SECTION 7: FAULT ANALYSIS

ESE 470 - Energy Distribution Systems

Introduction

Power System Faults

\square Faults in three-phase power systems are short circuits

- Line-to-ground
- Line-to-line
\square Result in the flow of excessive current
- Damage to equipment
- Heat - burning/melting
- Structural damage due to large magnetic forces
\square Bolted short circuits
- True short circuits - i.e., zero impedance
\square In general, fault impedance may be non-zero
\square Faults may be opens as well
- We'll focus on short circuits

Types of Faults

\square Type of faults from most to least common:
\square Single line-to-ground faults

- Line-to-line faults
- Double line-to-ground faults
\square Balanced three-phase (symmetrical) faults
\square We'll look first at the least common type of fault the symmetrical fault - due to its simplicity

Subtransient Fault Current

Fault Current

\square Faults occur nearly instantaneously

- Lightening, tree fall, arcing over insulation, etc.
\square Step change from steady-state behavior
- Like throwing a switch to create the fault at $t=0$
\square Consider an unloaded synchronous generator
- Equivalent circuit model:
- R: generator resistance
- L: generator inductance
- $i(t)=0$ for $t<0$

- Source phase, α, determines voltage at $t=0$
- Short circuit can occur at any point in a 60 Hz cycle

Fault Current

\square The governing differential equation for $t>0$ is

$$
\frac{d i}{d t}+i(t) \frac{R}{L}=\frac{\sqrt{2} V_{G}}{L} \sin (\omega t+\alpha)
$$

\square The solution gives the fault current

$$
i(t)=\frac{\sqrt{2} V_{G}}{Z}\left[\sin (\omega t+\alpha-\theta)-\sin (\alpha-\theta) e^{\left.-t \frac{R}{L}\right]}\right.
$$

where $Z=\sqrt{R^{2}+(\omega L)^{2}}$ and $\theta=\tan ^{-1}\left(\frac{\omega L}{R}\right)$
\square This total fault current is referred to as the asymmetrical fault current

- It has a steady-state component

$$
i_{a c}(t)=\frac{\sqrt{2} V_{G}}{Z} \sin (\omega t+\alpha-\theta)
$$

- And a transient component

$$
i_{d c}(t)=-\frac{\sqrt{2} V_{G}}{Z} \sin (\alpha-\theta) e^{-t \frac{R}{L}}
$$

Fault Current

\square Magnitude of the transient fault current, $i_{d c}$, depends on α

- $i_{d c}(0)=0 \quad$ for $\quad \alpha=\theta$
- $i_{d c}(0)=\sqrt{2} I_{a c}$ for $\alpha=\theta-90^{\circ}$
- $I_{a c}=V_{G} / Z$ is the rms value of the steady-state fault current

- Worst-case fault current occurs for $\alpha=\theta-90^{\circ}$

$$
i(t)=\frac{\sqrt{2} V_{G}}{Z}\left[\sin \left(\omega t-\frac{\pi}{2}\right)+e^{-t \frac{R}{L}}\right]
$$

Fault Current

\square Important points here:

- Total fault current has both steady-state and transient components - asymmetrical
\square Magnitude of the asymmetry (transient component) depends on the phase of the generator voltage at the time of the fault
- In this class, we will use the steady-state current component, $\mathbf{I}_{a c}$, as our primary fault current metric

Generator Reactance

\square The reactance of the generator was assumed constant in the previous example
\square Physical characteristics of real generators result in a time-varying reactance following a fault

- Time-dependence modeled with three reactance values
- $X_{d}^{\prime \prime}$: subtransient reactance
$-X_{d}^{\prime}$: transient reactance
- X_{d} : synchronous reactance
\square Reactance increases with time, such that

$$
X_{d}^{\prime \prime}<X_{d}^{\prime}<X_{d}
$$

Sub-Transient Fault Current

\square Transition rates between reactance values are dictated by two time constants:

- $\tau_{d}^{\prime \prime}$: short-circuit subtransient time constant
- τ_{d}^{\prime} : short-circuit transient time constant
\square Neglecting generator resistance, i.e. assuming $\theta=90^{\circ}$, the synchronous portion of the fault current is

$$
i_{a c}(t)=\sqrt{2} V_{G}\left[\left(\frac{1}{X_{d}^{\prime \prime}}-\frac{1}{X_{d}^{\prime}}\right) e^{-\frac{t}{\tau_{d}^{\prime \prime}}}+\left(\frac{1}{X_{d}^{\prime}}-\frac{1}{X_{d}}\right) e^{-\frac{t}{\tau_{d}^{\prime}}}+\frac{1}{X_{d}}\right] \sin \left(\omega t+\alpha-\frac{\pi}{2}\right)
$$

\square At the instant of the fault, $t=0$, the rms synchronous fault current is

$$
I_{F}^{\prime \prime}=\frac{V_{G}}{X_{d}^{\prime \prime}}
$$

- This is the rms subtransient fault current, $I_{F}^{\prime \prime}$
- This will be our primary metric for assessing fault current

Symmetrical Three-Phase Short Circuits

Symmetrical 3- ϕ Short Circuits

\square Next, we'll calculate the subtransient fault current resulting from a balanced three-phase fault
\square We'll make the following simplifying assumptions:

- Transformers modeled with leakage reactance only
- Neglect winding resistance and shunt admittances
- Neglect $\Delta-Y$ phase shifts
- Transmission lines modeled with series reactance only
- Synchronous machines modeled as constant voltage sources in series with subtransient reactances
\square Generators and motors
- Induction motors are neglected or modeled as synchronous motors
- Non-rotating loads are neglected

Symmetrical 3- ϕ Short Circuits

\square We'll apply superposition to determine three-phase subtransient fault current
\square Consider the following power system:

\square Assume there is a balanced three-phase short of bus 1 to ground at $t=0$

Symmetrical 3- ϕ Short Circuits

\square The instant of the fault can be modeled by the switch closing in the following line-to-neutral schematic

\square The short circuit (closed switch) can be represented by two back-to-back voltage sources, each equal to \boldsymbol{V}_{F}

Symmetrical 3- ϕ Short Circuits

\square Applying superposition, we can represent this circuit as the sum of two separate circuits:

Circuit 1

Circuit 2

Symmetrical 3- ϕ Short Circuits

\square Assume that the value of the fault-location source, V_{F}, is the pre-fault voltage at that location

- Circuit 1, then, represents the pre-fault circuit, so

$$
\boldsymbol{I}_{F 1}^{\prime \prime}=0
$$

- The \boldsymbol{V}_{F} source can therefore be removed from circuit 1

Circuit 1

Circuit 2

Symmetrical 3- ϕ Short Circuits

\square The current in circuit 1, \boldsymbol{I}_{L}, is the pre-fault line current
\square Superposition gives the fault current

$$
\boldsymbol{I}_{F}^{\prime \prime}=\boldsymbol{I}_{F 1}^{\prime \prime}+\boldsymbol{I}_{F 2}^{\prime \prime}=\boldsymbol{I}_{F 2}^{\prime \prime}
$$

\square The generator fault current is

$$
\begin{aligned}
& \boldsymbol{I}_{G}^{\prime \prime}=\boldsymbol{I}_{G 1}^{\prime \prime}+\boldsymbol{I}_{G 2}^{\prime \prime} \\
& \boldsymbol{I}_{G}^{\prime \prime}=\boldsymbol{I}_{L}+\boldsymbol{I}_{G 2}^{\prime \prime}
\end{aligned}
$$

\square The motor fault current is

$$
\begin{aligned}
& \boldsymbol{I}_{M}^{\prime \prime}=\boldsymbol{I}_{M 1}^{\prime \prime}+\boldsymbol{I}_{M 2}^{\prime \prime} \\
& \boldsymbol{I}_{M}^{\prime \prime}=-\boldsymbol{I}_{L}+\boldsymbol{I}_{M 2}^{\prime \prime}
\end{aligned}
$$

Symmetrical 3- ϕ Fault - Example

\square For the simple power system above:

- Generator is supplying rated power
- Generator voltage is 5% above rated voltage
- Generator power factor is 0.95 lagging
\square A bolted three-phase fault occurs at bus 1
\square Determine:
- Subtransient fault current
- Subtransient generator current
- Subtransient motor current

Symmetrical 3- ϕ Fault - Example

\square First convert to per-unit

- Use $S_{b}=100 \mathrm{MVA}$
$\square \quad$ Base voltage in the transmission line zone is

$$
V_{b, t l}=138 \mathrm{kV}
$$

\square Base impedance in the transmission line zone is

$$
Z_{b, t l}=\frac{V_{b, t l}^{2}}{S_{b}}=\frac{(138 \mathrm{kV})^{2}}{100 \mathrm{MVA}}=190.4 \Omega
$$

$\square \quad$ The per-unit transmission line reactance is

$$
X_{t l}=\frac{20 \Omega}{190.4 \Omega}=0.105 \text { p.u. }
$$

Symmetrical 3- ϕ Fault - Example

\square The two per-unit circuits are

\square These can be simplified by combining impedances

Symmetrical 3- ϕ Fault - Example

\square Using circuit 2, we can calculate the subtransient fault current

$$
I_{F}^{\prime \prime}=\frac{1.05 \angle 0^{\circ}}{j 0.116}=9.079 \angle-90^{\circ} p . u .
$$

\square To convert to kA, first determine the current base in the generator zone

$$
I_{b, G}=\frac{S_{b}}{\sqrt{3} V_{b, G}}=\frac{100 \mathrm{MVA}}{\sqrt{3} \cdot 13.8 \mathrm{kV}}=4.18 \mathrm{kA}
$$

\square The subtransient fault current is

$$
\begin{aligned}
& \boldsymbol{I}_{F}^{\prime \prime}=\left(9.079 \angle-90^{\circ}\right) \cdot 4.18 \mathrm{kA} \\
& \boldsymbol{I}_{F}^{\prime \prime}=37.98 \angle-90^{\circ} \mathrm{kA}
\end{aligned}
$$

Symmetrical 3- ϕ Fault - Example

\square The pre-fault line current can be calculated from the pre-fault generator voltage and power

$$
\begin{aligned}
& \boldsymbol{I}_{L}=\left(\frac{\boldsymbol{S}_{G} / 3}{\boldsymbol{V}_{G}^{\prime \prime} / \sqrt{3}}\right)^{*}=\left(\frac{\boldsymbol{S}_{G}}{\sqrt{3} \boldsymbol{V}_{G}^{\prime \prime}}\right)^{*}=\frac{\left(100 \angle \cos ^{-1}(0.95) M V A\right)^{*}}{\left(\sqrt{3} \cdot 1.05 \cdot 13.8 \angle 0^{\circ} \mathrm{kV}\right)^{*}} \\
& \boldsymbol{I}_{L}=\frac{100 \angle-18.19^{\circ} M V A}{\sqrt{3} \cdot 1.05 \cdot 13.8 \angle 0^{\circ} \mathrm{kV}} \\
& \boldsymbol{I}_{L}=3.98 \angle-18.19^{\circ} \mathrm{kA}
\end{aligned}
$$

- Or, in per-unit:

$$
\boldsymbol{I}_{L}=\frac{3.98 \angle-18.19^{\circ} \mathrm{kA}}{4.18 \mathrm{kA}}=0.952 \angle-18.19^{\circ} p . u .
$$

- This will be used to find the generator and motor fault currents

Symmetrical 3- ϕ Fault - Example

\square The generator's contribution to the fault current is found by applying current division

$$
\boldsymbol{I}_{G 2}^{\prime \prime}=\boldsymbol{I}_{F}^{\prime \prime} \frac{0.505}{0.505+0.15}=7.0 \angle-90^{\circ} p . u
$$

\square Adding the pre-fault line current, we have the subtransient generator fault current

$$
\begin{aligned}
& \boldsymbol{I}_{G}^{\prime \prime}=\boldsymbol{I}_{L}+\boldsymbol{I}_{G 2}^{\prime \prime} \\
& \boldsymbol{I}_{G}^{\prime \prime}=0.952 \angle-18.19^{\circ}+7.0 \angle-90^{\circ} \\
& \boldsymbol{I}_{G}^{\prime \prime}=7.35 \angle-82.9^{\circ} \text { p.u. }
\end{aligned}
$$

\square Converting to kA

$$
\boldsymbol{I}_{G}^{\prime \prime}=\left(7.35 \angle-82.9^{\circ}\right) \cdot 4.18 k A
$$

$$
\boldsymbol{I}_{G}^{\prime \prime}=30.74 \angle-82.9^{\circ} \mathrm{kA}
$$

Symmetrical 3- ϕ Fault - Example

\square Similarly, for the motor

$$
\boldsymbol{I}_{M 2}^{\prime \prime}=\boldsymbol{I}_{F}^{\prime \prime} \frac{0.15}{0.505+0.15}=2.08 \angle-90^{\circ} p . u .
$$

\square Subtracting the pre-fault line current gives the subtransient motor fault current

$$
\begin{aligned}
\boldsymbol{I}_{M}^{\prime \prime} & =-\boldsymbol{I}_{L}+\boldsymbol{I}_{M 2}^{\prime \prime} \\
\boldsymbol{I}_{M}^{\prime \prime} & =-0.952 \angle-18.19^{\circ}+2.08 \angle-90^{\circ} \\
\boldsymbol{I}_{M}^{\prime \prime} & =2.0 \angle-116.9^{\circ}
\end{aligned}
$$

\square Converting to $k A$

$$
\begin{aligned}
& \boldsymbol{I}_{M}^{\prime \prime}=\left(2.0 \angle-116.9^{\circ}\right) \cdot 4.18 \mathrm{kA} \\
& \boldsymbol{I}_{M}^{\prime \prime}=8.36 \angle-116.9^{\circ} \mathrm{kA}
\end{aligned}
$$

26
 Symmetrical Components

Symmetrical Components

\square In the previous section, we saw how to calculate subtransient fault current for balanced three-phase faults
\square Unsymmetrical faults are much more common
\square Analysis is more complicated
\square We'll now learn a tool that will simplify the analysis of unsymmetrical faults

- The method of symmetrical components

Symmetrical Components

\square The method of symmetrical components:

- Represent an asymmetrical set of N phasors as a sum of N sets of symmetrical component phasors
- These N sets of phasors are called sequence components
\square Analogous to:
- Decomposition of electrical signals into differential and common-mode components
- Decomposition of forces into orthogonal components
\square For a three-phase system $(N=3)$, sequence components are:
- Zero sequence components
- Positive sequence components
- Negative sequence components

Sequence Components

\square Zero sequence components

- Three phasors with equal magnitude and equal phase
- $\boldsymbol{V}_{a 0}, \boldsymbol{V}_{b 0}, \boldsymbol{V}_{c 0}$

\square Positive sequence components
- Three phasors with equal magnitude and $\pm 120^{\circ}$, positive-sequence phase
- $\boldsymbol{V}_{a 1}, \boldsymbol{V}_{b 1}, \boldsymbol{V}_{c 1}$

\square Negative sequence components
- Three phasors with equal magnitude and $\pm 120^{\circ}$, negative-sequence phase
- $\boldsymbol{V}_{a 2}, \boldsymbol{V}_{b 2}, \boldsymbol{V}_{c 2}$

Sequence Components

\square Note that the absolute phase and the magnitudes of the sequence components is not specified

- Magnitude and phase define a unique set of sequence components
\square Any set of phasors - balanced or unbalanced - can be represented as a sum of sequence components

$$
\left[\begin{array}{l}
\boldsymbol{V}_{a} \tag{1}\\
\boldsymbol{V}_{b} \\
\boldsymbol{V}_{c}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{V}_{a 0} \\
\boldsymbol{V}_{b 0} \\
\boldsymbol{V}_{c 0}
\end{array}\right]+\left[\begin{array}{l}
\boldsymbol{V}_{a 1} \\
\boldsymbol{V}_{b 1} \\
\boldsymbol{V}_{c 1}
\end{array}\right]+\left[\begin{array}{l}
\boldsymbol{V}_{a 2} \\
\boldsymbol{V}_{b 2} \\
\boldsymbol{V}_{c 2}
\end{array}\right]
$$

Sequence Components

\square The phasors of each sequence component have a fixed phase relationship

- If we know one, we know the other two
- Assume we know phase a - use that as the reference
\square For the zero sequence components, we have

$$
\begin{equation*}
V_{0}=V_{a 0}=V_{b 0}=V_{c 0} \tag{2}
\end{equation*}
$$

\square For the positive sequence components,

$$
\begin{equation*}
\boldsymbol{V}_{1}=\boldsymbol{V}_{a 1}=\left(1 \angle 120^{\circ}\right) \cdot \boldsymbol{V}_{b 1}=\left(1 \angle 240^{\circ}\right) \cdot \boldsymbol{V}_{c 1} \tag{3}
\end{equation*}
$$

\square And, for the negative sequence components,

$$
\begin{equation*}
\boldsymbol{V}_{2}=\boldsymbol{V}_{a 2}=\left(1 \angle 240^{\circ}\right) \cdot \boldsymbol{V}_{b 2}=\left(1 \angle 120^{\circ}\right) \cdot \boldsymbol{V}_{c 2} \tag{4}
\end{equation*}
$$

\square Note that we're using phase a as our reference, so

$$
V_{0}=V_{a 0}, \quad V_{1}=V_{a 1}, \quad V_{2}=V_{a 2}
$$

Sequence Components

\square Next, we define a complex number, a, that has unit magnitude and phase of 120°

$$
\begin{equation*}
a=1 \angle 120^{\circ} \tag{5}
\end{equation*}
$$

- Multiplication by a results in a rotation (a phase shift) of 120°
- Multiplication by a^{2} yields a rotation of $240^{\circ}=-120^{\circ}$
\square Using (5) to rewrite (3) and (4)

$$
\begin{align*}
& \boldsymbol{V}_{1}=\boldsymbol{V}_{a 1}=a \boldsymbol{V}_{b 1}=a^{2} \boldsymbol{V}_{c 1} \tag{6}\\
& \boldsymbol{V}_{2}=\boldsymbol{V}_{a 2}=a^{2} \boldsymbol{V}_{b 2}=a \boldsymbol{V}_{c 2} \tag{7}
\end{align*}
$$

Sequence Components

\square Using (2), (6), and (7), we can rewrite (1) in a simplified form

$$
\left[\begin{array}{l}
\boldsymbol{V}_{a} \tag{8}\\
\boldsymbol{V}_{b} \\
\boldsymbol{V}_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V}_{0} \\
\boldsymbol{V}_{1} \\
\boldsymbol{V}_{2}
\end{array}\right]
$$

- The vector on the left is the vector of phase voltages, \boldsymbol{V}_{p}
- The vector on the right is the vector of (phase a) sequence components, \boldsymbol{V}_{s}
- We'll call the 3×3 transformation matrix \boldsymbol{A}
\square We can rewrite (8) as

$$
\begin{equation*}
V_{p}=A V_{s} \tag{9}
\end{equation*}
$$

Sequence Components

\square We can express the sequence voltages as a function of the phase voltages by inverting the transformation matrix

$$
\begin{equation*}
\boldsymbol{V}_{s}=\boldsymbol{A}^{-1} \boldsymbol{V}_{p} \tag{10}
\end{equation*}
$$

where

$$
A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \tag{11}\\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]
$$

So

$$
\left[\begin{array}{l}
\boldsymbol{V}_{0} \tag{12}\\
\boldsymbol{V}_{1} \\
\boldsymbol{V}_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V}_{a} \\
\boldsymbol{V}_{b} \\
\boldsymbol{V}_{c}
\end{array}\right]
$$

Sequence Components

\square The same relationships hold for three-phase currents
\square The phase currents are

$$
\boldsymbol{I}_{p}=\left[\begin{array}{l}
\boldsymbol{I}_{a} \\
\boldsymbol{I}_{b} \\
\boldsymbol{I}_{c}
\end{array}\right]
$$

\square And, the sequence currents are

$$
\boldsymbol{I}_{s}=\left[\begin{array}{l}
I_{0} \\
I_{1} \\
I_{2}
\end{array}\right]
$$

Sequence Components

\square The transformation matrix, \boldsymbol{A}, relates the phase currents to the sequence currents

$$
\begin{align*}
& \boldsymbol{I}_{p}=\boldsymbol{A} \boldsymbol{I}_{s} \\
& {\left[\begin{array}{l}
\boldsymbol{I}_{a} \\
\boldsymbol{I}_{b} \\
\boldsymbol{I}_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{I}_{0} \\
\boldsymbol{I}_{1} \\
\boldsymbol{I}_{2}
\end{array}\right]} \tag{13}
\end{align*}
$$

\square And vice versa

$$
\begin{align*}
& \boldsymbol{I}_{s}=\boldsymbol{A}^{-1} \boldsymbol{I}_{p} \\
& {\left[\begin{array}{l}
\boldsymbol{I}_{0} \\
\boldsymbol{I}_{1} \\
\boldsymbol{I}_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{I}_{a} \\
\boldsymbol{I}_{b} \\
\boldsymbol{I}_{c}
\end{array}\right]} \tag{14}
\end{align*}
$$

Sequence Components - Balanced System

\square Before applying sequence components to unbalanced systems, let's first look at the sequence components for a balanced, positive-sequence, three-phase system
\square For a balanced system, we have

$$
\begin{aligned}
& \boldsymbol{V}_{b}=\boldsymbol{V}_{a} \cdot 1 \angle-120^{\circ}=a^{2} \boldsymbol{V}_{a} \\
& \boldsymbol{V}_{c}=\boldsymbol{V}_{a} \cdot 1 \angle 120^{\circ}=a \boldsymbol{V}_{a}
\end{aligned}
$$

\square The sequence voltages are given by (12)

- The zero sequence voltage is

$$
\begin{aligned}
& \boldsymbol{V}_{0}=\frac{1}{3}\left[\boldsymbol{V}_{a}+\boldsymbol{V}_{b}+\boldsymbol{V}_{c}\right]=\frac{1}{3}\left[\boldsymbol{V}_{a}+a^{2} \boldsymbol{V}_{a}+a \boldsymbol{V}_{a}\right] \\
& \boldsymbol{V}_{0}=\frac{1}{3} \boldsymbol{V}_{a}\left[1+a^{2}+a\right]
\end{aligned}
$$

\square Applying the identity $1+a^{2}+a=0$, we have

$$
\boldsymbol{V}_{0}=0
$$

Sequence Components - Balanced System

\square The positive sequence component is given by

$$
\begin{aligned}
& \boldsymbol{V}_{1}=\frac{1}{3}\left[\boldsymbol{V}_{a}+a \boldsymbol{V}_{b}+a^{2} \boldsymbol{V}_{c}\right] \\
& \boldsymbol{V}_{1}=\frac{1}{3}\left[\boldsymbol{V}_{a}+a \cdot a^{2} \boldsymbol{V}_{a}+a^{2} \cdot a \boldsymbol{V}_{a}\right] \\
& \boldsymbol{V}_{1}=\frac{1}{3}\left[\boldsymbol{V}_{a}+a^{3} \boldsymbol{V}_{a}+a^{3} \boldsymbol{V}_{a}\right]
\end{aligned}
$$

\square Since $a^{3}=1 \angle 0^{\circ}$, we have

$$
\begin{aligned}
& \boldsymbol{V}_{1}=\frac{1}{3}\left[3 \boldsymbol{V}_{a}\right] \\
& \boldsymbol{V}_{1}=\boldsymbol{V}_{a}
\end{aligned}
$$

Sequence Components - Balanced System

The negative sequence component is given by

$$
\begin{aligned}
& \boldsymbol{V}_{2}=\frac{1}{3}\left[\boldsymbol{V}_{a}+a^{2} \boldsymbol{V}_{b}+a \boldsymbol{V}_{c}\right] \\
& \boldsymbol{V}_{2}=\frac{1}{3}\left[\boldsymbol{V}_{a}+a^{2} \cdot a^{2} \boldsymbol{V}_{a}+a \cdot a \boldsymbol{V}_{a}\right] \\
& \boldsymbol{V}_{2}=\frac{1}{3}\left[\boldsymbol{V}_{a}+a^{4} \boldsymbol{V}_{a}+a^{2} \boldsymbol{V}_{a}\right]
\end{aligned}
$$

\square Again, using the identity $1+a^{2}+a=0$, along with the fact that $a^{4}=a$, we have

$$
\boldsymbol{V}_{2}=0
$$

Sequence Components - Balanced System

\square So, for a positive-sequence, balanced, three-phase system, the sequence voltages are

$$
\boldsymbol{V}_{0}=0, \quad \boldsymbol{V}_{1}=\boldsymbol{V}_{a}, \quad \boldsymbol{V}_{2}=0
$$

\square Similarly, the sequence currents are

$$
\boldsymbol{I}_{0}=0, \quad \boldsymbol{I}_{1}=\boldsymbol{I}_{a}, \quad \boldsymbol{I}_{2}=0
$$

\square This is as we would expect

- No zero- or negative-sequence components for a positive-sequence balanced system
\square Zero- and negative-sequence components are only used to account for imbalance

Sequence Components

\square We have just introduced the concept of symmetric components

- Allows for decomposition of, possibly unbalanced, three-phase phasors into sequence components
\square We'll now apply this concept to power system networks to develop sequence networks
- Decoupled networks for each of the sequence components
\square Sequence networks become coupled only at the point of imbalance
\square Simplifies the analysis of unbalanced systems

${ }^{42}$ Sequence Networks

Sequence Networks

\square Power system components each have their own set of sequence networks

- Non-rotating loads
- Transmission lines
- Rotating machines - generators and motors
- Transformers
\square Sequence networks for overall systems are interconnections of the individual sequence network
\square Sequence networks become coupled in a particular way at the fault location depending on type of fault
- Line-to-line
- Single line-to-ground
- Double line-to-ground
\square Fault current can be determined through simple analysis of the coupled sequence networks

44

Sequence Networks - Non-Rotating Loads

Sequence Networks - Non-Rotating Loads

\square Consider a balanced Y-load with the neutral grounded through some non-zero impedance
\square Applying KVL gives the phase- a-to-ground voltage

$$
\begin{align*}
\boldsymbol{V}_{a g} & =Z_{y} \boldsymbol{I}_{a}+Z_{n} \boldsymbol{I}_{n} \\
\boldsymbol{V}_{a g} & =Z_{y} \boldsymbol{I}_{a}+Z_{n}\left(\boldsymbol{I}_{a}+\boldsymbol{I}_{b}+\boldsymbol{I}_{c}\right) \\
\boldsymbol{V}_{a g} & =\left(Z_{y}+Z_{n}\right) \boldsymbol{I}_{a}+Z_{n} \boldsymbol{I}_{b}+Z_{n} \boldsymbol{I}_{c} \tag{15}
\end{align*}
$$

\square For phase b :

$$
\begin{align*}
& \boldsymbol{V}_{b g}=Z_{y} \boldsymbol{I}_{b}+Z_{n} \boldsymbol{I}_{n}=Z_{y} \boldsymbol{I}_{b}+Z_{n}\left(\boldsymbol{I}_{a}+\boldsymbol{I}_{b}+\boldsymbol{I}_{c}\right) \\
& \boldsymbol{V}_{b g}=Z_{n} \boldsymbol{I}_{a}+\left(Z_{y}+Z_{n}\right) \boldsymbol{I}_{b}+Z_{n} \boldsymbol{I}_{c} \tag{16}
\end{align*}
$$

\square Similarly, for phase c :

$$
\begin{equation*}
\boldsymbol{V}_{a g}=Z_{n} \boldsymbol{I}_{a}+Z_{n} \boldsymbol{I}_{b}+\left(Z_{y}+Z_{n}\right) \boldsymbol{I}_{c} \tag{17}
\end{equation*}
$$

Sequence Networks - Non-Rotating Loads

\square Putting (15) - (17) in matrix form

$$
\left[\begin{array}{l}
\boldsymbol{V}_{a g} \\
\boldsymbol{V}_{b g} \\
\boldsymbol{V}_{c g}
\end{array}\right]=\left[\begin{array}{ccc}
\left(Z_{y}+Z_{n}\right) & Z_{n} & Z_{n} \\
Z_{n} & \left(Z_{y}+Z_{n}\right) & Z_{n} \\
Z_{n} & Z_{n} & \left(Z_{y}+Z_{n}\right)
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{I}_{a} \\
\boldsymbol{I}_{b} \\
\boldsymbol{I}_{c}
\end{array}\right]
$$

or

$$
\begin{equation*}
V_{p}=Z_{p} I_{p} \tag{18}
\end{equation*}
$$

where \boldsymbol{V}_{p} and \boldsymbol{I}_{p} are the phase voltages and currents, respectively, and \boldsymbol{Z}_{p} is the phase impedance matrix
\square We can use (9) and (13) to rewrite (18) as

$$
A V_{s}=Z_{p} A I_{s}
$$

\square Solving for \boldsymbol{V}_{S}

$$
V_{s}=A^{-1} Z_{p} A I_{s}
$$

or

$$
\begin{equation*}
V_{s}=Z_{s} I_{S} \tag{19}
\end{equation*}
$$

Sequence Networks - Non-Rotating Loads

$$
\begin{equation*}
V_{s}=Z_{s} I_{S} \tag{19}
\end{equation*}
$$

where Z_{s} is the sequence impedance matrix

$$
\boldsymbol{Z}_{s}=\boldsymbol{A}^{-1} \boldsymbol{Z}_{p} \boldsymbol{A}=\left[\begin{array}{ccc}
\left(Z_{y}+3 Z_{n}\right) & 0 & 0 \tag{20}\\
0 & Z_{y} & 0 \\
0 & 0 & Z_{y}
\end{array}\right]
$$

\square Equation (19) then becomes a set of three uncoupled equations

$$
\begin{align*}
& \boldsymbol{V}_{0}=\left(Z_{y}+3 Z_{n}\right) \boldsymbol{I}_{0}=Z_{0} \boldsymbol{I}_{0} \tag{21}\\
& \boldsymbol{V}_{1}=Z_{y} \boldsymbol{I}_{1}=Z_{1} \boldsymbol{I}_{1} \tag{22}\\
& \boldsymbol{V}_{2}=Z_{y} \boldsymbol{I}_{2}=Z_{2} \boldsymbol{I}_{2} \tag{23}
\end{align*}
$$

Sequence Networks - Non-Rotating Loads

\square Equations (21) - (23) describe the uncoupled sequence networks

- Zero-sequence network:

- Positive-sequence network:

- Negative-sequence network:

Sequence Networks - Non-Rotating Loads

\square We can develop similar sequence networks for a balanced Δ connected load

- $Z_{y}=Z_{\Delta} / 3$
- There is no neutral point for the Δ-network, so $Z_{n}=\infty$ - an open circuit
- Zero-sequence

- Positive-sequence network:

- Negative-sequence network:

50 Sequence Networks - 3- ϕ Lines

Sequence Networks - 3- ϕ Lines

\square Balanced, three-phase lines can be modeled as

\square The voltage drops across the lines are given by the following system of equations

$$
\left[\begin{array}{l}
\boldsymbol{V}_{a a^{\prime}} \tag{24}\\
\boldsymbol{V}_{b b^{\prime}} \\
\boldsymbol{V}_{c c^{\prime}}
\end{array}\right]=\left[\begin{array}{lll}
Z_{a a} & Z_{a b} & Z_{a c} \\
Z_{b a} & Z_{b b} & Z_{b c} \\
Z_{c a} & Z_{c b} & Z_{c c}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{I}_{a} \\
\boldsymbol{I}_{b} \\
\boldsymbol{I}_{c}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{V}_{a n}-\boldsymbol{V}_{a}{ }^{\prime} n \\
\boldsymbol{V}_{b n}-\boldsymbol{V}_{b^{\prime} n} \\
\boldsymbol{V}_{c n}-\boldsymbol{V}_{c^{\prime} n}
\end{array}\right]
$$

Sequence Networks - 3- ϕ Lines

\square Writing (24) in compact form

$$
\begin{equation*}
\boldsymbol{V}_{p}-\boldsymbol{V}_{p^{\prime}}=\boldsymbol{Z}_{p} \boldsymbol{I}_{p} \tag{25}
\end{equation*}
$$

$\square \boldsymbol{Z}_{p}$ is the phase impedance matrix
\square Self impedances along the diagonal

- Mutual impedances elsewhere
\square Symmetric
- Diagonal, if we neglect mutual impedances

Sequence Networks - 3- ϕ Lines

\square We can rewrite (25) in terms of sequence components

$$
\begin{align*}
& A V_{s}-A V_{s^{\prime}}=Z_{p} A I_{s} \\
& V_{s}-V_{s^{\prime}}=A^{-1} Z_{p} A I_{s} \\
& V_{s}-V_{s^{\prime}}=Z_{s} I_{s} \tag{26}
\end{align*}
$$

where \boldsymbol{Z}_{s} is the sequence impedance matrix

$$
\begin{equation*}
\boldsymbol{Z}_{s}=\boldsymbol{A}^{-1} \boldsymbol{Z}_{p} \boldsymbol{A} \tag{27}
\end{equation*}
$$

$\square \boldsymbol{Z}_{s}$ is diagonal so long as the system impedances are balanced, i.e.
\square Self impedances are equal: $Z_{a a}=Z_{b b}=Z_{c c}$
\square Mutual impedances are equal: $Z_{a b}=Z_{a c}=Z_{b c}$

Sequence Networks - 3- ϕ Lines

\square For balanced lines, \boldsymbol{Z}_{s} is diagonal

$$
Z_{s}=\left[\begin{array}{ccc}
Z_{a a}+2 Z_{a b} & 0 & 0 \\
0 & Z_{a a}-Z_{a b} & 0 \\
0 & 0 & Z_{a a}-Z_{a b}
\end{array}\right]=\left[\begin{array}{ccc}
Z_{0} & 0 & 0 \\
0 & Z_{1} & 0 \\
0 & 0 & Z_{2}
\end{array}\right]
$$

\square Because Z_{s} is diagonal, (26) represents three uncoupled equations

$$
\begin{align*}
& \boldsymbol{V}_{0}-\boldsymbol{V}_{0^{\prime}}=Z_{0} \boldsymbol{I}_{0} \tag{28}\\
& \boldsymbol{V}_{1}-\boldsymbol{V}_{1^{\prime}}=Z_{1} \boldsymbol{I}_{1} \tag{29}\\
& \boldsymbol{V}_{2}-\boldsymbol{V}_{2^{\prime}}=Z_{2} \boldsymbol{I}_{2} \tag{30}
\end{align*}
$$

Sequence Networks - 3- ϕ Lines

\square Equations (28) - (30) describe the voltage drop across three uncoupled sequence networks

- Zero-sequence network:

- Positive-sequence network:
- Negative-sequence network:

Sequence Networks -Rotating Machines

Sequence Networks - Rotating Machines

\square Consider the following model for a synchronous generator
\square Similar to the Y -connected load
\square Generator includes voltage sources on each phase
\square Voltage sources are positive sequence

- Sources will appear only in the positive-sequence network

Sequence Networks - Synchronous Generator

\square Sequence networks for Y-connected synchronous generator

- Zero-sequence network:

- Positive-sequence network:
- Negative-sequence network:

Sequence Networks - Motors

\square Synchronous motors

- Sequence networks identical to those for synchronous generators
\square Reference current directions are reversed
\square Induction motors
- Similar sequence networks to synchronous motors, except source in the positive sequence network set to zero

Sequence Networks -Transformers

Sequence Networks - Y-Y Transformers

\square Per-unit sequence networks for transformers

- Simplify by neglecting transformer shunt admittances
\square Consider a Y - Y transformer

\square Similar to the Y -connected load, the voltage drops across the neutral impedances are $3 I_{0} Z_{N}$ and $3 I_{0} Z_{n}$
- $3 Z_{N}$ and $3 Z_{n}$ each appear in the zero-sequence network
\square Can be combined in the per-unit circuit as long as shunt impedances are neglected

Sequence Networks - Y-Y Transformers

\square Impedance accounting for leakage flux and winding resistance for each winding can be referred to the primary

- Add together into a single impedance, Z_{s}, in the per-unit model
$\square \quad Y-Y$ transformer sequence networks
- Zero-sequence network:

- Positive-sequence network:

- Negative-sequence network:

Sequence Networks - Y- Δ Transformers

$\square \mathrm{Y}-\Delta$ transformers differ in a couple of ways

- Must account for phase shift from primary to secondary
- For positive-sequence network, Y-side voltage and current lead Δ side voltage and current
- For negative-sequence network, Y-side voltage and current lag Δ side voltage and current
- No neutral connection on the Δ side
- Zero-sequence current cannot enter or leave the Δ winding

Sequence Networks - Y- Δ Transformers

\square Sequence networks for Y - Δ Transformers

- Zero-sequence network:

- Positive-sequence network:

- Negative-sequence network:

Sequence Networks - $\Delta-\Delta$ Transformers

$\square \Delta-\Delta$ transformers

- Like Y-Y transformers, no phase shift
- No neutral connections
- Zero-sequence current cannot flow into or out of either winding

Sequence Networks - $\Delta-\Delta$ Transformers

\square Sequence networks for $\Delta-\Delta$ Transformers

- Zero-sequence network:

- Positive-sequence network:

- Negative-sequence network:

Power in Sequence Networks

Power in Sequence Networks

\square We can relate the power delivered to a system's sequence networks to the three-phase power delivered to that system
\square We know that the complex power delivered to a threephase system is the sum of the power at each phase

$$
S_{p}=\boldsymbol{V}_{a n} \boldsymbol{I}_{a}^{*}+\boldsymbol{V}_{b n} \boldsymbol{I}_{b}^{*}+\boldsymbol{V}_{c n} \boldsymbol{I}_{c}^{*}
$$

\square In matrix form, this looks like

$$
\begin{align*}
& S_{p}=\left[\begin{array}{lll}
\boldsymbol{V}_{a n} & \boldsymbol{V}_{b n} & \boldsymbol{V}_{c n}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{I}_{a}^{*} \\
\boldsymbol{I}_{b}^{*} \\
\boldsymbol{I}_{c}^{*}
\end{array}\right] \\
& S_{p}=\boldsymbol{V}_{p}^{T} \boldsymbol{I}_{p}^{*} \tag{28}
\end{align*}
$$

Power in Sequence Networks

\square Recall the following relationships

$$
\begin{align*}
& \boldsymbol{V}_{p}=\boldsymbol{A} \boldsymbol{V}_{s} \tag{9}\\
& \boldsymbol{I}_{p}=\boldsymbol{A} \boldsymbol{I}_{s} \tag{13}
\end{align*}
$$

\square Using (9) and (13) in (28), we have

$$
\begin{align*}
& \boldsymbol{S}_{p}=\left(\boldsymbol{A} \boldsymbol{V}_{s}\right)^{T}\left(\boldsymbol{A} \boldsymbol{I}_{s}\right)^{*} \\
& \boldsymbol{S}_{p}=\boldsymbol{V}_{s}^{T} \boldsymbol{A}^{T} \boldsymbol{A}^{*} \boldsymbol{I}_{S}^{*} \tag{29}
\end{align*}
$$

\square Computing the product in the middle of the right-hand side of (29), we find

$$
\boldsymbol{A}^{T} \boldsymbol{A}^{*}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]=3 \boldsymbol{I}_{3}
$$

where \boldsymbol{I}_{3} is the 3×3 identity matrix

Power in Sequence Networks

Equation (29) then becomes

$$
\begin{aligned}
& \boldsymbol{S}_{p}=\boldsymbol{V}_{s}^{T} 3 \boldsymbol{I}_{3} \boldsymbol{I}_{S}^{*} \\
& \boldsymbol{S}_{p}=3 \boldsymbol{V}_{S}^{T} \boldsymbol{I}_{S}^{*} \\
& \boldsymbol{S}_{p}=3\left[\begin{array}{lll}
\boldsymbol{V}_{0} & \boldsymbol{V}_{1} & \boldsymbol{V}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{I}_{0}^{*} \\
\boldsymbol{I}_{1}^{*} \\
\boldsymbol{I}_{2}^{*}
\end{array}\right] \\
& \boldsymbol{S}_{p}=3\left(\boldsymbol{V}_{0} \boldsymbol{I}_{0}^{*}+\boldsymbol{V}_{1} \boldsymbol{I}_{1}^{*}+\boldsymbol{V}_{2} \boldsymbol{I}_{2}^{*}\right)
\end{aligned}
$$

\square The total power delivered to a three-phase network is three times the sum of the power delivered to the three sequence networks

- The three sequence networks represent only one of the three phases - recall, we chose to consider only phase a

71
 Example Problems

A bolted, symmetric, three-phase fault occurs 60% of the way from bus 1 to bus 2. Determine the subtransient fault current in per-unit and in amperes. The load is consuming rated power at rated voltage and unity power factor.

Determine the sequence components for the following unbalanced set of three-phase voltage phasors:

$$
\begin{aligned}
& \mathbf{V}_{a}=1 \angle 0^{\circ} p . u . \\
& \mathbf{V}_{b}=0.5 \angle-60^{\circ} p . u . \\
& \mathbf{V}_{c}=2 \angle 200^{\circ} p . u .
\end{aligned}
$$

Determine the phase components for the following set of sequence components:

$$
\begin{aligned}
& \mathbf{V}_{0}=1 \angle 60^{\circ} p . u . \\
& \mathbf{V}_{1}=1 \angle 0^{\circ} p . u . \\
& \mathbf{V}_{2}=0 p . u .
\end{aligned}
$$

Unsymmetrical Faults

Unsymmetrical Faults

\square The majority of faults that occur in three-phase power systems are unsymmetrical

- Not balanced
- Fault current and voltage differ for each phase
\square The method of symmetrical components and sequence networks provide us with a tool to analyze these unsymmetrical faults
\square We'll examine three types of unsymmetrical faults
\square Single line-to-ground (SLG) faults
- Line-to-line (LL) faults
- Double line-to-ground (DLG) faults

Unsymmetrical Fault Analysis - Procedure

\square Basic procedure for fault analysis:

1. Generate sequence networks for the system
2. Interconnect sequence networks appropriately at the fault location
3. Perform circuit analysis on the interconnected sequence networks

Unsymmetrical Fault Analysis

\square To simplify our analysis, we'll make the following assumptions

1. System is balanced before the instant of the fault
2. Neglect pre-fault load current

- All pre-fault machine terminal voltages and bus voltages are equal to V_{F}

3. Transmission lines are modeled as series reactances only
4. Transformers are modeled with leakage reactances only
5. Non-rotating loads are neglected
6. Induction motors are either neglected or modeled as synchronous motors

Unsymmetrical Fault Analysis

\square Each sequence network includes all interconnected powersystem components

- Generators, motors, lines, and transformers
\square Analysis will be simplified if we represent each sequence network as its Thévenin equivalent
- From the perspective of the fault location
\square For example, consider the following power system:

Unsymmetrical Fault Analysis - Sequence Networks

\square The sequence networks for the system are generated by interconnecting the sequence networks for each of the components
\square The zero-sequence network:

\square The positive-sequence network:

- Assuming the generator is operating at the rated voltage at the time of the fault

Unsymmetrical Fault Analysis - Sequence Networks

\square The negative sequence network:

\square Now, let's assume there is some sort of fault at bus 1

- Determine the Thévenin equivalent for each sequence network from the perspective of bus 1
\square Simplifying the zero-sequence network to its Thévenin equivalent

Unsymmetrical Fault Analysis - Sequence Networks

\square The positive-sequence network simplifies to the following circuit with the following Thévenin equivalent

\square Similarly, for the negative-sequence network, we have

\square Next, we'll see how to interconnect these networks to analyze different types of faults

Single-Line-to-Ground Fault

Unsymmetrical Fault Analysis - SLG Fault

\square The following represents a generic three-phase network with terminals at the fault location:

\square If we have a single-line-toground fault, where phase a is shorted through Z_{f} to ground, the model becomes:

Unsymmetrical Fault Analysis - SLG Fault

\square The phase-domain fault conditions:

$$
\begin{align*}
& \boldsymbol{I}_{a}=\frac{\boldsymbol{V}_{a g}}{Z_{f}} \tag{1}\\
& \boldsymbol{I}_{b}=\boldsymbol{I}_{c}=0 \tag{2}
\end{align*}
$$

\square Transforming these phase-domain
 currents to the sequence domain

$$
\left[\begin{array}{l}
\boldsymbol{I}_{0} \tag{3}\\
\boldsymbol{I}_{1} \\
\boldsymbol{I}_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{V}_{a g} / Z_{f} \\
0 \\
0
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
\boldsymbol{V}_{a g} / Z_{f} \\
\boldsymbol{V}_{a g} / Z_{f} \\
\boldsymbol{V}_{a g} / Z_{f}
\end{array}\right]
$$

\square This gives one of our sequence-domain fault conditions

$$
\begin{equation*}
\boldsymbol{I}_{0}=\boldsymbol{I}_{1}=\boldsymbol{I}_{2} \tag{4}
\end{equation*}
$$

Unsymmetrical Fault Analysis - SLG Fault

\square We know that

$$
\begin{equation*}
\boldsymbol{I}_{a}=\frac{\boldsymbol{V}_{a g}}{Z_{f}}=\boldsymbol{I}_{0}+\boldsymbol{I}_{1}+\boldsymbol{I}_{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{a g}=V_{0}+V_{1}+V_{2} \tag{6}
\end{equation*}
$$

\square Using (5) and (6) in (1), we get

$$
I_{0}+I_{1}+I_{2}=\frac{1}{Z_{f}}\left(V_{0}+V_{1}+V_{2}\right)
$$

\square Using (4), this gives our second sequence-domain fault condition

$$
\begin{equation*}
\boldsymbol{I}_{0}=\boldsymbol{I}_{1}=\boldsymbol{I}_{2}=\frac{1}{3 Z_{f}}\left(\boldsymbol{V}_{0}+\boldsymbol{V}_{1}+\boldsymbol{V}_{2}\right) \tag{7}
\end{equation*}
$$

Unsymmetrical Fault Analysis - SLG Fault

\square The sequence-domain fault conditions are satisfied by connecting the sequence networks in series along with three times the fault impedance
\square We want to find the phase domain fault current, \boldsymbol{I}_{F}

$$
\begin{align*}
& \boldsymbol{I}_{F}=\boldsymbol{I}_{a}=\boldsymbol{I}_{0}+\boldsymbol{I}_{1}+\boldsymbol{I}_{2}=3 \boldsymbol{I}_{1} \\
& \boldsymbol{I}_{1}=\frac{\boldsymbol{V}_{F}}{Z_{0}+Z_{1}+Z_{2}+3 Z_{F}} \\
& \boldsymbol{I}_{F}=\frac{3 \boldsymbol{V}_{F}}{Z_{0}+Z_{1}+Z_{2}+3 Z_{F}} \tag{8}
\end{align*}
$$

SLG Fault - Example

\square Returning to our example power system

The interconnected sequence networks for a bolted fault at bus 1:

SLG Fault - Example

\square The fault current is

$$
\begin{aligned}
& \boldsymbol{I}_{F}=\frac{3 V_{F}}{Z_{0}+Z_{1}+Z_{2}+3 Z_{F}} \\
& \boldsymbol{I}_{F}=\frac{3.0 \angle 30^{\circ}}{j 0.473}=6.34 \angle-60^{\circ} \text { p.u. }
\end{aligned}
$$

\square The current base at bus 1 is

$$
\boldsymbol{I}_{b}=\frac{S_{b}}{\sqrt{3} V_{b 1}}=\frac{150 \mathrm{MVA}}{\sqrt{3} 230 \mathrm{kV}}=376.5 \mathrm{~A}
$$

\square So the fault current in kA is

$$
\begin{aligned}
& \boldsymbol{I}_{F}=\left(6.34 \angle-60^{\circ}\right)(376.5 \mathrm{~A}) \\
& \boldsymbol{I}_{F}=2.39 \angle-60^{\circ} \mathrm{kA}
\end{aligned}
$$

95
 Line-to-Line Fault

Unsymmetrical Fault Analysis - LL Fault

\square Now consider a line-to-line fault between phase b and phase c through impedance Z_{F}
\square Phase-domain fault conditions:

$$
\begin{align*}
& \boldsymbol{I}_{a}=0 \tag{9}\\
& \boldsymbol{I}_{b}=-\boldsymbol{I}_{c}=\frac{\boldsymbol{V}_{b g}-\boldsymbol{V}_{c g}}{Z_{F}} \tag{10}
\end{align*}
$$

\square Transforming to the sequence domain

$$
\left[\begin{array}{l}
\boldsymbol{I}_{0} \tag{11}\\
\boldsymbol{I}_{1} \\
\boldsymbol{I}_{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
0 \\
\boldsymbol{I}_{b} \\
-\boldsymbol{I}_{b}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
0 \\
\left(a-a^{2}\right) \boldsymbol{I}_{b} \\
\left(a^{2}-a\right) \boldsymbol{I}_{b}
\end{array}\right]
$$

\square So, the first two sequence-domain fault conditions are

$$
\begin{align*}
& \boldsymbol{I}_{0}=0 \tag{12}\\
& \boldsymbol{I}_{2}=-\boldsymbol{I}_{1} \tag{13}
\end{align*}
$$

Unsymmetrical Fault Analysis - LL Fault

\square To derive the remaining sequence-domain fault condition, rearrange (10) and transform to the sequence domain

$$
\begin{aligned}
& \boldsymbol{V}_{b g}-\boldsymbol{V}_{c g}=\boldsymbol{I}_{b} Z_{F} \\
& \begin{aligned}
&\left(\boldsymbol{V}_{0}+a^{2} \boldsymbol{V}_{1}+a \boldsymbol{V}_{2}\right)-\left(\boldsymbol{V}_{0}+a \boldsymbol{V}_{1}+a^{2} \boldsymbol{V}_{2}\right) \\
&=\left(\boldsymbol{I}_{0}+a^{2} \boldsymbol{I}_{1}+a \boldsymbol{I}_{2}\right) Z_{F}
\end{aligned} \\
& a^{2} \boldsymbol{V}_{1}+a \boldsymbol{V}_{2}-a \boldsymbol{V}_{1}-a^{2} \boldsymbol{V}_{2}=\left(a^{2}-a\right) \boldsymbol{I}_{1} Z_{F} \\
& \left(a^{2}-a\right) \boldsymbol{V}_{1}-\left(a^{2}-a\right) \boldsymbol{V}_{2}=\left(a^{2}-a\right) \boldsymbol{I}_{1} Z_{F}
\end{aligned}
$$

\square The last sequence-domain fault condition is

$$
\begin{equation*}
V_{1}-V_{2}=I_{1} Z_{F} \tag{14}
\end{equation*}
$$

Unsymmetrical Fault Analysis - LL Fault

\square Sequence-domain fault conditions

$$
\begin{align*}
& \boldsymbol{I}_{0}=0 \tag{12}\\
& \boldsymbol{I}_{2}=-\boldsymbol{I}_{1} \tag{13}\\
& \boldsymbol{V}_{1}-\boldsymbol{V}_{2}=\boldsymbol{I}_{1} Z_{F} \tag{14}
\end{align*}
$$

\square These can be satisfied by:

- Leaving the zero-sequence network open
- Connecting the terminals of the positive- and negative-sequence networks together through Z_{F}

Unsymmetrical Fault Analysis - LL Fault

\square The fault current is the phase b current, which is given by

$$
\begin{align*}
& \boldsymbol{I}_{F}=\boldsymbol{I}_{b}=\boldsymbol{I}_{0}+a^{2} \boldsymbol{I}_{1}+a \boldsymbol{I}_{2} \\
& \boldsymbol{I}_{F}=a^{2} \boldsymbol{I}_{1}-a \boldsymbol{I}_{1} \\
& \boldsymbol{I}_{F}=-j \sqrt{3} \boldsymbol{I}_{1}=\frac{-j \sqrt{3} \boldsymbol{V}_{F}}{Z_{1}+Z_{2}+Z_{F}} \\
& \boldsymbol{I}_{F}=\frac{\sqrt{3} \boldsymbol{V}_{F} \angle-90^{\circ}}{Z_{1}+Z_{2}+Z_{F}} \tag{15}
\end{align*}
$$

LL Fault - Example

Now consider the same system with a bolted line-to-line fault at bus 1

\square The sequence network:

LL Fault - Example

$$
\boldsymbol{I}_{1}=\frac{1 \angle 30^{\circ}}{j 0.349}=2.87 \angle-60^{\circ}
$$

\square The subtransient fault current is given by (15) as

$$
\begin{aligned}
& \boldsymbol{I}_{F}=\left(\sqrt{3} \angle-90^{\circ}\right)\left(2.87 \angle-60^{\circ}\right) \\
& \boldsymbol{I}_{F}=4.96 \angle-150^{\circ} \text { p.u. }
\end{aligned}
$$

\square Using the previously-determined current base, we can convert the fault current to kA

$$
\begin{aligned}
& \boldsymbol{I}_{F}=I_{b 1} \cdot 4.96 \angle-150^{\circ} \\
& \boldsymbol{I}_{F}=\left(4.96 \angle-150^{\circ}\right)(376.5 A) \\
& \boldsymbol{I}_{F}=1.87 \angle-150^{\circ} k A
\end{aligned}
$$

Double-Line-to-Ground Fault

Unsymmetrical Fault Analysis - DLG Fault

\square Now consider a double line-to-ground fault

- Assume phases b and c are shorted to ground through Z_{F}
\square Phase-domain fault conditions:

$$
\begin{align*}
& \boldsymbol{I}_{a}=0 \tag{16}\\
& \boldsymbol{I}_{b}+\boldsymbol{I}_{c}=\frac{\boldsymbol{V}_{b g}}{Z_{F}}=\frac{\boldsymbol{V}_{c g}}{Z_{F}} \tag{17}
\end{align*}
$$

\square It can be shown that (16) and (17) transform to the following sequence-domain fault conditions (analysis skipped here)

$$
\begin{align*}
& I_{0}+I_{1}+I_{2}=0 \tag{18}\\
& V_{1}=V_{2} \tag{19}\\
& I_{0}=\frac{1}{3 Z_{F}}\left(V_{0}-V_{1}\right) \tag{20}
\end{align*}
$$

Unsymmetrical Fault Analysis - DLG Fault

\square Sequence-domain fault conditions

$$
\begin{align*}
& I_{0}+I_{1}+I_{2}=0 \tag{18}\\
& V_{1}=V_{2} \tag{19}\\
& I_{0}=\frac{1}{3 Z_{F}}\left(V_{0}-V_{1}\right) \tag{20}
\end{align*}
$$

\square To satisfy these fault conditions

- Connect the positive- and negative-sequence networks together directly
\square Connect the zero- and positive-sequence networks together through $3 Z_{F}$

Unsymmetrical Fault Analysis - DLG Fault

\square The fault current is the sum of the phase b and phase c currents, as given by (17)

- In the sequence domain the fault current is

$$
\begin{align*}
& \boldsymbol{I}_{F}=\boldsymbol{I}_{b}+\boldsymbol{I}_{c}=3 \boldsymbol{I}_{0} \\
& \boldsymbol{I}_{F}=3 \boldsymbol{I}_{0} \tag{21}
\end{align*}
$$

$\square I_{0}$ can be determined by a simple analysis (e.g. nodal) of the interconnected sequence networks

DLG Fault - Example

Now determine the subtransient fault current for a bolted double line-to-ground fault at bus 1

\square The sequence network:

\square Here, because $Z_{F}=0, \boldsymbol{V}_{0}=\boldsymbol{V}_{1}=\boldsymbol{V}_{2}$

DLG Fault - Example

\square To find \boldsymbol{I}_{F}, we must determine \boldsymbol{I}_{0}
\square We can first find V_{0} by applying voltage division

$$
\begin{aligned}
& \boldsymbol{V}_{0}=\boldsymbol{V}_{F} \frac{Z_{2} \| Z_{0}}{Z_{1}+Z_{2} \| Z_{0}} \\
& \boldsymbol{V}_{0}=1.0 \angle 30^{\circ} \frac{j 0.18 \| j 0.124}{j 0.169+j 0.18 \| j 0.124} \\
& \boldsymbol{V}_{0}=0.303 \angle 30^{\circ}
\end{aligned}
$$

DLG Fault - Example

\square Next, calculate \boldsymbol{I}_{0}

$$
\boldsymbol{I}_{0}=\frac{-\boldsymbol{V}_{0}}{Z_{0}}=\frac{-0.303 \angle 30^{\circ}}{j 0.124}=2.44 \angle 120^{\circ} \text { p.u. }
$$

\square The per-unit fault current is

$$
\boldsymbol{I}_{F}=3 \boldsymbol{I}_{0}=7.33 \angle 120^{\circ} \text { p.u. }
$$

\square Using the current base to convert to kA, gives the subtransient DLG fault current

$$
\begin{aligned}
& \boldsymbol{I}_{F}=\left(7.33 \angle 120^{\circ}\right)(376.5 \mathrm{~A}) \\
& \boldsymbol{I}_{F}=2.76 \angle 120^{\circ} \mathrm{kA}
\end{aligned}
$$

Draw the sequence networks for the following power system. Assume the generator is operating at rated voltage.

Reduce the sequence networks to their Thévenin equivalents for a fault occurring half of the way along the transmission line.

Determine the subtransient fault current resulting from a DLG fault, half way along the transmission line, through an impedance of j0.2 p.u.

