Power – Inductive Load

$$p_L(t) = \frac{V_p^2}{\omega L} \frac{1}{2} [\cos(90^\circ) + \cos(2\omega t + 2\delta - 90^\circ)]$$

$$p_L(t) = \frac{V_p^2}{2\omega L} \cdot \cos(2\omega t + 2\delta - 90^\circ)$$

In terms of rms voltage

$$p_L(t) = \frac{V_{rms}^2}{\omega L} \cdot \cos(2\omega t + 2\delta - 90^\circ)$$

 As for the capacitive load, this is a double frequency sinusoid with an average value of zero

Instantaneous Power – General Impedance

- 29
- Finally, consider the instantaneous power absorbed by a general RLC load
- Phase angle of the current is determined by the angle of the impedance

$$i(t) = I_p \cos(\omega t + \beta)$$

The instantaneous power is

$$p(t) = V_p \cos(\omega t + \delta) \cdot I_p \cos(\omega t + \beta)$$

$$p(t) = \frac{V_p I_p}{2} [\cos(\delta - \beta) + \cos(2\omega t + \delta + \beta)]$$

$$p(t) = V_{rms} I_{rms} [\cos(\delta - \beta) + \cos(2\omega t + 2\delta - (\delta - \beta))]$$

30

Using the following trig identity

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

we get

$$p(t) = V_{rms} I_{rms} [\cos(\delta - \beta) + \cos(\delta - \beta) \cos(2\omega t + 2\delta) + \sin(\delta - \beta) \sin(2\omega t + 2\delta)]$$

and

$$p(t) = V_{rms}I_{rms}\cos(\delta - \beta) \left[1 + \cos(2\omega t + 2\delta)\right]$$
$$+ V_{rms}I_{rms}\sin(\delta - \beta)\sin(2\omega t + 2\delta)$$

Instantaneous Power – General Impedance

31

Letting

$$I_R = I_{rms} \cos(\delta - \beta)$$
 and $I_X = I_{rms} \sin(\delta - \beta)$

we have

$$p(t) = V_{rms} I_R [1 + \cos(2\omega t + 2\delta)] + V_{rms} I_X \sin(2\omega t + 2\delta)$$
(12)

□ There are two components to the power:

$$p_R(t) = V_{rms} I_R [1 + \cos(2\omega t + 2\delta)]$$
(13)

is the power absorbed by the resistive component of the load, and

$$p_X(t) = V_{rms} I_X \sin(2\omega t + 2\delta)$$
(14)

is the power absorbed by the reactive component of the load

Real Power

- According to (9) and (13), power delivered to a resistance has a non-zero average value
 - Purely resistive load or a load with a resistive component

This is real power, average power, or active power

$$P = V_{rms}I_R$$

$$P = V_{rms} I_{rms} \cos(\delta - \beta)$$
⁽¹⁵⁾

- Real power has units of *watts* (W)
- Real power is power that results in work (or heat dissipation)

Power Factor

- The phase angle $(\delta \beta)$ represents the phase difference between the voltage and the current
 - This is the *power factor angle*
 - The angle of the load impedance
- Note that the *real power* is a function of the *cosine of the power factor* angle

$$P = V_{rms} I_{rms} \cos(\delta - \beta)$$

This is the *power factor*

$$p.f. = \cos(\delta - \beta) \tag{16}$$

□ For a purely resistive load, voltage and current are in phase

$$p.f. = \cos(\delta - \beta) = \cos(0^{\circ}) = 1$$
$$P = V_{rms}I_{rms}$$

Power Factor

For a purely capacitive load, current leads the voltage by 90°

$$p.f. = \cos(\delta - \beta) = \cos(-90^\circ) = 0$$
$$P = 0$$

- **•** This is referred to as a *leading power factor*
- Power factor is *leading* for loads with *capacitive* reactance
- □ For a purely inductive load, current lags the voltage by 90°

$$p.f. = \cos(\delta - \beta) = \cos(90^\circ) = 0$$
$$P = 0$$

Loads with inductive reactance have *lagging* power factors
 Note that power factor is defined to always be *positive*

$$0 \le p.f. \le 1$$

Reactive Power

- 36
- The other part of instantaneous power, as given by (12), is the power delivered to the reactive component of the load

$$p_X(t) = V_{rms}I_{rms}\sin(\delta - \beta)\sin(2\omega t + 2\delta)$$

- Unlike real power, this component of power has zero average value
- The amplitude is the reactive power

$$Q = V_{rms} I_{rms} \sin(\delta - \beta) \ var$$

- Units are volts-amperes reactive, or var
- Power that flows to and from the load reactance
 Does not result in work or heat dissipation
Complex Power

 Complex power is defined as the product of the rms voltage phasor and conjugate rms current phasor

$$\boldsymbol{S} = \boldsymbol{V}\boldsymbol{I}^* \tag{18}$$

where the voltage has phase angle δ

$$\boldsymbol{V} = V_{rms} \angle \delta$$

and the current has phase angle β

$$\boldsymbol{I} = I_{rms} \boldsymbol{\angle} \boldsymbol{\beta} \quad \rightarrow \quad \boldsymbol{I}^* = I_{rms} \boldsymbol{\angle} - \boldsymbol{\beta}$$

□ The complex power is

$$S = VI^* = (V_{rms} \angle \delta)(I_{rms} \angle -\beta)$$

$$S = V_{rms}I_{rms} \angle (\delta - \beta)$$
(19)

- Complex power has units of *volts-amperes* (VA)
- The magnitude of complex power is apparent power
 power

$$S = V_{rms} I_{rms} VA$$
 (20)

- Apparent power also has units of volts-amperes
- Complex power is the vector sum of real power (in phase with V) and reactive power (±90° out of phase with V)

$$S = P + jQ$$

Complex Power

Real power can be expressed in terms of complex power

$$P = Re\{S\}$$

or in terms of *apparent power*

$$P = S \cdot \cos(\delta - \beta) = S \cdot p.f.$$

□ Similarly, *reactive power*, is the imaginary part of complex power

$$Q = Im\{S\}$$

and can also be related to *apparent power*

$$Q = S \cdot \sin(\delta - \beta)$$

And, power factor is the ratio between real power and apparent power

$$p.f. = \cos(\delta - \beta) = \frac{P}{S}$$

Power Convention – Load Convention

- 41
- Applying a consistent sign convention allows us to easily determine whether network elements supply or absorb real and reactive power
- Passive sign convention or load convention
 - Positive current defined to enter the positive voltage terminal of an element
- If P > 0 or Q > 0, then real or reactive power is *absorbed* by the element
- If P < 0 or Q < 0, then real or reactive power is *supplied* by the element

Power Absorbed by Passive Elements

42

Complex power absorbed by a *resistor*

$$S_{R} = VI_{R}^{*} = (V \angle \delta) \left(\frac{V}{R} \angle -\delta\right)$$
$$S_{R} = \frac{V^{2}}{R}$$

- Positive and purely real
 - Resistors *absorb real* power
 - *Reactive* power is *zero*
- Complex power absorbed by a *capacitor*

$$S_{C} = VI_{C}^{*} = (V \angle \delta)(-j\omega CV \angle -\delta)$$
$$S_{C} = -j\omega CV^{2}$$

- Negative and purely imaginary
 - Capacitors supply reactive power
 - *Real* power is *zero*

Power Absorbed by Passive Elements

43

Complex power absorbed by an *inductor*

$$S_{L} = VI_{L}^{*} = (V \angle \delta) \left(\frac{V}{-j\omega L} \angle -\delta \right)$$
$$S_{L} = j \frac{V^{2}}{\omega L}$$

- Positive and purely imaginary
 - Inductors *absorb reactive* power
 - *Real* power is *zero*

□ In summary:

- Resistors absorb real power, zero reactive power
- Capacitors supply reactive power, zero real power
- Inductors absorb reactive power, zero real power

44 Power Triangle

Power Triangle

- 45
- Complex power is the vector sum of real power (in phase with V) and reactive power (±90° out of phase with V)

$$\boldsymbol{S} = \boldsymbol{P} + \boldsymbol{j}\boldsymbol{Q}$$

 Complex, real, and reactive powers can be represented graphically, as a *power triangle*

Power Triangle

Quickly and graphically provides power information
 Power factor and power factor angle
 Leading or *lagging* power factor
 Reactive nature of the load – *capacitive* or *inductive*

46

Lagging Power Factor

For loads with *inductive* reactance

- Impedance angle is positive
- Power factor angle is positive
- Power factor is *lagging*

$$Q = VI \sin(\delta - \beta)$$
 var

Q is positive The load *absorbs* reactive power

Leading Power Factor

For loads with *capacitive* reactance

- Impedance angle is negative
- Power factor angle is negative
- Power factor is *leading*

$$P = VI \cos(\delta - \beta) W$$

$$\delta - \beta$$

$$S = VI \sin(\delta - \beta) var$$

$$Q = VI \sin(\delta - \beta) var$$

$\Box Q$ is negative

The load supplies reactive power

Power Factor Correction

- 50
- The overall goal of power distribution is to supply power to do work
 - **Real** power
- Reactive power does not perform work, but
 - Must be supplied by the source
 - Still flows over the lines
- For a given amount of real power consumed by a load, we'd like to
 - $\hfill\square$ Reduce reactive power, Q
 - Reduce S relative to P, that is
 - Reduce the p.f. angle, and
 - Increase the p.f.

Power factor correction

51

Consider a source driving an inductive load

- Determine:
 - Real power absorbed by the load
 - Reactive power absorbed by the load
 - **p**.f. angle and p.f.
- Draw the power triangle
- Current through the resistance is

$$I_R = \frac{120 V}{3 \Omega} = 40 A$$

Current through the inductance is

$$I_L = \frac{120 V}{j2 \Omega} = 60 \angle -90^\circ A$$

□ The total load current is

$$I = I_R + I_L = (40 - j60)A = 72.1 \angle -56.3^{\circ} A$$

52

□ The power factor angle is

$$\frac{\theta = (\delta - \beta) = 0^{\circ} - (-56.3^{\circ})}{\theta = 56.3^{\circ}}$$

□ The power factor is

$$p.f. = \cos(\theta) = \cos(56.3^{\circ})$$
$$p.f. = 0.55 \text{ lagging}$$

Real power absorbed by the load is

$$P = VI \cos(\theta) = 120 V \cdot 72.1 A \cdot 0.55$$
$$P = 4.8 kW$$

 Alternatively, recognizing that real power is power absorbed by the resistance

$$P = VI_R = 120 V \cdot 40 A = 4.8 kW$$

53

Reactive power absorbed by the load is

$$Q = VI \sin(\theta) = 120 V \cdot 72.1 A \cdot 0.832$$
$$Q = 7.2 kvar$$

□ This is also the power absorbed by the load inductance

$$Q = VI_L = 120 V \cdot 60 A = 7.2 kvar$$

□ Apparent power is

$$S = VI = 120 V \cdot 72.1 A = 8.65 kVA$$

□ Or, alternatively

$$S = \sqrt{P^2 + Q^2}$$
$$S = \sqrt{(4.8 \, kW)^2 + (7.2 \, kvar)^2} = 8.65 \, kVA$$

The *power triangle*:

- Here, the source is supplying 4.8 kW at a power factor of 0.55 lagging
- Let's say we want to reduce the apparent power supplied by the source

- Deliver 4.8 kW at a p.f. of 0.9 lagging
- Add power factor correction
- Add capacitors to *supply* reactive power

- 55
- For p.f. = 0.9, we need a power factor angle of

$$\theta' = \cos^{-1}(0.9) = 25.8^{\circ}$$

Power factor correction will help flatten the power triangle:

- 56
- Reactive power to the powerfactor-corrected load is reduced from Q to Q'

 $Q' = P \tan(\theta')$ $Q' = 4.8 \, kW \cdot \tan(25.8^\circ)$ $Q' = 2.32 \, kvar$

The required reactive power *absorbed* (negative, so it is *supplied*) by the capacitors is

$$Q_C = Q' - Q = 2.32 \ kvar - 7.2 \ kvar$$

 $Q_C = -4.88 \ kvar$

57

Reactive power absorbed by the capacitor is

$$Q_C = \frac{V^2}{X_C}$$

□ So the required capacitive reactance is

$$X_C = \frac{V^2}{Q_C} = \frac{(120 V)^2}{-4.88 kvar} = -2.95 \Omega$$

□ The addition of $-j2.95 \Omega$ provides the desired power factor correction

58 Example Problems

The source voltage in the circuit is

$$v(t) = \sqrt{2} \cdot 120V \cos(2\pi \cdot 60Hz \cdot t).$$

Determine the complex power delivered to the load.

Two three-phase load are connected in parallel:

- **5**0 kVA at a power factor of 0.9, leading
- **1**25 kW at a power factor of 0.85, lagging.

Draw the power triangle and determine the combined power factor.

Power is delivered to a single-phase load with an impedance of $Z_L = 3 + j2 \Omega$ at 120 V. Add power factor correction in parallel with the load to yield a power factor of 0.95, lagging.

Determine the reactive power and impedance of the power factor correction component.

Draw a phasor diagram for the following circuit.

- Draw a phasor for the voltage across each component and for the current
- Apply KVL graphically. That is, add the individual component phasors together graphically to show that the result is equal to the source voltage phasor.

⁶⁷ Balanced Three-Phase Networks

Balanced Three-Phase Networks

- **68**
- We are accustomed to single-phase power in our homes and offices

A single *line* voltage referenced to a *neutral*

- Electrical power is generated, transmitted, and largely consumed (by industrial customers) as three-phase power
 - Three individual line voltages and (possibly) a neutral
 Line voltages all differ in phase by ±120°

Δ- and Y-Connected Networks

- 69
- Two possible three-phase configurations
 Applies to both *sources* and *loads*

Y-connected network has a neutral node
 Δ-connected network has no neutral

Line-to-Neutral Voltages

- 70
- In the Y network, voltages V_{an} , V_{bn} , and V_{cn} are *line-to-neutral voltages*
- □ A three-phase source is *balanced* if
 - Line-to-neutral voltages have equal magnitudes
 - Line-to-neutral voltage are each 120° out of phase with one another

- A three-phase network is balanced if
 - Sources are balanced
 - The impedances connected to each phase are equal

Line-to-Neutral Voltages

The line-to-neutral voltages are

$$V_{an} = V_{LN} \angle 0^{\circ}$$
$$V_{bn} = V_{LN} \angle -120^{\circ}$$
$$V_{cn} = V_{LN} \angle -240^{\circ} = V_{LN} \angle +120^{\circ}$$

This is a *positive-sequence* or *abc-sequence* source

D V_{an} leads V_{bn} , which leads V_{cn}

Can also have a *negative-* or *acb-sequence* source

D V_{an} leads V_{cn} , which leads V_{bn}

We'll always assume *positive*-sequence sources

Line-to-Line Voltages

- The voltages between the three phases are *line-to-line voltages*
- Apply KVL to relate line-to-line voltages to line-toneutral voltages

$$V_{ab} - V_{an} + V_{bn} = 0$$
$$V_{ab} = V_{an} - V_{bn}$$

We know that

$$V_{an} = V_{LN} \angle 0^{\circ}$$

and

$$\boldsymbol{V_{bn}} = \boldsymbol{V_{LN}} \boldsymbol{\angle} - 120^{\circ}$$

SO

$$V_{ab} = V_{LN} \angle 0^{\circ} - V_{LN} \angle - 120^{\circ} = V_{LN} (1 \angle 0^{\circ} - 1 \angle - 120^{\circ}$$
$$V_{ab} = V_{LN} \left[1 - \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right) \right] = V_{LN} \left[\frac{3}{2} + j\frac{\sqrt{3}}{2} \right]$$
$$V_{ab} = \sqrt{3}V_{LN} \angle 30^{\circ}$$
Line-to-Line Voltages

73

 \Box Again applying KVL, we can find V_{bc}

$$V_{bc} = V_{bn} - V_{cn}$$

$$V_{bc} = V_{LN} \angle -120^{\circ} - V_{LN} \angle 120^{\circ}$$

$$V_{bc} = V_{LN} \left[\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right) - \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right) \right]$$

$$V_{bc} = V_{LN} \left(-j\sqrt{3} \right)$$

$$V_{bc} = \sqrt{3}V_{LN} \angle -90^{\circ}$$

□ Similarly,

$$V_{ca} = \sqrt{3} V_{LN} \angle 150^{\circ}$$

Line-to-Line Voltages

- 74
- □ The line-to-line voltages, with V_{an} as the reference:

$$V_{ab} = \sqrt{3}V_{LN} \angle 30^{\circ}$$
$$V_{bc} = \sqrt{3}V_{LN} \angle -90^{\circ}$$
$$V_{ca} = \sqrt{3}V_{LN} \angle 150^{\circ}$$

 $\hfill\square$ Line-to-line voltages are $\sqrt{3}$ times the line-to-neutral voltage

□ Can also express in terms of individual line-to-neutral voltages:

$$V_{ab} = \sqrt{3}V_{an} \angle 30^{\circ}$$
$$V_{bc} = \sqrt{3}V_{bn} \angle 30^{\circ}$$
$$V_{ca} = \sqrt{3}V_{cn} \angle 30^{\circ}$$

75 Currents in Three-Phase Networks

Line Currents in Balanced 3ϕ Networks

- 76
- We can use the line-toneutral voltages to determine the line currents
 - Y-connected source and load
 - Balanced load all impedances are equal: Z_Y

$$I_{a} = \frac{V_{AN}}{Z_{Y}} = \frac{V_{LN} \angle 0^{\circ}}{Z_{Y}}$$
$$I_{b} = \frac{V_{BN}}{Z_{Y}} = \frac{V_{LN} \angle -120^{\circ}}{Z_{Y}}$$
$$I_{c} = \frac{V_{CN}}{Z_{Y}} = \frac{V_{LN} \angle +120^{\circ}}{Z_{Y}}$$

 Line currents are balanced as long as the source and load are balanced

Neutral Current in Balanced 3ϕ Networks

77

 Apply KCL to determine the neutral current

$$I_n = I_a + I_b + I_c$$

$$I_{n} = \frac{V_{LN}}{Z_{Y}} [1 \angle 0^{\circ} + 1 \angle - 120^{\circ} + 1 \angle 120^{\circ}]$$
$$I_{n} = \frac{V_{LN}}{Z_{Y}} \left[1 + \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right) + \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right) \right]$$
$$I_{n} = 0$$

 The neutral conductor carries no current in a balanced three-phase network

78 Y- and Δ -connected Loads

Three-Phase Load Configurations

- 79
- As for sources, three-phase loads can also be connected in two different configurations

- \Box The Y load has a neutral connection, but the Δ load does not
- Currents in a Y-connected load are the line currents we just determined
- □ Next, we'll look at currents in a Δ -connected load

K. Webb

Balanced Δ -Connected Loads

- 80
- We can use line-to-line voltages to determine the currents in Δconnected loads

$$I_{AB} = \frac{V_{AB}}{Z_{\Delta}} = \frac{\sqrt{3}V_{AN} \angle 30^{\circ}}{Z_{\Delta}} = \frac{\sqrt{3}V_{LN} \angle 30^{\circ}}{Z_{\Delta}}$$
$$I_{BC} = \frac{V_{BC}}{Z_{\Delta}} = \frac{\sqrt{3}V_{BN} \angle 30^{\circ}}{Z_{\Delta}} = \frac{\sqrt{3}V_{LN} \angle -90^{\circ}}{Z_{\Delta}}$$
$$I_{CA} = \frac{V_{CA}}{Z_{\Delta}} = \frac{\sqrt{3}V_{CN} \angle 30^{\circ}}{Z_{\Delta}} = \frac{\sqrt{3}V_{LN} \angle 150^{\circ}}{Z_{\Delta}}$$

Balanced Δ -Connected Loads

 Applying KCL, we can determine the line currents

$$I_a = I_{AB} - I_{CA}$$
$$I_a = \frac{\sqrt{3}V_{LN}}{Z_{\Delta}} [1 \angle 30^\circ - 1 \angle 150^\circ]$$

$$I_{a} = \frac{\sqrt{3}V_{LN}}{Z_{\Delta}} \left[\left(\frac{\sqrt{3}}{2} + j\frac{1}{2} \right) - \left(-\frac{\sqrt{3}}{2} + j\frac{1}{2} \right) \right] = \frac{\sqrt{3}V_{LN}}{Z_{\Delta}} \left[\sqrt{3} \right] = \frac{3V_{LN}}{Z_{\Delta}}$$

□ The other line currents can be found similarly:

$$I_{a} = \frac{3V_{LN} \angle 0^{\circ}}{Z_{\Delta}} = \sqrt{3}I_{AB} \angle -30^{\circ}$$
$$I_{b} = \frac{3V_{LN} \angle -120^{\circ}}{Z_{\Delta}} = \sqrt{3}I_{BC} \angle -30^{\circ}$$
$$I_{c} = \frac{3V_{LN} \angle 120^{\circ}}{Z_{\Delta}} = \sqrt{3}I_{CA} \angle -30^{\circ}$$

$\Delta - Y$ Conversion

- 83
- Analysis is often simpler when dealing with Yconnected loads
 - Would like a way to convert Δ loads to Y loads (and vice versa)

□ For a Y load and a Δ load to be equivalent, they must result in equal line currents

 $\Delta - Y$ Conversion

84

□ Line currents for a *Y*-connected load:

$$I_{a} = \frac{V_{LN} \angle 0^{\circ}}{Z_{Y}}$$
$$I_{b} = \frac{V_{LN} \angle -120^{\circ}}{Z_{Y}}$$
$$I_{c} = \frac{V_{LN} \angle 120^{\circ}}{Z_{Y}}$$

 \square For a Δ -connected load:

$$I_{a} = \frac{3V_{LN} \angle 0^{\circ}}{Z_{\Delta}}$$
$$I_{b} = \frac{3V_{LN} \angle -120^{\circ}}{Z_{\Delta}}$$
$$I_{c} = \frac{3V_{LN} \angle 120^{\circ}}{Z_{\Delta}}$$

$\Delta - Y$ Conversion

 Equating any of the three line currents, we can determine the impedance relationship

⁸⁶ Per-Phase Analysis

Line-to-Neutral Schematics

- 87
- For balanced networks, we can simplify our analysis by considering only a single phase
 - A per-phase analysis
 - Other phases are simply shifted by $\pm 120^{\circ}$
- □ For example, a balanced *Y*-*Y* circuit:

One-Line Diagrams

Power systems are often depicted using one-line diagrams or single-line diagrams

Not a schematic – not all wiring is shown

□ For example:

\Box Given the following balanced 3- ϕ quantities:
$\mathbf{V}_{BC} = 480 \angle 15^{\circ}$ and $\mathbf{I}_{B} = 21 \angle -28^{\circ}$
🗖 Find:
1) V _{AB}
2) V _{AN}
3) I _A
4) I _C

Find:

Per-phase circuit

\Box Line current, I_A

Load voltage

Find:

Per-phase circuit
 Line current, I_A
 L-L and L-N load voltages

Power in Balanced 3ϕ Networks

Instantaneous Power

We'll first determine the instantaneous power supplied by the source

Neglecting line impedance, this is also the power absorbed by the load

 \Box The phase *a* line-to-neutral voltage is

$$v_{an}(t) = \sqrt{2}V_{LN}\cos(\omega t + \delta)$$

 \Box The phase *a* current is

$$i_a(t) = \sqrt{2}I_L\cos(\omega t + \beta)$$

where β depends on the load impedance

Instantaneous Power

- 97
- The instantaneous power delivered out of phase a of the source is
 - $p_{a}(t) = v_{an}(t)i_{a}(t)$ $p_{a}(t) = 2V_{LN}I_{L}\cos(\omega t + \delta)\cos(\omega t + \beta)$ $p_{a}(t) = V_{LN}I_{L}\cos(\delta \beta) + V_{LN}I_{L}\cos(2\omega t + \delta + \beta)$
- The b and c phases are shifted by ±120°
 Power from each of these phases is

$$p_b(t) = V_{LN}I_L\cos(\delta - \beta) + V_{LN}I_L\cos(2\omega t + \delta + \beta - 240^\circ)$$
$$p_c(t) = V_{LN}I_L\cos(\delta - \beta) + V_{LN}I_L\cos(2\omega t + \delta + \beta + 240^\circ)$$

Instantaneous Power

The total power delivered by the source is the sum of the power from each phase

$$p_{3\phi}(t) = p_a(t) + p_b(t) + p_c(t)$$

$$p_{3\phi}(t) = 3V_{LN}I_L\cos(\delta - \beta)$$

$$+V_{LN}I_L[\cos(2\omega t + \delta + \beta)$$

$$+\cos(2\omega t + \delta + \beta - 240^\circ)$$

$$+\cos(2\omega t + \delta + \beta + 240^\circ)]$$

Everything in the square brackets cancels, leaving

$$p_{3\phi}(t) = 3V_{LN}I_L\cos(\delta - \beta) = P_{3\phi}$$

Power in a balanced 3ϕ **network is constant**

In terms of line-to-line voltages, the power is

$$P_{3\phi} = \sqrt{3} V_{LL} I_L \cos(\delta - \beta)$$

Complex Power

□ The *complex power* delivered by phase *a* is

$$S_{a} = V_{an}I_{a}^{*} = V_{LN} \angle \delta(I_{L} \angle \beta)^{*}$$

$$S_{a} = V_{LN}I_{L} \angle (\delta - \beta)$$

$$S_{a} = V_{LN}I_{L} \cos(\delta - \beta) + jV_{LN}I_{L} \sin(\delta - \beta)$$

□ For phase *b*, complex power is

$$S_{b} = V_{bn}I_{b}^{*} = V_{LN} \angle (\delta - 120^{\circ}) (I_{L} \angle (\beta - 120^{\circ}))^{*}$$
$$S_{b} = V_{LN}I_{L} \angle (\delta - \beta)$$
$$S_{b} = V_{LN}I_{L} \cos(\delta - \beta) + jV_{LN}I_{L} \sin(\delta - \beta)$$

 \Box This is equal to S_a and also to phase S_c

Complex Power

□ The **total complex power** is

$$S_{3\phi} = S_a + S_b + S_c$$

$$S_{3\phi} = 3V_{LN}I_L \angle (\delta - \beta)$$

$$\boldsymbol{S_{3\phi}} = 3V_{LN}I_L\cos(\delta-\beta) + j3V_{LN}I_L\sin(\delta-\beta)$$

The *apparent power* is the magnitude of the complex power

$$S_{3\phi} = 3V_{LN}I_L$$

Complex power can be expressed in terms of the real and reactive power

$$S_{3\phi} = P_{3\phi} + jQ_{3\phi}$$

The real power, as we've already seen is

$$P_{3\phi} = 3V_{LN}I_L\cos(\delta - \beta)$$

The *reactive power* is

$$Q_{3\phi} = 3V_{LN}I_L\sin(\delta - \beta)$$

Advantages of Three-Phase Power

- Advantages of three-phase power:
 - For a given amount of power, half the amount of wire required compared to single-phase
 - No return current on neutral conductor

Constant real power

- Constant motor torque
- Less noise and vibration of machinery

- Determine
 - Load voltage, V_{AB}
 - Power triangle for the load
 - Power factor at the load
- We'll do a per-phase analysis, so first convert the Δ load to a Y load

$$Z_Y = \frac{Z_\Delta}{3} = 1 + j0.5 \ \Omega$$

K. Webb

104

□ The per-phase circuit:

□ The line current is

$$I_{L} = \frac{V_{an}}{Z_{L} + Z_{Y}} = \frac{120\angle 0^{\circ} V}{1.1 + j1 \Omega} = \frac{120\angle 0^{\circ} V}{1.45\angle 42.3^{\circ} \Omega}$$
$$I_{L} = 80.7\angle - 42.3^{\circ} A$$

□ The line-to-neutral voltage at the load is

$$V_{AN} = I_L Z_Y = (80.7 \angle -42.3^{\circ} A)(1+j0.5 \Omega)$$
$$V_{AN} = (80.7 \angle -42.3^{\circ} A)(1.12 \angle 26.6^{\circ} \Omega)$$
$$V_{AN} = 90.25 \angle -15.71^{\circ} V$$

The line-to-line load voltage is

$$V_{AB} = \sqrt{3}V_{AN} \angle 30^{\circ}$$
$$V_{AB} = 156 \angle 14.3^{\circ} V$$

Alternatively, we could calculate line-to-line voltage from phase A and phase B line-to-neutral voltages

$$V_{AB} = V_{AN} - V_{BN}$$

 $V_{AB} = 90.25 \angle -15.71^{\circ} V - 90.25 \angle -135.71^{\circ} V$
 $V_{AB} = 156 \angle 14.3^{\circ} V$

106

The complex power absorbed by the load is

$$S_{3\phi} = 3S_A = 3V_{AN}I_L^*$$

$$S_{3\phi} = 3(90.25\angle -15.71^\circ V)(80.7\angle -42.3^\circ A)^*$$

$$S_{3\phi} = 21.85 \angle 26.6^\circ kVA$$

$$S_{3\phi} = 19.53 + j9.78 kVA$$

□ The apparent power:

$$S_{3\phi} = 21.85 \ kVA$$

□ Real power:

$$P = 19.53 \ kW$$

□ Reactive power:

$$Q = 9.78 \, kvar$$

107

□ The power triangle at the load:

The power factor at the load is

$$p.f. = \cos(26.6^{\circ}) = \frac{P}{S} = \frac{19.53 \ kW}{21.85 \ kVA}$$
$$p.f. = 0.89 \ lagging$$

108 Example Problems
Find:

- Source power
- Source power factor
- Load power
- Load power factor

Find:

Source power
Load power
Power *lost* in

lines

