SECTION 5: POWER FLOW

ESE 470 - Energy Distribution Systems

2

Introduction

Nodal Analysis

\square Consider the following circuit

\square Three voltage sources

- $V_{s 1}, V_{s 2}, V_{s 3}$
\square Generic branch impedances
- Could be any combination of R, L, and C
\square Three unknown node voltages
- V_{1}, V_{2}, and V_{3}
\square Would like to analyze the circuit
- Determine unknown node voltages
\square One possible analysis technique is nodal analysis

Nodal Analysis

\square Nodal analysis

- Systematic application of $\boldsymbol{K C L}$ at each unknown node
- Apply Ohm's law to express branch currents in terms of node voltages
- Sum currents at each unknown node
\square We'll sum currents leaving each node and set equal to zero
\square At node V_{1}, we have

$$
\frac{V_{1}-V_{s 1}}{Z_{s 1}}+\frac{V_{1}-V_{2}}{Z_{1}}=0
$$

\square Every current term includes division by an impedance

- Easier to work with admittances instead

Nodal Analysis

\square Now our first nodal equation becomes

$$
\left(V_{1}-V_{s 1}\right) Y_{s 1}+\left(V_{1}-V_{2}\right) Y_{1}=0
$$

where

$$
Y_{s 1}=1 / Z_{s 1} \quad \text { and } \quad Y_{1}=1 / Z_{1}
$$

\square Rearranging to place all unknown node voltages on the left and all source terms on the right

$$
\left(Y_{s 1}+Y_{1}\right) V_{1}-Y_{1} V_{2}=Y_{s 1} V_{s 1}
$$

\square Applying KCL at node V_{2}

$$
\left(V_{2}-V_{1}\right) Y_{1}+V_{2} Y_{2}+\left(V_{2}-V_{s 2}\right) Y_{s 2}+\left(V_{2}-V_{3}\right) Y_{3}=0
$$

Nodal Analysis

\square Rearranging

$$
-Y_{1} V_{1}+\left(Y_{1}+Y_{2}+Y_{s 2}+Y_{3}\right) V_{2}-Y_{3} V_{3}=Y_{s 2} V_{s 2}
$$

\square Finally, applying KCL at node V_{3}, gives

$$
\begin{aligned}
& \left(V_{3}-V_{2}\right) Y_{3}+\left(V_{3}-V_{s 3}\right) Y_{s 3}=0 \\
& -Y_{3} V_{2}+\left(Y_{3}+Y_{s 3}\right) V_{3}=Y_{s 3} V_{s 3}
\end{aligned}
$$

\square Note that the source terms are the Norton equivalent current sources (short-circuit currents) associated with each voltage source

Nodal Analysis

\square Putting the nodal equations into matrix form

$$
\left[\begin{array}{ccc}
\left(Y_{s 1}+Y 1\right) & -Y_{1} & 0 \\
-Y_{1} & \left(Y_{1}+Y_{2}+Y_{s 2}+Y_{3}\right) & -Y_{3} \\
0 & -Y_{3} & \left(Y_{3}+Y_{s 3}\right)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{l}
Y_{s 1} V_{s 1} \\
Y_{s 2} V_{s 2} \\
Y_{s 3} V_{s 3}
\end{array}\right]
$$

or

$$
Y V=I
$$

where

- \boldsymbol{Y} is the $N \times N$ admittance matrix
- I is an $N \times 1$ vector of known source currents
- \boldsymbol{V} is an $N \times 1$ vector of unknown node voltages
\square This is a system of N (here, three) linear equations with N unknowns
\square We can solve for the vector of unknown voltages as

$$
V=\boldsymbol{Y}^{-1} \boldsymbol{I}
$$

The Admittance Matrix, \boldsymbol{Y}

\square Take a closer look at the form of the admittance matrix, \boldsymbol{Y}

$$
\left[\begin{array}{ccc}
\left(Y_{s 1}+Y 1\right) & -Y_{1} & 0 \\
-Y_{1} & \left(Y_{1}+Y_{2}+Y_{s 2}+Y_{3}\right) & -Y_{3} \\
0 & -Y_{3} & \left(Y_{3}+Y_{s 3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right]
$$

\square The elements of \boldsymbol{Y} are

- Diagonal elements, $Y_{k k}$:
- $Y_{k k}=$ sum of all admittances connected to node k
- Self admittance or driving-point admittance
- Off-diagonal elements, $Y_{k n}(k \neq n)$:
- $Y_{k n}=-($ total admittance between nodes k and $n)$
- Mutual admittance or transfer admittance
\square Note that, because the network is reciprocal, \boldsymbol{Y} is symmetric

Nodal Analysis

\square Nodal analysis allows us to solve for unknown voltages given circuit admittances and current (Norton equivalent) inputs

- An application of Ohm's law

$$
Y V=I
$$

- A linear equation
- Simple, algebraic solution
\square For power-flow analysis, things get a bit more complicated

Power-Flow Analysis

The Power-Flow Problem

\square A typical power system is not entirely unlike the simple circuit we just looked at

- Sources are generators
- Nodes are the system buses
- Buses are interconnected by impedances of transmission lines and transformers
\square Inputs and outputs now include power (P and Q)
- System equations are now nonlinear
- Can't simply solve $\boldsymbol{Y} \boldsymbol{V}=\boldsymbol{I}$
- Must employ numerical, iterative solution methods
\square Power system analysis to determine bus voltages and power flows is called power-flow analysis or load-flow analysis

System One-Line Diagram

\square Consider the one-line diagram for a simple power system

\square System includes:

- Generators
- Buses
- Transformers
- Treated as equivalent circuit impedances in per-unit
- Transmission lines
- Equivalent circuit impedances
- Loads

Bus Variables

\square The buses are the system nodes
\square Four variables associated with each bus, k
\square Voltage magnitude, V_{k}
\square Voltage phase angle, δ_{k}
\square Real power delivered to the bus, P_{k}
\square Reactive power delivered to the bus, Q_{k}

Bus Power

\square Net power delivered to bus k is the difference between power flowing from generators to bus k and power flowing from bus k to loads

$$
\begin{aligned}
& P_{k}=P_{G k}-P_{L k} \\
& Q_{k}=Q_{G k}-Q_{L k}
\end{aligned}
$$

\square Even though we've introduced power flow into the analysis, we can still write nodal equations for the system
\square Voltage and current related by the bus admittance matrix, $\boldsymbol{Y}_{\text {bus }}$

$$
\mathbf{I}=\mathbf{Y}_{b u s} \mathbf{V}
$$

- $\mathbf{Y}_{\text {bus }}$ contains the bus mutual and self admittances associated with transmission lines and transformers
- For an N bus system, \mathbf{V} is an $N \times 1$ vector of bus voltages
- I is an $N \times 1$ vector of source currents flowing into each bus
- From generators and loads

Types of Buses

\square There are four variables associated with each bus

- $V_{k}=\left|V_{k}\right|$
- $\delta_{k}=\angle \boldsymbol{V}_{k}$
- P_{k}
- Q_{k}
\square Two variables are inputs to the power-flow problem
- Known
\square Two are outputs
- To be calculated
\square Buses are categorized into three types depending on which quantities are inputs and which are outputs
- Slack bus (swing bus)
- Load bus (PQ bus)
- Voltage-controlled bus (PV bus)

Bus Types

\square Slack bus (swing bus):

- Reference bus
- Typically bus 1
- Inputs are voltage magnitude, V_{1}, and phase angle, δ_{1}
- Typically $1.0 \angle 0^{\circ}$
- Power, P_{1} and Q_{1}, is computed
\square Load bus (PQ bus):
- Buses to which only loads are connected
- Real power, P_{k}, and reactive power, Q_{k}, are the knowns
- V_{k} and δ_{k} are calculated
- Majority of power system buses are load buses

Bus Types

\square Voltage-controlled bus (PV bus):

- Buses connected to generators
- Buses with shunt reactive compensation
- Real power, P_{k}, and voltage magnitude, V_{k}, are known inputs
- Reactive power, Q_{k}, and voltage phase angle, δ_{k}, are calculated

Solving the Power-Flow Problem

\square The power-flow solution involves determining:

- V_{k}, δ_{k}, P_{k}, and Q_{k}
\square There are N buses
- Each with two unknown quantities
\square There are $2 N$ unknown quantities in total
- Need $2 N$ equations
$\square N$ of these equations are the nodal equations

$$
\begin{equation*}
I=Y V \tag{1}
\end{equation*}
$$

\square The other N equations are the power-balance equations

$$
\begin{equation*}
\boldsymbol{S}_{k}=P_{k}+j Q_{k}=\boldsymbol{V}_{k} \boldsymbol{I}_{k}^{*} \tag{2}
\end{equation*}
$$

\square From (1), the nodal equation for the $k^{\text {th }}$ bus is

$$
\begin{equation*}
\boldsymbol{I}_{k}=\sum_{n=1}^{N} Y_{k n} \boldsymbol{V}_{n} \tag{3}
\end{equation*}
$$

Solving the Power-Flow Problem

\square Substituting (3) into (2) gives

$$
\begin{equation*}
P_{k}+j Q_{k}=\boldsymbol{V}_{k}\left(\sum_{n=1}^{N} Y_{k n} \boldsymbol{V}_{n}\right)^{*} \tag{4}
\end{equation*}
$$

\square The bus voltages in (3) and (4) are phasors, which we can represent as

$$
\begin{equation*}
\boldsymbol{V}_{n}=V_{n} e^{j \delta_{n}} \quad \text { and } \quad \boldsymbol{V}_{k}=V_{k} e^{j \delta_{k}} \tag{5}
\end{equation*}
$$

\square The admittances can also be written in polar form

$$
\begin{equation*}
Y_{k n}=\left|Y_{k n}\right| e^{j \theta_{k n}} \tag{6}
\end{equation*}
$$

\square Using (5) and (6) in (4) gives

$$
\begin{align*}
& P_{k}+j Q_{k}=V_{k} e^{j \delta_{k}}\left(\sum_{n=1}^{N}\left|Y_{k n}\right| e^{j \theta_{k n} V_{n}} e^{j \delta_{n}}\right)^{*} \\
& P_{k}+j Q_{k}=V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n} e^{j\left(\delta_{k}-\delta_{n}-\theta_{k n}\right)} \tag{7}
\end{align*}
$$

Solving the Power-Flow Problem

\square In Cartesian form, (7) becomes

$$
\begin{align*}
& P_{k}+j Q_{k}= \\
& \quad V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n}\left[\cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right)\right. \\
& \left.\quad+j \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right)\right] \tag{8}
\end{align*}
$$

\square From (8), active power is

$$
\begin{equation*}
P_{k}=V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n} \cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{9}
\end{equation*}
$$

\square And, reactive power is

$$
\begin{equation*}
Q_{k}=V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n} \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{10}
\end{equation*}
$$

Solving the Power-Flow Problem

$$
\begin{align*}
& P_{k}=V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n} \cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{9}\\
& Q_{k}=V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n} \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{10}
\end{align*}
$$

\square Solving the power-flow problem amounts to finding a solution to a system of nonlinear equations, (9) and (10)
\square Must be solved using numerical, iterative algorithms

- Typically Newton-Raphson
\square In practice, commercial software packages are available for power-flow analysis
- E.g. PowerWorld, CYME, ETAP
\square We'll now learn to solve the power-flow problem
- Numerical, iterative algorithm
- Newton-Raphson

Solving the Power-Flow Problem

\square First, we'll introduce a variety of numerical algorithms for solving equations and systems of equations

- Linear system of equations
- Direct solution
- Gaussian elimination
- Iterative solution
- Jacobi
- Gauss-Seidel
- Nonlinear equations
- Iterative solution
- Newton-Raphson
- Nonlinear system of equations
- Iterative solution
- Newton-Raphson

Linear Systems of Equations Direct Solution

Solving Linear Systems of Equations

\square Gaussian elimination

- Direct (i.e. non-iterative) solution
- Two parts to the algorithm:
- Forward elimination
- Back substitution

Gaussian Elimination

\square Consider a system of equations

$$
\begin{aligned}
& -4 x_{1}+7 x_{3}=-5 \\
& 2 x_{1}-3 x_{2}+5 x_{3}=-12 \\
& x_{2}-3 x_{3}=3
\end{aligned}
$$

\square This can be expressed in matrix form:

$$
\left[\begin{array}{ccc}
-4 & 0 & 7 \\
2 & -3 & 5 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-12 \\
3
\end{array}\right]
$$

\square In general

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{y}
$$

\square For a system of three equations with three unknowns:

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

Gaussian Elimination

\square We'll use a 3×3 system as an example to develop the Gaussian elimination algorithm

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

\square First, create the augmented system matrix

$$
\left[\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \vdots & y_{1} \\
A_{21} & A_{22} & A_{23} & \vdots & y_{2} \\
A_{31} & A_{32} & A_{33} & \vdots & y_{3}
\end{array}\right]
$$

\square Each row represents and equation

- N rows for N equations
\square Row operations do not affect the system
- Multiply a row by a constant
- Add or subtract rows from one another and replace row with the result

Gaussian Elimination - Forward Elimination

\square Perform row operations to reduce the augmented matrix to upper triangular

- Only zeros below the main diagonal
- Eliminate x_{i} from the $(i+1)^{\text {st }}$ through the $N^{\text {th }}$ equations for $i=1 \ldots N$
- Forward elimination
\square After forward elimination, we have

$$
\left[\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \vdots & y_{1} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} & \vdots & y_{2}^{\prime} \\
0 & 0 & A_{33}^{\prime} & \vdots & y_{3}^{\prime}
\end{array}\right]
$$

\square Where the prime notation (e.g. A_{22}^{\prime}) indicates that the value has been changed from its original value

Gaussian Elimination - Back Substitution

$$
\left[\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \vdots & y_{1} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} & \vdots & y_{2}^{\prime} \\
0 & 0 & A_{33}^{\prime} & \vdots & y_{3}^{\prime}
\end{array}\right]
$$

\square The last row represents an equation with only a single unknown

$$
A_{33}^{\prime} \cdot x_{3}=y_{3}^{\prime}
$$

- Solve for x_{3}

$$
x_{3}=\frac{y_{3}^{\prime}}{A_{33}^{\prime}}
$$

\square The second-to-last row represents an equation with two unknowns

$$
A_{22}^{\prime} \cdot x_{2}+A_{23}^{\prime} \cdot x_{3}=y_{2}^{\prime}
$$

- Substitute in newly-found value of x_{3}
- Solve for x_{2}
\square Substitute values for x_{2} and x_{3} into the first-row equation
- Solve for x_{1}
\square This process is back substitution

Gaussian elimination

\square Gaussian elimination summary

- Create the augmented system matrix
- Forward elimination
- Reduce to an upper-triangular matrix
- Back substitution
- Starting with x_{N}, solve for x_{i} for $i=N \ldots 1$
\square A direct solution algorithm
- Exact value for each x_{i} arrived at with a single execution of the algorithm
\square Alternatively, we can use an iterative algorithm
- The Jacobi method

Linear Systems of Equations Iterative Solution - Jacobi Method

Jacobi Method

\square Consider a system of N linear equations

$$
\begin{gathered}
\mathbf{A} \cdot \mathbf{x}=\mathbf{y} \\
{\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, N} \\
\vdots & \ddots & \vdots \\
A_{N, 1} & \cdots & A_{N, N}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]}
\end{gathered}
$$

\square The $k^{\text {th }}$ equation ($k^{\text {th }}$ row) is

$$
\begin{equation*}
A_{k, 1} x_{1}+A_{k, 2} x_{2}+\cdots+A_{k, k} x_{k}+\cdots+A_{k, N} x_{N}=y_{k} \tag{11}
\end{equation*}
$$

\square Solve (11) for x_{k}

$$
\begin{array}{r}
x_{k}=\frac{1}{A_{k, k}}\left[y_{k}-\left(A_{k, 1} x_{1}+A_{k, 2} x_{2}+\cdots+A_{k, k-1} x_{k-1}+\right.\right. \tag{12}\\
\left.\left.+A_{k, k+1} x_{k+1}+\cdots+A_{k, N} x_{N}\right)\right]
\end{array}
$$

Jacobi Method

\square Simplify (12) using summing notation

$$
\begin{equation*}
x_{k}=\frac{1}{A_{k, k}}\left[y_{k}-\sum_{n=1}^{k-1} A_{k, n} x_{n}-\sum_{n=k+1}^{N} A_{k, n} x_{n}\right], \quad k=1 \ldots N \tag{13}
\end{equation*}
$$

\square An equation for x_{k}

- But, of course, we don't yet know all other x_{n} values
\square Use (13) as an iterative expression

$$
\begin{equation*}
x_{k, i+1}=\frac{1}{A_{k, k}}\left[y_{k}-\sum_{n=1}^{k-1} A_{k, n} x_{n, i}-\sum_{n=k+1}^{N} A_{k, n} x_{n, i}\right], \quad k=1 \ldots N \tag{14}
\end{equation*}
$$

- The i subscript indicates iteration number
$\square x_{k, i+1}$ is the updated value from the current iteration
- $x_{n, i}$ is a value from the previous iteration

Jacobi Method

$$
\begin{equation*}
x_{k, i+1}=\frac{1}{A_{k, k}}\left[y_{k}-\sum_{n=1}^{k-1} A_{k, n} x_{n, i}-\sum_{n=k+1}^{N} A_{k, n} x_{n, i}\right], \quad k=1 \ldots N \tag{14}
\end{equation*}
$$

\square Old values of x_{n}, on the right-hand side, are used to update x_{k} on the left-hand side
\square Start with an initial guess for all unknowns, \mathbf{x}_{0}
\square Iterate until adequate convergence is achieved

- Until a specified stopping criterion is satisfied
- Convergence is not guaranteed

Convergence

\square An approximation of \mathbf{x} is refined on each iteration
\square Continue to iterate until we're close to the right answer for the vector of unknowns, \mathbf{x}

- Assume we've converged to the right answer when \mathbf{x} changes very little from iteration to iteration
\square On each iteration, calculate a relative error quantity

$$
\varepsilon_{i}=\max \left(\left|\frac{x_{k, i+1}-x_{k, i}}{x_{k, i}}\right|\right), \quad k=1 \ldots N
$$

\square Iterate until

$$
\varepsilon_{i} \leq \varepsilon_{s}
$$

where ε_{s} is a chosen stopping criterion

Jacobi Method - Matrix Form

\square The Jacobi method iterative formula, (14), can be rewritten in matrix form:

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{M} \mathbf{x}_{i}+\mathbf{D}^{-1} \mathbf{y} \tag{15}
\end{equation*}
$$

where \mathbf{D} is the diagonal elements of \mathbf{A}

$$
\mathbf{D}=\left[\begin{array}{cccc}
A_{1,1} & 0 & \cdots & 0 \\
0 & A_{2,2} & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \cdots & 0 & A_{N, N}
\end{array}\right]
$$

and

$$
\begin{equation*}
\mathbf{M}=\mathbf{D}^{-1}(\mathbf{D}-\mathbf{A}) \tag{16}
\end{equation*}
$$

- Recall that the inverse of a diagonal matrix is given by inverting each diagonal element

$$
\mathbf{D}^{-\mathbf{1}}=\left[\begin{array}{cccc}
1 / A_{1,1} & 0 & \cdots & 0 \\
0 & 1 / A_{2,2} & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \cdots & 0 & 1 / A_{N, N}
\end{array}\right]
$$

Jacobi Method - Example

\square Consider the following system of equations

$$
\begin{aligned}
& -4 x_{1}+7 x_{3}=-5 \\
& 2 x_{1}-3 x_{2}+5 x_{3}=-12 \\
& x_{2}-3 x_{3}=3
\end{aligned}
$$

\square In matrix form:

$$
\left[\begin{array}{ccc}
-4 & 0 & 7 \\
2 & -3 & 5 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-12 \\
3
\end{array}\right]
$$

\square Solve using the Jacobi method

Jacobi Method - Example

\square The iteration formula is

$$
\mathbf{x}_{i+1}=\mathbf{M} \mathbf{x}_{i}+\mathbf{D}^{-1} \mathbf{y}
$$

where

$$
\begin{aligned}
& \mathbf{D}= {\left[\begin{array}{ccc}
-4 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right] \quad \mathbf{D}^{-1}=\left[\begin{array}{cc}
-0.25 & 0 \\
0 & -0.333 \\
0 & 0
\end{array}\right.} \\
& \mathbf{M}=\mathbf{D}^{-1}(\mathbf{D}-\mathbf{A})=\left[\begin{array}{ccc}
0 & 0 & 1.75 \\
0.667 & 0 & 1.667 \\
0 & 0.333 & 0
\end{array}\right]
\end{aligned}
$$

\square To begin iteration, we need a starting point

- Initial guess for unknown values, \mathbf{x}
- Often, we have some idea of the answer
- Here, arbitrarily choose

$$
\mathbf{x}_{0}=\left[\begin{array}{lll}
{[10} & 25 & 10
\end{array}\right]^{T}
$$

Jacobi Method - Example

\square At each iteration, calculate

$$
\begin{gathered}
\mathbf{x}_{i+1}=\mathbf{M} \mathbf{x}_{i}+\mathbf{D}^{-1} \mathbf{y} \\
{\left[\begin{array}{l}
x_{1, i+1} \\
x_{2, i+1} \\
x_{3, i+1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1.75 \\
0.667 & 0 & 1.667 \\
0 & 0.333 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1, i} \\
x_{2, i} \\
x_{3, i}
\end{array}\right]+\left[\begin{array}{c}
1.25 \\
4 \\
-1
\end{array}\right]}
\end{gathered}
$$

\square For $i=1$:

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\begin{array}{l}
x_{1,1} \\
x_{2,1} \\
x_{3,1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1.75 \\
0.667 & 0 & 1.667 \\
0 & 0.333 & 0
\end{array}\right]\left[\begin{array}{l}
10 \\
25 \\
10
\end{array}\right]+\left[\begin{array}{c}
1.25 \\
4 \\
-1
\end{array}\right] \\
& \mathbf{x}_{1}=\left[\begin{array}{ll}
18.75 & 27.33 \\
7.33
\end{array}\right]^{T}
\end{aligned}
$$

\square The relative error is

$$
\varepsilon_{1}=\max \left(\left|\frac{x_{k, 1}-x_{k, 0}}{x_{k, 0}}\right|\right)=0.875
$$

Jacobi Method - Example

\square For $i=2$:

$$
\begin{aligned}
& \mathbf{x}_{2}=\left[\begin{array}{l}
x_{1,2} \\
x_{2,2} \\
x_{3,2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1.75 \\
0.667 & 0 & 1.667 \\
0 & 0.333 & 0
\end{array}\right]\left[\begin{array}{c}
18.75 \\
27.33 \\
7.33
\end{array}\right]+\left[\begin{array}{c}
1.25 \\
4 \\
-1
\end{array}\right] \\
& \mathbf{x}_{2}=\left[\begin{array}{lll}
14.08 & 28.72 & 8.11
\end{array}\right]^{T}
\end{aligned}
$$

\square The relative error is

$$
\varepsilon_{2}=\max \left(\left|\frac{x_{k, 2}-x_{k, 1}}{x_{k, 1}}\right|\right)=0.249
$$

\square Continue to iterate until relative error falls below a specified stopping condition

Jacobi Method - Example

\square Automate with computer code, e.g. MATLAB
\square Setup the system of equations

```
% coefficient matrix
A = [-4,0,7;2,-3,5;0,1,-3];
% vector of knowns
Y = [-5;-12;3];
```

\square Initialize matrices and parameters for iteration

```
reltol = 1e-6;
eps = 1;
max_iter = 600;
iter = 0;
% initial guess for x
x = [10;25;10];
D = diag(diag (A));
invD = inv(D);
M=invD*(D - A);
```


Jacobi Method - Example

\square Loop to continue iteration as long as:

- Stopping criterion is not satisfied
- Maximum number of iterations is not exceeded

```
While((eps > reltol) && (iter < max_iter))
    xold = x;
    x = M*xold + invD*y;
    eps = max(abs((x - xold)./xold));
    iter = iter + 1;
end
```

\square On each iteration

- Use previous \mathbf{x} values to update \mathbf{x}
- Calculate relative error
- Increment the number of iterations

Jacobi Method - Example

\square Set $\varepsilon_{s}=1 \times 10^{-6}$ and iterate:

\boldsymbol{i}	\mathbf{x}_{i}		
0	$\left[\begin{array}{lll}10 & 25 & 10\end{array}\right]^{T}$	-	
1	$\left[\begin{array}{lll}18.75 & 27.33 & 7.33\end{array}\right]^{T}$	0.875	
2	$\left[\begin{array}{lll}14.08 & 28.72 & 8.11\end{array}\right]^{T}$	0.249	
3	$\left[\begin{array}{lll}15.44 & 26.91 & 8.57\end{array}\right]^{T}$	0.097	
4	$\left[\begin{array}{lll}16.25 & 28.59 & 7.97\end{array}\right]^{T}$	0.071	
5	$\left[\begin{array}{lll}15.20 & 28.12 & 8.53\end{array}\right]^{T}$	0.070	
6	$\left[\begin{array}{lll}16.18 & 28.35 & 8.37\end{array}\right]^{T}$	0.065	
\vdots	\vdots		
371	$\left[\begin{array}{lll}20.50 & 36.00 & 11.00\end{array}\right]^{T}$	0.995×10^{-6}	

\square Convergence achieved in 371 iterations

Linear Systems of Equations Iterative Solution - Gauss-Seidel

Gauss-Seidel Method

\square The iterative formula for the Jacobi method is

$$
\begin{equation*}
x_{k, i+1}=\frac{1}{A_{k, k}}\left[y_{k}-\sum_{n=1}^{k-1} A_{k, n} x_{n, i}-\sum_{n=k+1}^{N} A_{k, n} x_{n, i}\right], \quad k=1 \ldots N \tag{14}
\end{equation*}
$$

\square Note that only old values of x_{n} (i.e. $x_{n, i}$) are used to update the value of x_{k}
\square Assume the $x_{k, i+1}$ values are determined in order of increasing k

- When updating $x_{k, i+1}$, all $x_{n, i+1}$ values are already known for $n<k$
- We can use those updated values to calculate $x_{k, i+1}$
- The Gauss-Seidel method

Gauss-Seidel Method

\square Now use the x_{n} values already updated on the current iteration to update x_{k}

- That is, $x_{n, i+1}$ for $n<k$
\square Gauss-Seidel iterative formula

$$
\begin{equation*}
x_{k, i+1}=\frac{1}{A_{k, k}}\left[y_{k}-\sum_{n=1}^{k-1} A_{k, n} x_{n, i+1}-\sum_{n=k+1}^{N} A_{k, n} x_{n, i}\right], \quad k=1 \ldots N \tag{17}
\end{equation*}
$$

\square Note that only the first summation has changed
\square For already updated x values

- x_{n} for $n<k$
- Number of already-updated values used depends on k

Gauss-Seidel - Matrix Form

\square In matrix form the iterative formula is the same as for the Jacobi method

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{M} \mathbf{x}_{i}+\mathbf{D}^{-1} \mathbf{y} \tag{15}
\end{equation*}
$$

where, again

$$
\begin{equation*}
\mathbf{M}=\mathbf{D}^{-1}(\mathbf{D}-\mathbf{A}) \tag{16}
\end{equation*}
$$

but now \mathbf{D} is the lower triangular part of \mathbf{A}

$$
\mathbf{D}=\left[\begin{array}{cccc}
A_{1,1} & 0 & \cdots & 0 \\
A_{2,1} & A_{2,2} & 0 & \vdots \\
\vdots & \vdots & \ddots & 0 \\
A_{N, 1} & A_{N, 2} & \cdots & A_{N, N}
\end{array}\right]
$$

\square Otherwise, the algorithm and computer code is identical to that of the Jacobi method

Gauss-Seidel - Example

\square Apply Gauss-Seidel to our previous example
ㅁ $x_{0}=\left[\begin{array}{lll}10 & 25 & 10\end{array}\right]^{T}$
ㅁ $\varepsilon_{s}=1 \times 10^{-6}$

\boldsymbol{i}	$\mathbf{x}_{\boldsymbol{i}}$		ε_{i}
0	$\left[\begin{array}{lll}10 & 25 & 10\end{array}\right]^{T}$	-	
1	$\left[\begin{array}{lll}18.75 & 33.17 & 10.06\end{array}\right]^{T}$	0.875	
2	$\left[\begin{array}{lll}18.85 & 33.32 & 10.11\end{array}\right]^{T}$	0.005	
3	$\left[\begin{array}{lll}18.94 & 33.47 & 10.16\end{array}\right]^{T}$	0.005	
4	$\left[\begin{array}{lll}19.03 & 33.61 & 10.20\end{array}\right]^{T}$	0.005	
\vdots		\vdots	\vdots
151	$\left[\begin{array}{lll}20.50 & 36.00 & 11.00\end{array}\right]^{T}$	0.995×10^{-6}	

\square Convergence achieved in 151 iterations

- Compared to 371 for the Jacobi method

Nonlinear Equations

Nonlinear Equations

\square Solution methods we've seen so far work only for linear equations
\square Now, we introduce an iterative method for solving a single nonlinear equation

- Newton-Raphson method
\square Next, we'll apply the Newton-Raphson method to a system of nonlinear equations
\square Finally, we'll use Newton-Raphson to solve the power-flow problem

Newton-Raphson Method

\square Want to solve

$$
y=f(x)
$$

where $f(x)$ is a nonlinear function
\square That is, we want to find x, given a known nonlinear function, f, and a known output, y
\square Newton-Raphson method
\square Based on a first-order Taylor series approximation to $f(x)$

- The nonlinear $f(x)$ is approximated as linear to update our approximation to the solution, x, on each iteration

Taylor Series Approximation

\square Taylor series approximation

- Given:
- A function, $f(x)$
- Value of the function at some value of $x, f\left(x_{0}\right)$
- Approximate:
- Value of the function at some other value of x
\square First-order Taylor series approximation
- Approximate $f(x)$ using only its first derivative
$\square f(x)$ approximated as linear - constant slope

$$
y=f(x) \approx f\left(x_{0}\right)+\left.\frac{d f}{d x}\right|_{x=x_{0}}\left(x-x_{0}\right)=\hat{y}
$$

First-Order Taylor Series Approximation

\square Approximate value of the function at x

$$
f(x) \approx \hat{y}=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Newton-Raphson Method

\square First order Taylor series approximation is

$$
y \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

\square Letting this be an equality and rearranging gives an iterative formula for updating an approximation to x

$$
\begin{align*}
& y=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)=y-f\left(x_{i}\right) \\
& x_{i+1}=x_{i}+\frac{1}{f^{\prime}\left(x_{i}\right)}\left[y-f\left(x_{i}\right)\right] \tag{18}
\end{align*}
$$

\square Initialize with a best guess at x, x_{0}
\square Iterate (18) until

- A stopping criterion is satisfied, or
- The maximum number of iterations is reached

First-Order Taylor Series Approximation

$$
x_{i+1}=x_{i}+\frac{1}{f^{\prime}\left(x_{i}\right)}\left[y-f\left(x_{i}\right)\right]
$$

\square Now using the Taylor series approximation in a different way

- Not approximating the value of $y=f(x)$ at x, but, instead
- Approximating the value of x where $f(x)=y$

Newton-Raphson - Example

\square Consider the following nonlinear equation

$$
y=f(x)=x^{3}+10=20
$$

\square Apply Newton-Raphson to solve

- Find x, such that $y=f(x)=20$
\square The derivative function is

$$
f^{\prime}(x)=3 x^{2}
$$

\square Initial guess for x

$$
x_{0}=1
$$

\square Iterate using the formula given by (18)

Newton-Raphson - Example

$\square \underline{i=1}:$

$$
\begin{aligned}
& x_{1}=x_{0}+f^{\prime}\left(x_{0}\right)^{-1}\left[y-f\left(x_{0}\right)\right] \\
& x_{1}=1+\left[3 \cdot 1^{2}\right]^{-1}\left[20-\left(1^{3}+10\right)\right]
\end{aligned}
$$

$$
x_{1}=4
$$

$$
\varepsilon_{1}=\left|\frac{x_{1}-x_{0}}{x_{0}}\right|
$$

$$
\varepsilon_{1}=\left|\frac{4-1}{1}\right|=3
$$

$$
x_{1}=4, \varepsilon_{1}=3
$$

Newton-Raphson - Example

$\square \quad i=2:$

$$
\begin{aligned}
& x_{2}=x_{1}+f^{\prime}\left(x_{1}\right)^{-1}\left[y-f\left(x_{1}\right)\right] \\
& x_{2}=4+\left[3 \cdot 4^{2}\right]^{-1}\left[20-\left(4^{3}+10\right)\right] \\
& x_{2}=2.875 \\
& \varepsilon_{2}=\left|\frac{x_{2}-x_{1}}{x_{1}}\right| \\
& \varepsilon_{2}=\left|\frac{2.875-4}{4}\right| \\
& \varepsilon_{2}=0.281 \\
& x_{2}=2.875, \varepsilon_{2}=0.281 \\
&
\end{aligned}
$$

Newton-Raphson - Example

$\square \quad \underline{i=3}:$

$$
\begin{aligned}
& x_{3}=x_{2}+f^{\prime}\left(x_{2}\right)^{-1}\left[y-f\left(x_{2}\right)\right] \\
& x_{3}=2.875+\left[3 \cdot 2.875^{2}\right]^{-1}\left[20-\left(2.875^{3}+10\right)\right]
\end{aligned}
$$

$$
x_{3}=2.32
$$

$$
\varepsilon_{3}=\left|\frac{x_{3}-x_{2}}{x_{2}}\right|
$$

$$
\varepsilon_{3}=\left|\frac{2.32-2.875}{2.875}\right|
$$

$$
\varepsilon_{3}=0.193
$$

$$
x_{3}=2.32, \varepsilon_{3}=0.193
$$

ESE 470

Newton-Raphson - Example

$\square \underline{i=4}:$

$$
x_{4}=2.166, \varepsilon_{4}=0.066
$$

$\square \underline{i=5}:$

$$
x_{5}=2.155, \varepsilon_{5}=0.005
$$

$\square \underline{i=6}:$

$$
x_{6}=2.154, \varepsilon_{6}=28.4 \times 10^{-6}
$$

$\square \underline{i=7}:$

$$
x_{7}=2.154, \varepsilon_{7}=0.808 \times 10^{-9}
$$

\square Convergence achieved very quickly
\square Next, we'll see how to apply Newton-Raphson to a system of nonlinear equations

60
 Example Problems

Perform three iterations toward the solution of the following system of equations using the Jacobi method. Let $\mathbf{x}_{0}=[0,0]^{T}$.

$$
\begin{aligned}
& 2 x_{1}+x_{2}=12 \\
& 2 x_{1}+3 x_{2}=5
\end{aligned}
$$

Perform three iterations toward the solution of the following system of equations using the Gauss-Seidel method. Let $\mathbf{x}_{0}=[0,0]^{T}$.

$$
\begin{aligned}
& 2 x_{1}+x_{2}=12 \\
& 2 x_{1}+3 x_{2}=5
\end{aligned}
$$

Perform three iterations toward the solution of the following equation using the Newton-Raphson method. Let $\mathbf{x}_{0}=0$.

$$
f(x)=\cos (x)+3 x=10
$$

Nonlinear Systems of Equations

Nonlinear Systems of Equations

\square Now, consider a system of nonlinear equations

- Can be represented as a vector of N functions
- Each is a function of an N-vector of unknown variables

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{N}\right) \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{N}\right) \\
\vdots \\
f_{N}\left(x_{1}, x_{2}, \cdots, x_{N}\right)
\end{array}\right]
$$

\square We can again approximate this function using a first-order Taylor series

$$
\begin{equation*}
\mathbf{y}=\mathbf{f}(\mathbf{x}) \approx \mathbf{f}\left(\mathbf{x}_{0}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right) \tag{19}
\end{equation*}
$$

- Note that all variables are N-vectors
- \mathbf{f} is an N-vector of known, nonlinear functions
- \mathbf{x} is an N-vector of unknown values - this is what we want to solve for
- \mathbf{y} is an N-vector of known values
- \mathbf{x}_{0} is an N-vector of \mathbf{x} values for which $\mathbf{f}\left(\mathbf{x}_{0}\right)$ is known

Newton-Raphson Method

\square Equation (19) is the basis for our Newton-Raphson iterative formula

- Again, let it be an equality and solve for \mathbf{x}

$$
\begin{aligned}
& \mathbf{y}-\mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right) \\
& {\left[\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)\right]^{-\mathbf{1}}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{0}\right)\right]=\mathbf{x}-\mathbf{x}_{0}} \\
& \mathbf{x}=\mathbf{x}_{0}+\left[\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)\right]^{\mathbf{1}}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{0}\right)\right]
\end{aligned}
$$

\square This last expression can be used as an iterative formula

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\left[\mathbf{f}^{\prime}\left(\mathbf{x}_{i}\right)\right]^{-\mathbf{1}}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{i}\right)\right]
$$

\square The derivative term on the right-hand side of (20) is an $N \times N$ matrix

- The Jacobian matrix, J

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\mathbf{J}_{i}^{-1}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{i}\right)\right] \tag{20}
\end{equation*}
$$

The Jacobian Matrix

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\mathbf{J}_{i}^{-1}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{i}\right)\right] \tag{20}
\end{equation*}
$$

\square Jacobian matrix
$\square N \times N$ matrix of partial derivatives for $\mathbf{f}(\mathbf{x})$
\square Evaluated at the current value of $\mathbf{x}, \mathbf{x}_{i}$

$$
\mathbf{J}_{i}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{N}}{\partial x_{1}} & \frac{\partial f_{N}}{\partial x_{2}} & \cdots & \frac{\partial f_{N}}{\partial x_{N}}
\end{array}\right]_{\mathbf{x}=\mathbf{x}_{i}}
$$

Newton-Raphson Method

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\mathbf{J}_{i}^{-1}\left[\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{i}\right)\right] \tag{20}
\end{equation*}
$$

\square We could iterate (20) until convergence or a maximum number of iterations is reached

- Requires inversion of the Jacobian matrix
- Computationally expensive and error prone
\square Instead, go back to the Taylor series approximation

$$
\begin{align*}
& \mathbf{y}=\mathbf{f}\left(\mathbf{x}_{i}\right)+\mathbf{J}_{i}\left(\mathbf{x}_{i+1}-\mathbf{x}_{i}\right) \\
& \mathbf{y}-\mathbf{f}\left(\mathbf{x}_{i}\right)=\mathbf{J}_{i}\left(\mathbf{x}_{i+1}-\mathbf{x}_{i}\right) \tag{21}
\end{align*}
$$

- Left side of (21) represents a difference between the known and approximated outputs
- Right side represents an increment of the approximation for \mathbf{x}

$$
\begin{equation*}
\Delta \mathbf{y}_{i}=\mathbf{J}_{i} \Delta \mathbf{x}_{i} \tag{22}
\end{equation*}
$$

Newton-Raphson Method

$$
\begin{equation*}
\Delta \mathbf{y}_{i}=\mathbf{J}_{i} \Delta \mathbf{x}_{i} \tag{22}
\end{equation*}
$$

\square On each iteration:
\square Compute $\Delta \mathbf{y}_{i}$ and \mathbf{J}_{i}
\square Solve for $\Delta \mathbf{x}_{i}$ using Gaussian elimination

- Matrix inversion not required
- Computationally robust
- Update \mathbf{x}

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\Delta \mathbf{x}_{i} \tag{23}
\end{equation*}
$$

Newton-Raphson - Example

\square Apply Newton-Raphson to solve the following system of nonlinear equations

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=\mathbf{y} \\
& {\left[\begin{array}{c}
x_{1}^{2}+3 x_{2} \\
x_{1} x_{2}
\end{array}\right]=\left[\begin{array}{c}
21 \\
12
\end{array}\right]}
\end{aligned}
$$

- Initial condition: $\mathbf{x}_{0}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$
- Stopping criterion: $\varepsilon_{s}=1 \times 10^{-6}$
- Jacobian matrix

$$
\mathbf{J}_{i}=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]_{\mathbf{x}=\mathbf{x}_{i}}=\left[\begin{array}{cc}
2 x_{1, i} & 3 \\
x_{2, i} & x_{1, i}
\end{array}\right]
$$

Newton-Raphson - Example

$$
\begin{align*}
& \Delta \mathbf{y}_{i}=\mathbf{J}_{i} \Delta \mathbf{x}_{i} \tag{22}\\
& \mathbf{x}_{i+1}=\mathbf{x}_{i}+\Delta \mathbf{x}_{i} \tag{23}
\end{align*}
$$

\square Adjusting the indexing, we can equivalently write (22) and (23) as:

$$
\begin{array}{r}
\Delta \mathbf{y}_{i-1}=\mathbf{J}_{i-1} \Delta \mathbf{x}_{i-1} \\
\mathbf{x}_{i}=\mathbf{x}_{i-1}+\Delta \mathbf{x}_{i-1} \tag{23}
\end{array}
$$

\square For iteration i :
\square Compute $\Delta \mathbf{y}_{i-1}$ and \mathbf{J}_{i-1}
\square Solve (22) for $\Delta \mathbf{x}_{i-1}$
\square Update \mathbf{x} using (23)

Newton-Raphson - Example

$\square \underline{i=1}:$

$$
\begin{aligned}
& \Delta y_{0}=\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{0}\right)=\left[\begin{array}{l}
21 \\
12
\end{array}\right]-\left[\begin{array}{l}
7 \\
2
\end{array}\right]=\left[\begin{array}{l}
14 \\
10
\end{array}\right] \\
& \mathbf{J}_{0}=\left[\begin{array}{cc}
2 x_{1,0} & 3 \\
x_{2,0} & x_{1,0}
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right] \\
& \Delta \mathbf{x}_{0}=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \\
& \mathbf{x}_{1}=\mathbf{x}_{0}+\Delta \mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right] \\
& \varepsilon_{1}=\max \left(\left|\frac{x_{k, 1}-x_{k, 0}}{x_{k, 0}}\right|\right), \quad k=1 \ldots N \\
& x_{1}=\left[\begin{array}{l}
5 \\
4
\end{array}\right], \quad \varepsilon_{1}=4
\end{aligned}
$$

Newton-Raphson - Example

$\square \quad i=2:$

$$
\begin{aligned}
& \Delta y_{1}=\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{1}\right)=\left[\begin{array}{l}
21 \\
12
\end{array}\right]-\left[\begin{array}{l}
37 \\
20
\end{array}\right]=\left[\begin{array}{c}
-16 \\
-8
\end{array}\right] \\
& \mathbf{J}_{1}=\left[\begin{array}{cc}
2 x_{1,1} & 3 \\
x_{2,1} & x_{1,1}
\end{array}\right]=\left[\begin{array}{cc}
10 & 3 \\
4 & 5
\end{array}\right] \\
& \Delta \mathbf{x}_{1}=\left[\begin{array}{c}
-1.474 \\
-0.421
\end{array}\right] \\
& \mathbf{x}_{2}=\mathbf{x}_{1}+\Delta \mathbf{x}_{1}=\left[\begin{array}{l}
5 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1.474 \\
-0.421
\end{array}\right]=\left[\begin{array}{l}
3.526 \\
3.579
\end{array}\right] \\
& \varepsilon_{2}=\max \left(\left|\frac{x_{k, 2}-x_{k, 1}}{x_{k, 1}}\right|\right), \quad k=1 \ldots N \\
& \quad x_{2}=\left[\begin{array}{l}
3.526 \\
3.579
\end{array}\right], \quad \varepsilon_{2}=0.295
\end{aligned}
$$

Newton-Raphson - Example

$\square \underline{i=3}:$

$$
\begin{aligned}
& \Delta y_{2}=\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{2}\right)=\left[\begin{array}{l}
21 \\
12
\end{array}\right]-\left[\begin{array}{l}
23.172 \\
12.621
\end{array}\right]=\left[\begin{array}{l}
-2.172 \\
-0.621
\end{array}\right] \\
& \mathbf{J}_{2}=\left[\begin{array}{cc}
2 x_{1,2} & 3 \\
x_{2,2} & x_{1,2}
\end{array}\right]=\left[\begin{array}{l}
7.053 \\
3 \\
3.579 \\
3.526
\end{array}\right] \\
& \Delta \mathbf{x}_{2}=\left[\begin{array}{r}
-0.410 \\
0.240
\end{array}\right] \\
& \mathbf{x}_{3}=\mathbf{x}_{2}+\Delta \mathbf{x}_{2}=\left[\begin{array}{l}
3.526 \\
3.579
\end{array}\right]+\left[\begin{array}{r}
-0.410 \\
0.240
\end{array}\right]=\left[\begin{array}{l}
3.116 \\
3.819
\end{array}\right] \\
& \varepsilon_{3}=\max \left(\left|\frac{x_{k, 3}-x_{k, 2}}{x_{k, 2}}\right|\right), \quad k=1 \ldots N \\
& x_{3}=\left[\begin{array}{l}
3.116 \\
3.819
\end{array}\right], \quad \varepsilon_{3}=0.116
\end{aligned}
$$

Newton-Raphson - Example

$\square \underline{i=7}:$

$$
\begin{aligned}
& \Delta y_{6}=\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{6}\right)=\left[\begin{array}{l}
21 \\
12
\end{array}\right]-\left[\begin{array}{l}
21.000 \\
12.000
\end{array}\right]=\left[\begin{array}{c}
-0.527 \times 10^{-7} \\
0.926 \times 10^{-7}
\end{array}\right] \\
& \mathbf{J}_{6}=\left[\begin{array}{cc}
2 x_{1,6} & 3 \\
x_{2,6} & x_{1,6}
\end{array}\right]=\left[\begin{array}{l}
6.000 \\
4 \\
4.000 \\
3.000
\end{array}\right] \\
& \Delta \mathbf{x}_{6}=\left[\begin{array}{r}
-0.073 \times 10^{-6} \\
0.128 \times 10^{-6}
\end{array}\right] \\
& \mathbf{x}_{7}=\mathbf{x}_{6}+\Delta \mathbf{x}_{6}=\left[\begin{array}{l}
3.000 \\
4.000
\end{array}\right]+\left[\begin{array}{r}
-0.073 \times 10^{-6} \\
0.128 \times 10^{-6}
\end{array}\right]=\left[\begin{array}{l}
3.000 \\
4.000
\end{array}\right] \\
& \varepsilon_{7}=\max \left(\left|\frac{x_{k, 7}-x_{k, 6}}{x_{k, 6}}\right|\right), \quad k=1 \ldots N \\
& x_{7}=\left[\begin{array}{l}
3.000 \\
4.000
\end{array}\right], \quad \varepsilon_{7}=31.9 \times 10^{-9}
\end{aligned}
$$

Newton-Raphson - MATLAB Code

\square Define the system of equations

```
f=@(x) [x(1)^2 + 3*x(2); x(1)*x(2)];
y = [21;12];
```

\square Initialize \mathbf{x}

```
x0 = [1;2];
x = x0;
```

\square Set up solution parameters

```
reltol = 1e-6;
max_iter = 1000;
eps = 1;
iter = 0;
```


Newton-Raphson - MATLAB Code

Iterate:

- Compute $\Delta \mathbf{y}_{i_{-1}}$ and \mathbf{J}_{i-1}
\square Solve for $\Delta \mathbf{x}_{i-1}$
\square Update \mathbf{x}

```
while(iter < max_iter) && (eps > reltol)
    iter = iter + 1;
    J = [2*x(1), 3; x(2), x(1)];
    x_old = x;
% calculate output error term
    Dy = y - f(x_old);
% Use Gaussian elimination to solve for increment to x
    Dx = J\Dy;
    x = x_old + Dx;
    eps = max(abs((x - x_old)./x_old));
end
```


85
 Example Problems

Perform three iterations toward the solution of the following system of equations using the Newton-Raphson method. Let $\mathbf{x}_{0}=[1,1]^{T}$.

$$
\begin{gathered}
10 x_{1}^{2}+x_{2}=20 \\
e^{x_{1}}-x_{2}=10
\end{gathered}
$$

Power-Flow Solution - Overview

Solving the Power-Flow Problem - Overview

\square Consider an N-bus power-flow problem

- 1 slack bus
- $n_{P V} \mathrm{PV}$ buses
- $n_{P Q}$ PQ buses

$$
N=n_{P V}+n_{P Q}+1
$$

\square Each bus has two unknown quantities

- Two of V_{k}, δ_{k}, P_{k}, and Q_{k}
\square For the N-R power-flow problem, V_{k} and δ_{k} are the unknown quantities
- These are the inputs to the nonlinear system of equations - the P_{k} and Q_{k} equations - of (9) and (10)
- Finding unknown V_{k} and δ_{k} values allows us to determine unknown P_{k} and Q_{k} values

Solving the Power-Flow Problem - Overview

\square The nonlinear system of equations is

$$
\mathbf{y}=\mathbf{f}(\mathbf{x})
$$

\square The unknowns, \mathbf{x}, are bus voltages

- Unknown phase angles from PV and PQ buses
- Unknown magnitudes from PQ bus

$$
\mathbf{x}=\left[\begin{array}{l}
\boldsymbol{\delta} \tag{24}\\
\mathbf{V}
\end{array}\right]=\left[\begin{array}{c}
\delta_{2} \\
\vdots \\
\delta_{n_{P V}+n_{P Q}+1} \\
----- \\
V_{n_{P V}+2} \\
\vdots \\
V_{n_{P V}+n_{P Q}+1}
\end{array}\right]_{-}{ }_{-}^{--} n_{P V}+n_{P Q}
$$

Solving the Power-Flow Problem - Overview

$$
\mathbf{y}=\mathbf{f}(\mathbf{x})
$$

\square The knowns, \mathbf{y}, are bus powers
\square Known real power from PV and PQ buses
\square Known reactive power from PQ bus

$$
\mathbf{y}=\left[\begin{array}{c}
\mathbf{P} \tag{25}\\
\mathbf{Q}
\end{array}\right]=\left[\begin{array}{c}
P_{2} \\
\vdots \\
P_{n_{P V}+n_{P Q}+1} \\
-----n_{n_{P V}+n_{P Q}} \\
Q_{n_{P V}+2} \\
\vdots \\
Q_{n_{P V}+n_{P Q}+1}
\end{array}\right]_{-}^{--} n_{P Q}
$$

Solving the Power-Flow Problem - Overview

$$
y=f(x)
$$

\square The system of equations, \mathbf{f}, consists of the nonlinear functions for \mathbf{P} and \mathbf{Q}

- Nonlinear functions of \mathbf{V} and $\boldsymbol{\delta}$

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
\mathbf{P}(\mathbf{x}) \tag{26}\\
\mathbf{Q}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{c}
P_{2}(\mathbf{x}) \\
\vdots \\
\vdots \\
\hdashline Q_{n_{P V}+2}(\mathbf{x}) \\
\vdots \\
\vdots
\end{array}\right]_{-} n_{n_{P V}+n_{P Q}}
$$

Solving the Power-Flow Problem - Overview

$\square P_{k}(\mathbf{x})$ and $Q_{k}(\mathbf{x})$ are given by

$$
\begin{align*}
& P_{k}=V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n} \cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{9}\\
& Q_{k}=V_{k} \sum_{n=1}^{N}\left|Y_{k n}\right| V_{n} \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{10}
\end{align*}
$$

- Admittance matrix terms are

$$
Y_{k n}=\left|Y_{k n}\right| \angle \theta_{k n}
$$

Solving the Power-Flow Problem - Overview

\square The iterative N-R formula is

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\Delta \mathbf{x}_{i}
$$

\square The increment term, $\Delta \mathbf{x}_{i}$, is computed through Gaussian elimination of

$$
\Delta \mathbf{y}_{i}=\mathbf{J}_{i} \Delta \mathbf{x}_{i}
$$

- The Jacobian, J_{i}, is computed on each iteration
\square The power mismatch vector is

$$
\Delta \mathbf{y}_{i}=\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{i}\right)
$$

- \mathbf{y} is the vector of known powers, as given in (25)
- $\mathbf{f}\left(\mathbf{x}_{i}\right)$ are the P and Q equations given by (9) and (10)

Power-Flow Solution - Procedure

Solving the Power-Flow Problem - Procedure

\square The following procedure shows how to set up and solve the power-flow problem using the N-R algorithm

1. Order and number buses

- Slack bus is \#1
- Group all PV buses together next
- Group all PQ buses together last

2. Generate the bus admittance matrix, \mathbf{Y}
\square And magnitude, $\mathrm{Y}=|\mathbf{Y}|$, and angle, $\theta=\angle \mathbf{Y}$, matrices

Solving the Power-Flow Problem - Procedure

3. Initialize known quantities

- Slack bus: V_{1} and δ_{1}
- PV buses: V_{k} and P_{k}
- PQ buses: P_{k} and Q_{k}
- Output vector:

$$
\mathbf{y}=\left[\begin{array}{l}
\mathbf{P} \\
\mathbf{Q}
\end{array}\right]
$$

4. Initialize unknown quantities

$$
\mathbf{x}_{\boldsymbol{o}}=\left[\begin{array}{c}
\boldsymbol{\delta}_{\mathbf{0}} \tag{24}\\
\mathbf{V}_{\mathbf{0}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-- \\
1.0 \\
\vdots \\
1.0
\end{array}\right]_{-} \begin{aligned}
& - \\
& n_{P V}+n_{P Q} \\
& n_{P Q}
\end{aligned}
$$

Solving the Power-Flow Problem - Procedure

5. Set up Newton-Raphson parameters

- Tolerance for convergence, reltol
- Maximum \# of iterations, max_iter
\square Initialize relative error: $\varepsilon_{0}>$ reltol, e.g. $\varepsilon_{0}=10$
- Initialize iteration counter: $i=0$

6. while ($\varepsilon>$ reltol) $\& \&(i<m a x$ _iter $)$
\square Update bus voltage phasor vector, \mathbf{V}_{i}, using magnitude and phase values from \mathbf{x}_{i} and from knowns

- Calculate the current injected into each bus, a vector of phasors

$$
\mathbf{I}_{i}=\mathbf{Y} \cdot \mathbf{V}_{i}
$$

Solving the Power-Flow Problem - Procedure

6. while ($\varepsilon>$ reltol) \&\& ($i<m a x$ _iter $)$ - cont'd

- Calculate complex, real, and reactive power injected into each bus
- This can be done using \mathbf{V}_{i} and \mathbf{I}_{i} vectors and element-by-element multiplication (the .* operator in MATLAB)

$$
\begin{aligned}
\mathbf{S}_{k, i} & =\mathbf{V}_{k, i} \cdot \mathbf{I}_{k, i}^{*} \\
P_{k, i} & =\operatorname{Re}\left\{\mathbf{S}_{k, i}\right\} \\
Q_{k, i} & =\operatorname{Im}\left\{\mathbf{S}_{k, i}\right\}
\end{aligned}
$$

- Create $f\left(x_{i}\right)$ from \mathbf{P}_{i} and \mathbf{Q}_{i} vectors
- Calculate power mismatch, $\Delta \mathbf{y}_{i}$

$$
\Delta \mathbf{y}_{i}=\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{i}\right)
$$

- Compute the Jacobian, \mathbf{J}_{i}, using voltage magnitudes and phase angles from \mathbf{V}_{i}

Solving the Power-Flow Problem - Procedure

6. while ($\varepsilon>$ reltol) \&\& ($i<m a x$ _iter $)$ - cont'd

- Solve for $\Delta \mathbf{x}_{i}$ using Gaussian elimination

$$
\Delta \mathbf{y}_{i}=\mathbf{J}_{i} \Delta \mathbf{x}_{i}
$$

- Use the mldivide (\backslash, backslash) operator in MATLAB: $\Delta \mathbf{x}_{i}=\mathbf{J}_{i} \backslash \Delta \mathbf{y}_{i}$
- Update \mathbf{x}

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\Delta \mathbf{x}_{i}
$$

- Check for convergence using power mismatch

$$
\varepsilon_{i+1}=\max \left|\frac{y_{k}-f_{k}(\mathbf{x})}{y_{k}}\right|
$$

- Update the number of iterations

$$
i=i+1
$$

The Jacobian Matrix

The Jacobian matrix has four quadrants of varying dimension depending on the number of different types of buses:

The Jacobian Matrix

\square Jacobian elements are partial derivatives of (9) and (10) with respect to δ or V
\square Formulas for the Jacobian elements:

- $n \neq k$

$$
\begin{align*}
& \mathbf{J} 1_{k n}=\frac{\partial P_{k}}{\partial \delta_{n}}=V_{k} Y_{k n} V_{n} \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{27}\\
& \mathbf{J} 2_{k n}=\frac{\partial P_{k}}{\partial V_{n}}=V_{k} Y_{k n} \cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{28}\\
& \mathbf{J} 3_{k n}=\frac{\partial Q_{k}}{\partial \delta_{n}}=-V_{k} Y_{k n} V_{n} \cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{29}\\
& \mathbf{J} 4_{k n}=\frac{\partial Q_{k}}{\partial V_{n}}=V_{k} Y_{k n} \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{30}
\end{align*}
$$

The Jacobian Matrix

Formulas for the Jacobian elements, cont'd:

- $\underline{n=k}$

$$
\begin{align*}
& \mathbf{J} 1_{k k}=\frac{\partial P_{k}}{\partial \delta_{k}}=-V_{k} \sum_{\substack{n=1 \\
n \neq k}}^{N} Y_{k n} V_{n} \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{31}\\
& \mathbf{J} 2_{k k}=\frac{\partial P_{k}}{\partial V_{k}}=V_{k} Y_{k k} \cos \left(\theta_{k k}\right)+\sum_{n=1}^{N} Y_{k n} V_{n} \cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{32}\\
& \mathbf{J} 3_{k k}=\frac{\partial Q_{k}}{\partial \delta_{k}}=V_{k} \sum_{\substack{n=1 \\
n \neq k}}^{N} Y_{k n} V_{n} \cos \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{33}\\
& \mathbf{J} 4_{k k}=\frac{\partial Q_{k}}{\partial V_{k}}=-V_{k} Y_{k k} \sin \left(\theta_{k k}\right)+\sum_{n=1}^{N} Y_{k n} V_{n} \sin \left(\delta_{k}-\delta_{n}-\theta_{k n}\right) \tag{34}
\end{align*}
$$

Power-Flow Solution - Example

Power-Flow Solution - Buses

\square Determine all bus voltages and power flows for the following threebus power system

\square Three buses, $n_{P V}=1, n_{P Q}=1$, ordered PV first, then PQ:

- Bus 1: slack bus
- V_{1} and δ_{1} are known, find P_{1} and Q_{1}
- Bus 2: PV bus
- P_{2} and V_{2} are known, find δ_{2} and Q_{2}
- Bus 3: PQ bus
- P_{3} and Q_{3} are known, find V_{3} and δ_{3}

Power-Flow Solution - Admittance Matrix

\square Per-unit, per-length impedance of all transmission lines:

$$
z=(31.1+j 316) \times 10^{-6} \mathrm{pu} / \mathrm{km}
$$

- Admittance of each line:

$$
\begin{aligned}
& Y_{12}=Y_{23}=\frac{1}{z \cdot 150 \mathrm{~km}}=2.06-j 20.9 \mathrm{pu} \\
& Y_{13}=\frac{1}{z \cdot 200 \mathrm{~km}}=1.54-j 15.7 \mathrm{pu}
\end{aligned}
$$

Power-Flow Solution - Admittance Matrix

$\square \quad$ The admittance matrix (see p. 8):

$$
\mathbf{Y}=\left[\begin{array}{ccc}
Y_{11} & -Y_{12} & -Y_{13} \\
-Y_{21} & Y_{22} & -Y_{23} \\
-Y_{31} & -Y_{32} & Y_{33}
\end{array}\right]=\left[\begin{array}{ccc}
3.6-j 36.6 & -2.06+j 20.9 & -1.5+j 15.7 \\
-2.06+j 20.9 & 4.1-j 41.8 & -2.06+j 20.9 \\
-1.5+j 15.7 & -2.06+j 20.9 & 3.6-j 36.6
\end{array}\right]
$$

\square Admittance magnitude and angle matrices:

$$
\mathrm{Y}=|\mathbf{Y}|=\left[\begin{array}{lll}
36.8 & 21.0 & 15.8 \\
21.0 & 42.0 & 21.0 \\
15.8 & 21.0 & 36.8
\end{array}\right], \quad \boldsymbol{\theta}=\left[\begin{array}{ccc}
-84.4^{\circ} & 95.6^{\circ} & 95.6^{\circ} \\
95.6^{\circ} & -84.4^{\circ} & 95.6^{\circ} \\
95.6^{\circ} & 95.6^{\circ} & -84.4^{\circ}
\end{array}\right]
$$

Power-Flow Solution - Initialize Knowns

\square Known quantities
\square Slack bus: $V_{1}=1.0 \mathrm{pu}, \delta_{1}=0^{\circ}$
\square PV bus: $V_{2}=1.05 p u, P_{2}=2.0 p u$
$\square \mathrm{PQ}$ bus: $P_{3}=-5.0 \mathrm{pu}, Q_{3}=-1.0 \mathrm{pu}$

- Output vector

$$
\mathbf{y}=\left[\begin{array}{l}
\mathbf{P} \\
\mathbf{Q}
\end{array}\right]=\left[\begin{array}{l}
P_{2} \\
P_{3} \\
Q_{3}
\end{array}\right]=\left[\begin{array}{c}
2.0 \\
-5.0 \\
-1.0
\end{array}\right]
$$

Power-Flow Solution - Initialize Unknowns

\square The vector of unknown quantities to be solved for is

$$
\mathbf{x}=\left[\begin{array}{l}
\boldsymbol{\delta} \\
\mathbf{V}
\end{array}\right]=\left[\begin{array}{l}
\delta_{2} \\
\delta_{3} \\
V_{3}
\end{array}\right]
$$

\square Initialize all unknown bus voltage phasors to $\mathbf{V}_{k}=1.0 \angle 0^{\circ} \mathrm{pu}$

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
\boldsymbol{\delta}_{0} \\
\mathbf{V}_{0}
\end{array}\right]=\left[\begin{array}{l}
\delta_{2,0} \\
\delta_{3,0} \\
V_{3,0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1.0
\end{array}\right]
$$

\square The complete vector of bus voltage phasors - partly known, partly unknown - is

$$
\mathbf{V}=\left[\begin{array}{l}
V_{1} \angle \delta_{1} \\
V_{2} \angle \delta_{2} \\
V_{3} \angle \delta_{3}
\end{array}\right]=\left[\begin{array}{c}
1.0 \angle 0^{\circ} \\
1.05 \angle \delta_{2,0} \\
V_{3,0} \angle \delta_{3,0}
\end{array}\right]=\left[\begin{array}{c}
1.0 \angle 0^{\circ} \\
1.05 \angle 0^{\circ} \\
1.0 \angle 0^{\circ}
\end{array}\right]
$$

Power-Flow Solution - Jacobian Matrix

\square The Jacobian matrix for this system is

$$
\mathbf{J}=\left[\begin{array}{lll}
\frac{\partial P_{2}}{\partial \delta_{2}} & \frac{\partial P_{2}}{\partial \delta_{3}} & \frac{\partial P_{2}}{\partial V_{3}} \\
\frac{\partial P_{3}}{\partial \delta_{2}} & \frac{\partial P_{3}}{\partial \delta_{3}} & \frac{\partial P_{3}}{\partial V_{3}} \\
\frac{\partial Q_{3}}{\partial \delta_{2}} & \frac{\partial Q_{3}}{\partial \delta_{3}} & \frac{\partial Q_{3}}{\partial V_{3}}
\end{array}\right]
$$

\square This matrix will be computed on each iteration using the current approximation to the vector of unknowns, \mathbf{x}_{i}

Power-Flow Solution - Set Up and Iterate

\square Set up N-R iteration parameters

- reltol $=1 \mathrm{e}-6$
- max_iter = 1e3
- $\varepsilon_{0}=10$
- $i=0$
\square Iteratively update the approximation to the vector of unknowns as long as
- Stopping criterion is not satisfied

$$
\varepsilon_{i}>\varepsilon_{s}
$$

- Maximum number of iterations is not exceeded

$$
i \leq \text { max_iter }_{1}
$$

Power-Flow Solution - Iterate

$\square \quad \underline{i=0}$:

- Vector of bus voltage phasors

$$
\mathbf{V}_{0}=\left[\begin{array}{c}
V_{1} \angle \delta_{1} \\
V_{2} \angle \delta_{2,0} \\
V_{3,0} \angle \delta_{3,0}
\end{array}\right]=\left[\begin{array}{c}
1.0 \angle 0^{\circ} \\
1.05 \angle 0^{\circ} \\
1.0 \angle 0^{\circ}
\end{array}\right]
$$

- Current injected into each bus

$$
\begin{gathered}
\mathbf{I}_{0}=\mathbf{Y} \cdot \mathbf{V}_{0} \\
\mathbf{I}_{0}=\left[\begin{array}{ccc}
3.6-j 36.6 & -2.1+j 20.9 & -1.5+j 15.7 \\
-2.1+j 20.9 & 4.1-j 41.8 & -2.1+j 20.9 \\
-1.5+j 15.7 & -2.1+j 20.9 & 3.6-j 36.6
\end{array}\right]\left[\begin{array}{c}
1.0 \angle 0^{\circ} \\
1.05 \angle 0^{\circ} \\
1.0 \angle 0^{\circ}
\end{array}\right] \\
\mathbf{I}_{0}=\left[\begin{array}{c}
1.05 \angle 95.6^{\circ} \\
2.10 \angle-84.4^{\circ} \\
1.05 \angle 95.6^{\circ}
\end{array}\right]
\end{gathered}
$$

Power-Flow Solution - Iterate

- $\underline{i=0}$:
- Complex power injected into each bus

$$
\begin{aligned}
& \mathbf{S}_{0}=\mathbf{V}_{0} * \mathbf{I}_{0}^{*} \\
& \mathbf{S}_{0}=\left[\begin{array}{c}
1.0 \angle 0^{\circ} \\
1.05 \angle 0^{\circ} \\
1.0 \angle 0^{\circ}
\end{array}\right] \cdot\left[\begin{array}{c}
1.05 \angle 95.6^{\circ} \\
2.10 \angle-84.4^{\circ} \\
1.05 \angle 95.6^{\circ}
\end{array}\right]^{*} \\
& \mathbf{S}_{0}=\left[\begin{array}{c}
-0.103-j 1.045 \\
0.216+j 2.195 \\
-0.103-j 1.045
\end{array}\right]
\end{aligned}
$$

- Real and reactive power

$$
\mathbf{P}_{0}=\left[\begin{array}{c}
-0.103 \\
0.216 \\
-0.103
\end{array}\right], \quad \mathbf{Q}_{0}=\left[\begin{array}{c}
-1.045 \\
2.195 \\
-1.045
\end{array}\right]
$$

Power-Flow Solution - Iterate

$\square \underline{i=0}$:

- Power mismatch

$$
\begin{aligned}
\Delta \mathbf{y}_{0} & =\mathbf{y}-\mathbf{f}\left(\mathbf{x}_{0}\right) \\
\Delta \mathbf{y}_{0} & =\left[\begin{array}{c}
2.0 \\
-5.0 \\
-1.0
\end{array}\right]-\left[\begin{array}{c}
0.216 \\
-0.103 \\
-1.045
\end{array}\right]=\left[\begin{array}{c}
1.784 \\
-4.897 \\
0.045
\end{array}\right]
\end{aligned}
$$

- Next, compute the Jacobian matrix

$$
\mathbf{J}_{0}=\left[\begin{array}{lll}
\frac{\partial P_{2}}{\partial \delta_{2}} & \frac{\partial P_{2}}{\partial \delta_{3}} & \frac{\partial P_{2}}{\partial V_{3}} \\
\frac{\partial P_{3}}{\partial \delta_{2}} & \frac{\partial P_{3}}{\partial \delta_{3}} & \frac{\partial P_{3}}{\partial V_{3}} \\
\frac{\partial Q_{3}}{\partial \delta_{2}} & \frac{\partial Q_{3}}{\partial \delta_{3}} & \frac{\partial Q_{3}}{\partial V_{3}}
\end{array}\right]_{\mathbf{x}=\mathbf{x}_{0}}
$$

Power-Flow Solution - Iterate

$\underline{i=0}:$

- Elements of the Jacobian matrix are computed using V and δ values from \mathbf{V}_{0} and Y and θ values from \mathbf{Y} :

$$
\begin{aligned}
& V_{0}=\left[\begin{array}{c}
1.0 \\
1.05 \\
1.0
\end{array}\right] \\
& \delta_{0}=\left[\begin{array}{c}
0^{\circ} \\
0^{\circ} \\
0^{\circ}
\end{array}\right] \\
& Y=\left[\begin{array}{ccc}
36.8 & 21.0 & 15.8 \\
21.0 & 42.0 & 21.0 \\
15.8 & 21.0 & 36.8
\end{array}\right] \\
& \theta=\left[\begin{array}{ccc}
-84.4^{\circ} & 95.6^{\circ} & 95.6^{\circ} \\
95.6^{\circ} & -84.4^{\circ} & 95.6^{\circ} \\
95.6^{\circ} & 95.6^{\circ} & -84.4^{\circ}
\end{array}\right]
\end{aligned}
$$

Power-Flow Solution - Iterate

$\square \underline{i=0}$:

- Jacobian, J1

$$
\begin{aligned}
& \frac{\partial P_{2}}{\partial \delta_{2}}=-V_{2}\left(Y_{21} V_{1} \sin \left(\delta_{2}-\delta_{1}-\theta_{21}\right)+Y_{23} V_{3} \sin \left(\delta_{2}-\delta_{3}-\theta_{23}\right)\right) \\
& \frac{\partial P_{3}}{\partial \delta_{3}}=-V_{3}\left(Y_{31} V_{1} \sin \left(\delta_{3}-\delta_{1}-\theta_{31}\right)+Y_{32} V_{2} \sin \left(\delta_{3}-\delta_{2}-\theta_{32}\right)\right) \\
& \frac{\partial P_{2}}{\partial \delta_{3}}=V_{2} Y_{23} V_{3} \sin \left(\delta_{2}-\delta_{3}-\theta_{23}\right) \\
& \frac{\partial P_{3}}{\partial \delta_{2}}=V_{3} Y_{32} V_{2} \sin \left(\delta_{3}-\delta_{2}-\theta_{32}\right)
\end{aligned}
$$

Power-Flow Solution - Iterate

$\square \underline{i=0}:$

- Jacobian, J2

$$
\begin{aligned}
& \frac{\partial P_{2}}{\partial V_{3}}=V_{2} Y_{23} \cos \left(\delta_{2}-\delta_{3}-\theta_{23}\right) \\
& \frac{\partial P_{3}}{\partial V_{3}}=2 \cdot V_{3} Y_{33} \cos \left(\theta_{33}\right)+ \\
& \quad Y_{31} V_{1} \cos \left(\delta_{3}-\delta_{1}-\theta_{31}\right)+Y_{32} V_{2} \cos \left(\delta_{3}-\delta_{2}-\theta_{32}\right)
\end{aligned}
$$

- Jacobian, J3

$$
\begin{aligned}
& \frac{\partial Q_{3}}{\partial \delta_{2}}=-V_{3} Y_{32} V_{2} \cos \left(\delta_{3}-\delta_{2}-\theta_{32}\right) \\
& \frac{\partial Q_{3}}{\partial \delta_{3}}=V_{3}\left(Y_{31} V_{1} \cos \left(\delta_{3}-\delta_{1}-\theta_{31}\right)+Y_{32} V_{2} \cos \left(\delta_{3}-\delta_{2}-\theta_{32}\right)\right)
\end{aligned}
$$

Power-Flow Solution - Iterate

$\square \underline{i=0}:$

- Jacobian, J4

$$
\begin{aligned}
\frac{\partial Q_{3}}{\partial V_{3}}= & V_{3} Y_{33} \cos \left(\theta_{33}\right)+ \\
& Y_{31} V_{1} \cos \left(\delta_{3}-\delta_{1}-\theta_{31}\right)+Y_{32} V_{2} \cos \left(\delta_{3}-\delta_{2}-\theta_{32}\right)
\end{aligned}
$$

\square Evaluating the Jacobian expressions using V and δ values from \mathbf{V}_{0} and Y and θ values from \mathbf{Y}, gives

$$
\mathbf{J}_{0}=\left[\begin{array}{ccc}
43.89 & -21.95 & -2.160 \\
-21.95 & 37.62 & 3.497 \\
2.160 & -3.702 & 35.53
\end{array}\right]
$$

Power-Flow Solution - Iterate

$\square \underline{i=0}:$
\square Use Gaussian elimination to solve for $\Delta \mathbf{x}_{0}$

$$
\begin{aligned}
& \Delta \mathbf{y}_{0}=\mathbf{J}_{0} \Delta \mathbf{x}_{0}=\left[\begin{array}{ccc}
43.89 & -21.95 & -2.160 \\
-21.95 & 37.62 & 3.497 \\
2.160 & -3.702 & 35.53
\end{array}\right]\left[\begin{array}{l}
\Delta x_{1,0} \\
\Delta x_{2,0} \\
\Delta x_{3,0}
\end{array}\right]=\left[\begin{array}{c}
1.784 \\
-4.897 \\
0.045
\end{array}\right] \\
& \Delta \mathbf{x}_{0}=\left[\begin{array}{l}
-0.0345 \\
-0.1492 \\
-0.0122
\end{array}\right]
\end{aligned}
$$

\square Update the vector of unknowns, \mathbf{x}

$$
\mathbf{x}_{1}=\mathbf{x}_{0}+\Delta \mathbf{x}_{0}=\left[\begin{array}{c}
0 \\
0 \\
1.0
\end{array}\right]+\left[\begin{array}{l}
-0.0345 \\
-0.1492 \\
-0.0122
\end{array}\right]=\left[\begin{array}{c}
-0.0345 \\
-0.1492 \\
0.9878
\end{array}\right]
$$

Power-Flow Solution - Iterate

$\square \underline{i=0}:$

- Use power mismatch to check for convergence

$$
\varepsilon_{0}=\max \left|\frac{y_{k}-f_{k}(x)}{y_{k}}\right|=0.9794
$$

- Move on to the next iteration, $i=1$
- Create \mathbf{V}_{1} using \mathbf{x}_{1} values
- Calculate \mathbf{I}_{1}
\square Calculate $\mathbf{S}_{1}, \mathbf{P}_{1}, \mathbf{Q}_{1}$
- Create $\mathbf{f}\left(\mathbf{x}_{1}\right)$ from \mathbf{P}_{1} and \mathbf{Q}_{1}
\square Calculate $\Delta \mathbf{y}_{1}, \mathbf{J}_{1}, \Delta \mathbf{x}_{1}$
- Update \mathbf{x} to \mathbf{x}_{2}

■ Check for convergence

- ...

Power-Flow Solution

\square Convergence is achieved after four iterations

$$
\begin{aligned}
& \mathbf{V}_{4}=\left[\begin{array}{c}
1.0 \angle 0^{\circ} \\
1.1 \angle-2.1^{\circ} \\
0.97 \angle-8.8^{\circ}
\end{array}\right], \quad \mathbf{S}_{4}=\left[\begin{array}{c}
3.08-j 0.82 \\
2.0+j 2.67 \\
-5.0-j 1.0
\end{array}\right] \\
& \varepsilon_{4}=0.41 \times 10^{-6}
\end{aligned}
$$

124 Example Problems

For the power system shown, determine

a) The type of each bus
b) The first row of the admittance matrix, \mathbf{Y}
c) The vector of unknowns, \mathbf{x}
d) The vector of knowns, \mathbf{y}
e) The Jacobian matrix, J, in symbolic form

