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Transmission Lines

 Transmission and distribution of electrical power occurs 
over metal cables
 Overhead AC or DC
 Underground AC or DC

 In the U.S. nearly all transmission 
makes use of overhead AC lines

 These cables are good, but not 
perfect, conductors
 Series impedance
 Shunt admittance

 In this section of notes we’ll look at 
how these are accounted for in 
equivalent circuit models
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Electrical Properties of Transmission Lines

 Series resistance
 Voltage drop (𝐼𝐼𝐼𝐼) and real power loss (𝐼𝐼2𝐼𝐼) along the line
 Due to finite conductivity of the line

 Series inductance
 Series voltage drop, no real power loss
 Only self inductance (no mutual inductance) in balanced systems

 Shunt conductance
 Real power loss (𝑉𝑉2𝐺𝐺)
 Leakage current due to corona effects or leakage at insulators
 Typically neglected for overhead lines

 Shunt capacitance
 Capacitance to other conductors and to ground
 Line-charging currents
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Conductors

 Before getting into transmission line models, we’ll take 
a look at the conductors themselves

 Aluminum is the most common conductor
 Good conductivity
 Light weight
 Low cost
 Plentiful supply

 Most common cable type combines aluminum and steel
 Aluminum-conductor steel-reinforced (ACSR)
 Bare, stranded cable
 Core of steel strands provides strength
 Outer aluminum strands provide good conductivity
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ACSR Cables

 ACSR cables vary based on number of aluminum conductor strands and 
number of steel reinforcement strands
 ACSR variants assigned bird code names, e.g.:

 Dove: 26/7 Al/Steel stranding
 Bluebird: 84/19 Al/Steel stranding

 Another increasingly popular cable type is all-aluminum-alloy conductor
(AAAC)
 Stronger
 Lighter
 Higher conductivity
 More expensive

source: Glover, Sarma, Overbye
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Cables

 Cables are sized to provide the required current-carrying 
capability or ampacity
 Number of individual strands
 Diameter of individual strands

 Strand and cable diameter commonly measured in mils
1 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.001"

 Cross-sectional area often measured in circular mils or cmil
 Area of a circle with a diameter of 𝑑𝑑 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.001“

1 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜋𝜋
0.001

2

2

= 785 × 10−9 𝑠𝑠𝑠𝑠 𝑚𝑚𝑖𝑖

 Area in 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 of a cable with diameter 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚:
𝐴𝐴 = 𝑑𝑑2
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ACSR Cable

 Consider, for example, Falcon ACSR cable
 54/19: 54 Al strands with a core of 19 steel strands
 Al strand diameter: 172 𝑚𝑚𝑚𝑚𝑚𝑚
 Al strand area: 172 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 29.584 𝑘𝑘𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

 Steel strand diameter: 103 𝑚𝑚𝑚𝑚𝑚𝑚
 Steel strand area: 103 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 10.609 𝑘𝑘𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

 Cable diameter: 1.545“
 Cable area: 1545 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 2387 𝑘𝑘𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

 Ampacity: 1380 𝐴𝐴
 Weight: 10,777 𝑚𝑚𝑙𝑙/𝑚𝑚𝑚𝑚
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Bundling

 Two-, three-, and four-cable bundles are common:

 In addition to increasing cable 
cross-sectional area, ampacity 
can be increased by adding 
additional cables to each 
phase – bundling
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Bundling

 Typical bundling:
 345 kV: two conductors
 500 kV: three conductors
 765 kV: four conductors

 Advantages of bundling:
 Lower resistance
 Lower reactance (inductance)
 Increased ampacity
 Reduced electric field gradient surrounding phase conductor
 Reduced corona
 Reduced loss, noise, and RF interference 

 Improved heat dissipation
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Insulators

 Cables are supported by towers
 Must connect, while retaining electrical isolation

 Connections are typically made through ceramic or 
glass insulators

 High-voltage lines suspended by strings of insulator 
discs

 One or two strings
 Two prevents sway

 Number of discs dictated 
by line voltage, e.g.:
 4-6 for 69 kV
 30-35 for 765 kV
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Transposition

 Transmission-line inductance and capacitance determined 
by geometry
 Cable size and relative spacing

 Consider three phases laid out side-by-side

 Phases a and c will have similar inductance and capacitance
 Inductance and capacitance of phase b will differ
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Transposition

 Transposition
 Switch the position of 

each phase twice along 
the length of the line

 Each phase occupies 
each position for one 
third of the line length

 Line remains balanced



K. Webb ESE 470

Medium- and Short-Line Models15



K. Webb ESE 470

16

Short-Line Model

 How we choose to model the electrical characteristics of a 
transmission line depends on the length of the line

 Short-line model:
 < ~80 𝑘𝑘𝑚𝑚
 Lumped model
 Account only for series impedance
 Neglect shunt capacitance

 𝐼𝐼 and 𝜔𝜔𝜔𝜔 are resistance and reactance per unit length, respectively
 Each with units of Ω/𝑚𝑚

 𝑚𝑚 is the length of the line
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Medium-Line Model

 Medium-line model – nominal-𝝅𝝅 model:
 80 𝑘𝑘𝑚𝑚 < 𝑚𝑚 < 250 𝑘𝑘𝑚𝑚
 Lumped model
 Now include shunt capacitance

𝑧𝑧 = 𝐼𝐼 + 𝑗𝑗𝜔𝜔𝜔𝜔 Ω/𝑚𝑚 and      𝑍𝑍 = 𝑧𝑧𝑚𝑚 Ω
𝑦𝑦 = 𝜔𝜔𝜔𝜔 𝑆𝑆/𝑚𝑚 and      𝑌𝑌 = 𝑦𝑦𝑚𝑚 𝑆𝑆

 Still a lumped model
 All impedances and admittances lumped into one or two circuit 

components
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Transmission Lines as Two-Port Networks

 Before moving on to a model for longer transmission lines, 
we’ll look at an alternative tool for characterizing 
transmission line networks

 We can treat transmission lines as general two-port 
networks

 As two-port networks, we can characterize transmission 
lines with their ABCD parameters or chain parameters
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ABCD Parameters

 ABCD (or chain or transmission or cascade) parameters define the following 
two-port relationships

𝑽𝑽1 = 𝐴𝐴𝑽𝑽2 + 𝐵𝐵𝑰𝑰2
𝑰𝑰1 = 𝜔𝜔𝑽𝑽2 + 𝐷𝐷𝑰𝑰2

 In matrix form, the chain-parameter equations are
𝑽𝑽1
𝑰𝑰1

= 𝐴𝐴 𝐵𝐵
𝜔𝜔 𝐷𝐷

𝑽𝑽2
𝑰𝑰2

 𝐴𝐴, 𝐵𝐵, 𝜔𝜔, and 𝐷𝐷 are, in general, complex numbers
 𝐴𝐴 and 𝐷𝐷 are dimensionless
 𝐵𝐵 is an impedance with units of Ω
 𝜔𝜔 is an admittance with units of 𝑆𝑆

 𝑉𝑉1 and 𝑉𝑉2 are line-to-neutral voltages

 If the network is reciprocal, then  𝐴𝐴𝐷𝐷 − 𝐵𝐵𝜔𝜔 = 1
 If the network is symmetric, then  𝐴𝐴 = 𝐷𝐷
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ABCD Parameters – Short-Line Model

 Applying KVL around the loop gives our first equation
𝑽𝑽𝑆𝑆 − 𝑰𝑰𝑅𝑅𝑍𝑍 − 𝑽𝑽𝑅𝑅 = 0

𝑽𝑽𝑆𝑆 = 𝑽𝑽𝑅𝑅 + 𝑍𝑍𝑰𝑰𝑅𝑅
So,

𝐴𝐴 = 1 and    𝐵𝐵 = 𝑍𝑍

 We’ll now derive the ABCD parameters for the short-
transmission-line model
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ABCD Parameters – Short-Line Model

 Applying KCL gives the second equation

𝑰𝑰𝑠𝑠 = 𝑰𝑰𝑅𝑅
and

𝜔𝜔 = 0 and    𝐷𝐷 = 1
 The short-line ABCD matrix is

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 = 1 𝑍𝑍
0 1

 Note that, due to symmetry and reciprocity,

𝐴𝐴 = 𝐷𝐷 and    𝐴𝐴𝐷𝐷 − 𝐵𝐵𝜔𝜔 = 1
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ABCD Parameters – Medium-Line Model

 Applying KVL around the loop gives our first equation

𝑽𝑽𝑆𝑆 − 𝑰𝑰𝑅𝑅 + 𝑽𝑽𝑅𝑅
𝑌𝑌
2

𝑍𝑍 − 𝑽𝑽𝑅𝑅 = 0

𝑽𝑽𝑆𝑆 = 1 +
𝑌𝑌𝑍𝑍
2

𝑽𝑽𝑅𝑅 + 𝑍𝑍𝑰𝑰𝑅𝑅

 This is the first chain parameter equation, where

𝐴𝐴 = 1 + 𝑌𝑌𝑌𝑌
2

and    𝐵𝐵 = 𝑍𝑍

 Next, for the medium-transmission-line model
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ABCD Parameters – Medium-Line Model

 For the second equation, apply KCL at the sending end

𝑰𝑰𝑠𝑠 − 𝑽𝑽𝑠𝑠
𝑌𝑌
2 − 𝑰𝑰𝑅𝑅 − 𝑽𝑽𝑅𝑅

𝑌𝑌
2 = 0

 Substituting in our previous expression for 𝑉𝑉𝑆𝑆

𝑰𝑰𝑆𝑆 = 𝑽𝑽𝑅𝑅
𝑌𝑌
2 + 𝑰𝑰𝑅𝑅 + 1 +

𝑌𝑌𝑍𝑍
2

𝑌𝑌
2 𝑽𝑽𝑅𝑅 +

𝑌𝑌𝑍𝑍
2 𝑰𝑰𝑅𝑅

𝑰𝑰𝑆𝑆 = 2 +
𝑌𝑌𝑍𝑍
2

𝑌𝑌
2 𝑽𝑽𝑅𝑅 + 1 +

𝑌𝑌𝑍𝑍
2 𝑰𝑰𝑅𝑅

 This is the second chain-parameter equation, where

𝜔𝜔 = 1 + 𝑌𝑌𝑌𝑌
4

𝑌𝑌 and    𝐷𝐷 = 1 + 𝑌𝑌𝑌𝑌
2
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ABCD Parameters – Medium-Line Model

 The medium-line chain parameters are

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 =
1 +

𝑌𝑌𝑍𝑍
2

𝑍𝑍

1 +
𝑌𝑌𝑍𝑍
4

𝑌𝑌 1 +
𝑌𝑌𝑍𝑍
2

 Again, note that, due to symmetry and reciprocity, 𝐴𝐴 = 𝐷𝐷 and  
𝐴𝐴𝐷𝐷 − 𝐵𝐵𝜔𝜔 = 1

 Also note that allowing 𝑌𝑌 → 0 yields the chain parameters for the 
short-line model



K. Webb ESE 470

26

Cascading Two-Port Networks

 ABCD parameters or chain parameters are also called 
cascade parameters

 If we cascade multiple two-port networks, the ABCD 
parameter matrix for the cascade is the product of the 
individual ABCD parameter matrices

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 = 𝐴𝐴1𝐴𝐴2 + 𝐵𝐵1𝜔𝜔2 𝐴𝐴1𝐵𝐵2 + 𝐵𝐵1𝐷𝐷2
𝜔𝜔1𝐴𝐴2 + 𝐷𝐷1𝜔𝜔2 𝜔𝜔1𝐵𝐵2 + 𝐷𝐷1𝐷𝐷2
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Cascaded Two-Ports - Example

 For example, consider the cascade of the following two two-port 
networks

 ABCD parameters for the first network are

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷1 =
1 +

𝑌𝑌1𝑍𝑍1
2

𝑍𝑍1

1 +
𝑌𝑌1𝑍𝑍1

4
𝑌𝑌1 1 +

𝑌𝑌1𝑍𝑍1
2

= 1 + 𝑗𝑗𝑗 2 Ω
−4 + 𝑗𝑗𝑗 𝑆𝑆 1 + 𝑗𝑗𝑗

 And for the second network

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷2 = 1 𝑍𝑍
0 1 = 1 4 Ω

0 1
 So the overall ABCD matrix is

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 =
1 + 𝑗𝑗𝑗 6 + 𝑗𝑗𝑗𝑗 Ω

−4 + 𝑗𝑗𝑗 𝑆𝑆 −15 + 𝑗𝑗𝑗𝑗
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Cascaded Two-Ports - Example

 If a sending-end voltage of 𝑽𝑽𝑆𝑆 = 𝑗𝑗0∠0° 𝑉𝑉 is applied, 
and no load is connected, what is the receiving-end 
voltage?

𝑽𝑽𝑆𝑆 = 𝑗𝑗0∠0° 𝑉𝑉 and    𝑰𝑰𝑅𝑅 = 0 𝐴𝐴

𝑽𝑽𝑆𝑆 = 𝐴𝐴𝑽𝑽𝑅𝑅 + 𝐵𝐵𝑰𝑰𝑅𝑅
1𝑗0∠0° = 1 + 𝑗𝑗𝑗 𝑉𝑉𝑅𝑅

 The no-load receiving-end voltage is

𝑽𝑽𝑅𝑅 =
𝑗𝑗0∠0°
1 + 𝑗𝑗𝑗

= 7.06 − 𝑗𝑗𝑗𝑗.2 𝑉𝑉

𝑽𝑽𝑅𝑅 = 29.𝑗∠ − 75.9𝑗° 𝑉𝑉



K. Webb ESE 470

Voltage Regulation29



K. Webb ESE 470

30

Voltage Regulation

 The voltage at the receiving end of a line will change depending on 
the load placed on the line
 Magnitude of this change is quantified as voltage regulation

 Voltage regulation:
 Change in receiving-end voltage from no load to full load, expressed as a 

percentage of the full-load voltage

%𝑉𝑉𝐼𝐼 =
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
⋅ 100%

 Typically, transmission lines are designed to limit voltage regulation to 
about 10%

 As we’ve seen, the no-load voltage is given by

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑽𝑽𝑆𝑆
𝐴𝐴
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Voltage Regulation – Example 5.1

 Consider a three-phase, 60 Hz, 345 kV transmission line 
with the following properties
 200 km long
 𝑧𝑧 = 0.032 + 𝑗𝑗0.35 Ω/𝑘𝑘𝑚𝑚,  𝑦𝑦 = 𝑗𝑗𝑗.2 𝜇𝜇𝑆𝑆/𝑘𝑘𝑚𝑚
 Full load is 700 MW at 95% of the rated voltage and a power 

factor of 0.99 leading

 Determine:
 ABCD parameters for an appropriate transmission-line 

model
 Phase shift between sending- and receiving-end voltages at 

full load
 Percent voltage regulation
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Voltage Regulation – Example 5.1

 Line is 200 km long, so a nominal-𝜋𝜋 model is appropriate

where
𝑍𝑍 = 𝑧𝑧 ⋅ 200 𝑘𝑘𝑚𝑚 = 6.4 + 𝑗𝑗𝑗0 Ω
𝑌𝑌 = 𝑦𝑦 ⋅ 200 𝑘𝑘𝑚𝑚 = 𝑗𝑗𝑗𝑗0 𝜇𝜇𝑆𝑆

 The ABCD parameters are

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 =
1 +

𝑌𝑌𝑍𝑍
2 𝑍𝑍

1 +
𝑌𝑌𝑍𝑍
4 𝑌𝑌 1 +

𝑌𝑌𝑍𝑍
2

= 0.971 + 𝑗𝑗0.0027 6.4 + 𝑗𝑗𝑗0 Ω
−1.13 + 𝑗𝑗𝑗𝑗𝑗 𝜇𝜇𝑆𝑆 0.971 + 𝑗𝑗0.0027

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 = 0.9𝑗𝑗∠0.𝑗59° 70.3∠𝑗𝑗.𝑗° Ω
𝑗𝑗𝑗∠90.0𝑗° 𝜇𝜇𝑆𝑆 0.9𝑗𝑗∠0.𝑗59°
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Voltage Regulation – Example 5.1

 At full load the line-to-line receiving-end voltage is 
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 = 345 𝑘𝑘𝑉𝑉 ⋅ 0.95 = 327.8 𝑘𝑘𝑉𝑉𝑅𝑅𝑅𝑅

 And the line-to-neutral voltage is

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 =
327.8 𝑘𝑘𝑉𝑉𝑅𝑅𝑅𝑅

3
= 189.2 𝑘𝑘𝑉𝑉𝑅𝑅𝑅𝑅

 Using the receiving-end voltage as the reference, the receiving-end 
voltage phasor is

𝑽𝑽𝑅𝑅 = 189.𝑗∠0° 𝑘𝑘𝑉𝑉

 Complex power to the load is

𝑺𝑺𝑹𝑹 =
𝑃𝑃
𝑝𝑝𝑝𝑝

∠𝜃𝜃 =
700 𝑀𝑀𝑀𝑀

0.99
∠ − cos−1 0.99

𝑺𝑺𝑹𝑹 = 707.𝑗∠ − 8.𝑗° 𝑀𝑀𝑉𝑉𝐴𝐴 = 3 ⋅ 𝑽𝑽𝑹𝑹𝑰𝑰𝑹𝑹∗
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Voltage Regulation – Example 5.1

 The receiving-end current phasor is

𝑰𝑰𝑅𝑅 =
𝑺𝑺𝑹𝑹
3
𝑽𝑽𝑹𝑹

∗

=
707.𝑗∠𝑗.𝑗° 𝑀𝑀𝑉𝑉𝐴𝐴
3 ⋅ 189.𝑗∠0° 𝑘𝑘𝑉𝑉

𝑰𝑰𝑅𝑅 = 1.𝑗5∠𝑗.𝑗° 𝑘𝑘𝐴𝐴

 To determine the phase shift from sending to receiving end, use chain 
parameters to determine 𝑽𝑽𝑆𝑆 (line-to-neutral)

𝑽𝑽𝑆𝑆 = 𝐴𝐴𝑽𝑽𝑅𝑅 + 𝐵𝐵𝑰𝑰𝑅𝑅
𝑽𝑽𝑆𝑆 = 0.9𝑗𝑗∠0.𝑗59° ⋅ 189.𝑗∠0° 𝑘𝑘𝑉𝑉

+70.3∠𝑗𝑗.𝑗° Ω ⋅ 1.𝑗5∠𝑗.𝑗° 𝑘𝑘𝐴𝐴

𝑽𝑽𝑆𝑆 = 199.𝑗∠𝑗𝑗.𝑗° 𝑘𝑘𝑉𝑉LN

 So, the phase shift along the line is −26.𝑗°
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Voltage Regulation – Example 5.1

 The percent voltage regulation is given by

%𝑉𝑉𝐼𝐼 =
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
⋅ 100%

 The line-to-neutral no-load voltage is 

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑽𝑽𝑆𝑆
𝐴𝐴

=
199.𝑗∠𝑗𝑗.𝑗°

0.9𝑗𝑗∠0.𝑗59°
= 205.8 𝑘𝑘𝑉𝑉

 The full-load line-to-neutral voltage was given to be
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 = 189.2 𝑘𝑘𝑉𝑉

 So, the percent voltage regulation is

%𝑉𝑉𝐼𝐼 =
205.8 𝑘𝑘𝑉𝑉 − 189.2 𝑘𝑘𝑉𝑉

189.2 𝑘𝑘𝑉𝑉
⋅ 100% = 8.7%
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Exact Transmission-Line Equations36
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Distributed Transmission Line Model

 The medium- and short-line models are lumped models
 All series impedance lumped into one element
 Shunt admittances lumped into two elements

 Real lines are distributed networks
 Lumped models are inaccurate for long lines

 To treat a line as a distributed network, consider the impedance and 
admittance of a segment of differential length, Δ𝑥𝑥
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 Apply KVL around the differential length of line

𝑽𝑽 𝑥𝑥 + Δ𝑥𝑥 = 𝑽𝑽 𝑥𝑥 + 𝑰𝑰 𝑥𝑥 𝑧𝑧Δ𝑥𝑥
𝑽𝑽 𝑥𝑥+Δ𝑥𝑥 −𝑽𝑽 𝑥𝑥

Δ𝑥𝑥
= 𝑧𝑧𝑰𝑰 𝑥𝑥 (1)

 If we let the length of the line segment, Δ𝑥𝑥, go to zero, we get
𝑑𝑑𝑽𝑽 𝑥𝑥
𝑑𝑑𝑥𝑥

= 𝑧𝑧𝑰𝑰 𝑥𝑥 (2)

 A first-order differential equation
 This is a second-order segment, so we need a second first-order 

differential equation to describe it completely
 Apply KCL at 𝑥𝑥 + Δ𝑥𝑥

𝑰𝑰 𝑥𝑥 + Δ𝑥𝑥 = 𝑰𝑰 𝑥𝑥 + 𝑽𝑽 𝑥𝑥 + Δ𝑥𝑥 𝑦𝑦Δ𝑥𝑥
𝑰𝑰 𝑥𝑥+Δ𝑥𝑥 −𝑰𝑰 𝑥𝑥

Δ𝑥𝑥
= 𝑦𝑦𝑽𝑽 𝑥𝑥 + Δ𝑥𝑥 (3)
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 Again, letting Δ𝑥𝑥 → 0
𝑑𝑑𝑰𝑰 𝑥𝑥
𝑑𝑑𝑥𝑥

= 𝑦𝑦𝑽𝑽 𝑥𝑥 (4)

 Our goal is a single differential equation in 𝑽𝑽 𝑥𝑥 to describe 
the segment of transmission line
 Must eliminate 𝑰𝑰 𝑥𝑥

 Solving (2) for 𝑰𝑰 𝑥𝑥 and differentiating gives
𝑑𝑑𝑰𝑰 𝑥𝑥
𝑑𝑑𝑥𝑥

= 1
𝑌𝑌
𝑑𝑑2𝑽𝑽 𝑥𝑥
𝑑𝑑𝑥𝑥2

(5)

 Substituting (5) into (4) yields the single second-order 
differential equation for the line segment

𝑑𝑑2𝑽𝑽 𝑥𝑥
𝑑𝑑𝑥𝑥2

− 𝑧𝑧𝑦𝑦𝑽𝑽 𝑥𝑥 = 0 (6)
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𝑑𝑑2𝑉𝑉 𝑥𝑥
𝑑𝑑𝑥𝑥2

− 𝑧𝑧𝑦𝑦𝑽𝑽 𝑥𝑥 = 0 (6)

 This is a second-order, homogeneous, linear, constant-coefficient, ordinary 
differential equation 

 Its characteristic equation is

𝑠𝑠2 − 𝑧𝑧𝑦𝑦 = 0

 The roots of the characteristic polynomial are

𝑠𝑠 = ± 𝑧𝑧𝑦𝑦 = ±𝛾𝛾

where 𝛾𝛾 = 𝑧𝑧𝑦𝑦 is the propagation constant, with units of 𝑚𝑚−1 (or 𝑟𝑟𝑟𝑟𝑑𝑑/𝑚𝑚)
 The solution to (6) is 

𝑽𝑽 𝑥𝑥 = 𝐾𝐾1𝑒𝑒𝛾𝛾𝑥𝑥 + 𝐾𝐾2𝑒𝑒−𝛾𝛾𝑥𝑥 (7)

where 𝐾𝐾1 and 𝐾𝐾2 are unknown constants to be determined through 
application of boundary conditions
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 We can get an expression for current by differentiating 
(7) and substituting back into (2)

𝑑𝑑𝑉𝑉 𝑥𝑥
𝑑𝑑𝑥𝑥

= 𝛾𝛾𝐾𝐾1𝑒𝑒𝛾𝛾𝑥𝑥 − 𝛾𝛾𝐾𝐾2𝑒𝑒−𝛾𝛾𝑥𝑥 = 𝑧𝑧𝑰𝑰 𝑥𝑥

 Solving for 𝑰𝑰 𝑥𝑥

𝑰𝑰 𝑥𝑥 = 𝐾𝐾1𝑒𝑒𝛾𝛾𝛾𝛾−𝐾𝐾2𝑒𝑒−𝛾𝛾𝛾𝛾

⁄𝑧𝑧 𝛾𝛾
(8)

 The term in the denominator of (8) is the characteristic 
impedance of the line, 𝑍𝑍𝑐𝑐, with units of ohms (Ω)

𝑍𝑍𝑐𝑐 = 𝑧𝑧
𝛾𝛾

= 𝑧𝑧
𝑧𝑧𝑧𝑧

= 𝑧𝑧
𝑧𝑧

(9)
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 Using (9), (8) becomes

𝑰𝑰 𝑥𝑥 = 𝐾𝐾1𝑒𝑒𝛾𝛾𝛾𝛾−𝐾𝐾2𝑒𝑒−𝛾𝛾𝛾𝛾

𝑌𝑌𝑐𝑐
(10)

 We can now apply boundary conditions to determine 
the two unknown coefficients, 𝐾𝐾1 and 𝐾𝐾2

 At the receiving end of the line, which we’ll define to be 
𝑥𝑥 = 0, we have

𝑽𝑽 0 = 𝑽𝑽𝑅𝑅 and    𝑰𝑰 0 = 𝑰𝑰𝑅𝑅
So,

𝑽𝑽 0 = 𝐾𝐾1 + 𝐾𝐾2 = 𝑽𝑽𝑅𝑅

𝑰𝑰 0 =
𝐾𝐾1 − 𝐾𝐾2
𝑍𝑍𝑐𝑐

= 𝑰𝑰𝑅𝑅
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 Solving each equation for 𝐾𝐾2
𝐾𝐾2 = 𝑽𝑽𝑅𝑅 − 𝐾𝐾1 = 𝐾𝐾1 − 𝑍𝑍𝑐𝑐𝑰𝑰𝑅𝑅

 Solving for 𝐾𝐾1, then back-substituting to solve for 𝐾𝐾2
gives

𝐾𝐾1 = 𝑽𝑽𝑅𝑅+𝑌𝑌𝑐𝑐𝑰𝑰𝑅𝑅
2

𝐾𝐾2 = 𝑽𝑽𝑅𝑅−𝑌𝑌𝑐𝑐𝑰𝑰𝑅𝑅
2

 Substituting into (7) and (10)

𝑽𝑽 𝑥𝑥 = 𝑽𝑽𝑅𝑅+𝑌𝑌𝑐𝑐𝑰𝑰𝑅𝑅
2

𝑒𝑒𝛾𝛾𝑥𝑥 + 𝑽𝑽𝑅𝑅−𝑌𝑌𝑐𝑐𝑰𝑰𝑅𝑅
2

𝑒𝑒−𝛾𝛾𝑥𝑥 (11)

𝑰𝑰 𝑥𝑥 = 𝑽𝑽𝑅𝑅+𝑌𝑌𝑐𝑐𝑰𝑰𝑅𝑅
2𝑌𝑌𝑐𝑐

𝑒𝑒𝛾𝛾𝑥𝑥 − 𝑽𝑽𝑅𝑅−𝑌𝑌𝑐𝑐𝑰𝑰𝑅𝑅
2𝑌𝑌𝑐𝑐

𝑒𝑒−𝛾𝛾𝑥𝑥 (12)
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 Collecting 𝑉𝑉𝑅𝑅 and 𝐼𝐼𝑅𝑅 terms in (11) and (12)

𝑽𝑽 𝑥𝑥 = 𝑒𝑒𝛾𝛾𝛾𝛾+𝑒𝑒−𝛾𝛾𝛾𝛾

2
𝑽𝑽𝑅𝑅 + 𝑍𝑍𝑐𝑐

𝑒𝑒𝛾𝛾𝛾𝛾−𝑒𝑒−𝛾𝛾𝛾𝛾

2
𝑰𝑰𝑅𝑅 (13)

𝑰𝑰 𝑥𝑥 = 1
𝑌𝑌𝑐𝑐

𝑒𝑒𝛾𝛾𝛾𝛾−𝑒𝑒−𝛾𝛾𝛾𝛾

2
𝑽𝑽𝑅𝑅 + 𝑒𝑒𝛾𝛾𝛾𝛾+𝑒𝑒−𝛾𝛾𝛾𝛾

2
𝑰𝑰𝑅𝑅 (14)

 The terms in parentheses can be represented as 
hyperbolic functions

𝑽𝑽 𝑥𝑥 = cosh 𝛾𝛾𝑥𝑥 𝑽𝑽𝑅𝑅 + 𝑍𝑍𝑐𝑐 sinh 𝛾𝛾𝑥𝑥 𝑰𝑰𝑅𝑅 (15)

𝑰𝑰 𝑥𝑥 = 1
𝑌𝑌𝑐𝑐

sinh 𝛾𝛾𝑥𝑥 𝑽𝑽𝑅𝑅 + cosh 𝛾𝛾𝑥𝑥 𝑰𝑰𝑅𝑅 (16)
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 Equations (15) and (16) give the chain parameters for the 
two-port network between a point at location 𝑥𝑥 along the 
line and the receiving end

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 𝑥𝑥 =
cosh 𝛾𝛾𝑥𝑥 𝑍𝑍𝑐𝑐 sinh 𝛾𝛾𝑥𝑥

1
𝑍𝑍𝑐𝑐

sinh 𝛾𝛾𝑥𝑥 cosh 𝛾𝛾𝑥𝑥

 For chain parameters between sending and receiving ends, 
we set 𝑥𝑥 = 𝑚𝑚

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 =
cosh 𝛾𝛾𝑚𝑚 𝑍𝑍𝑐𝑐 sinh 𝛾𝛾𝑚𝑚

1
𝑍𝑍𝑐𝑐

sinh 𝛾𝛾𝑚𝑚 cosh 𝛾𝛾𝑚𝑚
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Propagation Constant

 We defined the propagation constant as
𝛾𝛾 = 𝑧𝑧𝑦𝑦

 This is, in general, a complex value
𝛾𝛾 = 𝛼𝛼 + 𝑗𝑗𝑗𝑗 (17)

 The real part, 𝛼𝛼, is the attenuation constant
 Represents loss along the line
 Due to series resistance and/or shunt conductance

 The imaginary part, 𝑗𝑗, is the phase constant
 Represents change in phase along the line
 Due to series reactance and/or shunt susceptance
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 Now that we have exact ABCD parameters for a distributed 
transmission line, we can create an equivalent 𝜋𝜋 circuit

 Here we’re using 𝑍𝑍𝑍 and 𝑌𝑌𝑍 to distinguish from 𝑍𝑍 = 𝑧𝑧𝑚𝑚 and 𝑌𝑌 = 𝑦𝑦𝑚𝑚 of 
the lumped, nominal 𝜋𝜋-circuit model

 Equating the ABCD parameters with those for the equivalent 𝜋𝜋
circuit above

cosh 𝛾𝛾𝑚𝑚 𝑍𝑍𝑐𝑐 sinh 𝛾𝛾𝑚𝑚
1
𝑍𝑍𝑐𝑐

sinh 𝛾𝛾𝑚𝑚 cosh 𝛾𝛾𝑚𝑚 =
1 +

𝑌𝑌′𝑍𝑍′

2
𝑍𝑍𝑍

𝑌𝑌′ 1 +
𝑌𝑌′𝑍𝑍′

4
1 +

𝑌𝑌′𝑍𝑍′

2
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 Equating the 𝐵𝐵 parameters, we see that
𝑍𝑍′ = 𝑍𝑍𝑐𝑐 sinh 𝛾𝛾𝑚𝑚 (18)

 Using (18) in the 𝐴𝐴-parameter equation gives

1 +
𝑌𝑌′

2
𝑍𝑍𝑐𝑐 sinh 𝛾𝛾𝑚𝑚 = cosh 𝛾𝛾𝑚𝑚

𝑌𝑌′

2 =
cosh 𝛾𝛾𝑚𝑚 − 1
𝑍𝑍𝑐𝑐 sinh 𝛾𝛾𝑚𝑚 =

tanh 𝛾𝛾𝑚𝑚
2

𝑍𝑍𝑐𝑐

 The equivalent 𝜋𝜋 circuit for long transmission lines (>250 km) is 
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 We can compare this equivalent 𝜋𝜋 circuit with the nominal 𝜋𝜋 circuit 
used for medium-length lines, where

𝑍𝑍 = 𝑧𝑧𝑚𝑚 and    𝑌𝑌
2

= 𝑦𝑦 𝑙𝑙
2

 Rewriting (18) using the definition for characteristic impedance,

𝑍𝑍′ = 𝑧𝑧
𝑧𝑧

sinh 𝛾𝛾𝑚𝑚 = 𝑧𝑧𝑚𝑚 𝑧𝑧
𝑧𝑧
sinh 𝛾𝛾𝑙𝑙

𝑧𝑧𝑙𝑙

𝑍𝑍′ = 𝑧𝑧𝑚𝑚 sinh 𝛾𝛾𝑙𝑙
𝑧𝑧𝑧𝑧 𝑙𝑙

𝑍𝑍′ = 𝑍𝑍 sinh 𝛾𝛾𝑙𝑙
𝛾𝛾𝑙𝑙

(20)

 We see that the series impedance of the long-line model is equal to 
that of the medium-line model, multiplied by a correction factor
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 Doing the same for the shunt admittance, we have

𝑌𝑌′

2
= 𝑧𝑧

𝑧𝑧
tanh �𝛾𝛾𝑙𝑙 2 = 𝑧𝑧𝑙𝑙

2
𝑧𝑧
𝑧𝑧

tanh �𝛾𝛾𝛾𝛾 2
�𝑦𝑦𝛾𝛾
2

𝑌𝑌′

2
= 𝑧𝑧𝑙𝑙

2

tanh �𝛾𝛾𝛾𝛾 2

𝑧𝑧𝑧𝑧𝛾𝛾2

𝑌𝑌′

2
= 𝑌𝑌

2

tanh �𝛾𝛾𝛾𝛾 2
�𝛾𝛾𝛾𝛾 2

 Again, we see a similar correction factor relating the 
admittance, 𝑌𝑌, of the lumped, nominal 𝜋𝜋 circuit to the 
admittance of the distributed, equivalent 𝜋𝜋 circuit, 𝑌𝑌𝑍
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 Transmission line models can be simplified significantly 
if we neglect loss
 Sacrifice accuracy for the sake of simplicity

 Series resistance, 𝐼𝐼, and shunt conductance, 𝐺𝐺, are the 
model parameters accounting for loss
 Let 𝐼𝐼 → 0 and 𝐺𝐺 → 0 – (we’ve already assumed 𝐺𝐺 = 0)

 Propagation constant for a lossless line is 
𝛾𝛾 = 𝑗𝑗𝑗𝑗

 The attenuation constant is now zero, 𝛼𝛼 → 0

𝛾𝛾 = 𝑧𝑧𝑦𝑦 = 𝑗𝑗𝜔𝜔𝜔𝜔 ⋅ 𝑗𝑗𝜔𝜔𝜔𝜔 = 𝑗𝑗𝜔𝜔 𝜔𝜔𝜔𝜔 = 𝑗𝑗𝑗𝑗

𝑗𝑗 = 𝜔𝜔 𝜔𝜔𝜔𝜔
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 Using the propagation constant for a lossless line, the distributed 
model chain parameters become

𝐴𝐴 𝑥𝑥 = 𝐷𝐷 𝑥𝑥 = cosh 𝑗𝑗𝑗𝑗𝑥𝑥 =
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥 + 𝑒𝑒−𝑗𝑗𝑗𝑗𝑥𝑥

2
𝐴𝐴 𝑥𝑥 = 𝐷𝐷 𝑥𝑥 = cos 𝑗𝑗𝑥𝑥

𝐵𝐵 𝑥𝑥 = 𝑍𝑍𝑐𝑐 sinh 𝑗𝑗𝑗𝑗𝑥𝑥 = 𝑍𝑍𝑐𝑐
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥 − 𝑒𝑒−𝑗𝑗𝑗𝑗𝑥𝑥

2
𝐵𝐵 𝑥𝑥 = 𝑗𝑗𝑍𝑍𝑐𝑐 sin 𝑗𝑗𝑥𝑥

𝜔𝜔 𝑥𝑥 =
1
𝑍𝑍𝑐𝑐

sinh 𝑗𝑗𝑗𝑗𝑥𝑥 =
1
𝑍𝑍𝑐𝑐
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥 − 𝑒𝑒−𝑗𝑗𝑗𝑗𝑥𝑥

2

𝜔𝜔 𝑥𝑥 = 𝑗𝑗
sin 𝑗𝑗𝑥𝑥
𝑍𝑍𝑐𝑐
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 Chain parameters at a distance 𝑥𝑥 from the end of a lossless line are

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 𝑥𝑥 =
cos 𝑗𝑗𝑥𝑥 𝑗𝑗𝑍𝑍𝑐𝑐 sin 𝑗𝑗𝑥𝑥

𝑗𝑗
sin 𝑗𝑗𝑥𝑥
𝑍𝑍𝑐𝑐

cos 𝑗𝑗𝑥𝑥

 And at the sending end of a line of length 𝑚𝑚, 𝑥𝑥 → 𝑚𝑚, and we have

𝐴𝐴𝐵𝐵𝜔𝜔𝐷𝐷 =
cos 𝑗𝑗𝑚𝑚 𝑗𝑗𝑍𝑍𝑐𝑐 sin 𝑗𝑗𝑚𝑚

𝑗𝑗
sin 𝑗𝑗𝑚𝑚
𝑍𝑍𝑐𝑐

cos 𝑗𝑗𝑚𝑚

 The characteristic impedance of the lossless line is called the surge
impedance

𝑍𝑍𝑐𝑐 =
𝑧𝑧
𝑦𝑦 =

𝑗𝑗𝜔𝜔𝜔𝜔
𝑗𝑗𝜔𝜔𝜔𝜔 =

𝜔𝜔
𝜔𝜔
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 For the lossless line
𝛾𝛾 = 𝑗𝑗𝑗𝑗

so,

𝑍𝑍′ = 𝑍𝑍𝑐𝑐 sinh 𝑗𝑗𝑗𝑗𝑚𝑚 = 𝑗𝑗
𝜔𝜔
𝜔𝜔 sin 𝑗𝑗𝑚𝑚 = 𝑗𝑗𝑋𝑋′

and,

𝑌𝑌′

2 =
tanh 𝑗𝑗𝑗𝑗𝑚𝑚

2
𝑍𝑍𝑐𝑐

= 𝑗𝑗
tan 𝑗𝑗𝑚𝑚

2
𝑍𝑍𝑐𝑐
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 The voltage along the lossless line is

𝑽𝑽 𝑥𝑥 = 𝐴𝐴 𝑥𝑥 𝑽𝑽𝑅𝑅 + 𝐵𝐵 𝑥𝑥 𝑰𝑰𝑅𝑅
𝑽𝑽 𝑥𝑥 = cos 𝑗𝑗𝑥𝑥 𝑽𝑽𝑅𝑅 + 𝑗𝑗𝑍𝑍𝑐𝑐 sin 𝑗𝑗𝑥𝑥 𝑰𝑰𝑅𝑅

 A wavelength, 𝜆𝜆, is the distance required for a phase shift of 3𝑗0°
along the line

 There is a 3𝑗0° phase shift when 𝑥𝑥 = 𝜆𝜆 and 

𝑗𝑗𝜆𝜆 = 𝑗𝜋𝜋

 The wavelength is

𝜆𝜆 =
𝑗𝜋𝜋
𝑗𝑗

=
𝑗𝜋𝜋

𝜔𝜔 𝜔𝜔𝜔𝜔
=

1
𝑝𝑝 𝜔𝜔𝜔𝜔

=
𝜈𝜈
𝑝𝑝

where 𝜈𝜈 = 1/ 𝜔𝜔𝜔𝜔 is the propagation velocity along the line
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Wavelength

 For overhead transmission lines, 
𝜈𝜈 ≈ 𝑐𝑐 ≈ 3 × 108𝑚𝑚/𝑠𝑠

 That is, electrical waves propagate along the line at roughly 
the speed of light

 At 60 Hz, the wavelength is 

𝜆𝜆 =
𝜈𝜈
𝑝𝑝

=
3 × 108

60 = 5000 𝑘𝑘𝑚𝑚

 This is approximately the distance across the U.S.
 Most transmission lines are significantly shorter than a 

wavelength



K. Webb ESE 470

Surge Impedance Loading59



K. Webb ESE 470

60

Surge Impedance Loading (SIL)

 Surge impedance loading (SIL) 
 The power delivered by a transmission line to a resistive load whose impedance 

is equal to the surge impedance, 𝑍𝑍𝑐𝑐, of that transmission line
 At SIL, the load current is

𝑰𝑰𝑅𝑅 =
𝑽𝑽𝑅𝑅
𝑍𝑍𝑐𝑐

 The voltage along the line is

𝑽𝑽 𝑥𝑥 = cos 𝑗𝑗𝑥𝑥 𝑽𝑽𝑅𝑅 + 𝑗𝑗𝑍𝑍𝑐𝑐 sin 𝑗𝑗𝑥𝑥 𝑰𝑰𝑅𝑅

𝑽𝑽 𝑥𝑥 = cos 𝑗𝑗𝑥𝑥 𝑽𝑽𝑅𝑅 + 𝑗𝑗𝑍𝑍𝑐𝑐 sin 𝑗𝑗𝑥𝑥
𝑽𝑽𝑅𝑅
𝑍𝑍𝑐𝑐

𝑽𝑽 𝑥𝑥 = 𝑽𝑽𝑅𝑅 cos 𝑗𝑗𝑥𝑥 + 𝑗𝑗 sin 𝑗𝑗𝑥𝑥

𝑽𝑽 𝑥𝑥 = 𝑽𝑽𝑅𝑅∠𝑗𝑗𝑥𝑥

 Note that at SIL, the magnitude of the voltage is constant along the line
 A flat voltage profile
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Surge Impedance Loading (SIL)

 At SIL, the current along the line is given by

𝑰𝑰 𝑥𝑥 = 𝑗𝑗
sin 𝑗𝑗𝑥𝑥
𝑍𝑍𝑐𝑐

𝑽𝑽𝑅𝑅 + cos 𝑗𝑗𝑥𝑥
𝑽𝑽𝑅𝑅
𝑍𝑍𝑐𝑐

𝑰𝑰 𝑥𝑥 =
𝑽𝑽𝑅𝑅
𝑍𝑍𝑐𝑐

cos 𝑗𝑗𝑥𝑥 + 𝑗𝑗 sin 𝑗𝑗𝑥𝑥

𝑰𝑰 𝑥𝑥 =
𝑽𝑽𝑅𝑅
𝑍𝑍𝑐𝑐

∠𝑗𝑗𝑥𝑥

 The complex power along the line is

𝑺𝑺 𝑥𝑥 = 𝑽𝑽 𝑥𝑥 𝑰𝑰 𝑥𝑥 ∗ = 𝑽𝑽𝑅𝑅∠𝑗𝑗𝑥𝑥
𝑽𝑽𝑅𝑅
𝑍𝑍𝑐𝑐

∠𝑗𝑗𝑥𝑥
∗

𝑺𝑺 𝑥𝑥 =
𝑽𝑽𝑅𝑅 2

𝑍𝑍𝑐𝑐
= 𝑃𝑃 𝑥𝑥 + 𝑗𝑗𝑗𝑗 𝑥𝑥

 At SIL 
 Power flow is independent of position along the line 
 Reactive power is zero 
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Surge Impedance Loading (SIL)

 Surge impedance loading is typically defined in terms of a 
transmission line’s rated voltage

𝑆𝑆𝐼𝐼𝜔𝜔 =
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑2

𝑍𝑍𝑐𝑐

 At SIL, we’ve seen that the voltage profile along a transmission line 
is flat

 At no load, 𝐼𝐼𝑅𝑅 = 0, and the voltage is given by
𝑽𝑽 𝑥𝑥 = cos 𝑗𝑗𝑥𝑥 𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅

 The source voltage is
𝑽𝑽𝑆𝑆 = cos 𝑗𝑗𝑚𝑚 𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅

 So the receiving-end voltage in terms of the sending-end voltage is

𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑽𝑽𝑆𝑆

cos 𝑗𝑗𝑚𝑚
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Surge Impedance Loading (SIL)

 The no-load receiving-end voltage is

𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑽𝑽𝑆𝑆

cos 𝑗𝑗𝑚𝑚

 As long as 𝑗𝑗𝑚𝑚 ≤ 𝜋𝜋/2, i.e. 𝑚𝑚 ≤ 𝜆𝜆/4,
 Voltage will increase along 

the length of the line
 No-load receiving-end 

voltage is greater than the 
sending-end voltage

 Voltage regulation worsens 
with increasing line length

source: Glover, Sarma, Overbye
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Real Power vs. Voltage Angle

 Assume a voltage angle between the sending and receiving ends of a 
lossless line of 𝛿𝛿

𝑽𝑽𝑅𝑅 = 𝑉𝑉𝑅𝑅∠0° and    𝑽𝑽𝑆𝑆 = 𝑉𝑉𝑆𝑆∠𝛿𝛿

 Using the equivalent 𝜋𝜋 network for the lossless line, we can 
determine the receiving-end current

 Applying KCL at the receiving end

𝑰𝑰𝑅𝑅 =
𝑽𝑽𝑆𝑆 − 𝑽𝑽𝑅𝑅
𝑗𝑗𝑋𝑋′ − 𝑗𝑗

𝐵𝐵′

2 𝑽𝑽𝑅𝑅

𝑰𝑰𝑅𝑅 =
𝑉𝑉𝑆𝑆∠𝛿𝛿 − 𝑉𝑉𝑅𝑅∠0°

𝑗𝑗𝑋𝑋′ − 𝑗𝑗
𝐵𝐵′

2 𝑉𝑉𝑅𝑅∠0°
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Real Power vs. Voltage Angle

 The complex power at the load is

𝑺𝑺𝑅𝑅 = 𝑽𝑽𝑅𝑅𝑰𝑰𝑅𝑅∗ =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆∠ − 𝛿𝛿 − 𝑉𝑉𝑅𝑅2

−𝑗𝑗𝑋𝑋′
+ 𝑗𝑗

𝐵𝐵′

2
𝑉𝑉𝑅𝑅2

𝑺𝑺𝑅𝑅 = 𝑗𝑗
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆∠ − 𝛿𝛿

𝑋𝑋′
− 𝑗𝑗

𝑉𝑉𝑅𝑅2

𝑋𝑋′
+ 𝑗𝑗

𝐵𝐵′

2
𝑉𝑉𝑅𝑅2

𝑺𝑺𝑅𝑅 = 𝑗𝑗
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆
𝑋𝑋′

cos −𝛿𝛿 + 𝑗𝑗 sin −𝛿𝛿 − 𝑗𝑗
𝑉𝑉𝑅𝑅2

𝑋𝑋′
+ 𝑗𝑗

𝐵𝐵′

2
𝑉𝑉𝑅𝑅2

𝑺𝑺𝑅𝑅 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆
𝑋𝑋′

sin 𝛿𝛿 + 𝑗𝑗
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆
𝑋𝑋′

cos 𝛿𝛿 −
𝑉𝑉𝑅𝑅2

𝑋𝑋′
+
𝐵𝐵′

2
𝑉𝑉𝑅𝑅2

 The real power delivered is

𝑃𝑃𝑅𝑅 = 𝑃𝑃𝑆𝑆 = ℛℯ 𝑆𝑆𝑅𝑅 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆
𝑋𝑋′

sin 𝛿𝛿
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Power Flow – Lossless Lines

 The delivered power is a function of the voltage phase shift 
along the line, 𝛿𝛿

𝑃𝑃𝑅𝑅 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆
𝑋𝑋′ sin 𝛿𝛿

 For the lossless line the series reactance is 

𝑋𝑋′ = 𝑍𝑍𝑐𝑐sin(𝑗𝑗𝑚𝑚)

so,

𝑃𝑃𝑅𝑅 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆

𝑍𝑍𝑐𝑐sin(𝑗𝑗𝑚𝑚) sin 𝛿𝛿 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆

𝑍𝑍𝑐𝑐 sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

sin 𝛿𝛿
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Power Flow – Lossless Lines
 Converting 𝑉𝑉𝑅𝑅 and 𝑉𝑉𝑆𝑆 to per unit

𝑃𝑃𝑅𝑅 =
𝑉𝑉𝑅𝑅

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑
𝑉𝑉𝑆𝑆

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑2

𝑍𝑍𝑐𝑐 sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

sin 𝛿𝛿

𝑃𝑃𝑅𝑅 = 𝑉𝑉𝑅𝑅,𝑝𝑝𝑝𝑝𝑉𝑉𝑆𝑆,𝑝𝑝𝑝𝑝
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑2

𝑍𝑍𝑐𝑐
sin 𝛿𝛿

sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

 The term in parentheses is SIL, so

𝑃𝑃𝑅𝑅 = 𝑉𝑉𝑅𝑅,𝑝𝑝𝑝𝑝𝑉𝑉𝑆𝑆,𝑝𝑝𝑝𝑝𝑆𝑆𝐼𝐼𝜔𝜔
sin 𝛿𝛿

sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

 This provides a relationship between:
 Power delivered over a transmission line
 Voltage drop along the line
 Power angle
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Maximum Power Flow – Lossless Lines

𝑃𝑃𝑅𝑅 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆

𝑍𝑍𝑐𝑐 sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

sin 𝛿𝛿 = 𝑉𝑉𝑅𝑅,𝑝𝑝𝑝𝑝𝑉𝑉𝑆𝑆,𝑝𝑝𝑝𝑝𝑆𝑆𝐼𝐼𝜔𝜔
sin 𝛿𝛿

sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

 The delivered power is a function of the voltage 
phase shift along the line

 Maximum power occurs when 𝛿𝛿 = 90°

𝑃𝑃𝑚𝑚𝑟𝑟𝑥𝑥 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆

𝑍𝑍𝑐𝑐sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

=
𝑉𝑉𝑅𝑅,𝑝𝑝𝑝𝑝𝑉𝑉𝑆𝑆,𝑝𝑝𝑝𝑝 𝑆𝑆𝐼𝐼𝜔𝜔

sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

 The steady-state stability limit of a line
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Steady-State Stability Limit

𝑃𝑃𝑚𝑚𝑟𝑟𝑥𝑥 =
𝑉𝑉𝑅𝑅𝑉𝑉𝑆𝑆

𝑍𝑍𝑐𝑐sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

=
𝑉𝑉𝑅𝑅,𝑝𝑝𝑝𝑝𝑉𝑉𝑆𝑆,𝑝𝑝𝑝𝑝 𝑆𝑆𝐼𝐼𝜔𝜔

sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

 This maximum power is the steady-state stability limit
of a transmission line

 Loads exceeding this limit will result in a loss of 
synchronism at the receiving end
 Synchronous machines at the sending and receiving ends 

will fall out of synchronization

 Steady-state stability limit proportional to
 Inverse of line length
 Square of the line voltage
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Transmission Line Loadability

 Three primary factors limit power flow over transmission 
lines:
 Phase shift
 Voltage drop 
 Thermal limit

 Relevant limit depends on line length

 Phase shift:
 Proportional to line length and power flow
 Phase shift places a stability limit on power flow
 Exceeding 𝑃𝑃𝑚𝑚𝑟𝑟𝑥𝑥 (𝛿𝛿 = 90°) results in loss of synchronism
 For satisfactory transient stability, typically 𝛿𝛿 ≤ 30°…35°
 Stability limits the loadability of long transmission lines (>150 mi)
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Transmission Line Loadability

 Voltage drop:
 Voltage drop along a line is also proportional to line length 

and power flow
 Typically, voltage drop limited to 5% – 10%
 Voltage drop limits power flow on medium-length lines

(50mi – 150 mi)

 Thermal limits
 As power flow increases, line temperature increases
 As temperature increases, lines sag and loose tensile 

strength
 A line’s thermal limit is independent of line length
 Thermal limits dominate for short lines (<50 mi)



K. Webb ESE 470

74

Transmission Line Loadability

 Comparison of 
theoretical and 
practical 
loadability limits

 Practical limit 
assumes:
 𝑉𝑉𝑅𝑅/𝑉𝑉𝑠𝑠 ≥ 0.95
 𝛿𝛿 ≤ 30°…35° source: Glover, Sarma, Overbye
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Practical Line Loadability – Example

 Determine how much power that can be transmitted over a 400 km, 
500 kV transmission line, given the following:
 Voltage drop along the line limited to 10%
 Power angle limited to 𝛿𝛿𝑚𝑚𝑟𝑟𝑥𝑥 = 30°
 The characteristic impedance of the line is 𝑍𝑍𝑐𝑐 = 280Ω
 Assume 𝑉𝑉𝑆𝑆,𝑝𝑝𝑝𝑝 = 1.0 𝑝𝑝.𝑢𝑢.

 Power delivered to the receiving end of the line is 

𝑃𝑃𝑅𝑅 = 𝑉𝑉𝑅𝑅,𝑝𝑝𝑝𝑝𝑉𝑉𝑆𝑆,𝑝𝑝𝑝𝑝𝑆𝑆𝐼𝐼𝜔𝜔
sin 𝛿𝛿

sin 𝑗𝜋𝜋𝑚𝑚
𝜆𝜆

𝑃𝑃𝑅𝑅 = 0.9 ⋅ 1.0 ⋅ 𝑆𝑆𝐼𝐼𝜔𝜔
sin 30°

sin 𝑗𝜋𝜋 ⋅ 400 𝑘𝑘𝑚𝑚
5000 𝑘𝑘𝑚𝑚
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Practical Line Loadability – Example

 In terms of SIL, the power the line can deliver is
𝑃𝑃𝑅𝑅 = 0.934 ⋅ 𝑆𝑆𝐼𝐼𝜔𝜔

 Surge impedance loading for the line is

𝑆𝑆𝐼𝐼𝜔𝜔 =
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑2

𝑍𝑍𝑐𝑐
=

500 𝑘𝑘𝑉𝑉 2

280 Ω
= 892.9 𝑀𝑀𝑀𝑀

so,
𝑃𝑃𝑅𝑅 = 0.934 ⋅ 892.9 𝑀𝑀𝑀𝑀

𝑃𝑃𝑅𝑅 = 834 𝑀𝑀𝑀𝑀



K. Webb ESE 470

Example Problems77



K. Webb ESE 470

A 180 km, three-phase transmission line delivers 80 MW at 
115 kV and a power factor of 0.96, lagging. The series 
impedance of the lines is z = 0.03 + j0.3 Ω/km, and the shunt 
admittance is y = j4 𝜇𝜇S/km.

a) Determine the appropriate set of chain parameters for the line. 
b) How much power is delivered to the sending end of the line?

78
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A 500 km transmission line with surge impedance of 
𝑍𝑍𝑐𝑐 = 270 Ω is used to deliver 1800 MW from a power 
plant to a load center. If the voltage drop along the line is 
limited to 6%, and the power angle is limited to 33°, 
what is the minimum rated voltage for the line?

81
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A 400 km, 500 kV transmission line has a series impedance of 𝑧𝑧 =
0.03 + 𝑗𝑗0.35 Ω/𝑘𝑘𝑚𝑚 and a shunt admittance of 𝑦𝑦 = 𝑗𝑗𝑗.4 𝜇𝜇𝑆𝑆/𝑘𝑘𝑚𝑚. At 
full load, it delivers 1000 MW at 475 kV and unity power factor. 
Determine:

a) ABCD parameters
b) Sending-end voltage, current, power, and power factor
c) Full-load line losses

83
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Reactive Compensation

 Voltage profile and loadability of a transmission line depend 
on relative line and load impedances
 By varying line impedance, we can affect voltage regulation and 

line loadability
 Add shunt or series reactance to the line – reactive compensation

 Types of reactive compensation
 Shunt reactors (inductors)
 Absorb reactive power
 Reduce receiving-end voltage under light load
 Must be removed under higher-load conditions

 Shunt capacitors
 Supply reactive power
 Increase receiving-end voltage at full load
 Removed under light-load conditions
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Reactive Compensation

 Types of reactive compensation (cont’d)
 Series capacitors
 Reduce series line impedance
 Reduce line voltage drops
 Increase steady-state stability limit

 Static VAR compensators (SVCs)
 Thyristor-controlled shunt reactors and capacitors
 Automatically adjust compensation depending on load
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Reactive Compensation

 Amount of reactive compensation is typically expressed as a 
percentage of line impedance

 For example, the circuit above shows a transmission line 
with 𝑁𝑁𝜔𝜔% shunt reactive compensation
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Reactive Compensation – Example 1 

 Consider a 300 km, 765 kV, three-phase transmission 
line with the following chain parameters:
 𝐴𝐴 = 0.93𝑗3∠0.𝑗09°
 𝐵𝐵 = 𝑍𝑍′ = 9𝑗∠𝑗𝑗.𝑗°
 Shunt reactors, switched in during light-load conditions only, 

provide 75% compensation
 Full-load current is 1.9 kA at 730 kV with unity power factor
 The sending-end voltage, 𝑉𝑉𝑆𝑆, is constant

 Determine:
 %𝑉𝑉𝐼𝐼 of the uncompensated line
 %𝑉𝑉𝐼𝐼 of the compensated line
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Reactive Compensation – Example 1 
 Full-load, line-to-neutral, receiving-end voltage, using it as the 0° phase reference:

𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 =
730

3
∠0° 𝑘𝑘𝑉𝑉 = 421.5∠0° 𝑘𝑘𝑉𝑉

 Use chain parameters to determine the sending-end voltage, 𝑽𝑽𝑆𝑆
𝑽𝑽𝑆𝑆 = 𝐴𝐴𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑰𝑰𝑅𝑅𝑅𝑅𝑅𝑅
𝑽𝑽𝑆𝑆 = 0.93𝑗3∠0.𝑗09° (421.5∠0° 𝑘𝑘𝑉𝑉) + 9𝑗∠𝑗𝑗.𝑗° Ω 1.9∠0° 𝑘𝑘𝐴𝐴
𝑽𝑽𝑆𝑆 = 442.3∠𝑗𝑗.𝑗° 𝑘𝑘𝑉𝑉

 The no-load, line-to-neutral, receiving-end voltage is

𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑽𝑽𝑆𝑆
𝐴𝐴

=
442.3∠𝑗𝑗.𝑗° 𝑘𝑘𝑉𝑉
0.93𝑗3∠0.𝑗09°

= 474.9∠𝑗𝑗.𝑗° 𝑘𝑘𝑉𝑉

 Percent voltage regulation for the uncompensated line is

%𝑉𝑉𝐼𝐼 =
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
⋅ 100% =

474.9 𝑘𝑘𝑉𝑉 − 421.5 𝑘𝑘𝑉𝑉
421.5 𝑘𝑘𝑉𝑉

⋅ 100%

%𝑉𝑉𝐼𝐼 = 12.7%
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 For the compensated line, we need to calculate new chain 
parameters

 Shunt admittance of the uncompensated line can be determined 
from the known chain parameters

𝐴𝐴 = 0.93𝑗3∠0.𝑗09° = 1 +
𝑌𝑌′𝑍𝑍′

2
where

𝑍𝑍′ = 𝐵𝐵 = 9𝑗∠𝑗𝑗.2 Ω
So,

𝑌𝑌′ =
𝐴𝐴 − 1 2
𝑍𝑍′

=
0.93𝑗3∠0.𝑗09° − 1 2

9𝑗∠𝑗𝑗.𝑗° Ω

𝑌𝑌′ = 1.418 × 10−3∠𝑗9.9𝑗° 𝑆𝑆

𝑌𝑌′ = 759 × 10−9 + 𝑗𝑗𝑗.42 × 10−3 𝑆𝑆
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 After adding compensation, the equivalent shunt 
susceptance decreases by 75% 

𝑌𝑌𝑒𝑒𝑒𝑒 = 759 × 10−9 + 𝑗𝑗𝑗.42 × 10−3 𝑆𝑆 ⋅ 0.25

𝑌𝑌𝑒𝑒𝑒𝑒 = 759 × 10−9 + 𝑗𝑗355 × 10−6 𝑆𝑆

 Use 𝑌𝑌𝑒𝑒𝑒𝑒 to calculate the 𝐴𝐴 parameter for the 
compensated line

𝐴𝐴𝑒𝑒𝑒𝑒 = 1 +
𝑌𝑌𝑒𝑒𝑒𝑒𝑍𝑍′

2
= 0.9𝑗3∠0.05°

 Note that shunt reactive compensation does not affect 
the series impedance, 𝑍𝑍𝑍, and therefor does not affect 𝐵𝐵
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 The no-load receiving-end voltage for the compensated line:

𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑽𝑽𝑆𝑆
𝐴𝐴𝑒𝑒𝑒𝑒

=
442.3∠𝑗𝑗.𝑗° 𝑘𝑘𝑉𝑉

0.9𝑗3∠0.05°

𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 = 449.9∠𝑗𝑗.𝑗° 𝑘𝑘𝑉𝑉

 Percent voltage regulation for the compensated line is

%𝑉𝑉𝐼𝐼 =
𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅

𝑽𝑽𝑅𝑅𝑅𝑅𝑅𝑅
⋅ 100%

%𝑉𝑉𝐼𝐼 =
449.9 𝑘𝑘𝑉𝑉 − 421.5 𝑘𝑘𝑉𝑉

421.5 𝑘𝑘𝑉𝑉 ⋅ 100%

%𝑉𝑉𝐼𝐼 = 6.8%

 Reactive compensation has improved voltage regulation from 12.7% to 
6.8%
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 In this example we will use phasor diagrams to illustrate the 
relationship between reactive power flow and line voltage 

 Consider a the following per-phase circuit
 Could loosely represent a 69 kV subtransmission line
 Values exaggerated for illustration purposes

 We will look at the effect of adding shunt capacitive 
compensation at the receiving end
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 Three scenarios considered:
1. PR = 145 MW; no compensation; pf = 0.707, lagging
2. PR = 145 MW; -j35 Ω shunt C; pf = 0.99, lagging
3. PR = 145 MW; -j15 Ω shunt C; pf = 0.95, leading

 Note that real power to the load is held constant
 Equivalent load impedance adjusted to accomplish this
 Again, power is exaggerated for illustration purposes
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 Scenario #1:
 No reactive 

compensation
 𝑃𝑃𝑅𝑅 = 145 𝑀𝑀𝑀𝑀
 𝑝𝑝𝑝𝑝 = 0.707, lagging

 Lagging current:
𝐈𝐈 = 6.9𝑗∠ − 5𝑗° 𝑘𝑘𝐴𝐴

 Receiving end voltage:
𝐕𝐕𝑅𝑅 = 29.𝑗∠ − 7.𝑗° 𝑘𝑘𝑉𝑉
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 Scenario #2:
 −𝑗𝑗35 Ω shunt 

compensation
 𝑃𝑃𝑅𝑅 = 145 𝑀𝑀𝑀𝑀
 𝑝𝑝𝑝𝑝 = 0.99, lagging

 Current magnitude and 
phase reduced:
𝐈𝐈 = 3.9𝑗∠ − 14.5° 𝑘𝑘𝐴𝐴

 Receiving end voltage 
increased:
𝐕𝐕𝑅𝑅 = 36.𝑗∠ − 8.𝑗° 𝑘𝑘𝑉𝑉
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 Scenario #3:
 −𝑗𝑗𝑗5 Ω shunt 

compensation
 𝑃𝑃𝑅𝑅 = 145 𝑀𝑀𝑀𝑀
 𝑝𝑝𝑝𝑝 = 0.95, leading

 Current now leads the 
source:

𝐈𝐈 = 3.9∠𝑗.𝑗° 𝑘𝑘𝐴𝐴

 Receiving end voltage 
increased further:
𝐕𝐕𝑅𝑅 = 39.𝑗∠ − 8.9° 𝑘𝑘𝑉𝑉
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Draw a phasor diagram indicating 𝑉𝑉𝑆𝑆, 𝐼𝐼, 𝑉𝑉𝑅𝑅, and 𝑉𝑉𝑅𝑅 for 
the following circuit for a source power of 

a) 𝐒𝐒𝑠𝑠 = 𝑗0∠ − 𝑗5° 𝑀𝑀𝑉𝑉𝐴𝐴
b) 𝐒𝐒𝑠𝑠 = 𝑗0∠0° 𝑀𝑀𝑉𝑉𝐴𝐴
c) 𝐒𝐒𝑠𝑠 = 𝑗0∠𝑗5° 𝑀𝑀𝑉𝑉𝐴𝐴

102
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