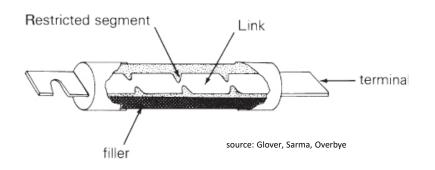
SECTION 8: SYSTEM PROTECTION

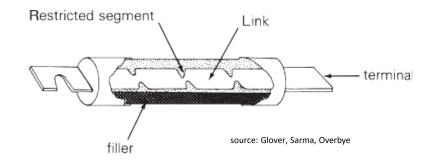
ESE 470 – Energy Distribution Systems

System Protection


- 3
- Fault current may far exceed maximum current ratings for power system equipment
 Thermal or mechanical damage may occur
- Goal of system protection equipment is to isolate equipment after a fault as soon as possible
 HV and EHV systems less than three cycles
 LV systems 5 20 cycles
- Remove faulted equipment from the system until the fault is cleared
 - Want to remove as little of the system as possible

System Protection Equipment

- 1
- Protection equipment detects and isolates faults
 - Instrument transformers
 - Relays
 - Circuit breakers
 - Reclosers
 - Fuses
 - Surge arresters
- Transmission networks (HV and EHV) protected primarily by circuit breakers in conjunction with instrument transformers and relays
- Lower-voltage distribution networks mostly employ fuses and reclosers for protection


- The simplest type of system protection equipment is the fuse
 - Designed to create an open circuit in response to an overcurrent event
 - *Fusible link* melts in response to excessive current

Fuses

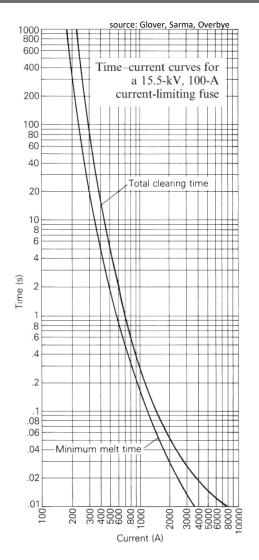
- Fuses are small, simple, and inexpensive, but ...
- If a fuse opens, it must be replaced to restore service once the fault is cleared
 Manual intervention is required
- Fuses are typically cylindrical in shape
 Conductive fusible links, e.g. silver
 Arc-suppressing filler material, e.g. sand

Fuse Ratings

Voltage rating

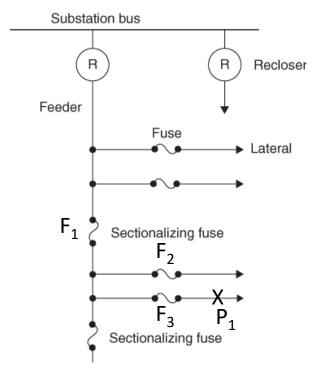
The maximum voltage a fuse can withstand after opening

Continuous current


 Maximum current the fuse can carry without opening

Interrupting current

Maximum current a fuse can safely interrupt


Time response

- Fuse melt time is proportional to current magnitude relative to the fuse current rating
- Described by time-current curve

Fuse Timing

- For a given overcurrent magnitude, some fuses will open faster than others
- In *radial* networks, fuses can be *time coordinated*
 - Fuses further downstream closer to the fault – will open first
 - Minimize loss of service
- For example, for a fault at P₁:
 F₃ should open, F₁ should not
 More complicated for non-radial systems

source: Glover, Sarma, Overbye

Reclosers

- Another type of system protection is the *recloser*
 - Like fuses, common at the distribution level
 - Internal control circuitry
 - Interrupts (opens) a circuit on a fault condition
 - Automatically recloses after some time delay
 - Opens again if fault persists
 - Attempts to reclose again after additional delay
 - Preprogrammed to attempt to reclose several (e.g. three) times
 - If fault does not self-clear, recloser will remain open
 - Manual intervention possibly remote required

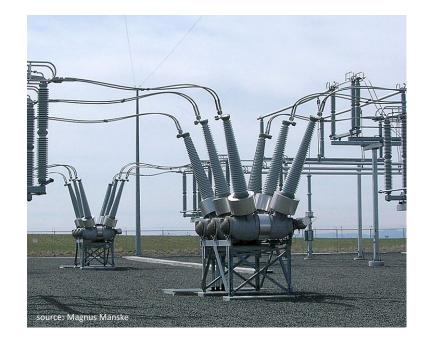
Reclosers

Useful for temporary faults

- Wind shorting phases
- Falling tree limbs
- Animals
- Lightening, etc.
- Most faults on overhead lines are self-clearing
- Unlike fuses, manual intervention is not required unless fault does not self-clear

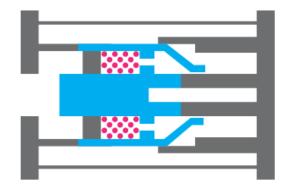
Surge Arresters

- Surge arresters protect against very high overvoltage events
 E.g., lightening strikes
- Low-impedance path to ground for high voltage
- High impedance for normal voltage levels
- Located at substations and on transmission/ distribution lines

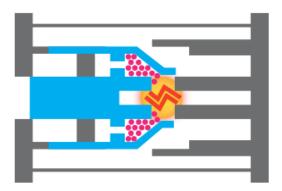


Circuit Breakers

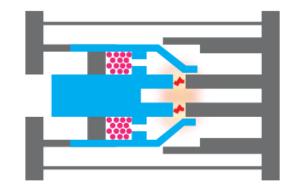
The other main category of system protection devices is *circuit breakers*

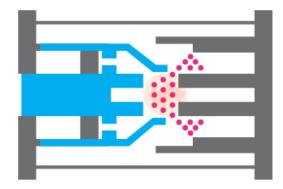

 Interrupt and reclose a circuit when commanded to by external control circuitry

- Circuit breakers are used in conjunction with external control circuitry
 - Instrument transformers
 - Voltage transformers
 - Current transformers
 - Overcurrent relays
- Located at substations and generation facilities



Circuit Breakers


1. Closed under normal operating conditions


3. Arc wants to persist across gap between contacts

2. Opens in response to overcurrent

4. Compressed gas extinguishes the arc

Instrument Transformers

- 16
- Transformers used for measuring power-system quantities – voltage or current
 - Voltage transformers (VT)

Current transformers (CT)

Overcurrent Relays

Overcurrent relays

- Detect faults based on input from a current transformer
- Sends a control signal to circuit breaker to interrupt the circuit
- Electromechanical relays
 Solid-state, digital relays

source: Creative Commons, Wtshymanski

source: Creative Commons, Zen 38

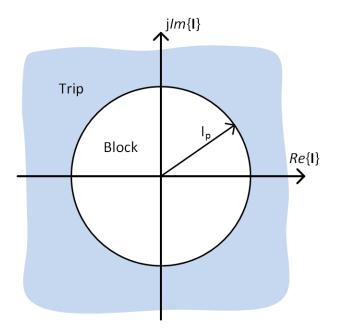
Overcurrent Relays

Two main categories of overcurrent relays

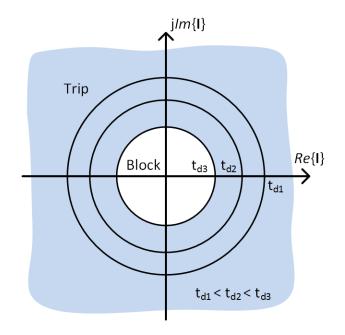
Instantaneous overcurrent relays

 Designed to trip very quickly when current exceeds the current limit, or *pickup current*, *I*_p

Time-delay overcurrent relays


- Designed to trip after some time delay when current exceeds pickup current, Ip
- Amount of delay depends on amount that the current exceeds I_p
- Time-delay overcurrent relays have two adjustments
 Pickup current

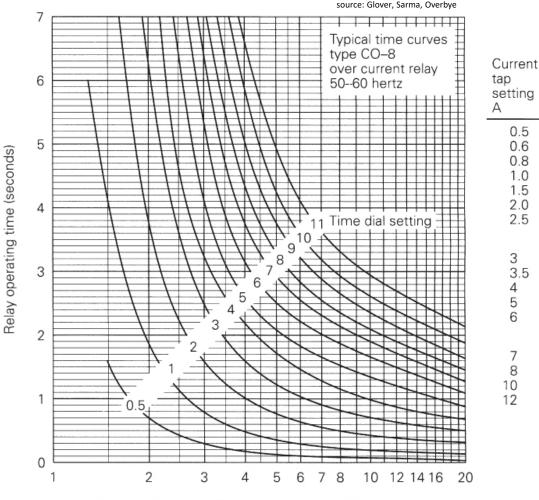
Time delay


Overcurrent Relays

Trip and block regions for instantaneous and timedelay overcurrent relays

Instantaneous overcurrent relay:

Time-delay overcurrent relay:

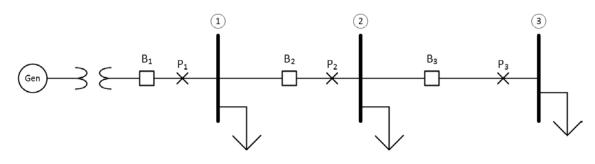


Time-Delay Overcurrent Relays

20

K. Webb

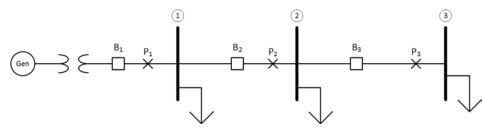
Time-current curves for a typical electromechanical time-delay overcurrent relay



Relay input current in multiples of current tap setting

Time Coordination of Relays

21

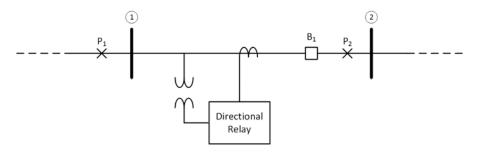

Consider the following simple radial system

A fault at P₁ would cause breaker B₁ to open
 Buses 1, 2, and 3 are all disconnected from the generator

- For a fault at P₂, both B₁ and B₂ would experience an overcurrent
 - Ideally, only B₂ would open, taking buses 2 and 3 offline, but leaving bus 1 in service

Time Coordination of Relays

- Time coordination of relays
 Set time delay of B₃ to be less than that of B₂
 Set time delay of B₂ to be less than that of B₁
- Downstream breakers, those closest to the fault, will trip first
 Fault will be isolated before upstream breakers can trip
 Loss of load is limited
- Practical number of time-coordinated relays on a radial system is limited to five or fewer
- Time coordination gets more complicated for non-radial systems

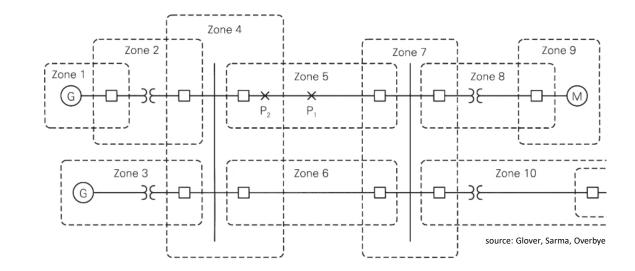

22

Directional Relays

- One goal of any system protection scheme is to remove as little of a system from service as possible in the event of a fault
 - Time coordination accomplishes this for radial systems
 - For more complicated networks, other tools are needed

Directional relays

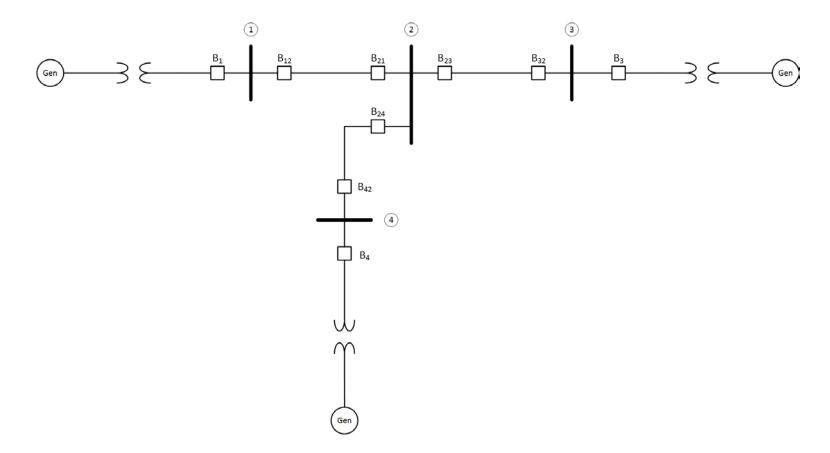
- Trip for fault current in one direction only
- Current and voltage instrument transformers used to detect *current magnitude* and *direction*
- Exploits the fact that line impedance is inductive


For example, relay above could be configured to trip breaker B₁ for a fault at P₂, but not a P₁

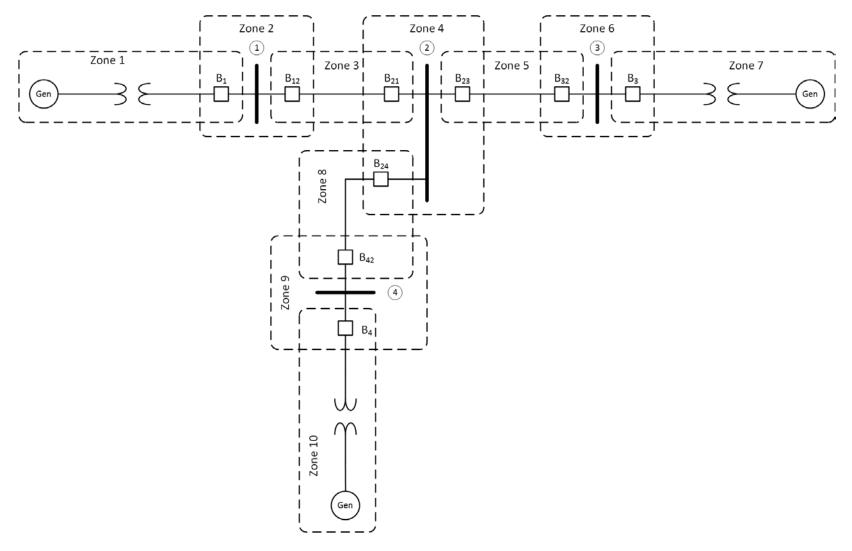
Zones of Protection

- Time coordination works for simple radial distribution networks
- □ For more complicated networks, we use *zones of protection*
- Power system divided into zones one zone for each:
 - Generator
 - Bus
 - Transformer
 - Transmission/ distribution line

Load


Zones of Protection

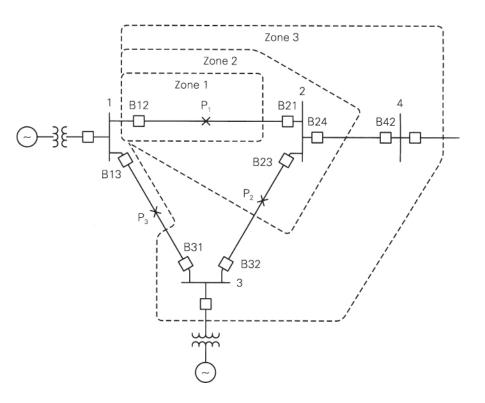
- When a fault is detected anywhere in a zone:
 - All breakers in that zone open
 - Entire zone is isolated
- Rules for defining zones of protection:
 - Zones must overlap
 - No gaps between zones
 - Circuit breakers define zone boundaries
 - Breakers are located in the overlap regions
- All circuit breakers in a zone must be coordinated
 - Multiple relays and instrument transformers for each circuit breaker
 - Communication between multiple relays and circuit breakers within a zone is required


Zones of Protection – Example 10.7

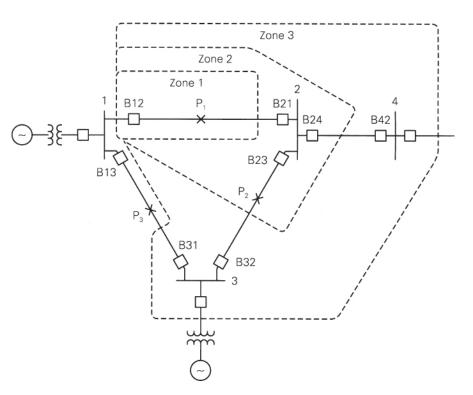
27

Define zones of protection for the following power system:

Zones of Protection – Example 10.7


- 30
- An alternative to time coordination, directional relays, and protective zones, is the use of *distance* (*impedance*) *relays*

Distance relays


- Trip a breaker when a voltage-to-current ratio (line impedance to the fault) falls below some threshold
- Near a fault
 - Current increases drastically due to the fault
 - Voltage decreases drastically
 - Voltage-to-current ratio drops significantly
- Further from a fault
 - Same fault current increase is experienced
 - Voltage drops less or not at all
 - Voltage-to-current ratio decreases, but not as much

- Distance relays are adjusted for a certain *reach*
 - Reach: percentage of the line over which a relay will respond to a fault
- Distance relays often used in conjunction with directional relays
 - Monitoring for faults a certain distance down a line in only one direction
- Typical configuration is for a circuit breaker to be controlled by three directional impedance relays per phase
 - Three protective zones for each breaker
 - Each zone has progressively longer reach and time delay

- For example, protective zones for breaker B12:
 B12 trips instantly for fault at P₁ (Zone 1)
 Reach of Zone 1 is 80% of line 1-2
 - Prevents mistaking faults on other lines near bus 2 for faults on line 1-2
- \Box Consider a fault at P₂
 - Zone 2 for B12
 - Medium time delay
 - Zone 1 for B23 and B32
 - No time delay
 - **B**23 and B32 will trip
 - If B23 fails, B12 will trip after some delay

- Note that zones for extend in one direction only
 - Away from bus 1
 - Directional distance relays
- \square Now consider a fault at P₃
 - Approximately same impedance as P₁, but opposite direction
 - Not in any B12 zone
 - B12 will never trip for a fault at P₃
- P₃ would be in Zone 1 for B13 and B31

