
ESE 470 – Energy Distribution Systems

SECTION 7: FAULT ANALYSIS
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Power System Faults

 Faults in three-phase power systems are short circuits 
 Line-to-ground
 Line-to-line

 Result in the flow of excessive current
 Damage to equipment

 Heat – burning/melting
 Structural damage due to large magnetic forces

 Bolted short circuits
 True short circuits – i.e., zero impedance 

 In general, fault impedance may be non-zero

 Faults may be opens as well
 We’ll focus on short circuits
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Types of Faults

 Type of faults from most to least common:

 Single line-to-ground faults

 Line-to-line faults

 Double line-to-ground faults

 Balanced three-phase (symmetrical) faults

 We’ll look first at the least common type of fault –
the symmetrical fault – due to its simplicity
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Fault Current

 R: generator resistance
 L: generator inductance

 𝑖 𝑡 = 0 for 𝑡 < 0

 Source phase, 𝛼, determines voltage at 𝑡 = 0
 Short circuit can occur at any point in a 60 Hz cycle

 Faults occur nearly instantaneously
 Lightening, tree fall, arcing over insulation, etc.

 Step change from steady-state behavior
 Like throwing a switch to create the fault at 𝑡 = 0

 Consider an unloaded synchronous generator
 Equivalent circuit model:

𝑣 𝑡 = 2𝑉𝐺 sin 𝜔𝑡 + 𝛼
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Fault Current

 The governing differential equation for 𝑡 > 0 is

𝑑𝑖

𝑑𝑡
+ 𝑖 𝑡

𝑅

𝐿
=

2𝑉𝐺
𝐿

sin 𝜔𝑡 + 𝛼

 The solution gives the fault current

𝑖 𝑡 =
2𝑉𝐺
𝑍

sin 𝜔𝑡 + 𝛼 − 𝜃 − sin 𝛼 − 𝜃 𝑒−𝑡
𝑅
𝐿

where   𝑍 = 𝑅2 + 𝜔𝐿 2 and   𝜃 = tan−1
𝜔𝐿

𝑅

 This total fault current is referred to as the asymmetrical fault current
 It has a steady-state component

𝑖𝑎𝑐 𝑡 =
2𝑉𝐺
𝑍

sin 𝜔𝑡 + 𝛼 − 𝜃

 And a transient component

𝑖𝑑𝑐 𝑡 = −
2𝑉𝐺
𝑍

sin 𝛼 − 𝜃 𝑒−𝑡
𝑅
𝐿
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Fault Current

 Magnitude of the transient fault current, 𝑖𝑑𝑐, depends on 𝛼

 𝑖𝑑𝑐 0 = 0 for     𝛼 = 𝜃

 𝑖𝑑𝑐 0 = 2𝐼𝑎𝑐 for     𝛼 = 𝜃 − 90°

 𝐼𝑎𝑐 = 𝑉𝐺/𝑍 is the rms value of the steady-state fault current

 Worst-case fault current occurs for 𝛼 = 𝜃 − 90°

𝑖 𝑡 =
2𝑉𝐺
𝑍

sin 𝜔𝑡 −
𝜋

2
+ 𝑒−𝑡

𝑅
𝐿
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Fault Current

 Important points here:

 Total fault current has both steady-state and transient
components – asymmetrical

 Magnitude of the asymmetry (transient component) 
depends on the phase of the generator voltage at the 
time of the fault

 In this class, we will use the steady-state current 
component, 𝐈𝑎𝑐, as our primary fault current metric
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Generator Reactance

 The reactance of the generator was assumed 
constant in the previous example

 Physical characteristics of real generators result in a 
time-varying reactance following a fault

 Time-dependence modeled with three reactance values

 𝑋𝑑
′′:  subtransient reactance

 𝑋𝑑
′ :  transient reactance

 𝑋𝑑:  synchronous reactance

 Reactance increases with time, such that

𝑋𝑑
′′ < 𝑋𝑑

′ < 𝑋𝑑
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Sub-Transient Fault Current

 Transition rates between reactance values are dictated by two time 
constants:
 𝜏𝑑

′′:  short-circuit subtransient time constant

 𝜏𝑑
′ :  short-circuit transient time constant

 Neglecting generator resistance, i.e. assuming 𝜃 = 90°, the synchronous 
portion of the fault current is

𝑖𝑎𝑐 𝑡 = 2𝑉𝐺
1

𝑋𝑑
′′ −

1

𝑋𝑑
′ 𝑒

−
𝑡

𝜏𝑑
′′
+

1

𝑋𝑑
′ −

1

𝑋𝑑
𝑒
−
𝑡

𝜏𝑑
′
+

1

𝑋𝑑
sin 𝜔𝑡 + 𝛼 −

𝜋

2

 At the instant of the fault, 𝑡 = 0, the rms synchronous fault current is

𝐼𝐹
′′ =

𝑉𝐺
𝑋𝑑
′′

 This is the rms subtransient fault current, 𝐼𝐹
′′

 This will be our primary metric for assessing fault current



K. Webb ESE 470

Symmetrical Three-Phase Short 
Circuits

12



K. Webb ESE 470

13

Symmetrical 3-𝜙 Short Circuits

 Next, we’ll calculate the subtransient fault current 
resulting from a balanced three-phase fault

 We’ll make the following simplifying assumptions:
 Transformers modeled with leakage reactance only

 Neglect winding resistance and shunt admittances
 Neglect Δ-𝑌 phase shifts

 Transmission lines modeled with series reactance only
 Synchronous machines modeled as constant voltage sources 

in series with subtransient reactances
 Generators and motors

 Induction motors are neglected or modeled as synchronous 
motors

 Non-rotating loads are neglected
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Symmetrical 3-𝜙 Short Circuits

 We’ll apply superposition to determine three-phase 
subtransient fault current

 Consider the following power system:

 Assume there is a balanced three-phase short of bus 1 
to ground at 𝑡 = 0
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Symmetrical 3-𝜙 Short Circuits

 The instant of the fault can be modeled by the switch 
closing in the following line-to-neutral schematic

 The short circuit (closed switch) can be represented by two 
back-to-back voltage sources, each equal to 𝑽𝐹
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Symmetrical 3-𝜙 Short Circuits

 Applying superposition, we can represent this circuit as the 
sum of two separate circuits:

Circuit 1 Circuit 2
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Symmetrical 3-𝜙 Short Circuits

 Assume that the value of the fault-location source, 
𝑽𝐹, is the pre-fault voltage at that location
 Circuit 1, then, represents the pre-fault circuit, so

𝑰𝐹1
′′ = 0

 The 𝑽𝐹 source can therefore be removed from circuit 1

Circuit 1 Circuit 2
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Symmetrical 3-𝜙 Short Circuits

 The current in circuit 1, 𝑰𝐿, is the pre-fault line current

 Superposition gives the fault current

𝑰𝐹
′′ = 𝑰𝐹1

′′ + 𝑰𝐹2
′′ = 𝑰𝐹2

′′

 The generator fault current is

𝑰𝐺
′′ = 𝑰𝐺1

′′ + 𝑰𝐺2
′′

𝑰𝐺
′′ = 𝑰𝐿 + 𝑰𝐺2

′′

 The motor fault current is

𝑰𝑴
′′ = 𝑰𝑀1

′′ + 𝑰𝑀2
′′

𝑰𝑀
′′ = −𝑰𝐿 + 𝑰𝑀2

′′
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Symmetrical 3-𝜙 Fault – Example 

 For the simple power system above:
 Generator is supplying rated power

 Generator voltage is 5% above rated voltage

 Generator power factor is 0.95 lagging

 A bolted three-phase fault occurs at bus 1

 Determine:
 Subtransient fault current

 Subtransient generator current

 Subtransient motor current
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Symmetrical 3-𝜙 Fault – Example 

 First convert to per-unit
 Use 𝑆𝑏 = 100 𝑀𝑉𝐴

 Base voltage in the transmission line zone is

𝑉𝑏,𝑡𝑙 = 138 𝑘𝑉

 Base impedance in the transmission line zone is

𝑍𝑏,𝑡𝑙 =
𝑉𝑏,𝑡𝑙
2

𝑆𝑏
=

138 𝑘𝑉 2

100 𝑀𝑉𝐴
= 190.4 Ω

 The per-unit transmission line reactance is

𝑋𝑡𝑙 =
20 Ω

190.4 Ω
= 0.105 𝑝. 𝑢.
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Symmetrical 3-𝜙 Fault – Example 

 The two per-unit circuits are

 These can be simplified by combining impedances
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Symmetrical 3-𝜙 Fault – Example 

 Using circuit 2, we can calculate the subtransient fault current

𝑰𝐹
′′ =

1.05∠0°

𝑗0.116
= 9.079∠ − 90° 𝑝. 𝑢.

 To convert to kA, first determine the current base in the generator 
zone

𝐼𝑏,𝐺 =
𝑆𝑏

3𝑉𝑏,𝐺
=

100 𝑀𝑉𝐴

3 ⋅ 13.8 𝑘𝑉
= 4.18 𝑘𝐴

 The subtransient fault current is

𝑰𝐹
′′ = 9.079∠ − 90° ⋅ 4.18 𝑘𝐴

𝑰𝐹
′′ = 37.98∠ − 90° 𝑘𝐴
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Symmetrical 3-𝜙 Fault – Example 

 The pre-fault line current can be calculated from the pre-fault 
generator voltage and power

𝑰𝐿 =
ൗ𝑺𝐺
3

൘
𝑽𝐺
′′

3

∗

=
𝑺𝐺

3𝑽𝐺
′′

∗

=
100∠ cos−1 0.95 𝑀𝑉𝐴 ∗

3 ⋅ 1.05 ⋅ 13.8∠0° 𝑘𝑉
∗

𝑰𝐿 =
100∠ − 18.19° 𝑀𝑉𝐴

3 ⋅ 1.05 ⋅ 13.8∠0° 𝑘𝑉

𝑰𝐿 = 3.98∠ − 18.19° 𝑘𝐴

 Or, in per-unit:

𝑰𝐿 =
3.98∠ − 18.19° 𝑘𝐴

4.18 kA
= 0.952∠ − 18.19° 𝑝. 𝑢.

 This will be used to find the generator and motor fault currents
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Symmetrical 3-𝜙 Fault – Example 

 The generator’s contribution to the fault current is found by applying 
current division

𝑰𝐺2
′′ = 𝑰𝐹

′′
0.505

0.505 + 0.15
= 7.0∠ − 90° 𝑝. 𝑢.

 Adding the pre-fault line current, we have the subtransient generator fault 
current

𝑰𝐺
′′ = 𝑰𝐿 + 𝑰𝐺2

′′

𝑰𝐺
′′ = 0.952∠ − 18.19° + 7.0∠ − 90°

𝑰𝐺
′′ = 7.35∠ − 82.9° 𝑝. 𝑢.

 Converting to kA

𝑰𝐺
′′ = 7.35∠ − 82.9° ⋅ 4.18 𝑘𝐴

𝑰𝐺
′′ = 30.74∠ − 82.9° 𝑘𝐴
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Symmetrical 3-𝜙 Fault – Example 

 Similarly, for the motor

𝑰𝑀2
′′ = 𝑰𝐹

′′
0.15

0.505 + 0.15
= 2.08∠ − 90° 𝑝. 𝑢.

 Subtracting the pre-fault line current gives the subtransient motor 
fault current

𝑰𝑀
′′ = −𝑰𝐿 + 𝑰𝑀2

′′

𝑰𝑀
′′ = −0.952∠ − 18.19° + 2.08∠ − 90°

𝑰𝑀
′′ = 2.0∠ − 116.9°

 Converting to 𝑘𝐴

𝑰𝑀
′′ = 2.0∠ − 116.9° ⋅ 4.18 𝑘𝐴

𝑰𝑀
′′ = 8.36∠ − 116.9° 𝑘𝐴
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Symmetrical Components

 In the previous section, we saw how to calculate 
subtransient fault current for balanced three-phase 
faults

 Unsymmetrical faults are much more common

 Analysis is more complicated

 We’ll now learn a tool that will simplify the analysis 
of unsymmetrical faults

 The method of symmetrical components
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Symmetrical Components

 The method of symmetrical components: 
 Represent an asymmetrical set of 𝑁 phasors as a sum of 𝑁

sets of symmetrical component phasors
 These 𝑁 sets of phasors are called sequence components

 Analogous to:
 Decomposition of electrical signals into differential and 

common-mode components
 Decomposition of forces into orthogonal components

 For a three-phase system (𝑁 = 3), sequence 
components are:

 Zero sequence components
 Positive sequence components
 Negative sequence components
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Sequence Components

 Zero sequence components
 Three phasors with equal magnitude and 

equal phase
 𝑽𝑎0, 𝑽𝑏0, 𝑽𝑐0

 Positive sequence components
 Three phasors with equal magnitude and 
± 120°, positive-sequence phase

 𝑽𝑎1, 𝑽𝑏1, 𝑽𝑐1

 Negative sequence components
 Three phasors with equal magnitude and 
± 120°, negative-sequence phase

 𝑽𝑎2, 𝑽𝑏2, 𝑽𝑐2
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Sequence Components

 Note that the absolute phase and the magnitudes 
of the sequence components is not specified

 Magnitude and phase define a unique set of sequence 
components 

 Any set of phasors – balanced or unbalanced – can 
be represented as a sum of sequence components

𝑽𝑎
𝑽𝑏
𝑽𝑐

=

𝑽𝑎0
𝑽𝑏0
𝑽𝑐0

+

𝑽𝑎1
𝑽𝑏1
𝑽𝑐1

+

𝑽𝑎2
𝑽𝑏2
𝑽𝑐2

(1)
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Sequence Components

 The phasors of each sequence component have a fixed phase 
relationship
 If we know one, we know the other two

 Assume we know phase 𝑎 – use that as the reference

 For the zero sequence components, we have

𝑽0 = 𝑽𝑎0 = 𝑽𝑏0 = 𝑽𝑐0 (2)

 For the positive sequence components,

𝑽1 = 𝑽𝑎1 = 1∠120° ⋅ 𝑽𝑏1 = 1∠240° ⋅ 𝑽𝑐1 (3)

 And, for the negative sequence components,

𝑽2 = 𝑽𝑎2 = 1∠240° ⋅ 𝑽𝑏2 = 1∠120° ⋅ 𝑽𝑐2 (4)

 Note that we’re using phase 𝑎 as our reference, so

𝑽0 = 𝑽𝑎0,    𝑽1 = 𝑽𝑎1,    𝑽2 = 𝑽𝑎2
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Sequence Components

 Next, we define a complex number, 𝑎, that has unit 
magnitude and phase of 120°

𝑎 = 1∠120° (5)

 Multiplication by 𝑎 results in a rotation (a phase shift) of 120°

 Multiplication by 𝑎2 yields a rotation of 240° = −120°

 Using (5) to rewrite (3) and (4) 

𝑽1 = 𝑽𝑎1 = 𝑎𝑽𝑏1 = 𝑎2𝑽𝑐1 (6)

𝑽2 = 𝑽𝑎2 = 𝑎2𝑽𝑏2 = 𝑎𝑽𝑐2 (7)
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Sequence Components

 Using (2), (6), and (7), we can rewrite (1) in a simplified 
form

𝑽𝑎
𝑽𝑏
𝑽𝑐

=
1 1 1
1 𝑎2 𝑎
1 𝑎 𝑎2

𝑽0
𝑽1
𝑽2

(8)

 The vector on the left is the vector of phase voltages, 𝑽𝑝
 The vector on the right is the vector of (phase 𝑎) sequence 

components, 𝑽𝑠
 We’ll call the 3 × 3 transformation matrix 𝑨

 We can rewrite (8) as 

𝑽𝑝 = 𝑨𝑽𝑠 (9)
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Sequence Components

 We can express the sequence voltages as a function 
of the phase voltages by inverting the 
transformation matrix

𝑽𝑠 = 𝑨−1𝑽𝑝 (10)

where

𝑨−1 =
1

3

1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎
(11)

So
𝑽0
𝑽1
𝑽2

=
1

3

1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎

𝑽𝑎
𝑽𝑏
𝑽𝑐

(12)
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Sequence Components

 The same relationships hold for three-phase 
currents

 The phase currents are

𝑰𝑝 =

𝑰𝑎
𝑰𝑏
𝑰𝑐

 And, the sequence currents are

𝑰𝑠 =
𝑰0
𝑰1
𝑰2
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Sequence Components

 The transformation matrix, 𝑨, relates the phase 
currents to the sequence currents

𝑰𝑝 = 𝑨𝑰𝑠

𝑰𝑎
𝑰𝑏
𝑰𝑐

=
1 1 1
1 𝑎2 𝑎
1 𝑎 𝑎2

𝑰0
𝑰1
𝑰2

(13)

 And vice versa

𝑰𝑠 = 𝑨−1𝑰𝑝

𝑰0
𝑰1
𝑰2

=
1

3

1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎

𝑰𝑎
𝑰𝑏
𝑰𝑐

(14)
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Sequence Components – Balanced System

 Before applying sequence components to unbalanced systems, let’s first 
look at the sequence components for a balanced, positive-sequence, 
three-phase system

 For a balanced system, we have

𝑽𝑏 = 𝑽𝑎 ⋅ 1∠ − 120° = 𝑎2𝑽𝑎

𝑽𝑐 = 𝑽𝑎 ⋅ 1∠120° = 𝑎𝑽𝑎

 The sequence voltages are given by (12)
 The zero sequence voltage is

𝑽0 =
1

3
𝑽𝑎 + 𝑽𝑏 + 𝑽𝑐 =

1

3
𝑽𝑎 + 𝑎2𝑽𝑎 + 𝑎𝑽𝑎

𝑽0 =
1

3
𝑽𝑎 1 + 𝑎2 + 𝑎

 Applying the identity 1 + 𝑎2 + 𝑎 = 0, we have

𝑽0 = 0



K. Webb ESE 470

38

Sequence Components – Balanced System

 The positive sequence component is given by

𝑽1 =
1

3
𝑽𝑎 + 𝑎𝑽𝑏 + 𝑎2𝑽𝑐

𝑽1 =
1

3
𝑽𝑎 + 𝑎 ⋅ 𝑎2𝑽𝑎 + 𝑎2 ⋅ 𝑎𝑽𝑎

𝑽1 =
1

3
𝑽𝑎 + 𝑎3𝑽𝑎 + 𝑎3𝑽𝑎

 Since 𝑎3 = 1∠0°, we have

𝑽1 =
1

3
3𝑽𝑎

𝑽1 = 𝑽𝑎
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Sequence Components – Balanced System

 The negative sequence component is given by

𝑽2 =
1

3
𝑽𝑎 + 𝑎2𝑽𝑏 + 𝑎𝑽𝑐

𝑽2 =
1

3
𝑽𝑎 + 𝑎2 ⋅ 𝑎2𝑽𝑎 + 𝑎 ⋅ 𝑎𝑽𝑎

𝑽2 =
1

3
𝑽𝑎 + 𝑎4𝑽𝑎 + 𝑎2𝑽𝑎

 Again, using the identity 1 + 𝑎2 + 𝑎 = 0, along with 
the fact that 𝑎4 = 𝑎, we have

𝑽2 = 0
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Sequence Components – Balanced System

 So, for a positive-sequence, balanced, three-phase 
system, the sequence voltages are

𝑽0 = 0,    𝑽1 = 𝑽𝑎,    𝑽2 = 0

 Similarly, the sequence currents are

𝑰0 = 0,    𝑰1 = 𝑰𝑎,    𝑰2 = 0

 This is as we would expect
 No zero- or negative-sequence components for a 

positive-sequence balanced system

 Zero- and negative-sequence components are only 
used to account for imbalance
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Sequence Components

 We have just introduced the concept of symmetric 
components
 Allows for decomposition of, possibly unbalanced, 

three-phase phasors into sequence components

 We’ll now apply this concept to power system 
networks to develop sequence networks
 Decoupled networks for each of the sequence 

components

 Sequence networks become coupled only at the point 
of imbalance

 Simplifies the analysis of unbalanced systems
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Sequence Networks42
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Sequence Networks

 Power system components each have their own set of sequence networks
 Non-rotating loads

 Transmission lines

 Rotating machines – generators and motors

 Transformers

 Sequence networks for overall systems are interconnections of the 
individual sequence network

 Sequence networks become coupled in a particular way at the fault 
location depending on type of fault
 Line-to-line

 Single line-to-ground 

 Double line-to-ground

 Fault current can be determined through simple analysis of the coupled 
sequence networks
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K. Webb ESE 470

45

Sequence Networks – Non-Rotating Loads

 Consider a balanced Y-load with the neutral 
grounded through some non-zero impedance

 Applying KVL gives the phase-𝑎-to-ground 
voltage

𝑽𝑎𝑔 = 𝑍𝑦𝑰𝑎 + 𝑍𝑛𝑰𝑛

𝑽𝑎𝑔 = 𝑍𝑦𝑰𝑎 + 𝑍𝑛 𝑰𝑎 + 𝑰𝑏 + 𝑰𝑐

𝑽𝑎𝑔 = 𝑍𝑦 + 𝑍𝑛 𝑰𝑎 + 𝑍𝑛𝑰𝑏 + 𝑍𝑛𝑰𝑐 (15)

 For phase 𝑏:

𝑽𝑏𝑔 = 𝑍𝑦𝑰𝑏 + 𝑍𝑛𝑰𝑛 = 𝑍𝑦𝑰𝑏 + 𝑍𝑛 𝑰𝑎 + 𝑰𝑏 + 𝑰𝑐

𝑽𝑏𝑔 = 𝑍𝑛𝑰𝑎 + 𝑍𝑦 + 𝑍𝑛 𝑰𝑏 + 𝑍𝑛𝑰𝑐 (16)

 Similarly, for phase 𝑐:

𝑽𝑎𝑔 = 𝑍𝑛𝑰𝑎 + 𝑍𝑛𝑰𝑏 + 𝑍𝑦 + 𝑍𝑛 𝑰𝑐 (17)
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Sequence Networks – Non-Rotating Loads

 Putting (15) – (17) in matrix form

𝑽𝑎𝑔
𝑽𝑏𝑔
𝑽𝑐𝑔

=

𝑍𝑦 + 𝑍𝑛 𝑍𝑛 𝑍𝑛

𝑍𝑛 𝑍𝑦 + 𝑍𝑛 𝑍𝑛

𝑍𝑛 𝑍𝑛 𝑍𝑦 + 𝑍𝑛

𝑰𝑎
𝑰𝑏
𝑰𝑐

or

𝑽𝑝 = 𝒁𝑝𝑰𝑝 (18)

where 𝑽𝑝 and 𝑰𝑝 are the phase voltages and currents, respectively, and 𝒁𝑝 is the 
phase impedance matrix

 We can use (9) and (13) to rewrite (18) as

𝑨𝑽𝑠 = 𝒁𝑝𝑨𝑰𝑠

 Solving for 𝑽𝑠
𝑽𝑠 = 𝑨−1𝒁𝑝𝑨𝑰𝑠

or 

𝑽𝑠 = 𝒁𝑠𝑰𝑠 (19)
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Sequence Networks – Non-Rotating Loads

𝑽𝑠 = 𝒁𝑠𝑰𝑠 (19)

where 𝑍𝑠 is the sequence impedance matrix

𝒁𝑠 = 𝑨−1𝒁𝑝𝑨 =

𝑍𝑦 + 3𝑍𝑛 0 0

0 𝑍𝑦 0

0 0 𝑍𝑦

(20)

 Equation (19) then becomes a set of three uncoupled 
equations

𝑽0 = 𝑍𝑦 + 3𝑍𝑛 𝑰0 = 𝑍0𝑰0 (21)

𝑽1 = 𝑍𝑦𝑰1 = 𝑍1𝑰1 (22)

𝑽2 = 𝑍𝑦𝑰2 = 𝑍2𝑰2 (23)
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Sequence Networks – Non-Rotating Loads

 Equations (21) – (23) describe the uncoupled 
sequence networks

 Positive-sequence 
network:

 Negative-sequence 
network:

 Zero-sequence 
network:
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Sequence Networks – Non-Rotating Loads

 We can develop similar sequence networks for a balanced Δ-
connected load
 𝑍𝑦 = 𝑍Δ/3

 There is no neutral point for the Δ-network, so 𝑍𝑛 = ∞ - an open circuit

 Positive-sequence 
network:

 Negative-sequence 
network:

 Zero-sequence 
network:
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Sequence Networks – 3-𝜙 Lines

 Balanced, three-phase lines can be modeled as

 The voltage drops across the lines are given by the 
following system of equations

𝑽𝑎𝑎′

𝑽𝑏𝑏′

𝑽𝑐𝑐′
=

𝑍𝑎𝑎 𝑍𝑎𝑏 𝑍𝑎𝑐
𝑍𝑏𝑎 𝑍𝑏𝑏 𝑍𝑏𝑐
𝑍𝑐𝑎 𝑍𝑐𝑏 𝑍𝑐𝑐

𝑰𝑎
𝑰𝑏
𝑰𝑐

=

𝑽𝑎𝑛 − 𝑽𝑎′𝑛
𝑽𝑏𝑛 − 𝑽𝑏′𝑛
𝑽𝑐𝑛 − 𝑽𝑐′𝑛

(24)
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Sequence Networks – 3-𝜙 Lines

 Writing (24) in compact form

𝑽𝑝 − 𝑽𝑝′ = 𝒁𝑝𝑰𝑝 (25)

 𝒁𝑝 is the phase impedance matrix

 Self impedances along the diagonal

 Mutual impedances elsewhere

 Symmetric

 Diagonal, if we neglect mutual impedances
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Sequence Networks – 3-𝜙 Lines

 We can rewrite (25) in terms of sequence components

𝑨𝑽𝑠 − 𝑨𝑽𝑠′ = 𝒁𝑝𝑨𝑰𝑠

𝑽𝑠 − 𝑽𝑠′ = 𝑨−1𝒁𝑝𝑨𝑰𝑠

𝑽𝑠 − 𝑽𝑠′ = 𝒁𝑠𝑰𝑠 (26)

where 𝒁𝑠 is the sequence impedance matrix

𝒁𝑠 = 𝑨−1𝒁𝑝𝑨 (27)

 𝒁𝑠 is diagonal so long as the system impedances are 
balanced, i.e.
 Self impedances are equal:  𝑍𝑎𝑎 = 𝑍𝑏𝑏 = 𝑍𝑐𝑐
 Mutual impedances are equal:  𝑍𝑎𝑏 = 𝑍𝑎𝑐 = 𝑍𝑏𝑐
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 For balanced lines, 𝒁𝑠 is diagonal

𝒁𝑠 =

𝑍𝑎𝑎 + 2𝑍𝑎𝑏 0 0
0 𝑍𝑎𝑎 − 𝑍𝑎𝑏 0
0 0 𝑍𝑎𝑎 − 𝑍𝑎𝑏

=

𝑍0 0 0
0 𝑍1 0
0 0 𝑍2

 Because 𝑍𝑠 is diagonal, (26) represents three 
uncoupled equations

𝑽0 − 𝑽0′ = 𝑍0𝑰0 (28)

𝑽1 − 𝑽1′ = 𝑍1𝑰1 (29)

𝑽2 − 𝑽2′ = 𝑍2𝑰2 (30)
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Sequence Networks – 3-𝜙 Lines

 Equations (28) – (30) describe the voltage drop across three 
uncoupled sequence networks

 Positive-sequence 
network:

 Negative-sequence 
network:

 Zero-sequence 
network:
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Sequence Networks – Rotating Machines

 Consider the following model 
for a synchronous generator

 Similar to the Y-connected load 

 Generator includes voltage 
sources on each phase

 Voltage sources are positive 
sequence

 Sources will appear only in the 
positive-sequence network
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Sequence Networks – Synchronous Generator

 Sequence networks for Y-connected synchronous 
generator

 Positive-sequence 
network:

 Negative-sequence 
network:

 Zero-sequence 
network:
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Sequence Networks – Motors 

 Synchronous motors

 Sequence networks identical to those for synchronous 
generators

 Reference current directions are reversed

 Induction motors

 Similar sequence networks to synchronous motors, 
except source in the positive sequence network set to 
zero
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Sequence Networks - Y-Y Transformers

 Per-unit sequence networks for transformers
 Simplify by neglecting transformer shunt admittances

 Consider a Y-Y transformer

 Similar to the Y-connected load, the voltage drops 
across the neutral impedances are 3𝐼0𝑍𝑁 and 3𝐼0𝑍𝑛
 3𝑍𝑁 and 3𝑍𝑛 each appear in the zero-sequence network
 Can be combined in the per-unit circuit as long as shunt 

impedances are neglected
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Sequence Networks – Y-Y Transformers

 Impedance accounting for leakage flux and winding resistance for 
each winding can be referred to the primary
 Add together into a single impedance, 𝑍𝑠, in the per-unit model

 Y-Y transformer sequence networks

 Positive-sequence 
network:

 Negative-sequence 
network:

 Zero-sequence 
network:
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Sequence Networks – Y-ΔTransformers

 Y-Δ transformers differ in a couple of ways

 Must account for phase shift from primary to secondary

 For positive-sequence network, Y-side voltage and current lead Δ-
side voltage and current

 For negative-sequence network, Y-side voltage and current lag Δ-
side voltage and current

 No neutral connection on the Δ side

 Zero-sequence current cannot enter or leave the Δ winding
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Sequence Networks – Y-ΔTransformers

 Sequence networks for Y-ΔTransformers

 Positive-sequence 
network:

 Negative-sequence 
network:

 Zero-sequence 
network:
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Sequence Networks – Δ-ΔTransformers

 Δ-Δ transformers

 Like Y-Y transformers, no phase shift

 No neutral connections

 Zero-sequence current cannot flow into or out of either 
winding
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Sequence Networks – Δ-ΔTransformers

 Sequence networks for Δ-ΔTransformers

 Positive-sequence 
network:

 Negative-sequence 
network:

 Zero-sequence 
network:
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 We can relate the power delivered to a system’s 
sequence networks to the three-phase power delivered 
to that system

 We know that the complex power delivered to a three-
phase system is the sum of the power at each phase

𝑆𝑝 = 𝑽𝑎𝑛𝑰𝑎
∗ + 𝑽𝑏𝑛𝑰𝑏

∗ + 𝑽𝑐𝑛𝑰𝑐
∗

 In matrix form, this looks like

𝑆𝑝 = 𝑽𝑎𝑛 𝑽𝑏𝑛 𝑽𝑐𝑛

𝑰𝑎
∗

𝑰𝑏
∗

𝑰𝑐
∗

𝑆𝑝 = 𝑽𝑝
𝑇𝑰𝑝

∗ (28)
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 Recall the following relationships

𝑽𝑝 = 𝑨𝑽𝑠 (9)

𝑰𝑝 = 𝑨𝑰𝑠 (13)

 Using (9) and (13) in (28), we have

𝑺𝑝 = 𝑨𝑽𝑠
𝑇 𝑨𝑰𝑠

∗

𝑺𝑝 = 𝑽𝑠
𝑇𝑨𝑇𝑨∗𝑰𝑠

∗ (29)

 Computing the product in the middle of the right-hand side of (29), 
we find

𝑨𝑇𝑨∗ =
3 0 0
0 3 0
0 0 3

= 3𝑰3

where 𝑰3 is the 3×3 identity matrix
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Power in Sequence Networks

 Equation (29) then becomes

𝑺𝑝 = 𝑽𝑠
𝑇3𝑰3𝑰𝑠

∗

𝑺𝑝 = 3𝑽𝑠
𝑇𝑰𝑠

∗

𝑺𝑝 = 3 𝑽0 𝑽1 𝑽2

𝑰0
∗

𝑰1
∗

𝑰2
∗

𝑺𝑝 = 3 𝑽0𝑰0
∗ + 𝑽1𝑰1

∗ + 𝑽2𝑰2
∗

 The total power delivered to a three-phase network is three 
times the sum of the power delivered to the three sequence 
networks
 The three sequence networks represent only one of the three 

phases – recall, we chose to consider only phase 𝑎
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A bolted, symmetric, three-phase fault occurs 60% of the way from bus 1 to 
bus 2. Determine the subtransient fault current in per-unit and in amperes. 
The load is consuming rated power at rated voltage and unity power factor.
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Determine the sequence components for the following 
unbalanced set of three-phase voltage phasors:

𝐕𝑎 = 1∠0° 𝑝. 𝑢.
𝐕𝑏 = 0.5∠ − 60° 𝑝. 𝑢.
𝐕𝑐 = 2∠200° 𝑝. 𝑢.
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Determine the phase components for the following set 
of sequence components:

𝐕0 = 1∠60° 𝑝. 𝑢.
𝐕1 = 1∠0° 𝑝. 𝑢.
𝐕2 = 0 𝑝. 𝑢.
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Unsymmetrical Faults

 The majority of faults that occur in three-phase power 
systems are unsymmetrical
 Not balanced

 Fault current and voltage differ for each phase

 The method of symmetrical components and sequence 
networks provide us with a tool to analyze these 
unsymmetrical faults

 We’ll examine three types of unsymmetrical faults
 Single line-to-ground (SLG) faults

 Line-to-line (LL) faults

 Double line-to-ground (DLG) faults



K. Webb ESE 470

82

Unsymmetrical Fault Analysis - Procedure

 Basic procedure for fault analysis:

1. Generate sequence networks for the system

2. Interconnect sequence networks appropriately at the 
fault location

3. Perform circuit analysis on the interconnected 
sequence networks
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Unsymmetrical Fault Analysis

 To simplify our analysis, we’ll make the following 
assumptions

1. System is balanced before the instant of the fault

2. Neglect pre-fault load current

 All pre-fault machine terminal voltages and bus voltages are equal 
to 𝑉𝐹

3. Transmission lines are modeled as series reactances only

4. Transformers are modeled with leakage reactances only

5. Non-rotating loads are neglected

6. Induction motors are either neglected or modeled as 
synchronous motors
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Unsymmetrical Fault Analysis

 Each sequence network includes all interconnected power-
system components
 Generators, motors, lines, and transformers

 Analysis will be simplified if we represent each sequence 
network as its Thévenin equivalent
 From the perspective of the fault location

 For example, consider the following power system:
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Unsymmetrical Fault Analysis – Sequence Networks

 The sequence networks for the system are generated by 
interconnecting the sequence networks for each of the components

 The zero-sequence network:

 The positive-sequence network:
 Assuming the generator is operating at the rated voltage at the time of 

the fault



K. Webb ESE 470

86

Unsymmetrical Fault Analysis – Sequence Networks

 The negative sequence network:

 Now, let’s assume there is some sort of fault at bus 1
 Determine the Thévenin equivalent for each sequence network from the 

perspective of bus 1

 Simplifying the zero-sequence network to its Thévenin equivalent
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Unsymmetrical Fault Analysis – Sequence Networks

 The positive-sequence network simplifies to the following 
circuit with the following Thévenin equivalent

 Similarly, for the negative-sequence network, we have

 Next, we’ll see how to interconnect these networks to 
analyze different types of faults
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K. Webb ESE 470

89

Unsymmetrical Fault Analysis – SLG Fault

 The following represents a 
generic three-phase network 
with terminals at the fault 
location:

 If we have a single-line-to-
ground fault, where phase 𝑎 is 
shorted through 𝑍𝑓 to ground, 

the model becomes:
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Unsymmetrical Fault Analysis – SLG Fault

 The phase-domain fault conditions:

𝑰𝑎 =
𝑽𝑎𝑔

𝑍𝑓
(1)

𝑰𝑏 = 𝑰𝑐 = 0 (2)

 Transforming these phase-domain 
currents to the sequence domain

𝑰0
𝑰1
𝑰2

=
1

3

1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎

𝑽𝑎𝑔/𝑍𝑓
0
0

=
1

3

𝑽𝑎𝑔/𝑍𝑓
𝑽𝑎𝑔/𝑍𝑓
𝑽𝑎𝑔/𝑍𝑓

(3)

 This gives one of our sequence-domain fault conditions

𝑰0 = 𝑰1 = 𝑰2 (4)
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Unsymmetrical Fault Analysis – SLG Fault

 We know that

𝑰𝑎 =
𝑽𝑎𝑔

𝑍𝑓
= 𝑰0 + 𝑰1 + 𝑰2 (5)

and
𝑽𝑎𝑔 = 𝑽0 + 𝑽1 + 𝑽2 (6)

 Using (5) and (6) in (1), we get 

𝑰0 + 𝑰1 + 𝑰2 =
1

𝑍𝑓
𝑽0 + 𝑽1 + 𝑽2

 Using (4), this gives our second sequence-domain fault 
condition

𝑰0 = 𝑰1 = 𝑰2 =
1

3𝑍𝑓
𝑽0 + 𝑽1 + 𝑽2 (7)
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Unsymmetrical Fault Analysis – SLG Fault

 The sequence-domain fault conditions 
are satisfied by connecting the 
sequence networks in series along 
with three times the fault impedance

 We want to find the phase domain 
fault current, 𝑰𝐹

𝑰𝐹 = 𝑰𝑎 = 𝑰0 + 𝑰1 + 𝑰2 = 3𝑰1

𝑰1 =
𝑽𝐹

𝑍0+𝑍1+𝑍2+3𝑍𝐹

𝑰𝐹 =
3𝑽𝐹

𝑍0+𝑍1+𝑍2+3𝑍𝐹
(8)
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SLG Fault - Example

 Returning to our example power system

 The interconnected 
sequence networks for a 
bolted fault at bus 1:
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SLG Fault - Example

 The fault current is

𝑰𝐹 =
3𝑽𝐹

𝑍0+𝑍1+𝑍2+3𝑍𝐹

𝑰𝐹 =
3.0∠30°

𝑗0.473
= 6.34∠ − 60° 𝑝. 𝑢.

 The current base at bus 1 is

𝑰𝑏 =
𝑆𝑏

3𝑉𝑏1
=

150 𝑀𝑉𝐴

3 230 𝑘𝑉
= 376.5 𝐴

 So the fault current in kA is

𝑰𝐹 = 6.34∠ − 60° 376.5 𝐴

𝑰𝐹 = 2.39∠ − 60° 𝑘𝐴
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Unsymmetrical Fault Analysis – LL Fault

 Now consider a line-to-line fault between 
phase 𝑏 and phase 𝑐 through impedance 𝑍𝐹

 Phase-domain fault conditions:

𝑰𝑎 = 0 (9)

𝑰𝑏 = −𝑰𝑐 =
𝑽𝑏𝑔−𝑽𝑐𝑔

𝑍𝐹
(10)

 Transforming to the sequence domain

𝑰0
𝑰1
𝑰2

=
1

3

1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎

0
𝑰𝑏
−𝑰𝑏

=
1

3

0
𝑎 − 𝑎2 𝑰𝑏
𝑎2 − 𝑎 𝑰𝑏

(11)

 So, the first two sequence-domain fault conditions are

𝑰0 = 0 (12)

𝑰2 = −𝑰1 (13)
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Unsymmetrical Fault Analysis – LL Fault

 To derive the remaining sequence-domain fault 
condition, rearrange (10) and transform to the 
sequence domain

𝑽𝑏𝑔 − 𝑽𝑐𝑔 = 𝑰𝑏𝑍𝐹

𝑽0 + 𝑎2𝑽1 + 𝑎𝑽2 − 𝑽0 + 𝑎𝑽1 + 𝑎2𝑽2

= 𝑰0 + 𝑎2𝑰1 + 𝑎𝑰2 𝑍𝐹

𝑎2𝑽1 + 𝑎𝑽2 − 𝑎𝑽1 − 𝑎2𝑽2 = 𝑎2 − 𝑎 𝑰1𝑍𝐹

𝑎2 − 𝑎 𝑽1 − 𝑎2 − 𝑎 𝑽2 = 𝑎2 − 𝑎 𝑰1𝑍𝐹

 The last sequence-domain fault condition is

𝑽1 − 𝑽2 = 𝑰1𝑍𝐹 (14)
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Unsymmetrical Fault Analysis – LL Fault

 Sequence-domain fault conditions

𝑰0 = 0 (12)

𝑰2 = −𝑰1 (13)

𝑽1 − 𝑽2 = 𝑰1𝑍𝐹 (14)

 These can be satisfied by:
 Leaving the zero-sequence network open

 Connecting the terminals of the positive- and negative-sequence 
networks together through 𝑍𝐹
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Unsymmetrical Fault Analysis – LL Fault

 The fault current is the phase 𝑏 current, which is given by

𝑰𝐹 = 𝑰𝑏 = 𝑰0 + 𝑎2𝑰1 + 𝑎𝑰2

𝑰𝐹 = 𝑎2𝑰1 − 𝑎𝑰1

𝑰𝐹 = −𝑗 3 𝑰1 =
−𝑗 3 𝑽𝐹

𝑍1+𝑍2+𝑍𝐹

𝑰𝐹 =
3 𝑽𝐹∠−90°

𝑍1+𝑍2+𝑍𝐹
(15)
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LL Fault - Example

 Now consider the same system with a bolted line-to-line 
fault at bus 1

 The sequence network:
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LL Fault - Example

𝑰1 =
1∠30°

𝑗0.349
= 2.87∠ − 60°

 The subtransient fault current is given by (15) as

𝑰𝐹 = 3∠ − 90° 2.87∠ − 60°

𝑰𝐹 = 4.96∠ − 150° 𝑝. 𝑢.

 Using the previously-determined current base, we can 
convert the fault current to kA

𝑰𝐹 = 𝐼𝑏1 ⋅ 4.96∠ − 150°

𝑰𝐹 = 4.96∠ − 150° 376.5𝐴

𝑰𝐹 = 1.87∠ − 150° 𝑘𝐴
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Unsymmetrical Fault Analysis – DLG Fault

 Now consider a double line-to-ground fault
 Assume phases 𝑏 and 𝑐 are shorted to 

ground through 𝑍𝐹
 Phase-domain fault conditions:

𝑰𝑎 = 0 (16)

𝑰𝑏 + 𝑰𝑐 =
𝑽𝑏𝑔

𝑍𝐹
=

𝑽𝑐𝑔

𝑍𝐹
(17)

 It can be shown that (16) and (17) transform to the following 
sequence-domain fault conditions (analysis skipped here)

𝑰0 + 𝑰1 + 𝑰2 = 0 (18)

𝑽1 = 𝑽2 (19)

𝑰0 =
1

3𝑍𝐹
𝑽0 − 𝑽1 (20)
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Unsymmetrical Fault Analysis – DLG Fault

 Sequence-domain fault conditions

𝑰0 + 𝑰1 + 𝑰2 = 0 (18)

𝑽1 = 𝑽2 (19)

𝑰0 =
1

3𝑍𝐹
𝑽0 − 𝑽1 (20)

 To satisfy these fault conditions
 Connect the positive- and negative-sequence networks together directly

 Connect the zero- and positive-sequence networks together through 3𝑍𝐹
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Unsymmetrical Fault Analysis – DLG Fault

 The fault current is the sum of the  phase 𝑏 and phase 𝑐
currents, as given by (17)
 In the sequence domain the fault current is

𝑰𝐹 = 𝑰𝑏 + 𝑰𝑐 = 3𝑰0

𝑰𝐹 = 3𝑰0 (21)

 𝐼0 can be determined by a simple analysis (e.g. nodal) of the 
interconnected sequence networks
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DLG Fault - Example

 Now determine the subtransient fault current for a bolted 
double line-to-ground fault at bus 1

 The sequence network:

 Here, because 𝑍𝐹 = 0, 𝑽0 = 𝑽1 = 𝑽2
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DLG Fault - Example

 To find 𝑰𝐹, we must determine 𝑰0

 We can first find 𝑉0 by applying voltage division

𝑽0 = 𝑽𝐹
𝑍2||𝑍0

𝑍1 + 𝑍2||𝑍0

𝑽0 = 1.0∠30°
𝑗0.18||𝑗0.124

𝑗0.169 + 𝑗0.18||𝑗0.124

𝑽0 = 0.303∠30°
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DLG Fault - Example

 Next, calculate 𝑰0

𝑰0 =
−𝑽0
𝑍0

=
−0.303∠30°

𝑗0.124
= 2.44∠120° 𝑝. 𝑢.

 The per-unit fault current is

𝑰𝐹 = 3𝑰0 = 7.33∠120° 𝑝. 𝑢.

 Using the current base to convert to kA, gives the 
subtransient DLG fault current

𝑰𝐹 = 7.33∠120° 376.5 𝐴

𝑰𝐹 = 2.76∠120° 𝑘𝐴
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Draw the sequence networks for the following power system. 
Assume the generator is operating at rated voltage.
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Reduce the sequence networks to their Thévenin 
equivalents for a fault occurring half of the way along the 
transmission line.
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Determine the subtransient fault current resulting from a 
DLG fault, half way along the transmission line, through 
an impedance of j0.2 p.u.
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