SECTION 7: FAULT ANALYSIS

- ESE 470 — Energy Distribution Systems



- Introduction
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Power System Faults

Faults in three-phase power systems are short circuits
o Line-to-ground
o Line-to-line

Result in the flow of excessive current

o Damage to equipment
Heat — burning/melting
Structural damage due to large magnetic forces

Bolted short circuits
O True short circuits —i.e., zero impedance

In general, fault impedance may be non-zero

Faults may be opens as well
o We'll focus on short circuits
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Types of Faults
-
Type of faults from most to least common:
o Single line-to-ground faults
O Line-to-line faults
o Double line-to-ground faults
o Balanced three-phase (symmetrical) faults

We'll look first at the least common type of fault —
the symmetrical fault — due to its simplicity
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- Subtransient Fault Current
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Fault Current

Faults occur nearly instantaneously
o Lightening, tree fall, arcing over insulation, etc.

Step change from steady-state behavior
o Like throwing a switch to create the faultatt = 0

Consider an unloaded synchronous generator
o Equivalent circuit model:

AN Y\ —>

v(t) (\D £~ t=0

O R: generator resistance
O L: generator inductance v
oi(t)=0fort<O0

o Source phase, a, determines voltage att = 0
Short circuit can occur at any point in a 60 Hz cycle

v(t) = V2V, sin(wt + a)
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Fault Current
e

The governing differential equation fort > 0 is

di R 2V,
I + l(t)z =—7 sin(wt + a)
The solution gives the fault current
V2V, _R
i(t) = ¢ sin(wt + a — 0) —sin(a — @) e tL]

Z
where Z =,/R2+ (wL)? and 6 =tan™’ (%L)

This total fault current is referred to as the asymmetrical fault current
O It has a steady-state component

V2V

ic(t) = sin(wt + a — 6)

o And a transient component

V2V

sin(a — 0) e 'L

idc(t) - =
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Fault Current
e

Magnitude of the transient fault current, i, depends on «
oizg(0)=0 for a=26
o iz (0) =+2I,, for a=6-90°

I, = V;/Z is the rms value of the steady-state fault current

Fault Current for an Unloaded Synchronous Generator Fault Current for an Unloaded Synchronous Generator Fault Current for an Unloaded Synchronous Generator
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Worst-case fault current occurs fora = 8 — 90°

i(t) = \/_V sin (a)t — g) + e_t%]
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Fault Current
e

Important points here:

o Total fault current has both steady-state and transient
components — asymmetrical

o Magnitude of the asymmetry (transient component)
depends on the phase of the generator voltage at the
time of the fault

o In this class, we will use the steady-state current
component, I ,., as our primary fault current metric
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Generator Reactance

The reactance of the generator was assumed
constant in the previous example

Physical characteristics of real generators result in a
time-varying reactance following a fault

o Time-dependence modeled with three reactance values

X : subtransient reactance
X/ transient reactance
Xg4: synchronous reactance

o Reactance increases with time, such that
X) <X);<Xy4
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Sub-Transient Fault Current
S —

Transition rates between reactance values are dictated by two time
constants:

o 1j: short-circuit subtransient time constant
o 7j: short-circuit transient time constant

Neglecting generator resistance, i.e. assuming 8 = 90°, the synchronous
portion of the fault current is

1 1 —T—€,+ 1 1 —Ti,+ 1
_ d _ d —_
X7 x;)° X x,)° " T x,

At the instant of the fault, t = 0, the rms synchronous fault current is

s
i,.(t) =2V, sin (a)t +a— —)

2

Ve
III - L
F Xc’l’

o This is the rms subtransient fault current, I,
o This will be our primary metric for assessing fault current
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Symmetrical Three-Phase Short

Circuits
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Symmetrical 3-¢ Short Circuits

Next, we’ll calculate the subtransient fault current
resulting from a balanced three-phase fault

We'll make the following simplifying assumptions:

o Transformers modeled with leakage reactance only

Neglect winding resistance and shunt admittances
Neglect A-Y phase shifts

o Transmission lines modeled with series reactance only

o Synchronous machines modeled as constant voltage sources
in series with subtransient reactances

Generators and motors

O Induction motors are neglected or modeled as synchronous
motors

o Non-rotating loads are neglected
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Symmetrical 3-¢ Short Circuits

We'll apply superposition to determine three-phase
subtransient fault current

Consider the following power system:

© @
T Xie=200 2
| & S
100 MVA 100 MVA
100 MVA 13.8kV A/ 138 kV Y/ 100 MVA
13.8 kV 138 kV Y 13.8kV A 13.8 kV
X" =0.15p.u. X1 = 0.1 p.u. X1, =0.1 p.u. Xn =0.2 p.u.

Assume there is a balanced three-phase short of bus 1
togroundatt =0
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Symmetrical 3-¢ Short Circuits

The instant of the fault can be modeled by the switch
closing in the following line-to-neutral schematic

jXTl jx\ine ijZ

MM Y m MM M

Xm
Y YN
b
I

Vo @ A " (D) Vu

The short circuit (closed switch) can be represented by two
back-to-back voltage sources, each equal to V
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Symmetrical 3-¢ Short Circuits

Applying superposition, we can represent this circuit as the

sum of two separate circuits:

Circuit 1 Circuit 2
J.XG” @ jxeq” JXG ) JX q
YN ‘ YN YN — YN
—> — — «—
ler” Inma” lg2” VP
vV, + Vv _
N R CTIER " |
- +

K. Webb ESE 470



Symmetrical 3-¢ Short Circuits

Assume that the value of the fault-location source,
V5, is the pre-fault voltage at that location

o Circuit 1, then, represents the pre-fault circuit, so
F1 =0

o The Vi source can therefore be removed from circuit 1

Circuit 1 Circuit 2
jXa” I, jX iXe . Xeg”
— — —> —
ler” ' 1% Imz”
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Symmetrical 3-¢ Short Circuits

e
The current in circuit 1, I, is the pre-fault line current

Superposition gives the fault current
Iz = Ig;, + I, = I,
The generator fault current is
I; = Ig; + Ig;
I; =1, + 1,
The motor fault current is
Iy = Ingy + Iz

I;\:I —_ _IL +I;\,42
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Symmetrical 3-¢ Fault — Example

Ta T

©—0 I 3 T8 3¢ Im@

100 MVA 100 MVA
100 MVA 13.8kVA/ 138 kV Y/ 100 MVA
13.8 kV 138 kV'Y 13.8 kV A 13.8 kV
X" =0.15p.u. X1 = 0.1 p.u. X7, = 0.1 p.u. Xm'"=0.2 p.u.

For the simple power system above:

o Generator is supplying rated power

o Generator voltage is 5% above rated voltage
o Generator power factor is 0.95 lagging

A bolted three-phase fault occurs at bus 1

Determine:

o Subtransient fault current

o Subtransient generator current
o Subtransient motor current
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Symmetrical 3-¢ Fault — Example

100 MVA 100 MVA
100 MVA 13.8kvA/ 138 kVY/ 100 MVA
13.8 kv 138 kV Y 13.8 kV A 13.8 kv
X, =0.15p.u. %1 = 0.1 p.u. X1 = 0.1 p.u. Xa' =0.2p.u.

First convert to per-unit
o UseS, =100 MVA

Base voltage in the transmission line zone is

Vb,tl == 138 kV

Base impedance in the transmission line zone is

Viu (138kV)?

Ly = = =1904 Q
bl ™ ¢ 7 100 MVA
The per-unit transmission line reactance is
X¢ = 209 _ 0.105
= 19040 P
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Symmetrical 3-¢ Fault — Example

-
The two per-unit circuits are

j0.15 | j0.505 j0.15 j0.505
—> @ ®
YN YN YN Y
iXs” (X1 +Xy+Xr2+ X" > <

e llF" "
G2 _ M2
Ve @ @ Y Ve @ 1.05£0° p.u.

+

These can be simplified by combining impedances

j0.655
YN

Vs @ @VM VF_(f\) 1.0820° pu, % j0.116

I,

N I rn
©) P

+
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Symmetrical 3-¢ Fault — Example
-

Using circuit 2, we can calculate the subtransient fault current

I} = 105207 _ 9.0792 — 90°
F=T0116 B 5

To convert to kA, first determine the current base in the generator
zone

LS __100MVA
P T BV, V3-138kV

The subtransient fault current is

I} = (9.0792 — 90°) - 4.18 kA

= 4.18 kA

Iz =37.982 —90° kA
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Symmetrical 3-¢ Fault — Example
-

The pre-fault line current can be calculated from the pre-fault
generator voltage and power

*

A e _< Se )*_(1004cos‘1(0.95)MVA)*
L — 1" - . = -
Ve/ VaVy)  (V3-1.05-13.820°kV)
V3
100 — 18.19° MVA
I,

~ \J3-1.05-13.820°kV

I, = 3982 —18.19° kA

o Or, in per-unit:

o 3.982 — 18.19° kA
L= 4.18 KA

= 0.9522 — 18.19° p. u.
o This will be used to find the generator and motor fault currents
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Symmetrical 3-¢ Fault — Example
-

The generator’s contribution to the fault current is found by applying
current division

I, =TI 0-505 = 7.0 — 90°
62 = 'F0505+015 p-u-

Adding the pre-fault line current, we have the subtransient generator fault
current

I; =1, + 1,

I; =09522—18.19° + 7.0 — 90°

I} =7.352—82.9°p.u.
Converting to kA

I; = (7354 —82.9°) - 4.18 kA

I; =30.742 — 82.9° kA
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Symmetrical 3-¢ Fault — Example
-

Similarly, for the motor

v 0.15
Mz = 7F 0,505 + 0.15

Subtracting the pre-fault line current gives the subtransient motor
fault current

= 2.082 —90° p. u.

Iy = -1, + Iy,
I, = —0.9522 — 18.19° + 2.082 — 90°
I =2.0s—116.9°

Converting to kA
I = (2.02 — 116.9°) - 4.18 kA

I, =8364£—116.9° kA
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n Symmetrical Components
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Symmetrical Components

In the previous section, we saw how to calculate
subtransient fault current for balanced three-phase

faults
Unsymmetrical faults are much more common

o Analysis is more complicated

We'll now learn a tool that will simplify the analysis
of unsymmetrical faults

o The method of symmetrical components
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Symmetrical Components

The method of symmetrical components:

O Represent an asymmetrical set of N phasors as a sum of N
sets of symmetrical component phasors

o These N sets of phasors are called sequence components

Analogous to:

o Decomposition of electrical signals into differential and
common-mode components

o Decomposition of forces into orthogonal components

For a three-phase system (N = 3), sequence
components are.

Zero sequence components

Positive sequence components

Negative sequence components
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Sequence Components

Zero sequence components

o Three phasors with equal magnitude and
equal phase

O Vao, Vo, Veo

Positive sequence components

o Three phasors with equal magnitude and
+ 120°, positive-sequence phase

OVa, Vi, Ve

Negative sequence components

o Three phasors with equal magnitude and
+ 120°, negative-sequence phase

O VaZr VbZl VCZ

K. Webb
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Sequence Components
e

Note that the absolute phase and the magnitudes
of the sequence components is not specified

o Magnitude and phase define a unique set of sequence
components

Any set of phasors — balanced or unbalanced — can
be represented as a sum of sequence components

_Va_ _VaO_ _Val_ _Vaz_
Voo + |Vpi| + |V (1)
Vel Wl Wl Vel

<
.y
|
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Sequence Components
e

The phasors of each sequence component have a fixed phase
relationship

o If we know one, we know the other two
o Assume we know phase a — use that as the reference

For the zero sequence components, we have
Vo =Vao =Vyo =V (2)

For the positive sequence components,
V1 - Val — (141200) . Vbl - (142400) . VC1 (3)

And, for the negative sequence components,
V, =V, = (12240°) - V,, = (12120°) -V, (4)

Note that we’re using phase a as our reference, so
Vo=Vao, Vi=Va, Vy=Vgy
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Sequence Components

Next, we define a complex number, a, that has unit
magnitude and phase of 120°

a=12120° (5)

o Multiplication by a results in a rotation (a phase shift) of 120°
o Multiplication by a? yields a rotation of 240° = —120°

Using (5) to rewrite (3) and (4)
Vi=Vg =aVy =a’Vy (6)
Vy, =Vgp = a’Vy, = aV, (7)
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Sequence Components

"""V
Using (2), (6), and (7), we can rewrite (1) in a simplified

form
V, 1 1 17[Vo
Vpl| = ll a’ al|Vy (8)
V. 1 a a?llV,

O The vector on the left is the vector of phase voltages, V,,

o The vector on the right is the vector of (phase a) sequence
components, V

o We'll call the 3 X 3 transformation matrix 4

We can rewrite (8) as

V, = AV (9)
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Sequence Components

We can express the sequence voltages as a function
of the phase voltages by inverting the
transformation matrix

Vs =A"'V, (10)
where
1 1 1
Al'==|11 a a? (11)
1 a* a
So
Vo 1 1 1711V,
V.| = % 1 a a*l|Vy (12)
_Vz_ 1 a2 a . VC
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Sequence Components
e

The same relationships hold for three-phase
currents

The phase currents are

~
|
~

Sy

I, = |1,
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Sequence Components

The transformation matrix, A, relates the phase
currents to the sequence currents

p = Al

O
Ib 1 a’ 1 (13)
2
And vice versa

I, = A7,

el
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Sequence Components — Balanced System
e

Before applying sequence components to unbalanced systems, let’s first
look at the sequence components for a balanced, positive-sequence,
three-phase system

For a balanced system, we have
V, =V, 14 —120° = a?V,
V.=V, 12£120° = aV,

The sequence voltages are given by (12)
o The zero sequence voltage is

1 1 ,
VO =§[Va+vb+vc] =§[Va+a Va+ClVa]

1
Vo =§Va[1 +a® + a]

Applying the identity 1 + a? + a = 0, we have
VO == O
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Sequence Components — Balanced System

e
The positive sequence component is given by

1
Vi,==[V, +aV, +a?V_]

3
1 2 2

V, =§[Va+a-a V,+a*-aV,]
1 3 3

V, =§[Va+a Vy+a’V,]

o Since a3 = 12£0°, we have

1

V, = § [3Va]

V1=Va
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Sequence Components — Balanced System
X
The negative sequence component is given by

V,==[V,+a*V, +aV,]

V,==[V,+a?*-a*V,+a-aV,]

_ W R W e

vV, = 3 [V, + a*V,+ a?V,]

Again, using the identity 1 + a? + a = 0, along with
the fact that a* = a, we have
V2 — O
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Sequence Components — Balanced System

So, for a positive-sequence, balanced, three-phase
system, the sequence voltages are

VOZO, V1:Va, V2:0
Similarly, the sequence currents are
IOZO, Ilzla, 12:()

This is as we would expect

o No zero- or negative-sequence components for a
positive-sequence balanced system

o Zero- and negative-sequence components are only
used to account for imbalance
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Sequence Components

-
We have just introduced the concept of symmetric
components

o Allows for decomposition of, possibly unbalanced,
three-phase phasors into sequence components

We'll now apply this concept to power system
networks to develop sequence networks

o Decoupled networks for each of the sequence
components

o Sequence networks become coupled only at the point
of imbalance

o Simplifies the analysis of unbalanced systems
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Sequence Networks
-

Power system components each have their own set of sequence networks
o Non-rotating loads

o Transmission lines

o Rotating machines — generators and motors

o Transformers

Sequence networks for overall systems are interconnections of the
individual sequence network

Sequence networks become coupled in a particular way at the fault
location depending on type of fault

o Line-to-line
o Single line-to-ground
o Double line-to-ground

Fault current can be determined through simple analysis of the coupled
sequence networks
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Sequence Networks — Non-Rotating Loads
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Sequence Networks — Non-Rotating Loads

Consider a balanced Y-load with the neutral
grounded through some non-zero impedance

Applying KVL gives the phase-a-to-ground
voltage

Vag = Zyly + Zyly,

Vag = Zydlg + Zn(Iy + 1, + 1)

Vag = (Zy + Zp)l o + Zyy + Zy I, (15)
For phase b:

Vig = Zyly + Znly = Zy1y + Zy(Ig + 1 + 1)

Vig = Znla + (Zy, + Z)Ip + Z, 1, (16)

Similarly, for phase c:
Vag = Znlg + Zndy + (Z, + Z)I, (17)
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Sequence Networks — Non-Rotating Loads

-0V
Putting (15) — (17) in matrix form

Vg1 [(Zy +2y) Z, Z, | I,
Vigl=| Zn (z, + Z,) Zn [1,,]
Vgl | 2, Z, (2, + 2,) | He
or
V, =Z,I, (18)

where V,, and I, are the phase voltages and currents, respectively, and Z,, is the
phase impedance matrix

We can use (9) and (13) to rewrite (18) as

AV, = Z Al
Solving for V4

Vs, = A"1Z, Al
or

V. =21, (19)
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Sequence Networks — Non-Rotating Loads

I
V, = Z,I, (19)

where Z, is the sequence impedance matrix

(Z,+3Z,) 0 0
Z,=A"'Z,A= 0 Z, 0 (20)
0 0 Z,]

Equation (19) then becomes a set of three uncoupled
equations

VO — (Zy + BZn)IO — Z()IO (21)
V1 — Zyll — lel (22)
V2 — Zylz — ZzIz (23)
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Sequence Networks — Non-Rotating Loads

Equations (21) — (23) describe the uncoupled
sequence networks

O Zero-sequence o

H
network: + lz
Y 1
-1
o Positive-sequence o Negative-sequence
network: I network: B

o H H
o
+ +
Vj_ ZY V2 ZV
o o
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Sequence Networks — Non-Rotating Loads

We can develop similar sequence networks for a balanced A-
connected load

O Zy = ZA/3
o There is no neutral point for the A-network, so Z,, = o - an open circuit

_ lb=0
o Zero-sequence 07,
network: >
v |i:|zﬂ/3
0
> ?
o Positive-sequence o Negative-sequence
network: hetwork:
[ [
e : e :
+ +

[ [
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3-¢ Lines
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Sequence Networks — 3-¢ Lines

Balanced, three-phase lines can be modeled as

la
ca >

Vaa'
Y'Y a_,
+ Zaa +
Iy + Vi -
ob — AN YN b'
+ Zob +
Van I Va’n
C CH + Vcc' . c'
VWV —— 1T
Vbn + € + Vb’n
V Ven

The voltage drops across the lines are given by the
following system of equations

_Vaa'- Zaa Zapb Zac][la _Van - Va’n-
Viv'| =1Zba Zvb  Zpc||In| = |Vin — Viprn (24)
_Vcc’_ Lea Zep Zecll, _Vcn — Vc’n_
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Sequence Networks — 3-¢ Lines

"""V
Writing (24) in compact form

Vp — Vpr = ZpIp (25)

Z, is the phase impedance matrix

o Self impedances along the diagonal

o Mutual impedances elsewhere

O Symmetric

o Diagonal, if we neglect mutual impedances
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Sequence Networks — 3-¢ Lines

"""V
We can rewrite (25) in terms of sequence components

AV, — AV = Z,Al;

Ve =V = A‘llpAIS

Ve =V =Z,I; (26)
where Z . is the sequence impedance matrix

Z;,=A""Z,A (27)

Z . is diagonal so long as the system impedances are
balanced, i.e.

o Self impedances are equal: Z,, = Zpp = Z,
o Mutual impedances are equal: Z,, = Z,. = Zp,
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Sequence Networks — 3-¢ Lines
e

For balanced lines, Z is diagonal

Zaa + 274 0 o | [z, 0o 0]
Z, = 0 Z o — Zap 0 =(0 Zz, 0
0 0 Zaa —Zap| |0 0 Zy]

Because Z, is diagonal, (26) represents three
uncoupled equations

VO — VO/ — Z()IO (28)
V1 — Vl’ — lel (29)
VZ — V2’ — ZzIz (30)

K. Webb ESE 470



Sequence Networks — 3-¢ Lines
I aasssss——————

Equations (28) — (30) describe the voltage drop across three
uncoupled sequence networks

O Zero-seguence % Ay
network: ° A% °
- + Zaa+zzab +
VO VO'
o Positive-sequence o Negative-sequence
network: hetwork:
Z Z;
. AN Y, o AN A ) S—
+ Zas- Zap + + Zas- Zap +

Vi Vy Va Va
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Sequence Networks —Rotating Machines

K. Webb ESE 470



Sequence Networks — Rotating Machines
e

Consider the following model
for a synchronous generator

Similar to the Y-connected load

o Generator includes voltage
sources on each phase

Voltage sources are positive
sequence

o Sources will appear only in the
positive-sequence network
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Sequence Networks — Synchronous Generator

Sequence networks for Y-connected synchronous

generator
o Zero-seguence Zg ;
network: p
3Z, Vo
o Positive-sequence o Negative-sequence
network: network:
ZB |:|_ Z
|
 — H: & ZH

K. Webb ESE 470



Sequence Networks — Motors
-

Synchronous motors

o Sequence networks identical to those for synchronous
generators

0 Reference current directions are reversed

Induction motors

o Similar sequence networks to synchronous motors,
except source in the positive sequence network set to
Zero
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—Transformers
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Sequence Networks - Y-Y Transformers

Per-unit sequence networks for transformers
o Simplify by neglecting transformer shunt admittances

Consider a Y-Y transformer

Hs X3

L] 1

\% et

5
. [ ]
H, X
VAR, |

Similar to the Y-connected load, the voltage drops
across the neutral impedances are 31,Zy and 31,2,

o 3Zy and 3Z,, each appear in the zero-sequence network

o Can be combined in the per-unit circuit as long as shunt
impedances are neglected
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Sequence Networks —Y-Y Transformers

Impedance accounting for leakage flux and winding resistance for
each winding can be referred to the primary

o Add together into a single impedance, Z,, in the per-unit model
Y-Y transformer sequence networks

o Zero-sequence
network:

3(Zn + Z,) Z

AT A Y
+ +
VHO VXO
O Positive-sequence o Negative-sequence
network: nhetwork:
V4 V4
o—\/\/\_fYYY’\—O o—\/\/\_fYYY’\—O
+ + + +
VHl VXl VHZ VXZ
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Sequence Networks — Y-ATransformers

Y-A transformers differ in a couple of ways

o Must account for phase shift from primary to secondary

For positive-sequence network, Y-side voltage and current lead A-
side voltage and current

For negative-sequence network, Y-side voltage and current lag A-
side voltage and current

o No neutral connection on the A side

Zero-sequence current cannot enter or leave the A winding
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Sequence Networks — Y-ATransformers

-~
Sequence networks for Y-ATransformers

o Zero-sequence

network: e 37, Z, ho=0
E— = A ALY A A YYN —>
+ +
Vio Vxo
O Positive-sequence o Negative-sequence
network: hetwork:

IXZ

s ln2 Zs
s - — 2
+ ¢ ° + + ¢ +
Vi1 ‘ ‘ V1 Vi ‘ | Vxa
o, [ O
e

j30° -j30°
J 1 ! 1
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Sequence Networks — A-ATransformers

A-A transformers
o Like Y-Y transformers, no phase shift

o No neutral connections

Zero-sequence current cannot flow into or out of either
winding
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Sequence Networks — A-ATransformers

Sequence networks for A-ATransformers

O Zero-sequence -
network: —

O Positive-sequence
network:

IH1 ZS IXl

K. Webb

o Negative-sequence
network:

IHZ Z IXZ
— YL
° AYA

+ +

VHZ VXZ
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Power in Sequence Networks
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Power in Sequence Networks

We can relate the power delivered to a system’s
sequence networks to the three-phase power delivered
to that system

We know that the complex power delivered to a three-
phase system is the sum of the power at each phase
Sp = Vondy + Vol + Vo I

In matrix form, this looks like
T
Sp =[Van Von Veull|Ip
I
— yT r*
Sy =V, (28)
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Power in Sequence Networks
-

Recall the following relationships
vV, = AV (9)
I, = Al (13)
Using (9) and (13) in (28), we have
Sy, = (AV,)' (Alg)”
Sy, =V ATAI; (29)

Computing the product in the middle of the right-hand side of (29),
we find

3 0 O

0 3 0] = 31,

0 0 3
where I is the 3X3 identity matrix

ATA* =
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Power in Sequence Networks

-
Equation (29) then becomes

S, = VI3L;I;

S, = 3Vil;
I
S,=3[Vo Vi V,]|I1
I,

The total power delivered to a three-phase network is three

times the sum of the power delivered to the three sequence
networks

o The three sequence networks represent only one of the three
phases — recall, we chose to consider only phase a
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Example Problems
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A bolted, symmetric, three-phase fault occurs 60% of the way from bus 1 to
bus 2. Determine the subtransient fault current in per-unit and in amperes.
The load is consuming rated power at rated voltage and unity power factor.

® @)

T T
M > ¢ | Xine = 0.1 p.u. | ~’c —
Gen LI S S & (il M
100 MVA 100 MVA 100 MVA 100 MVA
13.8 kV 13.8kvA/ 138 kVY/ 13.8 kV
X< = 0.15 p.u. 138 kV Y 13.8KkV A Xy = 0.2 p.u.
XT1 =0.1 p.u. xTz =0.1 P.u.
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Determine the sequence components for the following
unbalanced set of three-phase voltage phasors:

V, =14£0°p.u.
V, = 0.52—-60°p.u.
V. =22£200°p.u.
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Determine the phase components for the following set
of sequence components:

VO —_ 14600 pu
V, =14£0°p.u.
V, = 0p.u.
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- Unsymmetrical Faults
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Unsymmetrical Faults

The majority of faults that occur in three-phase power
systems are unsymmetrical

o Not balanced

o Fault current and voltage differ for each phase

The method of symmetrical components and sequence

networks provide us with a tool to analyze these
unsymmetrical faults

We'll examine three types of unsymmetrical faults
o Single line-to-ground (SLG) faults
o Line-to-line (LL) faults

o Double line-to-ground (DLG) faults
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Unsymmetrical Fault Analysis - Procedure
-
Basic procedure for fault analysis:

1. Generate sequence networks for the system

2. Interconnect sequence networks appropriately at the
fault location

3. Perform circuit analysis on the interconnected
sequence networks
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Unsymmetrical Fault Analysis
e

To simplify our analysis, we’ll make the following
assumptions

1. System is balanced before the instant of the fault

2. Neglect pre-fault load current

All pre-fault machine terminal voltages and bus voltages are equal
to I/

. Transmission lines are modeled as series reactances only
Transformers are modeled with leakage reactances only

Non-rotating loads are neglected

o v AW

Induction motors are either neglected or modeled as
synchronous motors
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Unsymmetrical Fault Analysis

Each sequence network includes all interconnected power-

system components
o Generators, motors, lines, and transformers

Analysis will be simplified if we represent each sequence

network as its Thévenin equivalent
o From the perspective of the fault location

For example, consider the following power system:

150 MVA . | 1 150 MVA
13.8 kV ! Xjine = 0.12 T | 13.8 kV
o> C o> C

Xs” =0.1 \|4J,. @ N, pRa pRe (] @ \@ Xy = 0.25
X, = 0.06 A T | o’ m | Xo=0.15
X, =0.12 X,=0.27

150 MVA 150 MVA Xn=0.1

13.8kVA/230kVY 230kVY/13.8kV A
XT1 =0.15 p.u. X = 0.15 p.u.
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Unsymmetrical Fault Analysis — Sequence Networks
-

The sequence networks for the system are generated by
interconnecting the sequence networks for each of the components

The zero-sequence network:

The positive-sequence network:

o Assuming the generator is operating at the rated voltage at the time of
the fault

j0.06 j0.15 (1) jo.12 j0.15  (2) jo.15
YY) YN Y'Y YN Y'Y

Generator T, Line T, Motor

jo.1 j0.15 (1) jo.12 j0.15s  (2) j0.25
Y'Y\ YYN YYN Y YN Y'Y
L ] L ]

1.0£0° ,9 § g @ 1.0230°

Generator Line T, Motor
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Unsymmetrical Fault Analysis — Sequence Networks
-

The negative sequence network:

j0.12 j0.1s (1) jo.a2 j0.1s (2 jo.27
YT Y YN Y'Y Y\ Y YY)

Generator Line T, Motor

Now, let’s assume there is some sort of fault at bus 1

o Determine the Thévenin equivalent for each sequence network from the
perspective of bus 1

Simplifying the zero-sequence network to its Thévenin equivalent

j0.15 j0.72 j0.124 1,
M MY
+
—
Vo
\° o
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Unsymmetrical Fault Analysis — Sequence Networks

The positive-sequence network simplifies to the following
circuit with the following Thévenin equivalent

j0.25 @ j0.52 j0.169 1,
_YYNM - YYY YY)

\‘, +
@ 1.0£30° 1.0£30° ’\) — 1.0£30° A

~

Similarly, for the negative-sequence network, we have

j0.27 © j0.54 j0.18 I,

Vs,

~

Next, we’'ll see how to interconnect these networks to
analyze different types of faults
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Single-Line-to-Ground Fault
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Unsymmetrical Fault Analysis —SLG Fault
e

The following represents a -
generic three-phase network B — V
with terminals at the fault = -
location: : -

If we have a single-line-to-

—> a
ground fault, where phase a is .
shorted through Z¢ to ground, Network jo te ]

the model becomes:
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Unsymmetrical Fault Analysis —SLG Fault

-
The phase-domain fault conditions:

v =2
Ia = % (1) 3-0 ey +
f Network B vy
e
Ib — IC — O (2) t Vi
Transforming these phase-domain £ —
currents to the sequence domain
Il 1 1 1][Vee/Z] VaglZs
I, | = 3 1 a a? 0 =3 Vagl/Zs (3)
I, 1 a* a 0 Vag/Zs)

This gives one of our sequence-domain fault conditions

I,=1, =1, (4)
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Unsymmetrical Fault Analysis —SLG Fault

-
We know that

Va
Ia=_g=10+11+12 (5)
Zf
and
Vag — VO + Vl + VZ (6)

Using (5) and (6) in (1), we get

IO+11+12=i(V0+V1+V2)
Zf

Using (4), this gives our second sequence-domain fault
condition

1
Io=l1=Iz=E(V0+V1+V2) (7)
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Unsymmetrical Fault Analysis —SLG Fault

The sequence-domain fault conditions
are satisfied by connecting the
sequence networks in series along
with three times the fault impedance

We want to find the phase domain
fault current, I

IF:Ia:I()‘l‘Il‘l‘Iz:BIl

Vi
11 —
ZLot+Z1+Z7,+3ZF
3V
IF —
Zo+Z,+Z2+3ZF

K. Webb
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SLG Fault - Example

.,
Returning to our example power system

(2)
N

[T SR, S BCC I S IO )
e awl =
Xr1=0.15 p.u. 2 =0.15 p.u. 12 .
_YYMm -
Vo
The interconnected e
/2|
sequence networks for a i *
.0£30° vV,
bolted fault at bus 1: i
j0.18 1,
YN
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SLG Fault - Example

-
The fault current is

3VE
IF —_
Zo+Z1+Z,43ZF
3.0430°
I =— = 6.342 — 60° p. u.
]0.473

The current base at bus 1 is

Sp 150 MVA

I, = Vel V330KV 376.5 A

So the fault current in kA is
I = (6.344£ — 60°)(376.5 A)

I, = 2392 — 60° kA
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- Line-to-Line Fault
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Unsymmetrical Fault Analysis — LL Fault
e

Now consider a line-to-line fault between % 2
phase b and phase ¢ through impedance Z o L, *

Phase-domain fault conditions: Network [ =~
—> cC z Vv

Ia - O (9) V: Vg
Vpg—V : - - 3

Ib - _IC — —bg = (10) ~
ZF

Transforming to the sequence domain

I
I,

3

] l(a — az)Ib‘ (11)

(a® — ),

So, the first two sequence-domain fault conditions are
I, =-1, (13)
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Unsymmetrical Fault Analysis — LL Fault

To derive the remaining sequence-domain fault
condition, rearrange (10) and transform to the
sequence domain

ng - ch - IbZF
(VO + aZVl + aVZ) — (VO + aV1 + ClZVZ)
— (IO + a211 + alz)ZF
a’V,+aV, —aV, —a?V, = (a® — a)l, Z
(a® — a)V; — (a® — a)V, = (a® — a)l Zp
The last sequence-domain fault condition is
V-V, =17Z¢ (14)
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Unsymmetrical Fault Analysis — LL Fault
e

Sequence-domain fault conditions

I,=0 (12)
I, =-1, (13)
Vi-V,=1,Z¢ (14)

These can be satisfied by:
o Leaving the zero-sequence network open

o Connecting the terminals of the positive- and negative-sequence
networks together through Z
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Unsymmetrical Fault Analysis — LL Fault

The fault current is the phase b current, which is given by
Ip =1, =1,+ a*l, + al,

IF = azll —a11

Ip = —jV31, = 28

ARIARIA

3VgEgs£-90°
I, =20 (15)
Z1t+Z,+ZF
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LL Fault - Example

Now consider the same system with a bolted line-to-line

fault at bus 1

150 MVA T | . 150 MVA
13.8 kv ! Xiine = 0.12 2 | 13.8 kv
X’ =01 T1 S & S & 0—(») ﬁ Yo" = 0.25
Xo = 0.06 A T I Irm | Xo=0.15
X2=0.12 X, =0.27
150 MVA 150 MVA X,=01
13.8kvA/230kVY 230kVY/13.8kVY
X1 =0.15 p.u. X12=0.15 p.u.
The sequence network:
j0.169 1, j0.18
A AA'A X o YYY L
@ 1.0£30°
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LL Fault - Example
-

I, =% =287/ — 60°
j0.349

The subtransient fault current is given by (15) as
Ir = (V32 —90°)(2.872 — 60°)
I = 4964 — 150°p.u.

Using the previously-determined current base, we can
convert the fault current to kA

IF —_ Ibl . 4‘964 — 1500
I, = (4962 — 150°)(376.54)

I, =1.872—150°kA
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-Line-to-Ground Fault




Unsymmetrical Fault Analysis — DLG Fault
e

Now consider a double line-to-ground fault e g
o Assume phases b and ¢ are shorted to 6 ey, '
ground through Zg Network [+
Phase-domain fault conditions: —2.f !
I,=0 (16) g s [ﬂl:_
_ Vg _ Ve ’
I, +1,.= Z, =z, (17)

It can be shown that (16) and (17) transform to the following
sequence-domain fault conditions (analysis skipped here)

Io+11+12=0 (18)
V=V, (19)

1
I, = 3Zn (Vo — V1) (20)
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Unsymmetrical Fault Analysis — DLG Fault

Sequence-domain fault conditions

10+11+12=0 (18)

Vy=V; (19)
1

Iy =5 (Vo = V1) (20)

To satisfy these fault conditions
o Connect the positive- and negative-sequence networks together directly

o Connect the zero- and positive-sequence networks together through 3Z

3Z¢

LT
Zy l N /' L (_I Zo Z | 37 | Zy
7 F
=2 LS o <= rmm AL I -
> + + —
Vv Z
@ Vyq V, Vo Vp@ A A %’]‘2 Vo
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Unsymmetrical Fault Analysis — DLG Fault

H %
+ + :, +
Z;
Ve Vq V, Vo
= I

The fault current is the sum of the phase b and phase ¢
currents, as given by (17)

o In the sequence domain the fault current is

IF=Ib+IC=310

IF — 310 (21)

I, can be determined by a simple analysis (e.g. nodal) of the
interconnected sequence networks
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DLG Fault - Example
-

Now determine the subtransient fault current for a bolted
double line-to-ground fault at bus 1

150 MVA T | . ' 150 MVA
13.8 kv ! Xiine = 0.12 2 | 13.8 kv
X’ =01 T1 S & S & 0—(») ﬁ Yo" = 0.25
Xo = 0.06 A T I Irm | Xo=0.15
X2=0.12 X, =0.27
150 MVA 150 MVA X,=01
13.8kvA/230kVY 230kVY/13.8kVY
X1 =0.15 p.u. X12=0.15 p.u.
The sequence network:
j0.169 1| I,  j0.124
_ YYNM 2 < Y YN
+ +
o j0.18
1.0£30 @ VoV, v,
] Tw

Here, because Zp =0,Vy =V, =V,
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DLG Fault - Example

+ +
° j0.18
1.0£30 @ VoV, v,

To find I, we must determine I,

We can first find V}; by applying voltage division

Z7||Z
Vo=V
0 "7+ Zy||Z
10.18(]70.124
Vo = 1.02300— 22Ol

j0.169 + j0.18][;0.124

Vo =0.303230°
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DLG Fault - Example

-0V
Next, calculate I,

—V, —0.303230°

Z,  j0.124

I, = = 2.442120° p. u.

The per-unit fault current is

I. =3I, =7.332120°p.u.
Using the current base to convert to kA, gives the
subtransient DLG fault current

I = (7.332120°)(376.5 A)

I, = 2.76,120° kA
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n Example Problems
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Draw the sequence networks for the following power system.
Assume the generator is operating at rated voltage.

@

a
T | Xiine = 0.1 p.u. |
Al | o

100 MVA fl/ A oMYA
x; _ 8.(1)5 - 13.8/138 kV 138/13.8 kV Xu” =0.2p.u.
n=0.00p.u. X711 =0.07 p.u. Xr, = 0.07 p.u.
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Reduce the sequence networks to their Thévenin
equivalents for a fault occurring half of the way along the
transmission line.
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Determine the subtransient fault current resulting from a
DLG fault, half way along the transmission line, through
an impedance of j0.2 p.u.
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