SECTION 6: HIGH-VOLTAGE DC TRANSMISSION

ESE 470 – Energy Distribution Systems

High-Voltage AC Transmission

- 3
- Power is transmitted at high voltage
 - Lower current
 - Lower I²R line losses
- Most power transmitted as *high-voltage AC*
 - Transformers step voltages up for transmission, down at loads
 - Transformers only work for AC
- Advancement of *power electronics* has enabled highvoltage DC (HVDC) transmission
 - Power electronic converters can generate DC voltages of 100s of kV

HVAC Transmission – Disadvantages

- 4
- HVAC Transmission has disadvantages:
 - Reactive power consumed by transmission lines
 - Losses
 - Skin effect
 - AC current crowds toward outer surface of cables
 - AC resistance greater than DC resistance
 - Losses
 - Grid stability is a concern
 - Power transmission must be limited to maintain grid stability
 - Can't arbitrarily connect large sections of grid without considering stability
 - AC power transfer between asynchronous networks is not possible

High-Voltage DC Transmission

Advantages of HVDC transmission:

Lower transmission loss

- No reactive power transfer
- No skin effect
- Less conductor required

Power flow control

 Independent control of real and reactive power direction and magnitude (for some HVDC architectures)

Smaller right of way (RoW) required

- Fewer conductors
- Fewer towers

Less costly than AC transmission

For longer lines exceeding some breakeven distance

HVDC Applications

- Long-distance bulk power transmission
 - Lower loss
 - Lower cost
 - Smaller RoW
- Power transfer between asynchronous AC grids
 - Back-to-back HVDC
 - Improves stability of each grid
 - Cascading failures will not propagate across the HVDC link
- □ Stabilizing AC grids
 - Power transfer within an AC network to improve stability

HVDC Applications

- Undersea/underground cables
 - No charging current
 - Lower loss than AC
- Integration of renewable generation sources
 - Solar/wind farms
 - Possibly distant from load centers
 - Offshore wind farms
 - Asynchronous generation

HVDC System Overview

 \square HVDC links exist within and between 3- ϕ AC power grids

The components of an HVDC system:

Converter stations

- Conversion between AC and DC
- One at either end of a DC link
 - Collocated for back-to-back links
- Rectifier: AC-to-DC conversion
- Inverter: DC-to-AC conversion

Transmission lines/cables

- Overhead lines and towers
- Undersea/underground cables

Electrodes

Provide grounding for earth or sea return currents

HVDC System Overview

HVDC configurations differ in:

- Number of DC poles
 - Monopolar: single DC voltage (e.g. +500 kV)
 - Bipolar: positive and negative DC voltages (e.g. ±500 kV)
- Return current path
 - Metallic
 - Ground/sea
 - None (bipolar configurations)

12

Monopolar with ground/sea return path:

- Single HVDC line
- Return currents flow through the earth or sea at low voltage
- Simplest configuration
 - Electrode design is non-trivial
- Common configuration for undersea links

13

Monopolar with metallic return path:

- Dedicated metallic cable for return currents
- When grounding electrodes and ground return current are not an option
 - Environmental concerns
 - Real estate restrictions

14

Bipolar with ground return path:

- Positive and negative DC voltages
- Little to no current through ground path under normal operation
- In case of a single-pole fault, return current can flow on the ground path:

Bipolar with ground return path (cont'd):

- In the event of a failure involving the transformer/converters of a single pole
 - Failed pole's conductors can be used as a low-voltage return path

16

Bipolar with metallic return path:

- Dedicated metallic cable for return currents
- When electrodes are not a viable option
- Little to no current in return cable under normal operation
- Same backup mode options as bipolar w/ ground return

Bipolar with no dedicated return path:

- Least expensive bipolar configuration
- Cable fault on either pole removes entire link from service
- Monopolar operation is an option in the event of a single-pole converter/transformer failure

Back-to-back converter:

- Rectifier and inverter in the same location
- No transmission line
- Lower voltage than for long-distance links
- For power transfer between asynchronous AC networks

HVDC vs. AC Cost Comparison

- 19
- For the same amount of power and loss, HVDC requires less conductor

Lower cost per km

Fixed terminal station cost

HVDC far more costly

- Beyond some
 breakeven distance,
 HVDC is more
 economical
 - ~600 800 km for overhead lines
 - ~50 km for undersea cables

HVDC System Types

Two basic categories of HVDC systems

Line-commutated converters

- Current-source converters (CSC)
- **□** Forced-commutated (or self-commutated) converters
 - Voltage-source converters (VSC)

 Difference is in the switching devices employed and how those switches are controlled

Specifically, how the switches are turned off

Line-Commutated Converters

22

- Current-source converters (CSC)
 - Converter looks like a *current source* to the AC grid

Switching devices: thyristors

- Previously mercury arc valves
- Turn-on time is controlled
- Turn-off occurs when voltage across thyristors changes polarity (goes negative)
- Operation requires active generation in AC grid
- Typical loss: <1% per converter station</p>

Power flow

- Converters consume reactive power
- Real power flow along DC link in one direction only

Self-Commutated Converters

- 23
- Voltage-source converters (VSC)
 Converter looks like a *voltage source* to the AC grid
- Switching devices: typically insulated gate bipolar transistors (IGBTs)
 Turn-on and turn-off is controlled by a control signal
 Capable of operating connected to AC grid with only passive loads
 Can provide black start capability
- Typical loss: 1% 3% per converter (varies with topology)

Power flow

Independent control of real and reactive power

²⁴ Line-Commutated Converters

Line-Commutated Converters

Line-commutated converters

- Most common type of HVDC system currently in operation
- Converters use thyristors as switching elements

Thyristor

- Like diodes, thyristors block current in the reverse (cathodeto-anode) direction
- Unlike diodes, thyristors also block forward current until turned on with a control signal applied to the gate terminal

Thyristors

Diode half-wave rectifier

Thyristor half-wave rectifier

Delay Angle

- Thyristor turn on time can be delayed past the point of natural conduction by a *delay angle*, α
 - \blacksquare Average output voltage controlled by α

Three-Phase Full-Bridge Converters

Converter stations use thyristors arranged in full-bridge configurations

Six-pulse thyristor converter:

- Commutation occurs every 60°
- Thyristors numbered in order of conduction
- DC output voltage:

$$v_d = v_{Pn} - v_{Nn}$$

Six-Pulse Converter

- □ Turn-on time delayed by *delay angle*, α , past the point of natural commutation
 - Maximum average
 DC output for $\alpha = 0^{\circ}$
 - Average DC output is negative for $\alpha > 90^{\circ}$

Six-Pulse Converter

Six-Pulse Converter

\Box Converter output, v_d , is clearly not pure DC

Six pulses per period

- Significant *harmonics* injected onto the AC grid
- AC filtering required to reduce harmonics

Twelve-Pulse Converter

Twelve-pulse converter

- Two six-pulse bridges connected in series
- Three-phase input to one bridge is phase shifted 30° relative to the input of the other
 - Y/Y and Y/ Δ transformers
- Commutation occurs every 30°

Twelve-Pulse Converter

- □ Now, 12 pulses per period
 - Harmonics are greatly reduced
 - AC filtering requirements are lessened

Twelve-Pulse Converter

34

Thyristor Valves

- Each thyristor shown in the bridge schematics is really many series-connected thyristors
 - Necessary to withstand high voltages
 - Each group of thyristors called a valve

³⁶ Voltage Source Converters

Voltage Source Converters

37

VSC HVDC systems use switching devices that can be turned on and off

□ IGBT: insulated-gate bipolar transistor

- **GTO**: gate-turn-off thyristor
- **IGCT**: insulated gate commutated thyristor
- Most commonly used devices are *IGBTs* with anti-parallel free-wheeling diodes

Voltage Source Converters

□ VSC configurations:

- Two-level converter
- Multi-level converter
- Modular multi-level converter (MMC)
- Operation of two-level and multi-level converter is based on the principle of *pulse-width modulation* (*PWM*)
 - Switches open and close between three-phase AC and DC poles at a frequency well above the power line frequency
 - Duration that switches are connected to DC voltage (pulse width) is varied
 - Average output voltage approximates sinusoids at the line frequency

Two-Level Converter

K. Webb

39

Three-Level Converter

- Similar to two-level VSC, but now PWM voltage switches between three levels
 - Closer approximation of a sinusoid
 - Harmonics are reduced
 - Filtering requirements are reduced

Modular Multilevel Converter

Modular multilevel converter (MMC)

- Six valves, like two-level converter
 - One connecting each AC phase to each DC voltage
- Valves act as individual voltage sources
 - Not binary switches
 - AC synthesized with many (hundreds) voltage levels

PWM is not used

Lower switching losses

Very low harmonics

- Filtering often unnecessary
- Much smaller converter station footprint
- Complex control system requirements
- Common architecture for new HVDC projects
 - E.g. Trans Bay Cable, Pittsburg to San Francisco, CA

Modular Multilevel Converter

- 42
- Multiple *submodules* connected in series
 Typically hundreds
 One for each voltage level
- Two states for each:
 - Capacitor connected in series with the output
 - Stored voltage added to the output
 - Capacitor bypassed
 - No voltage added to the output

source: An Overview Introduction of VSC-HVDC: State-of-art and Potential Applications in Electric Power Systems; Feng Wang, Tuan Le, Anders Mannikoff, Anders Bergman; Cigrè International Symposium, Bologna, Italy, Sept. 2011.

Valve Hall

Thyristor valve units

- Installed indoors valve hall
- Valves are suspended from the ceiling
 - Lower voltage near the ceiling
 - Highest voltages at the bottom
- Air insulated
- Water cooled

Converter Transformers

45

Converter transformers are located outside
 Large wall bushings bring AC power into the valve hall

Converter Station

Simplified converter station one-line for single HVDC pole:

Replicated for bipolar configuration

Converter Station

701 kM 1250 A 400kV TRANSFORMERS TRANSFORMERS 308/329 MVA 235+00/174.5kV 292/321 HVA 350 +21.25%/165kV 20mH 20mH DC FILTER DC FILTER 12+24 HARH Y\Y 芶 ¥ 5 POLE 厶 Ż LINE 1 AN LINE 1 HCH 0.4H 1.0.4 0.4H 1.Q.A.F 11 11 31.4HVA 32.3HVA LINE 2 -CHI -133.4HVAr 13 ×-o 33.9HVAr 13 11-11 ıH HETALLIC RETURN 56.5HVAr HP 71.7HVAr LINE 3 LINE 2 HARMONIC FILTERS XO -0 115kV -0 × SH 114.7HVAr 1.0.4 1.0.4 0.4H 0.4H HRTE A1 /4 ¥ 芶 H POL F -Ξ ELECTRODE Å 大 ELECTRODE HE-HI 20mH 20nH 3L4HVA 1250 A 400kV 33.4HVAr 33.9MVAr THE CU HVDC SCHEME ΗH 11 SIMPLIFIED DNE LINE DIAGRAM HARMONIC FILTERS 56.5HVAr HP 71.7HVA ᆘ - SHI-0 102.8HVAR 114.7HVA COAL CREEK DICKINSON 1 NORTH DAKOTA MINNESOTA 114.7HVAr 235kV BUSBAR 350kV BUSBAR source: Electric Power Systems, A First Course; Ned Mohan; John Wiley & Sons; Great River Energy

K. Webb

47

Station Layout – Single DC Pole

Pacific DC Intertie

- The Dalles, OR to Sylmar, CA
 Columbia River hydropower to LA
 Length: 1,362 km
 Capacity: 3100 MW
 ~50% of LA's peak load
 Bipolar w/ ground return
 ±500 kV
- Twelve-pulse
 thyristor
 converters

Pacific DC Intertie

Pacific DC Intertie towers south of Prineville

Rio Madeira, Brazil

- Amazon basin to Sao Paulo
 - Hydropower to coastal cities
- Length: 2,375 km
 - World's longest
- Capacity: 6300 MW
- Bipolar w/ ground return
 ±600 kV
- Twelve-pulse thyristor converters

Trans Bay Cable

- Pittsburg, CA to San
 Francisco
 - Additional power to geographicallyisolated San Francisco
- Length: 88 km
 - Under the SF Bay
- Capacity: 800 MW
- Bipolar with metallic return
 - ±200 kV
- MMC VSC

Tres Amigas – B2B Converter

4			
	Transmission L	ines from Western Interconnection	Transmission Lines from Eastern Interconnection
	 Back-to-back HVDC link Location: Clovis, NM 	source: Tres Amigas LLC	
	New Mexico Ciovis, MM	5 Miles	Transmission Lines from ERCOT One or more transmission lines from the Texas Interconnection (see the J.S. Grid Interconnections box) connect to this HVDC terminal.

 Back-to-back converters will connect Eastern, Western, and Texas Interconnections

Tres Amigas – B2B Converter

- HVDC converter stations
 - Connected by three 5 GW DC links
 - Scalable to 30 GW
- High temperature superconducting DC cable
 Underground ring configuration
- Converter station may also include 5 MW battery storage for voltage and frequency regulation
- Project still in planning phases
 - System design/timeline still uncertain