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High-Voltage AC Transmission

 Power is transmitted at high voltage
 Lower current
 Lower I2R line losses

 Most power transmitted as high-voltage AC
 Transformers step voltages up for transmission, down at 

loads
 Transformers only work for AC

 Advancement of power electronics has enabled high-
voltage DC (HVDC) transmission
 Power electronic converters can generate DC voltages of 

100s of kV
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HVAC Transmission – Disadvantages 

 HVAC Transmission has disadvantages:
 Reactive power consumed by transmission lines
 Losses

 Skin effect
 AC current crowds toward outer surface of cables
 AC resistance greater than DC resistance
 Losses

 Grid stability is a concern
 Power transmission must be limited to maintain grid stability
 Can’t arbitrarily connect large sections of grid without considering 

stability
 AC power transfer between asynchronous networks is not 

possible
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High-Voltage DC Transmission

 Advantages of HVDC transmission:
 Lower transmission loss
 No reactive power transfer
 No skin effect
 Less conductor required

 Power flow control
 Independent control of real and reactive power direction and 

magnitude (for some HVDC architectures)
 Smaller right of way (RoW) required
 Fewer conductors
 Fewer towers

 Less costly than AC transmission
 For longer lines exceeding some breakeven distance
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HVDC Applications

 Long-distance bulk power transmission
 Lower loss 
 Lower cost
 Smaller RoW

 Power transfer between asynchronous AC grids
 Back-to-back HVDC
 Improves stability of each grid
 Cascading failures will not propagate across the HVDC link

 Stabilizing AC grids
 Power transfer within an AC network to improve stability
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HVDC Applications

 Undersea/underground cables
 No charging current
 Lower loss than AC

 Integration of renewable generation sources
 Solar/wind farms
 Possibly distant from load centers
 Offshore wind farms
 Asynchronous generation
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HVDC System Overview

 HVDC links exist within and between 3-𝜙𝜙 AC power grids

 The components of an HVDC system:
 Converter stations
 Conversion between AC and DC
 One at either end of a DC link

 Collocated for back-to-back links
 Rectifier: AC-to-DC conversion
 Inverter: DC-to-AC conversion

 Transmission lines/cables
 Overhead lines and towers
 Undersea/underground cables

 Electrodes
 Provide grounding for earth or sea return currents
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HVDC System Overview
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HVDC Link Configurations

 HVDC configurations differ in:
 Number of DC poles
Monopolar: single DC voltage (e.g. +500 kV)
 Bipolar: positive and negative DC voltages (e.g. ±500 kV)

 Return current path
Metallic
 Ground/sea
 None (bipolar configurations)
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HVDC Link Configurations

 Monopolar with ground/sea return path:

 Single HVDC line
 Return currents flow through the earth or sea at low voltage
 Simplest  configuration
 Electrode design is non-trivial

 Common configuration for undersea links
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HVDC Link Configurations

 Monopolar with metallic return path:

 Dedicated metallic cable for return currents
 When grounding electrodes and ground return current are 

not an option
 Environmental concerns
 Real estate restrictions
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HVDC Link Configurations

 Bipolar with ground return path:

 Positive and negative DC voltages
 Little to no current through ground path under normal operation
 In case of a single-pole fault, return current can flow on the ground 

path:
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HVDC Link Configurations

 Bipolar with ground return path (cont’d):
 In the event of a failure involving the 

transformer/converters of a single pole
 Failed pole’s conductors can be used as a low-voltage return path
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HVDC Link Configurations

 Bipolar with metallic return path:

 Dedicated metallic cable for return currents
 When electrodes are not a viable option
 Little to no current in return cable under normal operation
 Same backup mode options as bipolar w/ ground return
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HVDC Link Configurations

 Bipolar with no dedicated return path:

 Least expensive bipolar configuration
 Cable fault on either pole removes entire link from service
 Monopolar operation is an option in the event of a single-pole 

converter/transformer failure

 Back-to-back converter:
 Rectifier and inverter in the same location
 No transmission line
 Lower voltage than for long-distance links
 For power transfer between asynchronous AC networks
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HVDC vs. AC Cost Comparison

 Lower cost per km

 Fixed terminal station 
cost
 HVDC far more costly

 Beyond some 
breakeven distance, 
HVDC is more 
economical
 ~600 – 800 km for 

overhead lines
 ~50 km for undersea 

cables

 For the same amount of power and loss, HVDC requires less 
conductor
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HVDC System Types

 Two basic categories of HVDC systems
 Line-commutated converters
 Current-source converters (CSC)

 Forced-commutated (or self-commutated) converters
 Voltage-source converters (VSC)

 Difference is in the switching devices employed and 
how those switches are controlled
 Specifically, how the switches are turned off
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Line-Commutated Converters

 Current-source converters (CSC)
 Converter looks like a current source to the AC grid

 Switching devices: thyristors 
 Previously mercury arc valves
 Turn-on time is controlled
 Turn-off occurs when voltage across thyristors changes polarity (goes negative)
 Operation requires active generation in AC grid

 Typical loss: <1% per converter station

 Power flow
 Converters consume reactive power
 Real power flow along DC link in one direction only
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Self-Commutated Converters

 Voltage-source converters (VSC)
 Converter looks like a voltage source to the AC grid

 Switching devices: typically insulated gate bipolar transistors (IGBTs) 
 Turn-on and turn-off is controlled by a control signal
 Capable of operating connected to AC grid with only passive loads
 Can provide black start capability

 Typical loss: 1% - 3% per converter (varies with topology)
 Power flow

 Independent control of real and reactive power
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Line-Commutated Converters

 Line-commutated converters
 Most common type of HVDC system currently in operation
 Converters use thyristors as switching elements

 Thyristor

 Like diodes, thyristors block current in the reverse (cathode-
to-anode) direction

 Unlike diodes, thyristors also block forward current until 
turned on with a control signal applied to the gate terminal
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Thyristors

 Diode half-wave rectifier

 Thyristor half-wave rectifier
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Delay Angle

 Thyristor turn on time can be delayed past the point of 
natural conduction by a delay angle, 𝛼𝛼
 Average output voltage controlled by 𝛼𝛼
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Three-Phase Full-Bridge Converters

 Converter stations use thyristors arranged in full-bridge 
configurations

 Six-pulse thyristor converter:
 Commutation occurs 

every 60°
 Thyristors numbered in 

order of conduction
 DC output voltage: 

𝑣𝑣𝑑𝑑 = 𝑣𝑣𝑃𝑃𝑃𝑃 − 𝑣𝑣𝑁𝑁𝑁𝑁
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Six-Pulse Converter

 Turn-on time delayed by delay angle, 𝛼𝛼, past the 
point of natural commutation

 Maximum average 
DC output for 𝛼𝛼 = 0°

 Average DC output is 
negative for 𝛼𝛼 > 90°
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Six-Pulse Converter
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Six-Pulse Converter

 Six pulses per period

 Significant harmonics
injected onto the AC 
grid

 AC filtering required 
to reduce harmonics

 Converter output, 𝑣𝑣𝑑𝑑, is clearly not pure DC
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Twelve-Pulse Converter

 Twelve-pulse converter
 Two six-pulse bridges 

connected in series
 Three-phase input to one 

bridge is phase shifted 30°
relative to the input of the 
other
 Y/Y and Y/Δ transformers

 Commutation occurs 
every 30°
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Twelve-Pulse Converter

 Now, 12 pulses per period
 Harmonics are greatly reduced
 AC filtering requirements are lessened
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Twelve-Pulse Converter
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Thyristor Valves

 Necessary to withstand high voltages
 Each group of thyristors called a valve

 Each thyristor shown in the bridge schematics is really 
many series-connected thyristors

source: Alstom
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Voltage Source Converters

 VSC HVDC systems use switching devices that can 
be turned on and off
 IGBT: insulated-gate bipolar transistor
 GTO: gate-turn-off thyristor
 IGCT: insulated gate commutated thyristor

 Most commonly used devices 
are IGBTs with anti-parallel 
free-wheeling diodes



K. Webb ESE 470

38

Voltage Source Converters

 VSC configurations:
 Two-level converter
 Multi-level converter
 Modular multi-level converter (MMC)

 Operation of two-level and multi-level converter is based on the principle 
of pulse-width modulation (PWM)
 Switches open and close between three-phase AC and DC poles at  a frequency 

well above the power line frequency
 Duration that switches are connected to DC voltage (pulse width) is varied 
 Average output voltage approximates sinusoids at the line frequency
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Two-Level Converter
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Three-Level Converter

 Similar to two-level VSC, but now PWM voltage switches 
between three levels
 Closer approximation of a sinusoid
 Harmonics are reduced
 Filtering requirements are reduced
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Modular Multilevel Converter

 Modular multilevel converter (MMC)
 Six valves, like two-level converter
 One connecting each AC phase to each DC voltage

 Valves act as individual voltage sources
 Not binary switches
 AC synthesized with many (hundreds) voltage levels

 PWM is not used
 Lower switching losses

 Very low harmonics
 Filtering often unnecessary
 Much smaller converter station footprint

 Complex control system requirements
 Common architecture for new HVDC projects 
 E.g. Trans Bay Cable, Pittsburg to San Francisco, CA
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Modular Multilevel Converter

 Multiple submodules
connected in series
 Typically hundreds
 One for each voltage level

 Two states for each:
 Capacitor connected in 

series with the output
 Stored voltage added to the 

output

 Capacitor bypassed
 No voltage added to the 

output
source: An Overview Introduction of VSC-HVDC: State-of-art and Potential Applications in 
Electric Power Systems; Feng Wang, Tuan Le, Anders Mannikoff, Anders Bergman; Cigrè
International Symposium, Bologna, Italy, Sept. 2011.
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Valve Hall

 Thyristor valve units
 Installed indoors –

valve hall 
 Valves are suspended 

from the ceiling
 Lower voltage near the 

ceiling
 Highest voltages at the 

bottom
 Air insulated
 Water cooled
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Converter Transformers

 Converter transformers are located outside
 Large wall bushings bring AC power into the valve hall
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Converter Station

 Simplified converter station one-line for single HVDC pole:

 Replicated for bipolar configuration
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Converter Station 

source: Electric Power Systems, A First Course; Ned Mohan; John Wiley & Sons; Great River Energy
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Station Layout – Single DC Pole

source: http://eps-technology.blogspot.com
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Pacific DC Intertie

 The Dalles, OR to Sylmar, CA
 Columbia River hydropower to LA

 Length: 1,362 km
 Capacity: 3100 MW

 ~50% of LA’s peak load
 Bipolar w/ ground return

 ±500 kV

source: ABB

source: ABB

 Twelve-pulse 
thyristor 
converters
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Pacific DC Intertie

 Pacific DC Intertie towers south of Prineville
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Rio Madeira, Brazil

 Amazon basin to Sao Paulo
 Hydropower to coastal 

cities
 Length: 2,375 km

 World’s longest
 Capacity: 6300 MW
 Bipolar w/ ground return

 ±600 kV
 Twelve-pulse thyristor 

converters source: ABB
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Trans Bay Cable

 Pittsburg, CA to San 
Francisco
 Additional power to 

geographically-
isolated San Francisco

 Length: 88 km
 Under the SF Bay

 Capacity: 800 MW
 Bipolar with metallic 

return
 ±200 kV

 MMC VSC

source: Siemens

source: Trans Bay Cable LLC
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Tres Amigas – B2B Converter

 Back-to-back converters will connect Eastern, Western, 
and Texas Interconnections

 Back-to-back 
HVDC link

 Location: 
Clovis, NM

source: Tres Amigas LLC
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Tres Amigas – B2B Converter

 HVDC converter stations
 Connected by three 5 GW DC links
 Scalable to 30 GW

 High temperature superconducting DC cable
 Underground ring configuration

 Converter station may also include 5 MW battery 
storage for voltage and frequency regulation

 Project still in planning phases
 System design/timeline still uncertain
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