SECTION 2: THREE-PHASE POWER FUNDAMENTALS

ESE 470 - Energy Distribution Systems

AC Circuits \& Phasors

AC Electrical Signals

\square AC electrical signals (voltages and currents) are sinusoidal
\square Generated by rotating machinery
\square Sinusoidal voltage (or current):

$$
\begin{equation*}
v(t)=V_{p} \cos (\omega t+\phi) \tag{1}
\end{equation*}
$$

- This is a time-domain or instantaneous form expression
\square Characterized by three parameters
- Amplitude
- Frequency
- Phase

Amplitude

$$
v(t)=V_{p} \cos (\omega t+\phi)
$$

$\square V_{p}$ in the above expression is amplitude or peak voltage
\square We typically characterize power-system voltages and currents in terms of their root-mean-square (rms) values

$$
\begin{equation*}
V_{r m s}=\left(\frac{1}{T} \int_{0}^{T} v(t)^{2} d t\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

\square A signal delivers the same power to a resistive load as a DC signal equal to its rms value
\square For sinusoids:

$$
\begin{equation*}
V_{r m s}=\frac{V_{p}}{\sqrt{2}} \tag{3}
\end{equation*}
$$

Euler's Identity

\square Euler's identity allows us to express sinusoidal signals as complex exponentials

$$
\begin{equation*}
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t) \tag{4}
\end{equation*}
$$

SO

$$
\begin{equation*}
e^{j(\omega t+\phi)}=\cos (\omega t+\phi)+j \sin (\omega t+\phi) \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
& V_{p} \cos (\omega t+\phi)=V_{p} \operatorname{Re}\left\{e^{j(\omega t+\phi)}\right\} \\
& V_{p} \cos (\omega t+\phi)=\sqrt{2} V_{r m s} \operatorname{Re}\left\{e^{j(\omega t+\phi)}\right\} \tag{6}
\end{align*}
$$

Phasor Representation

\square Phasor representation simplifies circuit analysis when dealing with sinusoidal signals

- Drop the time-harmonic (oscillatory) portion of the signal representation
- Known and constant
- Represent with rms amplitude and phase only
\square For example, consider the time-domain voltage expression

$$
v(t)=\sqrt{2} V_{r m s} \cos (\omega t+\phi)
$$

\square The phasor representation, in exponential form, is

$$
\boldsymbol{V}=V_{r m s} e^{j \phi}
$$

\square Can also express in polar or Cartesian form

$$
\boldsymbol{V}=V_{r m s} \angle \phi=V_{r m s} \cos (\phi)+j V_{r m s} \sin (\phi)
$$

\square In these notes bold type will be used to distinguish phasors
\square We'll always assume rms values for phasor magnitudes

Phasors

\square Think of a phasor as a vector in the complex plane

- Has magnitude and angle

\square Circuit analysis in the phasor domain is simplified
- Derivative and integrals become algebraic expressions
\square Consider the voltage across inductance and capacitance:

	Time Domain	Phasor Domain
Capacitor	$v(t)=\frac{1}{c} \int i(t) d t$	$\boldsymbol{V}=\frac{1}{j \omega C} \boldsymbol{I}$
Inductor	$v(t)=L \frac{d i}{d t}$	$\boldsymbol{V}=j \omega L \boldsymbol{I}$
Resistor	$v(t)=i(t) R$	$\boldsymbol{V}=\boldsymbol{I} R$

Phasors

\square In general, in the phasor domain

$$
\begin{equation*}
V=I Z \tag{7}
\end{equation*}
$$

and

$$
I=\frac{V}{Z}
$$

\square Ohm's law
$\square Z$ is a complex impedance
\square Not a phasor, but also expressed in exponential, polar, or Cartesian form

Phasors - Example

\square Determine $i(t)$ and $v_{L}(t)$ for the following circuit, driven by a $120 V_{r m s}, 60 \mathrm{~Hz}$ source
\square At 60 Hz the inductor impedance is

$$
j X_{L}=j \omega L=j 2 \pi \cdot 60 \mathrm{~Hz} \cdot 5 \mathrm{mH}=j 1.88 \Omega
$$

\square The total impedance seen by the source is

$$
Z=R+j X_{L}=2+j 1.88 \Omega
$$

\square Converting to polar form

$$
\begin{aligned}
& Z=|Z| \angle \theta \\
& |Z|=\sqrt{R^{2}+X^{2}}=2.74 \Omega \\
& \theta=\tan ^{-1}\left(\frac{X}{R}\right)=43^{\circ} \\
& Z=2.74 \angle 43^{\circ} \Omega
\end{aligned}
$$

Phasors - Example

\square The source voltage is

$$
v(t)=\sqrt{2} \cdot 120 \mathrm{~V} \cos (2 \pi \cdot 60 \mathrm{~Hz} \cdot t)
$$

\square The source voltage phasor is

$$
\boldsymbol{V}=120 \angle 0^{\circ} V
$$

\square The current phasor is

$$
\boldsymbol{I}=\frac{\boldsymbol{V}}{Z}=\frac{120 \angle 0^{\circ} \mathrm{V}}{2.74 \angle 43^{\circ} \Omega}=43.7 \angle-43^{\circ} \mathrm{A}
$$

\square We can use the current phasor to determine the phasor for the voltage across the resistor

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{L}}=\boldsymbol{I} R=\left(43.7 \angle-43^{\circ}\right) \cdot 2 \Omega \\
& \boldsymbol{V}_{\boldsymbol{L}}=87.4 \angle-43^{\circ} V
\end{aligned}
$$

Phasors - Example

\square We have phasor representations for desired quantities

$$
\begin{aligned}
& I=43.7 \angle-43^{\circ} A \\
& V_{L}=87.4 \angle-43^{\circ} V
\end{aligned}
$$

\square We can now convert these to their time-domain expressions

$$
\begin{aligned}
& i(t)=\sqrt{2} \cdot 43.7 \mathrm{~A} \cdot \cos \left(2 \pi \cdot 60 H z \cdot t-43^{\circ}\right) \\
& v(t)=\sqrt{2} \cdot 87.4 \mathrm{~V} \cdot \cos \left(2 \pi \cdot 60 H z \cdot t-43^{\circ}\right)
\end{aligned}
$$

12

Phasor Diagrams

Phasor Diagrams

\square Phasors are complex values
\square Magnitude and phase
\square Vectors in the complex plane

- Can represent graphically
\square Phasor diagram
\square Graphical representation of phasors in a circuit
\square KVL and Ohm's law expressed graphically

Phasor Diagram - Example 1

$j \omega L=j 2 \Omega$

\square Source voltage is the reference phasor

$$
\boldsymbol{V}_{S}=120 \angle 0^{\circ} V
$$

- Its phasor diagram:

\square Ohm's law gives the current

$$
\boldsymbol{I}=\frac{\boldsymbol{V}_{S}}{2+j 2 \Omega}=42.2 \angle-45^{\circ} \mathrm{A}
$$

- Adding to the phasor diagram:

Phasor Diagram - Example 1

\square Ohm's law gives the inductor voltage

$$
\begin{aligned}
& \boldsymbol{V}_{L}=\boldsymbol{I} \cdot j \omega L=\left(42.2 \angle-45^{\circ} A\right) \cdot j 2 \Omega \\
& \boldsymbol{V}_{L}=85 \angle 45^{\circ} V
\end{aligned}
$$

\square Finally, KVL gives \boldsymbol{V}_{R}

$$
\begin{aligned}
& \boldsymbol{V}_{R}=\boldsymbol{V}_{S}-\boldsymbol{V}_{L} \\
& \boldsymbol{V}_{R}=120 \angle 0^{\circ} V-85 \angle 45^{\circ} V \\
& \boldsymbol{V}_{R}=85 \angle-45^{\circ}
\end{aligned}
$$

Phasor Diagram - Example 2

Source voltage is the reference phasor

$$
\boldsymbol{V}_{S}=2.4 \angle 0^{\circ} \mathrm{kV}
$$

\square Ohm's law gives the current

$$
\boldsymbol{I}=\frac{\boldsymbol{V}_{S}}{3.5+j 3 \Omega}=521 \angle-41^{\circ} \mathrm{A}
$$

Phasor Diagram - Example 2

\square Ohm's law gives the resistor voltage

\square KVL gives \boldsymbol{V}_{2}

$$
\begin{aligned}
& \boldsymbol{V}_{2}=\boldsymbol{V}_{S}-\boldsymbol{V}_{\text {LineR }} \\
& \boldsymbol{V}_{2}=2.4 \angle 0^{\circ} \mathrm{kV}-781 \angle-41^{\circ} \mathrm{V} \\
& \boldsymbol{V}_{2}=1.88 \angle 15.7^{\circ} \mathrm{kV}
\end{aligned}
$$

Phasor Diagram - Example 2

- Drop across the inductor:

\square KVL gives the voltage across the load

$$
\begin{aligned}
& \boldsymbol{V}_{R}=\boldsymbol{V}_{2}-\boldsymbol{V}_{\text {LineL }} \\
& \boldsymbol{V}_{R}=1.88 \angle 15.7^{\circ} \mathrm{kV}-1.04 \angle 49^{\circ} \mathrm{kV} \\
& \boldsymbol{V}_{R}=1.16 \angle-14^{\circ} \mathrm{kV}
\end{aligned}
$$

Phasor Diagram - Example 2

\square Alternatively, treat the line as a single
 impedance

$$
\begin{aligned}
& \boldsymbol{V}_{\text {Line }}=\boldsymbol{I} \cdot Z_{\text {Line }} \\
& \boldsymbol{V}_{\text {Line }}=\left(521 \angle-41^{\circ} \mathrm{A}\right) \cdot(1.5+j 2 \Omega) \\
& \boldsymbol{V}_{\text {LineL }}=1.3 \angle 12.5^{\circ} \mathrm{kV}
\end{aligned}
$$

\square KVL gives the voltage across the load

$$
\begin{aligned}
& \boldsymbol{V}_{R}=\boldsymbol{V}_{S}-\boldsymbol{V}_{\text {Line }} \\
& \boldsymbol{V}_{R}=2.4 \angle 0^{\circ} \mathrm{kV}-1.3 \angle 12.5^{\circ} \mathrm{kV} \\
& \boldsymbol{V}_{R}=1.16 \angle-14^{\circ} \mathrm{kV}
\end{aligned}
$$

Power - Real Power \& Power Factor

Power

\square The overall goal of a power distribution network is to transfer power from a source to loads
\square Instantaneous power:

- Power supplied by a source or absorbed by a load or network element as a function of time

$$
\begin{equation*}
p(t)=v(t) \cdot i(t) \tag{8}
\end{equation*}
$$

\square The nature of this instantaneous power flow is determined by the impedance of the load
\square Next, we'll look at the instantaneous power delivered to loads of different impedances

Instantaneous Power - Resistive Load

The voltage across the resistive load is

$$
v(t)=V_{p} \cos (\omega t+\delta)
$$

\square Current through the resistor is

$$
i(t)=\frac{V_{p}}{R} \cos (\omega t+\delta)
$$

\square The instantaneous power absorbed by the resistor is

$$
\begin{aligned}
& p_{R}(t)=v(t) \cdot i(t)=V_{p} \cos (\omega t+\delta) \cdot \frac{V_{p}}{R} \cos (\omega t+\delta) \\
& p_{R}(t)=\frac{V_{p}^{2}}{R} \cos ^{2}(\omega t+\delta)=\frac{V_{p}^{2}}{R} \frac{1}{2}[1+\cos (2 \omega t+2 \delta)]
\end{aligned}
$$

Instantaneous Power - Resistive Load

$$
p_{R}(t)=\frac{V_{p}^{2}}{2 R}[1+\cos (2 \omega t+2 \delta)]
$$

\square Making use of the rms voltage

$$
\begin{align*}
& p_{R}(t)=\frac{\left(\sqrt{2} V_{r m s}\right)^{2}}{2 R}[1+\cos (2 \omega t+2 \delta)] \\
& p_{R}(t)=\frac{V_{r m s}^{2}}{R}[1+\cos (2 \omega t+2 \delta)] \tag{9}
\end{align*}
$$

\square The instantaneous power absorbed by the resistor has a non-zero average value and a doublefrequency component

Instantaneous Power - Resistive Load

\square Power delivered to the resistive load has a non-zero average value and a double-frequency component

Instantaneous Power - Capacitive Load

\square Now consider the power absorbed by a purely capacitive load

- Again, $v(t)=V_{p} \cos (\omega t+\delta)$
\square The current flowing to the load is

$$
i(t)=I_{p} \cos \left(\omega t+\delta+90^{\circ}\right)
$$

where

$$
I_{p}=\frac{V_{p}}{X_{C}}=\frac{V_{p}}{1 / \omega C}=\omega C V_{p}
$$

\square The instantaneous power delivered to the capacitive load is

$$
\begin{aligned}
& p_{C}(t)=v(t) \cdot i(t) \\
& p_{C}(t)=V_{p} \cos (\omega t+\delta) \cdot \omega C V_{p} \cos \left(\omega t+\delta+90^{\circ}\right)
\end{aligned}
$$

Instantaneous Power - Capacitive Load

$$
\begin{aligned}
& p_{C}(t)=\omega C V_{p}^{2} \frac{1}{2}\left[\cos \left(-90^{\circ}\right)+\cos \left(2 \omega t+2 \delta+90^{\circ}\right)\right] \\
& p_{C}(t)=\omega C \frac{V_{p}^{2}}{2} \cdot \cos \left(2 \omega t+2 \delta+90^{\circ}\right)
\end{aligned}
$$

\square In terms of rms voltage

$$
p_{C}(t)=\omega C V_{r m s}^{2} \cdot \cos \left(2 \omega t+2 \delta+90^{\circ}\right)
$$

\square This is a double frequency sinusoid, but, unlike for the resistive load, the average value is zero

Instantaneous Power - Inductive Load

\square Now consider the power absorbed by a purely inductive load
\square Now the load current lags by 90°

$$
i(t)=I_{p} \cos \left(\omega t+\delta-90^{\circ}\right)
$$

where

$$
I_{p}=\frac{V_{p}}{X_{L}}=\frac{V_{p}}{\omega L}
$$

\square The instantaneous power delivered to the inductive load is

$$
\begin{aligned}
& p_{L}(t)=v(t) \cdot i(t) \\
& p_{L}(t)=V_{p} \cos (\omega t+\delta) \cdot \frac{V_{p}}{\omega L} \cos \left(\omega t+\delta-90^{\circ}\right)
\end{aligned}
$$

Instantaneous Power - Inductive Load

$$
\begin{aligned}
& p_{L}(t)=\frac{V_{p}^{2}}{\omega L} \frac{1}{2}\left[\cos \left(90^{\circ}\right)+\cos \left(2 \omega t+2 \delta-90^{\circ}\right)\right] \\
& p_{L}(t)=\frac{V_{p}^{2}}{2 \omega L} \cdot \cos \left(2 \omega t+2 \delta-90^{\circ}\right)
\end{aligned}
$$

\square In terms of rms voltage

$$
p_{L}(t)=\frac{V_{r m s}^{2}}{\omega L} \cdot \cos \left(2 \omega t+2 \delta-90^{\circ}\right)
$$

\square As for the capacitive load, this is a double frequency sinusoid with an average value of zero

Instantaneous Power - General Impedance

\square Finally, consider the instantaneous power absorbed by a general RLC load
\square Phase angle of the current is determined by the angle of the impedance

$$
i(t)=I_{p} \cos (\omega t+\beta)
$$

\square The instantaneous power is

$$
\begin{aligned}
& p(t)=V_{p} \cos (\omega t+\delta) \cdot I_{p} \cos (\omega t+\beta) \\
& p(t)=\frac{V_{p} I_{p}}{2}[\cos (\delta-\beta)+\cos (2 \omega t+\delta+\beta)] \\
& p(t)=V_{r m s} I_{r m s}[\cos (\delta-\beta)+\cos (2 \omega t+2 \delta-(\delta-\beta))]
\end{aligned}
$$

Instantaneous Power - General Impedance

\square Using the following trig identity

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

we get

$$
\begin{gathered}
p(t)=V_{r m s} I_{r m s}[\cos (\delta-\beta)+\cos (\delta-\beta) \cos (2 \omega t+2 \delta) \\
+\sin (\delta-\beta) \sin (2 \omega t+2 \delta)]
\end{gathered}
$$

and

$$
\begin{aligned}
p(t)= & V_{r m s} I_{r m s} \cos (\delta-\beta)[1+\cos (2 \omega t+2 \delta)] \\
& +V_{r m s} I_{r m s} \sin (\delta-\beta) \sin (2 \omega t+2 \delta)
\end{aligned}
$$

Instantaneous Power - General Impedance

\square Letting

$$
I_{R}=I_{r m s} \cos (\delta-\beta) \text { and } I_{X}=I_{r m s} \sin (\delta-\beta)
$$

we have

$$
\begin{align*}
p(t)= & V_{r m s} I_{R}[1+\cos (2 \omega t+2 \delta)] \\
& +V_{r m s} I_{X} \sin (2 \omega t+2 \delta) \tag{12}
\end{align*}
$$

\square There are two components to the power:

$$
\begin{equation*}
p_{R}(t)=V_{r m s} I_{R}[1+\cos (2 \omega t+2 \delta)] \tag{13}
\end{equation*}
$$

is the power absorbed by the resistive component of the load, and

$$
\begin{equation*}
p_{X}(t)=V_{r m s} I_{X} \sin (2 \omega t+2 \delta) \tag{14}
\end{equation*}
$$

is the power absorbed by the reactive component of the load

Real Power

\square According to (9) and (13), power delivered to a resistance has a non-zero average value
\square Purely resistive load or a load with a resistive component
\square This is real power, average power, or active power

$$
P=V_{r m s} I_{R}
$$

$$
\begin{equation*}
P=V_{r m s} I_{r m s} \cos (\delta-\beta) \tag{15}
\end{equation*}
$$

\square Real power has units of watts (W)
\square Real power is power that results in work (or heat dissipation)

Power Factor

\square The phase angle $(\delta-\beta)$ represents the phase difference between the voltage and the current

- This is the power factor angle
- The angle of the load impedance
$\square \quad$ Note that the real power is a function of the cosine of the power factor angle

$$
P=V_{r m s} I_{r m s} \cos (\delta-\beta)
$$

$\square \quad$ This is the power factor

$$
\begin{equation*}
p . f .=\cos (\delta-\beta) \tag{16}
\end{equation*}
$$

\square For a purely resistive load, voltage and current are in phase

$$
\begin{aligned}
& p . f .=\cos (\delta-\beta)=\cos \left(0^{\circ}\right)=1 \\
& P=V_{r m s} I_{r m s}
\end{aligned}
$$

Power Factor

\square For a purely capacitive load, current leads the voltage by 90°

$$
\begin{aligned}
& p . f .=\cos (\delta-\beta)=\cos \left(-90^{\circ}\right)=0 \\
& P=0
\end{aligned}
$$

- This is referred to as a leading power factor
- Power factor is leading for loads with capacitive reactance
\square For a purely inductive load, current lags the voltage by 90°

$$
\begin{aligned}
& p . f .=\cos (\delta-\beta)=\cos \left(90^{\circ}\right)=0 \\
& P=0
\end{aligned}
$$

- Loads with inductive reactance have lagging power factors
\square Note that power factor is defined to always be positive

$$
0 \leq p . f . \leq 1
$$

35

Reactive \& Complex Power

Reactive Power

\square The other part of instantaneous power, as given by (12), is the power delivered to the reactive component of the load

$$
p_{X}(t)=V_{r m s} I_{r m s} \sin (\delta-\beta) \sin (2 \omega t+2 \delta)
$$

\square Unlike real power, this component of power has zero average value
\square The amplitude is the reactive power

$$
Q=V_{r m s} I_{r m s} \sin (\delta-\beta) \text { var }
$$

\square Units are volts-amperes reactive, or var
\square Power that flows to and from the load reactance

- Does not result in work or heat dissipation

Complex Power

\square Complex power is defined as the product of the rms voltage phasor and conjugate rms current phasor

$$
\begin{equation*}
S=V I^{*} \tag{18}
\end{equation*}
$$

where the voltage has phase angle δ

$$
\boldsymbol{V}=V_{r m s} \angle \delta
$$

and the current has phase angle β

$$
\boldsymbol{I}=I_{r m s} \angle \beta \rightarrow \boldsymbol{I}^{*}=I_{r m s} \angle-\beta
$$

\square The complex power is

$$
\begin{align*}
& \boldsymbol{S}=\boldsymbol{V} \boldsymbol{I}^{*}=\left(V_{r m s} \angle \delta\right)\left(I_{r m s} \angle-\beta\right) \\
& \boldsymbol{S}=V_{r m s} I_{r m s} \angle(\delta-\beta) \tag{19}
\end{align*}
$$

Complex Power

\square Complex power has units of volts-amperes (VA)
\square The magnitude of complex power is apparent power

$$
\begin{equation*}
S=V_{r m s} I_{r m s} V A \tag{20}
\end{equation*}
$$

\square Apparent power also has units of volts-amperes
\square Complex power is the vector sum of real power (in phase with V) and reactive power ($\pm 90^{\circ}$ out of phase with V)

$$
\begin{equation*}
\boldsymbol{S}=P+j Q \tag{21}
\end{equation*}
$$

Complex Power

\square Real power can be expressed in terms of complex power

$$
P=\operatorname{Re}\{\boldsymbol{S}\}
$$

or in terms of apparent power

$$
P=S \cdot \cos (\delta-\beta)=S \cdot p \cdot f
$$

\square Similarly, reactive power, is the imaginary part of complex power

$$
Q=\operatorname{Im}\{\boldsymbol{S}\}
$$

and can also be related to apparent power

$$
Q=S \cdot \sin (\delta-\beta)
$$

\square And, power factor is the ratio between real power and apparent power

$$
p . f .=\cos (\delta-\beta)=\frac{P}{S}
$$

40

Passive Sign Convention

Power Convention - Load Convention

\square Applying a consistent sign convention allows us to easily determine whether network elements supply or absorb real and reactive power
\square Passive sign convention or load convention
\square Positive current defined to enter the positive voltage terminal of an element
\square If $P>0$ or $Q>0$, then real or reactive power is absorbed by the element
\square If $P<0$ or $Q<0$, then real or reactive power is supplied by the element

Power Absorbed by Passive Elements

\square Complex power absorbed by a resistor

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{R}}=V I_{\boldsymbol{R}}^{*}=(V \angle \delta)\left(\frac{V}{R} \angle-\delta\right) \\
& \boldsymbol{S}_{\boldsymbol{R}}=\frac{V^{2}}{R}
\end{aligned}
$$

- Positive and purely real
- Resistors absorb real power
- Reactive power is zero
\square Complex power absorbed by a capacitor

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{C}}=\boldsymbol{V} \boldsymbol{I}_{\boldsymbol{C}}^{*}=(V \angle \delta)(-j \omega C V \angle-\delta) \\
& \boldsymbol{S}_{\boldsymbol{C}}=-j \omega C V^{2}
\end{aligned}
$$

- Negative and purely imaginary
- Capacitors supply reactive power
- Real power is zero

Power Absorbed by Passive Elements

- Complex power absorbed by an inductor

$$
\begin{aligned}
& \boldsymbol{S}_{L}=V I_{L}^{*}=(V \angle \delta)\left(\frac{V}{-j \omega L} \angle-\delta\right) \\
& \boldsymbol{S}_{L}=j \frac{V^{2}}{\omega L}
\end{aligned}
$$

- Positive and purely imaginary
- Inductors absorb reactive power
- Real power is zero
\square In summary:
- Resistors absorb real power, zero reactive power
- Capacitors supply reactive power, zero real power
- Inductors absorb reactive power, zero real power

44
 Power Triangle

Power Triangle

\square Complex power is the vector sum of real power (in phase with V) and reactive power ($\pm 90^{\circ}$ out of phase with \boldsymbol{V})

$$
\boldsymbol{S}=P+j Q
$$

\square Complex, real, and reactive powers can be represented graphically, as a power triangle

Power Triangle

\square Quickly and graphically provides power information

- Power factor and power factor angle
- Leading or lagging power factor
\square Reactive nature of the load - capacitive or inductive

Lagging Power Factor

\square For loads with inductive reactance

- Impedance angle is positive
- Power factor angle is positive
- Power factor is lagging

$\square Q$ is positive
- The load absorbs reactive power

Leading Power Factor

\square For loads with capacitive reactance

- Impedance angle is negative
- Power factor angle is negative
- Power factor is leading

$\square Q$ is negative
- The load supplies reactive power

Power Factor Correction

Power Factor Correction

\square The overall goal of power distribution is to supply power to do work

- Real power
\square Reactive power does not perform work, but
- Must be supplied by the source
- Still flows over the lines
\square For a given amount of real power consumed by a load, we'd like to
- Reduce reactive power, Q
- Reduce S relative to P, that is
- Reduce the p.f. angle, and
- Increase the p.f.
\square Power factor correction

Power Factor Correction - Example

\square Consider a source driving an inductive load

\square Determine:

- Real power absorbed by the load
- Reactive power absorbed by the load
- p.f. angle and p.f.
\square Draw the power triangle
\square Current through the resistance is

$$
\boldsymbol{I}_{\boldsymbol{R}}=\frac{120 \mathrm{~V}}{3 \Omega}=40 \mathrm{~A}
$$

\square Current through the inductance is

$$
I_{L}=\frac{120 \mathrm{~V}}{j 2 \Omega}=60 \angle-90^{\circ} A
$$

\square The total load current is

$$
\boldsymbol{I}=\boldsymbol{I}_{\boldsymbol{R}}+\boldsymbol{I}_{L}=(40-j 60) \mathrm{A}=72.1 \angle-56.3^{\circ} \mathrm{A}
$$

Power Factor Correction - Example

\square The power factor angle is

$$
\begin{aligned}
& \theta=(\delta-\beta)=0^{\circ}-\left(-56.3^{\circ}\right) \\
& \theta=56.3^{\circ}
\end{aligned}
$$

\square The power factor is

$$
\begin{aligned}
& p . f .=\cos (\theta)=\cos \left(56.3^{\circ}\right) \\
& p . f .=0.55 \text { lagging }
\end{aligned}
$$

\square Real power absorbed by the load is

$$
\begin{aligned}
& P=V I \cos (\theta)=120 \mathrm{~V} \cdot 72.1 \mathrm{~A} \cdot 0.55 \\
& P=4.8 \mathrm{~kW}
\end{aligned}
$$

\square Alternatively, recognizing that real power is power absorbed by the resistance

$$
P=V I_{R}=120 \mathrm{~V} \cdot 40 \mathrm{~A}=4.8 \mathrm{~kW}
$$

Power Factor Correction - Example

\square Reactive power absorbed by the load is

$$
\begin{aligned}
& Q=V I \sin (\theta)=120 \mathrm{~V} \cdot 72.1 \mathrm{~A} \cdot 0.832 \\
& Q=7.2 \mathrm{kvar}
\end{aligned}
$$

\square This is also the power absorbed by the load inductance

$$
Q=V I_{L}=120 \mathrm{~V} \cdot 60 \mathrm{~A}=7.2 \mathrm{kvar}
$$

\square Apparent power is

$$
S=V I=120 \mathrm{~V} \cdot 72.1 \mathrm{~A}=8.65 \mathrm{kVA}
$$

\square Or, alternatively

$$
\begin{aligned}
& S=\sqrt{P^{2}+Q^{2}} \\
& S=\sqrt{(4.8 k W)^{2}+(7.2 k v a r)^{2}}=8.65 \mathrm{kVA}
\end{aligned}
$$

Power Factor Correction - Example

\square The power triangle:
\square Here, the source is supplying 4.8 kW at a power factor of 0.55 lagging
\square Let's say we want to reduce the apparent power
 supplied by the source
\square Deliver 4.8 kW at a p.f. of 0.9 lagging
\square Add power factor correction
\square Add capacitors to supply reactive power

Power Factor Correction - Example

\square For $p . f .=0.9$, we need a power factor angle of

$$
\theta^{\prime}=\cos ^{-1}(0.9)=25.8^{\circ}
$$

\square Power factor correction will help flatten the power triangle:

Power Factor Correction - Example

\square Reactive power to the power-factor-corrected load is reduced from Q to Q^{\prime}

$$
\begin{aligned}
Q^{\prime} & =P \tan \left(\theta^{\prime}\right) \\
Q^{\prime} & =4.8 \mathrm{~kW} \cdot \tan \left(25.8^{\circ}\right) \\
Q^{\prime} & =2.32 \mathrm{kvar}
\end{aligned}
$$

\square The required reactive power absorbed (negative, so it is supplied) by the capacitors is

$$
\begin{aligned}
& Q_{C}=Q^{\prime}-Q=2.32 \mathrm{kvar}-7.2 \mathrm{kvar} \\
& Q_{C}=-4.88 \mathrm{kvar}
\end{aligned}
$$

Power Factor Correction - Example

\square Reactive power absorbed by the capacitor is

$$
Q_{C}=\frac{V^{2}}{X_{C}}
$$

\square So the required capacitive reactance is

$$
X_{C}=\frac{V^{2}}{Q_{C}}=\frac{(120 V)^{2}}{-4.88 k v a r}=-2.95 \Omega
$$

\square The addition of $-j 2.95 \Omega$ provides the desired power factor correction

58

Example Problems

The source voltage in the circuit is
$v(t)=\sqrt{2} \cdot 120 \mathrm{~V} \cos (2 \pi \cdot 60 \mathrm{~Hz} \cdot t)$.
Determine the complex
 power delivered to the load.

Two three-phase load are connected in parallel:

- 50 kVA at a power factor of 0.9 , leading
- 125 kW at a power factor of 0.85 , lagging.

Draw the power triangle and determine the combined power factor.

Power is delivered to a single-phase load with an impedance of $Z_{L}=$ $3+j 2 \Omega$ at 120 V . Add power factor correction in parallel with the load to yield a power factor of 0.95, lagging.
Determine the reactive power and impedance of the power factor correction component.

Draw a phasor diagram for the following circuit.

- Draw a phasor for the voltage across each component and for the current
- Apply KVL graphically. That is, add the individual component phasors together graphically to
 show that the result is equal to the source voltage phasor.

Balanced Three-Phase Networks

\square We are accustomed to single-phase power in our homes and offices

- A single line voltage referenced to a neutral

\square Electrical power is generated, transmitted, and largely consumed (by industrial customers) as three-phase power
- Three individual line voltages and (possibly) a neutral
\square Line voltages all differ in phase by $\pm 120^{\circ}$

Δ - and Y-Connected Networks

\square Two possible three-phase configurations

- Applies to both sources and loads

Y-Connected Source

Δ-Connected Source

\square Y-connected network has a neutral node
$\square \Delta$-connected network has no neutral

Line-to-Neutral Voltages

\square In the Y network, voltages $V_{a n}, V_{b n}$, and $V_{c n}$ are line-to-neutral voltages
\square A three-phase source is balanced if

- Line-to-neutral voltages have equal magnitudes
- Line-to-neutral voltage are each 120°
 out of phase with one another
\square A three-phase network is balanced if
- Sources are balanced
- The impedances connected to each phase are equal

Line-to-Neutral Voltages

\square The line-to-neutral voltages are

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a n}}=V_{L N} \angle 0^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b n}}=V_{L N} \angle-120^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{c n}}=V_{L N} \angle-240^{\circ}=V_{L N} \angle+120^{\circ}
\end{aligned}
$$

\square This is a positive-sequence or abc-sequence source

- $\boldsymbol{V}_{\boldsymbol{a n}}$ leads $\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}}$, which leads $\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}}$
\square Can also have a negative- or acb-sequence source
- $\boldsymbol{V}_{\boldsymbol{a n}}$ leads $\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}}$, which leads $\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}}$
\square We'll always assume positive-sequence sources

Line-to-Line Voltages

\square The voltages between the three phases are line-toline voltages
\square Apply KVL to relate line-to-line voltages to line-toneutral voltages

$$
\begin{aligned}
& V_{a b}-V_{a n}+V_{b n}=0 \\
& V_{a b}=V_{a n}-V_{b n}
\end{aligned}
$$

\square We know that

$$
\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{n}}=V_{L N} \angle 0^{\circ}
$$

and

$$
V_{b \boldsymbol{n}}=V_{L N} \angle-120^{\circ}
$$

so

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=V_{L N} \angle 0^{\circ}-V_{L N} \angle-120^{\circ}=V_{L N}\left(1 \angle 0^{\circ}-1 \angle-120^{\circ}\right) \\
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=V_{L N}\left[1-\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)\right]=V_{L N}\left[\frac{3}{2}+j \frac{\sqrt{3}}{2}\right] \\
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=\sqrt{3} V_{L N} \angle 30^{\circ}
\end{aligned}
$$

Line-to-Line Voltages

\square Again applying KVL, we can find $\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}$

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}}-\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=V_{L N} \angle-120^{\circ}-V_{L N} \angle 120^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=V_{L N}\left[\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)-\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)\right] \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=V_{L N}(-j \sqrt{3}) \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\sqrt{3} V_{L N} \angle-90^{\circ}
\end{aligned}
$$

\square Similarly,

$$
\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{a}}=\sqrt{3} V_{L N} \angle 150^{\circ}
$$

Line-to-Line Voltages

\square The line-to-line voltages, with $V_{a n}$ as the reference:

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}=\sqrt{3} V_{L N} \angle 30^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\sqrt{3} V_{L N} \angle-90^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{c} \boldsymbol{a}}=\sqrt{3} V_{L N} \angle 150^{\circ}
\end{aligned}
$$

\square Line-to-line voltages are $\sqrt{3}$ times the line-toneutral voltage

\square Can also express in terms of individual line-to-neutral voltages:

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{a b}}=\sqrt{3} \boldsymbol{V}_{\boldsymbol{a} \boldsymbol{n}} \angle 30^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{c}}=\sqrt{3} \boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}} \angle 30^{\circ} \\
& \boldsymbol{V}_{\boldsymbol{c} \boldsymbol{a}}=\sqrt{3} \boldsymbol{V}_{\boldsymbol{c} \boldsymbol{n}} \angle 30^{\circ}
\end{aligned}
$$

75 Currents in Three-Phase Networks

Line Currents in Balanced 3ϕ Networks

\square We can use the line-toneutral voltages to determine the line currents

- Y-connected source and load
- Balanced load - all impedances are equal: Z_{Y}

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{\boldsymbol{V}_{A N}}{Z_{Y}}=\frac{V_{L N} \angle 0^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{\boldsymbol{V}_{\boldsymbol{B N}}}{Z_{Y}}=\frac{V_{L N} \angle-120^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{\boldsymbol{V}_{\boldsymbol{C N}}}{Z_{Y}}=\frac{V_{L N} \angle+120^{\circ}}{Z_{Y}}
\end{aligned}
$$

\square Line currents are balanced as long as the source and load are balanced

Neutral Current in Balanced 3ϕ Networks

\square Apply KCL to determine the neutral current

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{n}}=\boldsymbol{I}_{\boldsymbol{a}}+\boldsymbol{I}_{\boldsymbol{b}}+\boldsymbol{I}_{\boldsymbol{c}} \\
& \boldsymbol{I}_{\boldsymbol{n}}=\frac{V_{L N}}{Z_{Y}}\left[1 \angle 0^{\circ}+1 \angle-120^{\circ}+1 \angle 120^{\circ}\right] \\
& \boldsymbol{I}_{\boldsymbol{n}}=\frac{V_{L N}}{Z_{Y}}\left[1+\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)+\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)\right] \\
& \boldsymbol{I}_{\boldsymbol{n}}=0
\end{aligned}
$$

\square The neutral conductor carries no current in a balanced three-phase network

Y- and Δ-connected Loads

Three-Phase Load Configurations

\square As for sources, three-phase loads can also be connected in two different configurations

Δ-Connected Load

\square The Y load has a neutral connection, but the Δ load does not
\square Currents in a Y-connected load are the line currents we just determined
\square Next, we'll look at currents in a Δ-connected load

Balanced Δ-Connected Loads

\square We can use line-to-line voltages to determine the currents in Δ connected loads

$$
\begin{aligned}
& \boldsymbol{I}_{A B}=\frac{\boldsymbol{V}_{A B}}{Z_{\Delta}}=\frac{\sqrt{3} \boldsymbol{V}_{\boldsymbol{A N}} \angle 30^{\circ}}{Z_{\Delta}}=\frac{\sqrt{3} V_{L N} \angle 30^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{B C}}=\frac{\boldsymbol{V}_{\boldsymbol{B} \boldsymbol{C}}}{Z_{\Delta}}=\frac{\sqrt{3} \boldsymbol{V}_{\boldsymbol{B N}} \angle 30^{\circ}}{Z_{\Delta}}=\frac{\sqrt{3} V_{L N} \angle-90^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{C A}}=\frac{\boldsymbol{V}_{\boldsymbol{C A}}}{Z_{\Delta}}=\frac{\sqrt{3} \boldsymbol{V}_{\boldsymbol{}} \angle 30^{\circ}}{Z_{\Delta}}=\frac{\sqrt{3} V_{L N} \angle 150^{\circ}}{Z_{\Delta}}
\end{aligned}
$$

Balanced Δ-Connected Loads

\square Applying KCL, we can determine the line currents

$$
\begin{aligned}
\boldsymbol{I}_{\boldsymbol{a}} & =\boldsymbol{I}_{\boldsymbol{A B}}-\boldsymbol{I}_{\boldsymbol{C A}} \\
\boldsymbol{I}_{\boldsymbol{a}} & =\frac{\sqrt{3} V_{L N}}{Z_{\Delta}}\left[1 \angle 30^{\circ}-1 \angle 150^{\circ}\right]
\end{aligned}
$$

$\boldsymbol{I}_{\boldsymbol{a}}=\frac{\sqrt{3} V_{L N}}{Z_{\Delta}}\left[\left(\frac{\sqrt{3}}{2}+j \frac{1}{2}\right)-\left(-\frac{\sqrt{3}}{2}+j \frac{1}{2}\right)\right]=\frac{\sqrt{3} V_{L N}}{Z_{\Delta}}[\sqrt{3}]=\frac{3 V_{L N}}{Z_{\Delta}}$
\square The other line currents can be found similarly:

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{3 V_{L N} \angle 0^{\circ}}{Z_{\Delta}}=\sqrt{3} \boldsymbol{I}_{\boldsymbol{A B}} \angle-30^{\circ} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{3 V_{L N} \angle-120^{\circ}}{Z_{\Delta}}=\sqrt{3} \boldsymbol{I}_{\boldsymbol{B C}} \angle-30^{\circ} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{3 V_{L N} \angle 120^{\circ}}{Z_{\Delta}}=\sqrt{3} \boldsymbol{I}_{C A} \angle-30^{\circ}
\end{aligned}
$$

82

Δ-Y Conversion

$\Delta-Y$ Conversion

\square Analysis is often simpler when dealing with Y connected loads

- Would like a way to convert Δ loads to Y loads (and vice versa)

\square For a Y load and a Δ load to be equivalent, they must result in equal line currents

$\Delta-Y$ Conversion

\square Line currents for a Y-connected load:

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{V_{L N} \angle 0^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{V_{L N} \angle-120^{\circ}}{Z_{Y}} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{V_{L N} \angle 120^{\circ}}{Z_{Y}}
\end{aligned}
$$

\square For a Δ-connected load:

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{a}}=\frac{3 V_{L N} \angle 0^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{b}}=\frac{3 V_{L N} \angle-120^{\circ}}{Z_{\Delta}} \\
& \boldsymbol{I}_{\boldsymbol{c}}=\frac{3 V_{L N} \angle 120^{\circ}}{Z_{\Delta}}
\end{aligned}
$$

$\Delta-Y$ Conversion

\square Equating any of the three line currents, we can determine the impedance relationship

$$
\begin{aligned}
& \frac{V_{L N} \angle 0^{\circ}}{Z_{Y}}=\frac{3 V_{L N} \angle 0^{\circ}}{Z_{\Delta}} \\
& Z_{Y}=\frac{Z_{\Delta}}{3} \quad \text { and } Z \Delta=3 Z_{Y}
\end{aligned}
$$

Per-Phase Analysis

Line-to-Neutral Schematics

\square For balanced networks, we can simplify our analysis by considering only a single phase

- A per-phase analysis
- Other phases are simply shifted by $\pm 120^{\circ}$
\square For example, a balanced $Y-Y$ circuit:

One-Line Diagrams

\square Power systems are often depicted using one-line diagrams or single-line diagrams

- Not a schematic - not all wiring is shown
\square For example:

Example Problems

\square Given the following balanced 3- ϕ quantities:

$$
\mathbf{V}_{B C}=480 \angle 15^{\circ} \text { and } \mathbf{I}_{B}=21 \angle-28^{\circ}
$$

Find:

1) $\boldsymbol{V}_{A B}$
2) $\boldsymbol{V}_{A N}$
3) \mathbf{I}_{A}
4) \mathbf{I}_{C}

Find:

- Per-phase circuit
\square Line current, \mathbf{I}_{A}
- Load voltage

Find:
\square Per-phase circuit
\square Line current, \mathbf{I}_{A}
\square L-L and L-N load voltages

95

Power in Balanced 3ϕ Networks

Instantaneous Power

\square We'll first determine the instantaneous power supplied by the source

- Neglecting line impedance, this is also the power absorbed by the load
\square The phase a line-to-neutral voltage is

$$
v_{a n}(t)=\sqrt{2} V_{L N} \cos (\omega t+\delta)
$$

\square The phase a current is

$$
i_{a}(t)=\sqrt{2} I_{L} \cos (\omega t+\beta)
$$

where β depends on the load impedance

Instantaneous Power

\square The instantaneous power delivered out of phase a of the source is

$$
\begin{aligned}
& p_{a}(t)=v_{a n}(t) i_{a}(t) \\
& p_{a}(t)=2 V_{L N} I_{L} \cos (\omega t+\delta) \cos (\omega t+\beta) \\
& p_{a}(t)=V_{L N} I_{L} \cos (\delta-\beta)+V_{L N} I_{L} \cos (2 \omega t+\delta+\beta)
\end{aligned}
$$

\square The b and c phases are shifted by $\pm 120^{\circ}$

- Power from each of these phases is

$$
\begin{aligned}
& p_{b}(t)=V_{L N} I_{L} \cos (\delta-\beta)+V_{L N} I_{L} \cos \left(2 \omega t+\delta+\beta-240^{\circ}\right) \\
& p_{c}(t)=V_{L N} I_{L} \cos (\delta-\beta)+V_{L N} I_{L} \cos \left(2 \omega t+\delta+\beta+240^{\circ}\right)
\end{aligned}
$$

Instantaneous Power

\square The total power delivered by the source is the sum of the power from each phase

$$
\begin{aligned}
& p_{3 \phi}(t)=p_{a}(t)+p_{b}(t)+p_{c}(t) \\
& p_{3 \phi}(t)=3 V_{L N} I_{L} \cos (\delta-\beta) \\
& \quad+V_{L N} I_{L}[\cos (2 \omega t+\delta+\beta) \\
& \quad+\cos \left(2 \omega t+\delta+\beta-240^{\circ}\right) \\
& \left.\quad+\cos \left(2 \omega t+\delta+\beta+240^{\circ}\right)\right]
\end{aligned}
$$

\square Everything in the square brackets cancels, leaving

$$
p_{3 \phi}(t)=3 V_{L N} I_{L} \cos (\delta-\beta)=P_{3 \phi}
$$

\square Power in a balanced 3ϕ network is constant
\square In terms of line-to-line voltages, the power is

$$
P_{3 \phi}=\sqrt{3} V_{L L} I_{L} \cos (\delta-\beta)
$$

Complex Power

\square The complex power delivered by phase a is

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{a}}=\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{a}}^{*}=V_{L N} \angle \delta\left(I_{L} \angle \beta\right)^{*} \\
& \boldsymbol{S}_{\boldsymbol{a}}=V_{L N} I_{L} \angle(\delta-\beta) \\
& \boldsymbol{S}_{\boldsymbol{a}}=V_{L N} I_{L} \cos (\delta-\beta)+j V_{L N} I_{L} \sin (\delta-\beta)
\end{aligned}
$$

\square For phase b, complex power is

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{b}}=\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{b}}^{*}=V_{L N} \angle\left(\delta-120^{\circ}\right)\left(I_{L} \angle\left(\beta-120^{\circ}\right)\right)^{*} \\
& \boldsymbol{S}_{\boldsymbol{b}}=V_{L N} I_{L} \angle(\delta-\beta) \\
& \boldsymbol{S}_{\boldsymbol{b}}=V_{L N} I_{L} \cos (\delta-\beta)+j V_{L N} I_{L} \sin (\delta-\beta)
\end{aligned}
$$

\square This is equal to $\boldsymbol{S}_{\boldsymbol{a}}$ and also to phase $\boldsymbol{S}_{\boldsymbol{c}}$

Complex Power

\square The total complex power is

$$
\begin{aligned}
& \boldsymbol{S}_{\mathbf{3 \boldsymbol { \phi }}}=\boldsymbol{S}_{\boldsymbol{a}}+\boldsymbol{S}_{\boldsymbol{b}}+\boldsymbol{S}_{\boldsymbol{c}} \\
& \boldsymbol{S}_{3 \boldsymbol{\phi}}=3 V_{L N} I_{L} \angle(\delta-\beta) \\
& \boldsymbol{S}_{\mathbf{3} \boldsymbol{\phi}}=3 V_{L N} I_{L} \cos (\delta-\beta)+j 3 V_{L N} I_{L} \sin (\delta-\beta)
\end{aligned}
$$

\square The apparent power is the magnitude of the complex power

$$
S_{3 \phi}=3 V_{L N} I_{L}
$$

Complex Power

\square Complex power can be expressed in terms of the real and reactive power

$$
\boldsymbol{s}_{3 \phi}=P_{3 \phi}+j Q_{3 \phi}
$$

\square The real power, as we've already seen is

$$
P_{3 \phi}=3 V_{L N} I_{L} \cos (\delta-\beta)
$$

\square The reactive power is

$$
Q_{3 \phi}=3 V_{L N} I_{L} \sin (\delta-\beta)
$$

Advantages of Three-Phase Power

\square Advantages of three-phase power:

- For a given amount of power, half the amount of wire required compared to single-phase
- No return current on neutral conductor
- Constant real power
- Constant motor torque
- Less noise and vibration of machinery

Three-Phase Power - Example

\square Determine
\square Load voltage, $\boldsymbol{V}_{\boldsymbol{A B}}$

- Power triangle for the load
- Power factor at the load
\square We'll do a per-phase analysis, so first convert the Δ load to a Y load

$$
Z_{Y}=\frac{Z_{\Delta}}{3}=1+j 0.5 \Omega
$$

Three-Phase Power - Example

\square The per-phase circuit:

\square The line current is

$$
\begin{aligned}
& \boldsymbol{I}_{\boldsymbol{L}}=\frac{\boldsymbol{V}_{\boldsymbol{a n}}}{Z_{L}+Z_{Y}}=\frac{120 \angle 0^{\circ} \mathrm{V}}{1.1+j 1 \Omega}=\frac{120 \angle 0^{\circ} \mathrm{V}}{1.45 \angle 42.3^{\circ} \Omega} \\
& \boldsymbol{I}_{\boldsymbol{L}}=80.7 \angle-42.3^{\circ} \mathrm{A}
\end{aligned}
$$

\square The line-to-neutral voltage at the load is

$$
\begin{aligned}
& \boldsymbol{V}_{A N}=\boldsymbol{I}_{L} Z_{Y}=\left(80.7 \angle-42.3^{\circ} A\right)(1+j 0.5 \Omega) \\
& \boldsymbol{V}_{A N}=\left(80.7 \angle-42.3^{\circ} A\right)\left(1.12 \angle 26.6^{\circ} \Omega\right) \\
& \boldsymbol{V}_{A N}=90.25 \angle-15.71^{\circ} \mathrm{V}
\end{aligned}
$$

Three-Phase Power - Example

\square The line-to-line load voltage is

$$
\begin{aligned}
& V_{A B}=\sqrt{3} \boldsymbol{V}_{A N} \angle 30^{\circ} \\
& \boldsymbol{V}_{A B}=156 \angle 14.3^{\circ} \mathrm{V}
\end{aligned}
$$

\square Alternatively, we could calculate line-to-line voltage from phase A and phase B line-to-neutral voltages

$$
\begin{aligned}
& V_{A B}=V_{A N}-V_{B N} \\
& V_{A B}=90.25 \angle-15.71^{\circ} \mathrm{V}-90.25 \angle-135.71^{\circ} \mathrm{V} \\
& V_{A B}=156 \angle 14.3^{\circ} \mathrm{V}
\end{aligned}
$$

Three-Phase Power - Example

\square The complex power absorbed by the load is

$$
\begin{aligned}
& \boldsymbol{S}_{3 \phi}=3 \boldsymbol{S}_{\boldsymbol{A}}=3 \boldsymbol{V}_{\boldsymbol{A N}} \boldsymbol{I}_{L}^{*} \\
& \boldsymbol{S}_{3 \phi}=3\left(90.25 \angle-15.71^{\circ} \mathrm{V}\right)\left(80.7 \angle-42.3^{\circ} \mathrm{A}\right)^{*} \\
& \boldsymbol{S}_{3 \phi}=21.85 \angle 26.6^{\circ} \mathrm{kVA} \\
& \boldsymbol{S}_{3 \phi}=19.53+j 9.78 \mathrm{kVA}
\end{aligned}
$$

\square The apparent power:

$$
S_{3 \phi}=21.85 \mathrm{kVA}
$$

\square Real power:

$$
P=19.53 \mathrm{~kW}
$$

\square Reactive power:

$$
Q=9.78 \mathrm{kvar}
$$

Three-Phase Power - Example

The power triangle at the load:

\square The power factor at the load is

$$
p . f .=\cos \left(26.6^{\circ}\right)=\frac{P}{S}=\frac{19.53 \mathrm{~kW}}{21.85 \mathrm{kVA}}
$$

$$
p . f .=0.89 \text { lagging }
$$

108
 Example Problems

Find:

- Source power
- Source power factor
- Load power
- Load power factor

Find:
\square Source power

- Load power
- Power lost in lines

