SECTION 4: TRANSMISSION LINES

ESE 470 - Energy Distribution Systems

2

Introduction

Transmission Lines

\square Transmission and distribution of electrical power occurs over metal cables

- Overhead AC or DC
- Underground AC or DC
\square In the U.S. nearly all transmission makes use of overhead AC lines
\square These cables are good, but not perfect, conductors
\square Series impedance
\square Shunt admittance
\square In this section of notes we'll look at how these are accounted for in equivalent circuit models

Electrical Properties of Transmission Lines

\square Series resistance
\square Voltage drop (IR) and real power loss $\left(I^{2} R\right)$ along the line

- Due to finite conductivity of the line
\square Series inductance
- Series voltage drop, no real power loss
\square Only self inductance (no mutual inductance) in balanced systems
\square Shunt conductance
- Real power loss $\left(V^{2} G\right)$
- Leakage current due to corona effects or leakage at insulators
- Typically neglected for overhead lines
\square Shunt capacitance
- Capacitance to other conductors and to ground
- Line-charging currents

5 Conductors

Conductors

\square Before getting into transmission line models, we'll take a look at the conductors themselves
\square Aluminum is the most common conductor

- Good conductivity
\square Light weight
\square Low cost
- Plentiful supply
\square Most common cable type combines aluminum and steel
\square Aluminum-conductor steel-reinforced (ACSR)
\square Bare, stranded cable
- Core of steel strands provides strength
\square Outer aluminum strands provide good conductivity

ACSR Cables

\square ACSR cables vary based on number of aluminum conductor strands and number of steel reinforcement strands

- ACSR variants assigned bird code names, e.g.:
- Dove: 26/7 Al/Steel stranding
- Bluebird: 84/19 AI/Steel stranding

\square Another increasingly popular cable type is all-aluminum-alloy conductor (AAAC)
- Stronger
- Lighter
- Higher conductivity
- More expensive

Cables

\square Cables are sized to provide the required current-carrying capability or ampacity

- Number of individual strands
- Diameter of individual strands
\square Strand and cable diameter commonly measured in mils

$$
1 \mathrm{mil}=0.001 \mathrm{l}
$$

\square Cross-sectional area often measured in circular mils or cmil

- Area of a circle with a diameter of $d=1 \mathrm{mil}=0.001^{\prime \prime}$

$$
1 \mathrm{cmil}=\pi\left(\frac{0.001}{2}\right)^{2}=785 \times 10^{-9} \mathrm{sq} \text { in }
$$

- Area in cmil of a cable with diameter d mil:

$$
A=d^{2}
$$

ACSR Cable

\square Consider, for example, Falcon ACSR cable

- 54/19: 54 Al strands with a core of 19 steel strands
- Al strand diameter: 172 mil
- Al strand area: $(172 \mathrm{mil})^{2}=29.584 \mathrm{kcmil}$
\square Steel strand diameter: 103 mil
- Steel strand area: $(103 \mathrm{mil})^{2}=10.609 \mathrm{kcmil}$
- Cable diameter: $1.545^{\prime \prime}$
- Cable area: $(1545 \mathrm{mil})^{2}=2387 \mathrm{kcmil}$
- Ampacity: 1380 A
- Weight: 10,777 lb/mi

Bundling

\square In addition to increasing cable cross-sectional area, ampacity can be increased by adding additional cables to each phase - bundling

\square Two-, three-, and four-cable bundles are common:

Bundling

\square Typical bundling:

- 345 kV : two conductors
- 500 kV : three conductors
- 765 kV: four conductors
\square Advantages of bundling:
- Lower resistance
- Lower reactance (inductance)
- Increased ampacity
- Reduced electric field gradient surrounding phase conductor
- Reduced corona
- Reduced loss, noise, and RF interference
- Improved heat dissipation

Insulators

\square Cables are supported by towers

- Must connect, while retaining electrical isolation
\square Connections are typically made through ceramic or glass insulators
\square High-voltage lines suspended by strings of insulator discs
\square One or two strings
- Two prevents sway
\square Number of discs dictated by line voltage, e.g.:
- 4-6 for 69 kV
- 30-35 for 765 kV

Transposition

\square Transmission-line inductance and capacitance determined by geometry

- Cable size and relative spacing
\square Consider three phases laid out side-by-side

\square Phases a and c will have similar inductance and capacitance
\square Inductance and capacitance of phase b will differ

Transposition

\square Transposition
\square Switch the position of each phase twice along the length of the line
\square Each phase occupies each position for one third of the line length
\square Line remains balanced

15
 Medium- and Short-Line Models

Short-Line Model

\square How we choose to model the electrical characteristics of a transmission line depends on the length of the line
\square Short-line model:

- < ~80 km
- Lumped model
- Account only for series impedance
- Neglect shunt capacitance

$\square R$ and ωL are resistance and reactance per unit length, respectively
- Each with units of Ω / m
$\square l$ is the length of the line

Medium-Line Model

\square Medium-line model - nominal- π model:

- $80 \mathrm{~km}<l<250 \mathrm{~km}$
- Lumped model
- Now include shunt capacitance

\square Still a lumped model
- All impedances and admittances lumped into one or two circuit components

18

ABCD Parameters

Transmission Lines as Two-Port Networks

\square Before moving on to a model for longer transmission lines, we'll look at an alternative tool for characterizing transmission line networks
\square We can treat transmission lines as general two-port networks

\square As two-port networks, we can characterize transmission lines with their $A B C D$ parameters or chain parameters

ABCD Parameters

\square ABCD (or chain or transmission or cascade) parameters define the following two-port relationships

$$
\begin{aligned}
& \boldsymbol{V}_{1}=A \boldsymbol{V}_{2}+B \boldsymbol{I}_{2} \\
& \boldsymbol{I}_{1}=C \boldsymbol{V}_{2}+D \boldsymbol{I}_{2}
\end{aligned}
$$

\square In matrix form, the chain-parameter equations are

$$
\left[\begin{array}{l}
\boldsymbol{V}_{1} \\
\boldsymbol{I}_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V}_{2} \\
\boldsymbol{I}_{2}
\end{array}\right]
$$

$\square A, B, C$, and D are, in general, complex numbers

- A and D are dimensionless
- B is an impedance with units of Ω
- C is an admittance with units of S
$\square V_{1}$ and V_{2} are line-to-neutral voltages
\square If the network is reciprocal, then $A D-B C=1$
\square If the network is symmetric, then $A=D$

ABCD Parameters - Short-Line Model

\square We'll now derive the ABCD parameters for the short-transmission-line model

\square Applying KVL around the loop gives our first equation

$$
\begin{aligned}
& \boldsymbol{V}_{S}-\boldsymbol{I}_{R} Z-\boldsymbol{V}_{R}=0 \\
& \boldsymbol{V}_{S}=\boldsymbol{V}_{R}+Z \boldsymbol{I}_{R}
\end{aligned}
$$

So,

$$
A=1 \quad \text { and } \quad B=Z
$$

ABCD Parameters - Short-Line Model

\square Applying KCL gives the second equation

$$
\boldsymbol{I}_{S}=\boldsymbol{I}_{R}
$$

and

$$
C=0 \quad \text { and } \quad D=1
$$

\square The short-line ABCD matrix is

$$
A B C D=\left[\begin{array}{ll}
1 & Z \\
0 & 1
\end{array}\right]
$$

\square Note that, due to symmetry and reciprocity,

$$
A=D \quad \text { and } \quad A D-B C=1
$$

ABCD Parameters - Medium-Line Model

\square Next, for the medium-transmission-line model

\square Applying KVL around the loop gives our first equation

$$
\begin{aligned}
& \boldsymbol{V}_{S}-\left(\boldsymbol{I}_{R}+\boldsymbol{V}_{R} \frac{Y}{2}\right) Z-\boldsymbol{V}_{R}=0 \\
& \boldsymbol{V}_{S}=\left(1+\frac{Y Z}{2}\right) \boldsymbol{V}_{R}+Z \boldsymbol{I}_{R}
\end{aligned}
$$

\square This is the first chain parameter equation, where

$$
A=\left(1+\frac{Y Z}{2}\right) \text { and } B=Z
$$

ABCD Parameters - Medium-Line Model

\square For the second equation, apply KCL at the sending end

$$
\boldsymbol{I}_{S}-\boldsymbol{V}_{s} \frac{Y}{2}-\boldsymbol{I}_{R}-\boldsymbol{V}_{R} \frac{Y}{2}=0
$$

\square Substituting in our previous expression for V_{S}

$$
\begin{aligned}
& \boldsymbol{I}_{S}=\boldsymbol{V}_{R} \frac{Y}{2}+\boldsymbol{I}_{R}+\left(1+\frac{Y Z}{2}\right) \frac{Y}{2} \boldsymbol{V}_{R}+\frac{Y Z}{2} \boldsymbol{I}_{R} \\
& \boldsymbol{I}_{S}=\left(2+\frac{Y Z}{2}\right) \frac{Y}{2} \boldsymbol{V}_{R}+\left(1+\frac{Y Z}{2}\right) \boldsymbol{I}_{R}
\end{aligned}
$$

\square This is the second chain-parameter equation, where

$$
C=\left(1+\frac{Y Z}{4}\right) Y \quad \text { and } \quad D=\left(1+\frac{Y Z}{2}\right)
$$

ABCD Parameters - Medium-Line Model

\square The medium-line chain parameters are

$$
A B C D=\left[\begin{array}{cc}
\left(1+\frac{Y Z}{2}\right) & Z \\
\left(1+\frac{Y Z}{4}\right) Y & \left(1+\frac{Y Z}{2}\right)
\end{array}\right]
$$

\square Again, note that, due to symmetry and reciprocity, $A=D$ and $A D-B C=1$
\square Also note that allowing $Y \rightarrow 0$ yields the chain parameters for the short-line model

Cascading Two-Port Networks

\square ABCD parameters or chain parameters are also called cascade parameters
\square If we cascade multiple two-port networks, the ABCD parameter matrix for the cascade is the product of the individual ABCD parameter matrices

$$
A B C D=\left[\begin{array}{ll}
A_{1} A_{2}+B_{1} C_{2} & A_{1} B_{2}+B_{1} D_{2} \\
C_{1} A_{2}+D_{1} C_{2} & C_{1} B_{2}+D_{1} D_{2}
\end{array}\right]
$$

Cascaded Two-Ports - Example

\square For example, consider the cascade of the following two two-port networks

\square ABCD parameters for the first network are

$$
A B C D_{1}=\left[\begin{array}{cc}
\left(1+\frac{Y_{1} Z_{1}}{2}\right) & Z_{1} \\
\left(1+\frac{Y_{1} Z_{1}}{4}\right) Y_{1} & \left(1+\frac{Y_{1} Z_{1}}{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
1+j 4 & 2 \Omega \\
-4+j 2 S & 1+j 4
\end{array}\right]
$$

\square And for the second network

$$
A B C D_{2}=\left[\begin{array}{ll}
1 & Z \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 4 \Omega \\
0 & 1
\end{array}\right]
$$

\square So the overall ABCD matrix is

$$
A B C D=\left[\begin{array}{cc}
1+j 4 & 6+j 16 \Omega \\
-4+j 2 S & -15+j 12
\end{array}\right]
$$

Cascaded Two-Ports - Example

\square If a sending-end voltage of $\boldsymbol{V}_{S}=120 \angle 0^{\circ} V$ is applied, and no load is connected, what is the receiving-end voltage?

$$
\begin{aligned}
& \boldsymbol{V}_{S}=120 \angle 0^{\circ} V \text { and } \boldsymbol{I}_{R}=0 A \\
& \boldsymbol{V}_{S}=A \boldsymbol{V}_{R}+B \boldsymbol{I}_{R} \\
& 120 \angle 0^{\circ}=(1+j 4) V_{R}
\end{aligned}
$$

\square The no-load receiving-end voltage is

$$
\begin{aligned}
& V_{R}=\frac{120 \angle 0^{\circ}}{1+j 4}=7.06-j 28.2 \mathrm{~V} \\
& V_{R}=29.1 \angle-75.96^{\circ} \mathrm{V}
\end{aligned}
$$

29

Voltage Regulation

Voltage Regulation

\square The voltage at the receiving end of a line will change depending on the load placed on the line

- Magnitude of this change is quantified as voltage regulation
\square Voltage regulation:
- Change in receiving-end voltage from no load to full load, expressed as a percentage of the full-load voltage

$$
\% V R=\frac{\left|V_{R N L}\right|-\left|V_{R F L}\right|}{\left|V_{R F L}\right|} \cdot 100 \%
$$

- Typically, transmission lines are designed to limit voltage regulation to about 10\%
\square As we've seen, the no-load voltage is given by

$$
\left|V_{R N L}\right|=\frac{\left|V_{S}\right|}{A}
$$

Voltage Regulation - Example 5.1

\square Consider a three-phase, $60 \mathrm{~Hz}, 345 \mathrm{kV}$ transmission line with the following properties

- 200 km long
$\square z=0.032+j 0.35 \Omega / \mathrm{km}, y=j 4.2 \mu S / \mathrm{km}$
- Full load is 700 MW at 95% of the rated voltage and a power factor of 0.99 leading
\square Determine:
- ABCD parameters for an appropriate transmission-line model
- Phase shift between sending- and receiving-end voltages at full load
- Percent voltage regulation

Voltage Regulation - Example 5.1

\square Line is 200 km long, so a nominal $-\pi$ model is appropriate

where

$$
\begin{aligned}
& Z=z \cdot 200 \mathrm{~km}=6.4+j 70 \Omega \\
& Y=y \cdot 200 \mathrm{~km}=j 840 \mu S
\end{aligned}
$$

\square The ABCD parameters are

$$
\begin{gathered}
A B C D=\left[\begin{array}{cc}
\left(1+\frac{Y Z}{2}\right) & Z \\
\left(1+\frac{Y Z}{4}\right) Y & \left(1+\frac{Y Z}{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
0.971+j 0.0027 & 6.4+j 70 \Omega \\
-1.13+j 828 \mu S & 0.971+j 0.0027
\end{array}\right] \\
A B C D=\left[\begin{array}{cc}
0.971 \angle 0.159^{\circ} & 70.3 \angle 84.8^{\circ} \Omega \\
828 \angle 90.08^{\circ} \mu S & 0.971 \angle 0.159^{\circ}
\end{array}\right]
\end{gathered}
$$

Voltage Regulation - Example 5.1

\square At full load the line-to-line receiving-end voltage is

$$
V_{R F L}=345 \mathrm{kV} \cdot 0.95=327.8 \mathrm{k} V_{L L}
$$

\square And the line-to-neutral voltage is

$$
V_{R F L}=\frac{327.8 k V_{L L}}{\sqrt{3}}=189.2 k V_{L N}
$$

\square Using the receiving-end voltage as the reference, the receiving-end voltage phasor is

$$
\boldsymbol{V}_{R}=189.2 \angle 0^{\circ} \mathrm{kV}
$$

\square Complex power to the load is

$$
\begin{aligned}
& S_{R}=\frac{P}{p f} \angle \theta=\frac{700 M W}{0.99} \angle-\cos ^{-1}(0.99) \\
& S_{R}=707.1 \angle-8.1^{\circ} M V A=3 \cdot V_{R} I_{R}^{*}
\end{aligned}
$$

Voltage Regulation - Example 5.1

\square The receiving-end current phasor is

$$
\begin{aligned}
& \boldsymbol{I}_{R}=\left(\frac{\frac{\boldsymbol{S}_{\boldsymbol{R}}}{3}}{\boldsymbol{V}_{\boldsymbol{R}}}\right)^{*}=\frac{707.1 \angle 8.1^{\circ} \mathrm{MVA}}{3 \cdot 189.2 \angle 0^{\circ} \mathrm{kV}} \\
& \boldsymbol{I}_{R}=1.25 \angle 8.1^{\circ} \mathrm{kA}
\end{aligned}
$$

\square To determine the phase shift from sending to receiving end, use chain parameters to determine \boldsymbol{V}_{S} (line-to-neutral)

$$
\begin{aligned}
\boldsymbol{V}_{S}= & A \boldsymbol{V}_{R}+B \boldsymbol{I}_{R} \\
\boldsymbol{V}_{S}= & 0.971 \angle 0.159^{\circ} \cdot 189.2 \angle 0^{\circ} \mathrm{kV} \\
& +70.3 \angle 84.8^{\circ} \Omega \cdot 1.25 \angle 8.1^{\circ} \mathrm{kA} \\
\boldsymbol{V}_{S}= & 199.8 \angle 26.1^{\circ} \mathrm{k} V_{\mathrm{LN}}
\end{aligned}
$$

\square So, the phase shift along the line is -26.1°

Voltage Regulation - Example 5.1

\square The percent voltage regulation is given by

$$
\% V R=\frac{\left|V_{R N L}\right|-\left|V_{R F L}\right|}{\left|V_{R F L}\right|} \cdot 100 \%
$$

\square The line-to-neutral no-load voltage is

$$
\left|V_{R N L}\right|=\left|\frac{V_{S}}{A}\right|=\left|\frac{199.8 \angle 26.1^{\circ}}{0.971 \angle 0.159^{\circ}}\right|=205.8 \mathrm{kV}
$$

\square The full-load line-to-neutral voltage was given to be

$$
\left|V_{R F L}\right|=189.2 \mathrm{kV}
$$

\square So, the percent voltage regulation is

$$
\% V R=\frac{205.8 \mathrm{kV}-189.2 \mathrm{kV}}{189.2 \mathrm{kV}} \cdot 100 \%=8.7 \%
$$

Exact Transmission-Line Equations

Distributed Transmission Line Model

\square The medium- and short-line models are lumped models

- All series impedance lumped into one element
- Shunt admittances lumped into two elements
\square Real lines are distributed networks
- Lumped models are inaccurate for long lines
\square To treat a line as a distributed network, consider the impedance and admittance of a segment of differential length, Δx

Transmission Line Differential Equations

\square Apply KVL around the differential length of line

$$
\begin{align*}
& \boldsymbol{V}(x+\Delta x)=\boldsymbol{V}(x)+\boldsymbol{I}(x) z \Delta x \\
& \frac{\boldsymbol{V}(x+\Delta x)-\boldsymbol{V}(x)}{\Delta x}=z \boldsymbol{I}(x) \tag{1}
\end{align*}
$$

\square If we let the length of the line segment, Δx, go to zero, we get

$$
\begin{equation*}
\frac{d \boldsymbol{V}(x)}{d x}=z \boldsymbol{I}(x) \tag{2}
\end{equation*}
$$

\square A first-order differential equation

- This is a second-order segment, so we need a second first-order differential equation to describe it completely
\square Apply KCL at $(x+\Delta x)$

$$
\begin{align*}
& \boldsymbol{I}(x+\Delta x)=\boldsymbol{I}(x)+\boldsymbol{V}(x+\Delta x) y \Delta x \\
& \frac{I(x+\Delta x)-\boldsymbol{I}(x)}{\Delta x}=y \boldsymbol{V}(x+\Delta x) \tag{3}
\end{align*}
$$

Transmission Line Differential Equations

\square Again, letting $\Delta x \rightarrow 0$

$$
\begin{equation*}
\frac{d \boldsymbol{I}(x)}{d x}=y \boldsymbol{V}(x) \tag{4}
\end{equation*}
$$

\square Our goal is a single differential equation in $\boldsymbol{V}(x)$ to describe the segment of transmission line

- Must eliminate $I(x)$
\square Solving (2) for $I(x)$ and differentiating gives

$$
\begin{equation*}
\frac{d \boldsymbol{I}(x)}{d x}=\frac{1}{Z} \frac{d^{2} \boldsymbol{V}(x)}{d x^{2}} \tag{5}
\end{equation*}
$$

\square Substituting (5) into (4) yields the single second-order differential equation for the line segment

$$
\begin{equation*}
\frac{d^{2} \boldsymbol{V}(x)}{d x^{2}}-z y \boldsymbol{V}(x)=0 \tag{6}
\end{equation*}
$$

Transmission Line Differential Equations

$$
\begin{equation*}
\frac{d^{2} V(x)}{d x^{2}}-z y \boldsymbol{V}(x)=0 \tag{6}
\end{equation*}
$$

\square This is a second-order, homogeneous, linear, constant-coefficient, ordinary differential equation
\square Its characteristic equation is

$$
s^{2}-z y=0
$$

\square The roots of the characteristic polynomial are

$$
s= \pm \sqrt{Z y}= \pm \gamma
$$

where $\gamma=\sqrt{z y}$ is the propagation constant, with units of m^{-1} (or $\mathrm{rad} / \mathrm{m}$)
\square The solution to (6) is

$$
\begin{equation*}
\boldsymbol{V}(x)=K_{1} e^{\gamma x}+K_{2} e^{-\gamma x} \tag{7}
\end{equation*}
$$

where K_{1} and K_{2} are unknown constants to be determined through application of boundary conditions

Transmission Line Differential Equations

\square We can get an expression for current by differentiating (7) and substituting back into (2)

$$
\frac{d V(x)}{d x}=\gamma K_{1} e^{\gamma x}-\gamma K_{2} e^{-\gamma x}=z \boldsymbol{I}(x)
$$

\square Solving for $\boldsymbol{I}(x)$

$$
\begin{equation*}
\boldsymbol{I}(x)=\frac{K_{1} e^{\gamma x}-K_{2} e^{-\gamma x}}{{ }^{z} / \gamma} \tag{8}
\end{equation*}
$$

\square The term in the denominator of (8) is the characteristic impedance of the line, Z_{c}, with units of ohms (Ω)

$$
\begin{equation*}
Z_{c}=\frac{z}{\gamma}=\frac{z}{\sqrt{z y}}=\sqrt{\frac{z}{y}} \tag{9}
\end{equation*}
$$

Transmission Line Differential Equations

\square Using (9), (8) becomes

$$
\begin{equation*}
\boldsymbol{I}(x)=\frac{K_{1} e^{\gamma x}-K_{2} e^{-\gamma x}}{Z_{c}} \tag{10}
\end{equation*}
$$

\square We can now apply boundary conditions to determine the two unknown coefficients, K_{1} and K_{2}
\square At the receiving end of the line, which we'll define to be $x=0$, we have

$$
\boldsymbol{V}(0)=\boldsymbol{V}_{R} \quad \text { and } \quad \boldsymbol{I}(0)=\boldsymbol{I}_{R}
$$

So,

$$
\begin{aligned}
& \boldsymbol{V}(0)=K_{1}+K_{2}=\boldsymbol{V}_{R} \\
& \boldsymbol{I}(0)=\frac{K_{1}-K_{2}}{Z_{c}}=\boldsymbol{I}_{R}
\end{aligned}
$$

Transmission Line Differential Equations

\square Solving each equation for K_{2}

$$
K_{2}=\boldsymbol{V}_{R}-K_{1}=K_{1}-Z_{c} \boldsymbol{I}_{R}
$$

\square Solving for K_{1}, then back-substituting to solve for K_{2} gives

$$
\begin{aligned}
& K_{1}=\frac{V_{R}+Z_{c} I_{R}}{2} \\
& K_{2}=\frac{V_{R}-Z_{c} I_{R}}{2}
\end{aligned}
$$

\square Substituting into (7) and (10)

$$
\begin{align*}
& \boldsymbol{V}(x)=\left(\frac{V_{R}+Z_{c} \boldsymbol{I}_{R}}{2}\right) e^{\gamma x}+\left(\frac{\boldsymbol{V}_{R}-Z_{c} \boldsymbol{I}_{R}}{2}\right) e^{-\gamma x} \tag{11}\\
& \boldsymbol{I}(x)=\left(\frac{\boldsymbol{V}_{R}+Z_{c} \boldsymbol{I}_{R}}{2 Z_{c}}\right) e^{\gamma x}-\left(\frac{\boldsymbol{V}_{R}-Z_{c} \boldsymbol{I}_{R}}{2 Z_{c}}\right) e^{-\gamma x} \tag{12}
\end{align*}
$$

Transmission Line Differential Equations

\square Collecting V_{R} and I_{R} terms in (11) and (12)

$$
\begin{align*}
& \boldsymbol{V}(x)=\left(\frac{e^{\gamma x}+e^{-\gamma x}}{2}\right) \boldsymbol{V}_{R}+Z_{c}\left(\frac{e^{\gamma x}-e^{-\gamma x}}{2}\right) \boldsymbol{I}_{R} \tag{13}\\
& \boldsymbol{I}(x)=\frac{1}{Z_{c}}\left(\frac{e^{\gamma x}-e^{-\gamma x}}{2}\right) \boldsymbol{V}_{R}+\left(\frac{e^{\gamma x}+e^{-\gamma x}}{2}\right) \boldsymbol{I}_{R} \tag{14}
\end{align*}
$$

\square The terms in parentheses can be represented as hyperbolic functions

$$
\begin{align*}
& \boldsymbol{V}(x)=\cosh (\gamma x) \boldsymbol{V}_{R}+Z_{c} \sinh (\gamma x) \boldsymbol{I}_{R} \tag{15}\\
& \boldsymbol{I}(x)=\frac{1}{z_{c}} \sinh (\gamma x) \boldsymbol{V}_{R}+\cosh (\gamma x) \boldsymbol{I}_{R} \tag{16}
\end{align*}
$$

Transmission Line Differential Equations

\square Equations (15) and (16) give the chain parameters for the two-port network between a point at location x along the line and the receiving end

$$
A B C D(x)=\left[\begin{array}{ll}
\cosh (\gamma x) & Z_{c} \sinh (\gamma x) \\
\frac{1}{Z_{c}} \sinh (\gamma x) & \cosh (\gamma x)
\end{array}\right]
$$

\square For chain parameters between sending and receiving ends, we set $x=l$

$$
A B C D=\left[\begin{array}{cc}
\cosh (\gamma l) & Z_{c} \sinh (\gamma l) \\
\frac{1}{Z_{c}} \sinh (\gamma l) & \cosh (\gamma l)
\end{array}\right]
$$

Propagation Constant

\square We defined the propagation constant as

$$
\gamma=\sqrt{z y}
$$

\square This is, in general, a complex value

$$
\begin{equation*}
\gamma=\alpha+j \beta \tag{17}
\end{equation*}
$$

\square The real part, α, is the attenuation constant
\square Represents loss along the line
\square Due to series resistance and/or shunt conductance
\square The imaginary part, β, is the phase constant
\square Represents change in phase along the line
\square Due to series reactance and/or shunt susceptance

Long-Line Equivalent Circuit

Long-Line Equivalent π Circuit

\square Now that we have exact ABCD parameters for a distributed transmission line, we can create an equivalent π circuit

\square Here we're using Z^{\prime} and Y^{\prime} to distinguish from $Z=z l$ and $Y=y l$ of the lumped, nominal π-circuit model
\square Equating the ABCD parameters with those for the equivalent π circuit above

$$
\left[\begin{array}{cc}
\cosh (\gamma l) & Z_{c} \sinh (\gamma l) \\
\frac{1}{Z_{c}} \sinh (\gamma l) & \cosh (\gamma l)
\end{array}\right]=\left[\begin{array}{cc}
1+\frac{Y^{\prime} Z^{\prime}}{2} & Z^{\prime} \\
Y^{\prime}\left(1+\frac{Y^{\prime} Z^{\prime}}{4}\right) & 1+\frac{Y^{\prime} Z^{\prime}}{2}
\end{array}\right]
$$

Long-Line Equivalent π Circuit

$\square \quad$ Equating the B parameters, we see that

$$
\begin{equation*}
Z^{\prime}=Z_{c} \sinh (\gamma l) \tag{18}
\end{equation*}
$$

$\square \quad$ Using (18) in the A-parameter equation gives

$$
\begin{gathered}
1+\frac{Y^{\prime}}{2} Z_{c} \sinh (\gamma l)=\cosh (\gamma l) \\
\frac{Y^{\prime}}{2}=\frac{\cosh (\gamma l)-1}{Z_{c} \sinh (\gamma l)}=\frac{\tanh \left(\frac{\gamma l}{2}\right)}{Z_{c}}
\end{gathered}
$$

\square The equivalent π circuit for long transmission lines ($>250 \mathrm{~km}$) is

Long-Line vs. Medium-Line Models

\square We can compare this equivalent π circuit with the nominal π circuit used for medium-length lines, where

$$
Z=z l \quad \text { and } \quad \frac{Y}{2}=y \frac{l}{2}
$$

\square Rewriting (18) using the definition for characteristic impedance,

$$
\begin{align*}
& Z^{\prime}=\sqrt{\frac{z}{y}} \sinh (\gamma l)=z l\left(\sqrt{\frac{z}{y}} \frac{\sinh (\gamma l)}{z l}\right) \\
& Z^{\prime}=z l \frac{\sinh (\gamma l)}{\sqrt{z y} l} \\
& Z^{\prime}=Z\left(\frac{\sinh (\gamma l)}{\gamma l}\right) \tag{20}
\end{align*}
$$

\square We see that the series impedance of the long-line model is equal to that of the medium-line model, multiplied by a correction factor

Long-Line vs. Medium-Line Models

\square Doing the same for the shunt admittance, we have

$$
\begin{aligned}
\frac{Y^{\prime}}{2} & =\sqrt{\frac{y}{z}} \tanh (\gamma l / 2)=\frac{y l}{2}\left(\sqrt{\frac{y}{z}} \frac{\tanh (\gamma l / 2)}{y l / 2}\right) \\
\frac{Y^{\prime}}{2} & =\frac{y l}{2} \frac{\tanh (\gamma l / 2)}{\sqrt{z y} \frac{l}{2}} \\
\frac{Y^{\prime}}{2} & =\frac{Y}{2} \frac{\tanh (\gamma l / 2)}{\gamma l / 2}
\end{aligned}
$$

\square Again, we see a similar correction factor relating the admittance, Y, of the lumped, nominal π circuit to the admittance of the distributed, equivalent π circuit, Y^{\prime}

52
 Lossless Lines

Lossless Lines

\square Transmission line models can be simplified significantly if we neglect loss
\square Sacrifice accuracy for the sake of simplicity
\square Series resistance, R, and shunt conductance, G, are the model parameters accounting for loss
\square Let $R \rightarrow 0$ and $G \rightarrow 0$ (we've already assumed $G=0$)
\square Propagation constant for a lossless line is

$$
\gamma=j \beta
$$

- The attenuation constant is now zero, $\alpha \rightarrow 0$

$$
\begin{aligned}
& \gamma=\sqrt{z y}=\sqrt{j \omega L \cdot j \omega C}=j \omega \sqrt{L C}=j \beta \\
& \beta=\omega \sqrt{L C}
\end{aligned}
$$

Lossless Lines - ABCD Parameters

\square Using the propagation constant for a lossless line, the distributed model chain parameters become

$$
\begin{aligned}
& A(x)=D(x)=\cosh (j \beta x)=\frac{e^{j \beta x}+e^{-j \beta x}}{2} \\
& A(x)=D(x)=\cos (\beta x) \\
& B(x)=Z_{c} \sinh (j \beta x)=Z_{c} \frac{e^{j \beta x}-e^{-j \beta x}}{2} \\
& B(x)=j Z_{c} \sin (\beta x) \\
& C(x)=\frac{1}{Z_{c}} \sinh (j \beta x)=\frac{1}{Z_{c}} \frac{e^{j \beta x}-e^{-j \beta x}}{2} \\
& C(x)=j \frac{\sin (\beta x)}{Z_{c}}
\end{aligned}
$$

Lossless Lines - ABCD Parameters

\square Chain parameters at a distance x from the end of a lossless line are

$$
A B C D(x)=\left[\begin{array}{cc}
\cos (\beta x) & j Z_{c} \sin (\beta x) \\
j \frac{\sin (\beta x)}{Z_{c}} & \cos (\beta x)
\end{array}\right]
$$

\square And at the sending end of a line of length $l, x \rightarrow l$, and we have

$$
A B C D=\left[\begin{array}{cc}
\cos (\beta l) & j Z_{c} \sin (\beta l) \\
j \frac{\sin (\beta l)}{Z_{c}} & \cos (\beta l)
\end{array}\right]
$$

\square The characteristic impedance of the lossless line is called the surge impedance

$$
Z_{c}=\sqrt{\frac{z}{y}}=\sqrt{\frac{j \omega L}{j \omega C}}=\sqrt{\frac{L}{C}}
$$

Equivalent π Circuit - Lossless Line

\square For the lossless line

$$
\gamma=j \beta
$$

so,

$$
Z^{\prime}=Z_{c} \sinh (j \beta l)=j \sqrt{\frac{L}{C}} \sin (\beta l)=j X^{\prime}
$$

and,

$$
\frac{Y^{\prime}}{2}=\frac{\tanh \left(\frac{j \beta l}{2}\right)}{Z_{c}}=j \frac{\tan \left(\frac{\beta l}{2}\right)}{Z_{c}}
$$

Wavelength

\square The voltage along the lossless line is

$$
\begin{aligned}
& \boldsymbol{V}(x)=A(x) \boldsymbol{V}_{R}+B(x) \boldsymbol{I}_{R} \\
& \boldsymbol{V}(x)=\cos (\beta x) \boldsymbol{V}_{R}+j Z_{c} \sin (\beta x) \boldsymbol{I}_{R}
\end{aligned}
$$

\square A wavelength, λ, is the distance required for a phase shift of 360° along the line
\square There is a 360° phase shift when $x=\lambda$ and

$$
\beta \lambda=2 \pi
$$

\square The wavelength is

$$
\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{\omega \sqrt{L C}}=\frac{1}{f \sqrt{L C}}=\frac{v}{f}
$$

where $v=1 / \sqrt{L C}$ is the propagation velocity along the line

Wavelength

\square For overhead transmission lines,

$$
v \approx c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

\square That is, electrical waves propagate along the line at roughly the speed of light
\square At 60 Hz , the wavelength is

$$
\lambda=\frac{v}{f}=\frac{3 \times 10^{8}}{60}=5000 \mathrm{~km}
$$

\square This is approximately the distance across the U.S.

- Most transmission lines are significantly shorter than a wavelength

59
 Surge Impedance Loading

Surge Impedance Loading (SIL)

\square Surge impedance loading (SIL)

- The power delivered by a transmission line to a resistive load whose impedance is equal to the surge impedance, Z_{c}, of that transmission line
\square At SIL, the load current is

$$
\boldsymbol{I}_{R}=\frac{\boldsymbol{V}_{R}}{Z_{c}}
$$

\square The voltage along the line is

$$
\begin{aligned}
& \boldsymbol{V}(x)=\cos (\beta x) \boldsymbol{V}_{R}+j Z_{c} \sin (\beta x) \boldsymbol{I}_{R} \\
& \boldsymbol{V}(x)=\cos (\beta x) \boldsymbol{V}_{R}+j Z_{c} \sin (\beta x) \frac{\boldsymbol{V}_{R}}{Z_{c}} \\
& \boldsymbol{V}(x)=\boldsymbol{V}_{R}[\cos (\beta x)+j \sin (\beta x)] \\
& \boldsymbol{V}(x)=\boldsymbol{V}_{R} \angle \beta x
\end{aligned}
$$

\square Note that at SIL, the magnitude of the voltage is constant along the line

- A flat voltage profile

Surge Impedance Loading (SIL)

\square At SIL, the current along the line is given by

$$
\begin{aligned}
& \boldsymbol{I}(x)=j \frac{\sin (\beta x)}{Z_{c}} \boldsymbol{V}_{R}+\cos (\beta x) \frac{\boldsymbol{V}_{R}}{Z_{c}} \\
& \boldsymbol{I}(x)=\frac{\boldsymbol{V}_{R}}{Z_{c}}[\cos (\beta x)+j \sin (\beta x)] \\
& \boldsymbol{I}(x)=\frac{\boldsymbol{V}_{R}}{Z_{c}} \angle \beta x
\end{aligned}
$$

\square The complex power along the line is

$$
\begin{aligned}
& \boldsymbol{S}(x)=\boldsymbol{V}(x) \boldsymbol{I}(x)^{*}=\left(\boldsymbol{V}_{R} \angle \beta x\right)\left(\frac{\boldsymbol{V}_{R}}{Z_{c}} \angle \beta x\right)^{*} \\
& \boldsymbol{S}(x)=\frac{\left|\boldsymbol{V}_{R}\right|^{2}}{Z_{c}}=P(x)+j Q(x)
\end{aligned}
$$

\square At SIL

- Power flow is independent of position along the line
- Reactive power is zero

Surge Impedance Loading (SIL)

\square Surge impedance loading is typically defined in terms of a transmission line's rated voltage

$$
S I L=\frac{V_{\text {rated }}^{2}}{Z_{c}}
$$

\square At SIL, we've seen that the voltage profile along a transmission line is flat
\square At no load, $I_{R}=0$, and the voltage is given by

$$
\boldsymbol{V}(x)=\cos (\beta x) \boldsymbol{V}_{R N L}
$$

\square The source voltage is

$$
\boldsymbol{V}_{S}=\cos (\beta l) \boldsymbol{V}_{R N L}
$$

\square So the receiving-end voltage in terms of the sending-end voltage is

$$
\boldsymbol{V}_{R N L}=\frac{\boldsymbol{V}_{S}}{\cos (\beta l)}
$$

Surge Impedance Loading (SIL)

\square The no-load receiving-end voltage is

$$
\boldsymbol{V}_{R N L}=\frac{\boldsymbol{V}_{S}}{\cos (\beta l)}
$$

\square As long as $\beta l \leq \pi / 2$, i.e. $l \leq \lambda / 4$,

- Voltage will increase along the length of the line
- No-load receiving-end voltage is greater than the sending-end voltage
\square Voltage regulation worsens with increasing line length

Steady-State Stability Limit

Real Power vs. Voltage Angle

\square Assume a voltage angle between the sending and receiving ends of a lossless line of δ

$$
\boldsymbol{V}_{R}=V_{R} \angle 0^{\circ} \text { and } \boldsymbol{V}_{S}=V_{S} \angle \delta
$$

\square Using the equivalent π network for the lossless line, we can determine the receiving-end current

\square Applying KCL at the receiving end

$$
\begin{aligned}
& \boldsymbol{I}_{R}=\frac{\boldsymbol{V}_{S}-\boldsymbol{V}_{R}}{j X^{\prime}}-j \frac{B^{\prime}}{2} \boldsymbol{V}_{R} \\
& \boldsymbol{I}_{R}=\frac{V_{S} \angle \delta-V_{R} \angle 0^{\circ}}{j X^{\prime}}-j \frac{B^{\prime}}{2} V_{R} \angle 0^{\circ}
\end{aligned}
$$

Real Power vs. Voltage Angle

\square The complex power at the load is

$$
\begin{aligned}
& \boldsymbol{S}_{R}=\boldsymbol{V}_{R} \boldsymbol{I}_{R}^{*}=\frac{V_{R} V_{S} \angle-\delta-V_{R}^{2}}{-j X^{\prime}}+j \frac{B^{\prime}}{2} V_{R}^{2} \\
& \boldsymbol{S}_{R}=j \frac{V_{R} V_{S} \angle-\delta}{X^{\prime}}-j \frac{V_{R}^{2}}{X^{\prime}}+j \frac{B^{\prime}}{2} V_{R}^{2} \\
& \boldsymbol{S}_{R}=j \frac{V_{R} V_{S}}{X^{\prime}}[\cos (-\delta)+j \sin (-\delta)]-j \frac{V_{R}^{2}}{X^{\prime}}+j \frac{B^{\prime}}{2} V_{R}^{2} \\
& \boldsymbol{S}_{R}=\frac{V_{R} V_{S}}{X^{\prime}} \sin (\delta)+j\left[\frac{V_{R} V_{S}}{X^{\prime}} \cos (\delta)-\frac{V_{R}^{2}}{X^{\prime}}+\frac{B^{\prime}}{2} V_{R}^{2}\right]
\end{aligned}
$$

\square The real power delivered is

$$
P_{R}=P_{S}=\mathcal{R e}\left\{S_{R}\right\}=\frac{V_{R} V_{S}}{X^{\prime}} \sin (\delta)
$$

Power Flow - Lossless Lines

\square The delivered power is a function of the voltage phase shift along the line, δ

$$
P_{R}=\frac{V_{R} V_{S}}{X^{\prime}} \sin (\delta)
$$

\square For the lossless line the series reactance is

$$
X^{\prime}=Z_{c} \sin (\beta l)
$$

SO,

$$
P_{R}=\frac{V_{R} V_{S}}{Z_{c} \sin (\beta l)} \sin (\delta)=\frac{V_{R} V_{S}}{Z_{c} \sin \left(\frac{2 \pi l}{\lambda}\right)} \sin (\delta)
$$

Power Flow - Lossless Lines

Converting V_{R} and V_{S} to per unit

$$
\begin{aligned}
& P_{R}=\left(\frac{V_{R}}{V_{\text {rated }}}\right)\left(\frac{V_{S}}{V_{\text {rated }}}\right) \frac{V_{\text {rated }}^{2}}{Z_{c} \sin \left(\frac{2 \pi l}{\lambda}\right)} \sin (\delta) \\
& P_{R}=V_{R, p u} V_{S, p u}\left(\frac{V_{\text {rated }}^{2}}{Z_{c}}\right) \frac{\sin (\delta)}{\sin \left(\frac{2 \pi l}{\lambda}\right)}
\end{aligned}
$$

\square The term in parentheses is SIL, so

$$
P_{R}=V_{R, p u} V_{S, p u} S I L \frac{\sin (\delta)}{\sin \left(\frac{2 \pi l}{\lambda}\right)}
$$

\square This provides a relationship between:

- Power delivered over a transmission line
- Voltage drop along the line
- Power angle

Maximum Power Flow - Lossless Lines

$$
P_{R}=\frac{V_{R} V_{S}}{Z_{c} \sin \left(\frac{2 \pi l}{\lambda}\right)} \sin (\delta)=V_{R, p u} V_{S, p u} S I L \frac{\sin (\delta)}{\sin \left(\frac{2 \pi l}{\lambda}\right)}
$$

\square The delivered power is a function of the voltage phase shift along the line
\square Maximum power occurs when $\delta=90^{\circ}$

$$
P_{\max }=\frac{V_{R} V_{S}}{Z_{c} \sin \left(\frac{2 \pi l}{\lambda}\right)}=\frac{V_{R, p u} V_{S, p u} S I L}{\sin \left(\frac{2 \pi l}{\lambda}\right)}
$$

\square The steady-state stability limit of a line

Steady-State Stability Limit

$$
P_{\max }=\frac{V_{R} V_{S}}{Z_{c} \sin \left(\frac{2 \pi l}{\lambda}\right)}=\frac{V_{R, p u} V_{S, p u} S I L}{\sin \left(\frac{2 \pi l}{\lambda}\right)}
$$

\square This maximum power is the steady-state stability limit of a transmission line
\square Loads exceeding this limit will result in a loss of synchronism at the receiving end
\square Synchronous machines at the sending and receiving ends will fall out of synchronization
\square Steady-state stability limit proportional to

- Inverse of line length
\square Square of the line voltage

71
 Line Loadability

Transmission Line Loadability

\square Three primary factors limit power flow over transmission lines:

- Phase shift
- Voltage drop
- Thermal limit
\square Relevant limit depends on line length
\square Phase shift:
- Proportional to line length and power flow
- Phase shift places a stability limit on power flow
- Exceeding $P_{\max }\left(\delta=90^{\circ}\right)$ results in loss of synchronism
- For satisfactory transient stability, typically $\delta \leq 30^{\circ}$... 35°
- Stability limits the loadability of long transmission lines (>150 mi)

Transmission Line Loadability

\square Voltage drop:

- Voltage drop along a line is also proportional to line length and power flow
- Typically, voltage drop limited to 5\% - 10\%
- Voltage drop limits power flow on medium-length lines (50 mi - 150 mi)
\square Thermal limits
- As power flow increases, line temperature increases
- As temperature increases, lines sag and loose tensile strength
- A line's thermal limit is independent of line length
- Thermal limits dominate for short lines (<50 mi)

Transmission Line Loadability

\square Comparison of theoretical and practical loadability limits
\square Practical limit assumes:

- $V_{R} / V_{S} \geq 0.95$

ㅁ $\delta \leq 30^{\circ} \ldots 35^{\circ}$

Practical Line Loadability - Example

- Determine how much power that can be transmitted over a 400 km , 500 kV transmission line, given the following:
- Voltage drop along the line limited to 10\%
- Power angle limited to $\delta_{\max }=30^{\circ}$
- The characteristic impedance of the line is $Z_{c}=280 \Omega$
- Assume $V_{S, p u}=1.0$ p.u.
\square Power delivered to the receiving end of the line is

$$
\begin{aligned}
& P_{R}=V_{R, p u} V_{S, p u} S I L \frac{\sin (\delta)}{\sin \left(\frac{2 \pi l}{\lambda}\right)} \\
& P_{R}=0.9 \cdot 1.0 \cdot S I L \frac{\sin \left(30^{\circ}\right)}{\sin \left(\frac{2 \pi \cdot 400 \mathrm{~km}}{5000 \mathrm{~km}}\right)}
\end{aligned}
$$

Practical Line Loadability - Example

\square In terms of SIL, the power the line can deliver is

$$
P_{R}=0.934 \cdot S I L
$$

\square Surge impedance loading for the line is

$$
S I L=\frac{V_{\text {rated }}^{2}}{Z_{c}}=\frac{(500 \mathrm{kV})^{2}}{280 \Omega}=892.9 \mathrm{MW}
$$

so,

$$
\begin{aligned}
& P_{R}=0.934 \cdot 892.9 \mathrm{MW} \\
& P_{R}=834 \mathrm{MW}
\end{aligned}
$$

77 Example Problems

A 180 km, three-phase transmission line delivers 80 MW at 115 kV and a power factor of 0.96 , lagging. The series impedance of the lines is $z=0.03+j 0.3 \Omega / \mathrm{km}$, and the shunt admittance is $\mathrm{y}=\mathrm{j} 4 \mu \mathrm{~S} / \mathrm{km}$.
a) Determine the appropriate set of chain parameters for the line.
b) How much power is delivered to the sending end of the line?

A 500 km transmission line with surge impedance of $Z_{c}=270 \Omega$ is used to deliver 1800 MW from a power plant to a load center. If the voltage drop along the line is limited to 6%, and the power angle is limited to 33°, what is the minimum rated voltage for the line?

A $400 \mathrm{~km}, 500 \mathrm{kV}$ transmission line has a series impedance of $z=$ $0.03+j 0.35 \Omega / \mathrm{km}$ and a shunt admittance of $y=j 4.4 \mu \mathrm{~S} / \mathrm{km}$. At full load, it delivers 1000 MW at 475 kV and unity power factor. Determine:
a) ABCD parameters
b) Sending-end voltage, current, power, and power factor
c) Full-load line losses

Reactive Compensation

Reactive Compensation

\square Voltage profile and loadability of a transmission line depend on relative line and load impedances

- By varying line impedance, we can affect voltage regulation and line loadability
- Add shunt or series reactance to the line - reactive compensation
\square Types of reactive compensation
\square Shunt reactors (inductors)
- Absorb reactive power
- Reduce receiving-end voltage under light load
- Must be removed under higher-load conditions
- Shunt capacitors
- Supply reactive power
- Increase receiving-end voltage at full load
- Removed under light-load conditions

Reactive Compensation

\square Types of reactive compensation (cont'd)

- Series capacitors
- Reduce series line impedance
- Reduce line voltage drops
- Increase steady-state stability limit
- Static VAR compensators (SVCs)
- Thyristor-controlled shunt reactors and capacitors
- Automatically adjust compensation depending on load

Reactive Compensation

\square Amount of reactive compensation is typically expressed as a percentage of line impedance

\square For example, the circuit above shows a transmission line with $N L \%$ shunt reactive compensation

Reactive Compensation - Example 1

\square Consider a $300 \mathrm{~km}, 765 \mathrm{kV}$, three-phase transmission line with the following chain parameters:
口 $A=0.9313 \angle 0.209^{\circ}$
ㅁ $B=Z^{\prime}=97 \angle 87.2^{\circ}$

- Shunt reactors, switched in during light-load conditions only, provide 75\% compensation
- Full-load current is 1.9 kA at 730 kV with unity power factor
- The sending-end voltage, V_{S}, is constant
\square Determine:
$\square \% V R$ of the uncompensated line
$\square \% V R$ of the compensated line

Reactive Compensation - Example 1

\square Full-load, line-to-neutral, receiving-end voltage, using it as the 0° phase reference:

$$
V_{R F L}=\frac{730}{\sqrt{3}} \angle 0^{\circ} k V=421.5 \angle 0^{\circ} \mathrm{kV}
$$

\square Use chain parameters to determine the sending-end voltage, \boldsymbol{V}_{S}

$$
\begin{aligned}
& \boldsymbol{V}_{S}=A \boldsymbol{V}_{R F L}+B \boldsymbol{I}_{R F L} \\
& \boldsymbol{V}_{S}=\left(0.9313 \angle 0.209^{\circ}\right)\left(421.5 \angle 0^{\circ} \mathrm{kV}\right)+\left(97 \angle 87.2^{\circ} \Omega\right)\left(1.9 \angle 0^{\circ} \mathrm{kA}\right) \\
& \boldsymbol{V}_{S}=442.3 \angle 24.8^{\circ} \mathrm{kV}
\end{aligned}
$$

\square The no-load, line-to-neutral, receiving-end voltage is

$$
\boldsymbol{V}_{R N L}=\frac{\boldsymbol{V}_{S}}{A}=\frac{442.3 \angle 24.8^{\circ} \mathrm{kV}}{0.9313 \angle 0.209^{\circ}}=474.9 \angle 24.6^{\circ} \mathrm{kV}
$$

$\square \quad$ Percent voltage regulation for the uncompensated line is

$$
\begin{aligned}
& \% V R=\frac{\left|V_{R N L}\right|-\left|V_{R F L}\right|}{\left|V_{R F L}\right|} \cdot 100 \%=\frac{474.9 \mathrm{kV}-421.5 \mathrm{kV}}{421.5 \mathrm{kV}} \cdot 100 \% \\
& \% V R=12.7 \%
\end{aligned}
$$

Reactive Compensation - Example 1

\square For the compensated line, we need to calculate new chain parameters
\square Shunt admittance of the uncompensated line can be determined from the known chain parameters

$$
A=0.9313 \angle 0.209^{\circ}=1+\frac{Y^{\prime} Z^{\prime}}{2}
$$

where

$$
Z^{\prime}=B=97 \angle 87.2 \Omega
$$

So,

$$
\begin{aligned}
& Y^{\prime}=\frac{(A-1) 2}{Z^{\prime}}=\frac{\left[\left(0.9313 \angle 0.209^{\circ}\right)-1\right] 2}{97 \angle 87.2^{\circ} \Omega} \\
& Y^{\prime}=1.418 \times 10^{-3} \angle 89.97^{\circ} S \\
& Y^{\prime}=759 \times 10^{-9}+j 1.42 \times 10^{-3} S
\end{aligned}
$$

Reactive Compensation - Example 1

\square After adding compensation, the equivalent shunt susceptance decreases by 75%

$$
\begin{aligned}
& Y_{e q}=759 \times 10^{-9}+j 1.42 \times 10^{-3} S \cdot 0.25 \\
& Y_{e q}=759 \times 10^{-9}+j 355 \times 10^{-6} S
\end{aligned}
$$

\square Use $Y_{e q}$ to calculate the A parameter for the compensated line

$$
A_{e q}=1+\frac{Y_{e q} Z^{\prime}}{2}=0.983 \angle 0.05^{\circ}
$$

\square Note that shunt reactive compensation does not affect the series impedance, Z^{\prime}, and therefor does not affect B

Reactive Compensation - Example 1

\square The no-load receiving-end voltage for the compensated line:

$$
\begin{aligned}
\boldsymbol{V}_{R N L} & =\frac{\boldsymbol{V}_{S}}{A_{e q}}=\frac{442.3 \angle 24.8^{\circ} \mathrm{kV}}{0.983 \angle 0.05^{\circ}} \\
\boldsymbol{V}_{R N L} & =449.9 \angle 24.8^{\circ} \mathrm{kV}
\end{aligned}
$$

\square Percent voltage regulation for the compensated line is

$$
\begin{aligned}
& \% V R=\frac{\left|\boldsymbol{V}_{R N L}\right|-\left|V_{R F L}\right|}{\left|\boldsymbol{V}_{R F L}\right|} \cdot 100 \% \\
& \% V R=\frac{449.9 \mathrm{kV}-421.5 \mathrm{kV}}{421.5 \mathrm{kV}} \cdot 100 \% \\
& \% V R=6.8 \%
\end{aligned}
$$

\square Reactive compensation has improved voltage regulation from 12.7% to 6.8\%

Reactive Compensation - Example 2

\square In this example we will use phasor diagrams to illustrate the relationship between reactive power flow and line voltage
\square Consider a the following per-phase circuit

- Could loosely represent a 69 kV subtransmission line
- Values exaggerated for illustration purposes

\square We will look at the effect of adding shunt capacitive compensation at the receiving end

Reactive Compensation - Example 2

\square Three scenarios considered:

1. $P_{R}=145 \mathrm{MW}$; no compensation; $\mathrm{pf}=0.707$, lagging
2. $P_{R}=145 \mathrm{MW} ;-j 35 \Omega$ shunt $\mathrm{C} ; \mathrm{pf}=0.99$, lagging
3. $P_{R}=145 \mathrm{MW} ;-j 15 \Omega$ shunt $\mathrm{C} ; \mathrm{pf}=0.95$, leading
\square Note that real power to the load is held constant

- Equivalent load impedance adjusted to accomplish this
- Again, power is exaggerated for illustration purposes

Reactive Compensation - Example 2

\square Scenario \#1:

- No reactive
compensation
- $P_{R}=145 \mathrm{MW}$
$\square p f=0.707$, lagging

\square Lagging current:

$$
\mathbf{I}=6.98 \angle-52^{\circ} k A
$$

\square Receiving end voltage:

$$
\mathbf{V}_{R}=29.6 \angle-7.1^{\circ} \mathrm{kV}
$$

Reactive Compensation - Example 2

\square Scenario \#2:

- - $j 35 \Omega$ shunt compensation
- $P_{R}=145 \mathrm{MW}$
- $p f=0.99$, lagging

\square Current magnitude and phase reduced:
$\mathbf{I}=3.97 \angle-14.5^{\circ} \mathrm{kA}$
\square Receiving end voltage
 increased:

$$
\mathbf{V}_{R}=36.8 \angle-8.2^{\circ} \mathrm{kV}
$$

Reactive Compensation - Example 2

\square Scenario \#3:

- $-j 15 \Omega$ shunt compensation
- $P_{R}=145 \mathrm{MW}$

■ $p f=0.95$, leading

\square Current now leads the source:

$$
\mathbf{I}=3.9 \angle 8.4^{\circ} \mathrm{kA}
$$

\square Receiving end voltage
 increased further:

$$
\mathbf{V}_{R}=39.2 \angle-8.9^{\circ} \mathrm{kV}
$$

101 Example Problems

Draw a phasor diagram indicating V_{S}, I, V_{L}, and V_{R} for the following circuit for a source power of
a) $\mathbf{S}_{s}=10 \angle-45^{\circ} \mathrm{MVA}$
b) $\mathbf{S}_{s}=10 \angle 0^{\circ} M V A$
c) $\mathbf{S}_{s}=10 \angle 45^{\circ} \mathrm{MVA}$

